NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

SUMC FAULT TOLERANT COMPUTER SYSTEM
FINAL REPORT
FOR
CONTRACT NAS8-31747

(MASA~CR-161581) SUNMC FAULT TOLERANT N80-34111
COMPUTER SYSTEN (NASA) 74 p HC AO4/MF AO1 :

CsSCL 09B

Unclas
63760 29013

September 10, 1980

R R . SUMC Fault Tolerant Couputer System
T ‘ Final Report
B oL o for
' Contract NAS8-31747
September 10, 1980
i Prepared For:
. The Marshall Space Flight Center
Huntsville, Alabama
] :
E

o

’

oned

1.0

2.0
2,1
2,2
2.3
2.4
2.5

3.0
3.1
3.1.1
3.1.2

3.1.2.
3.1.2.
3.1.2.
3.1.2.
3.1.2.
3.1.2.
3.1.2.
5.1.2.

3.1.3

3.1.3.
3.1.3.
3.1.3.
3.1.3.
3.1.3.

3.2
3.3

st

1
1.1
1.2
1.3
2
3
4
5

1
2
3
4
5

CONTENTS

T ———

INTRODUCTION

TRADE STUDIES
Configurations

Redundancy Management Unit (RMU) Concept

Interfaces
FIM Control Strategy
Storage Address Expansion

IMPLEMENTATION

Fault Tolerant Memory
Storage Array

Translator

Parity Trees

Check Bit Matrix

Error Detection and Location
Self-Testing

Corrector

Error Analysis

Command and Status Registers
Spare Assignment Register
Error Correction Algorithms
Error Location

Address Tally

Fault Tally

Reconfigure
Test/Copy/Correct

FTM System Management
Implementation of Address Extension

2-1
2-1
2-11
2-15
2-17
2-21

3-1
3-1
3-1
3-1
3-4
3-4
3-5
3-6

3-7

3-13
3-13
3-16
3-16
3-21
3-21
3-25
3-25
3-25
3-30

2-7

2-9
2-10

2-11
2-12
2-13
2-14

3-1
3-2
3-3
3~4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12

= =

“YLLUSTRATIONS

-

¥

Simplified SUMC-TIC

Trade-0ff Configurations

Dual Port Configurations 1 and 2
Dual Port Configuration & ’
Dual Port Configurations 5 and 6
SUMC-TIC Configuration
Cross-strapping with no Single Failure Modes
Stnplz Cross-strapping

Extended Memory Segmenting

Flow Diagram of the S/360 Effective Address
Calculation

SUMC-11IC Biock Diagram

Sectored Memotyglmplementation

Double Precision EA Microprogram Hardware
Data Path Extension

Storage Array Organization
Translator Functional Block Diagram
Parity Check Matrix for 16 Data Bits
Functional Parity Tree Representation
Correction Decoder

Error Analysis

Command 'NO-OP' Command Structure
Translator Error/Status Word
Diagnose Repair Flow

RMU Status Codes

Form Fault Word

Address Fault Tally

i1

2-2
2-4
2-6
2-7
2-8
2-10
2-16
2-16
2-23
2-25

2-27
2-29
2-30
2-31

3~2
3-3
3-5
3-7
3-10
3-14
3-15
3-17
3-18
3-20
3-22

"

-

"‘Evmm*}'

an

3-14
3-15
- 3-16
3-17

2-1
2-2

3-1
3-2

Fault Tally Routine

Reconfigure Routine

Test/Copy/Correct Routine

Multiple Error Correction Algorithm
Extended Addressing - Data Path Extension

‘Configutation Trade Data

Summary of Address Expansion Trades

FIM Diagnostic Execution
Control Equations

111

Page

3-23
3-26
3-27
3-28
3-32

2-9
2-32

3-30
3-35

- |

et

e YN T Me

SUMC-11 C FINAL REPORT

1.0 INTRODUCTION

This report presents the results of the trade studies conducted on
contract number NAS 8-31747. These trades cover: establishing the
basic configuration, establishing the CPU/memory coufiguration,
establishing an approach to crosstrapping interfaces, defining the
requirements of the redundancy management unit (RMU), establishing a
spare plane switching stretepy for the fault-tolerant memory (FIM),
and identifying the most cost effective way of extending the memory
addressing capability beyond the 64 K-bytes (K=1024) of SUMC-II B.
The results of the design are compiled in Contract End Item (CEI)
Specification for the NASA Standard Spacecraft Computer II (NSSC-1I),
IBM 7934507. The report also presents, in Section 3, the implemen-
tation of the FTM and memory address expansion. The scope of the
original contract was reduced so that the IOUs and RMU were not
designed.

2.0 TDADE STUDIES

2.1 CONFIGURATIONS

The first item requiring resolution in the SUMC-II C is the basic
configuration. The objectives and constraints of the program are
listed below:

— = = =m .

e

L

o Provide flexitility to be able to meet varying levels of
redundancy.

)
g

Make maximum use of hardware developed for the
HTC/SUMC-II B.

mww
(-]

......_..
F—
o

Use error correcting memcry techniques since they pro-
i vide the most reliability for the least amount of
{i hardware duplication.

{ o Use spare memory planes and a bit-plane organized
L memory.

(V] Use a fault-tolerant redundancy management unit (RMU)
to control the redundant elements of the system.

Providing redundahcy within the CPU or IOU would require devélop-
ment of completely new untis and would not represent a cost
effective way of providing reliable systems. Configurations were
- limited to CPUs and IOUs as 'stand alone" units. The CPU to
f memory interface is a significant part of the study. The Top
Level system configuration is shown in Figure 2-1, Subsequent

[S—

mmwm1
3

10P

Fe———- -
| |
i 1/
| |
| CPUs —
I AND |
\ MEMORIES |

I
: | CROSSTRAP
I ? ! !
| (CONFIGURATION |
| NOT YET i
| KNOWN) o
I]

|
: o
. |

AUXILLARY
MEMORY
(1PL)

FIGURE 2-1.

SIMPLIFIED SUMC-TIC

2-2

0P

sections of this report will develop this general concept into a
working approach to the SUMC~II C.

Over a peciod of time a number of candidate subsystems were defined
for the CPU/memory portion of the SUMC-II C. These configurations
are shown in Figure 2-2 and are explained below:

) Configuration 1 consists of two CPUs sharing a common
fault tolerant memory built from existing Main Memory
Unit (MMU) hardware. No attempt is made in this con-
figuration to eliminate single point failures in the
memoryY. A new design is required for the power supply
and the dual port interfaces.

° Configuration 2 consists of two CPUs sharing a common
fault tolerant memory. This memory is an extensively
redesigned MMU and contains no single point failures.

A new redundant power supply would be required for this
design. A newv design would be required for the dual
port interfaces.

o Configuration 3 consists of two CPUs, each having a fault
tolerant MMU memory. The computers will be used in a
redundant manner and no new design is required.

0 Configufation 4 consists of two CPUs, each having a
dedicated memory except that the dual port interfaces
are used to provide cross-strapping of _-mory write when
both systems are powered on. Each computer supplies
pover to its dedicated uemory and reads only from its
memory. The cross-strapping is provided for rapid

SNOLIVENOIINGD 440-3GVdL °2-2 3undld

e [Tl
o Lot
ISl
v

©

|

2-4

Wid a| v Wid viX |s
v /ndd Ll e /ndd |4
Iy iy
‘ m
[T T
s ‘ s| w4
d m al mwm |V i
U VIX | S VX

/ndd

EC
']n
.
2
 [aw ,‘-
q_
4=

 information transfer batween memories during CPU switch-
over. This approach requires a new design for the dual
port interfaces but no new power supply design.

° Configuration 5 consists of two CPUs cross-strapped to
two fault tolerant MMU memories. Both rmemories share a
redundant powver supply and remain in a powered on state.
Either CPU can read from either memory but always writes
both. The dual port design is used for cross-strapping
and the memory ra)d selection is delegated to the
Redundancy Management Unit (RMU). A redundant power
supply and intsrface designs are required for this
configuration.

o Configuration 6 is the same as configuration 5 except
that each memory has its own power supply which can be
powered up or down by the RMU to save power. A new
power supply and new interface designs are required.

All configurations use common designed interface boards vhich can
Le populated/depopulated and/or jumpered to fit each requirement.
Figures 2-3 through 2-5 show the interfaces except for the clock
switching circuitry. Two CPU interfaces (CPA, CPB) and three
memory interfaces (MPA, MPB, MPC) are shown.

The trade data derived for the siz conf igurctions is summarized in
Table 2-1. Based on that data, configuration three ws selected.
The slight increase in reliability of six over that of three does
not justify the major difference in development coat. The result-
ant configuration is shown in Figure 2-6.

2-5

¢ Pu® [suoijednbijue) 3dod (eng |

ar

R s

"€-2 34nby 4

w7

£60 /W0
vd) - 1 ndd

4— 3JINVAQY ‘ASNg

viva

be

(5]

Aﬁké;

WiW (0L Viva

S S— SSIU0av

{4

T04INOD

T —

£60./W0
vd) - 1 D

&— IINVAGY “ASNE

9¢

92

- 1

vive

- 08

o
]
AI.

WiW 01 VivQ

——— SSIxGaY

w

}—

T04ANOD

O
U
o~

b UOtRANDLJu0) 3404 (eng “§-2 24nbiy

W I £600M]
g - 2w [| 8dJ - 2 Nd)
D 4
T~
Pt
" o~
SY3IdHNP z_\ _1 L—
20 2
INVAQY *ASRE —b - 1 JONVAQY * ASNG
100 VIVQ viva
NI V1Va <1 W3H 01 VIVQ
”
S$SIYOOV < $S3400V
104N f L} I0HINGD
iLuﬂlﬂd. M
M~
- N
ne M
. -J £60.W0
8dW - T W3N €4 - 1 Nd)
Y] ol 92 <
oz 02 <}
SHIAMNC ,_\ v | v <
g z
INVADY “ASN8 —d— oo z {z S— 3MVAQY ‘ ASNS
100 VY0 ——t—t—er 92 92|—o Viva
NI V1VO 3 92 a—<¢ W3W 0L ViVO
SS3W00V 02 02 <} $S3400V
T0uING) . » v 2} 0ULNGD
EIIL w..lnu-

9 pue G suoirjeanbijuo) juod {eng

*G-2 aunbLy

MY 2 i = Y.
£60.W0 —> £60 W0
IdW - 2 WK ﬁmwA 8dd - 2 Ndd
M1
~
Y <
<L
A [F N
JONVAQY “ASNg —* .AL 2 — JONVAQY *ASNE
10 Viva > 9 — V1va
NI Viva - 92 <] ‘- WaW 0L VLVQ
SS3YAAY - oz <] Ss3yaay
T0ULNOD v J0YLNOD
0 Tl
MY 2 TR
£60Zd Hu Al - £60.Wa
IdW - T W3W 9z 9d2 - 1 Nd)
" 4 oz <]
A7 &}
20 Z
IINVAQY “ASNG .|1v|.|a+wwp z 2 — JINYAQY ©ASNG
110 Vivo + 5 92 92 V1Va
NI VivQ s 92 92 <} - WIW 0L Viva
S$SI¥aav , —d 02 02 Gt ss3ydaay
104LNDD S 1 b Z}—e 0YINOD
i i

2-8

D Ny WEE el el bl G e A bl el el el beed el g;j& ek ek

£L1ddng 1amod apnTouy Iou S3oQ

udysaq uBysaq udysaq ugysaq :wﬁmoLJ
1304 1ERq 3104 Teng Jxod 1eng 3104 teng 1104 Teng
A1ddng A1ddng £1ddng £yddng
Iamogd maN A9m0gd MON aamog MmoN Jamod moN
€ ueya
£3111q°T19%
s$1013U0D) WY aomo] Suyjepdn “WAW uo 350D AITTTQETTIAA
TeucTITPPV aamod Y3TH A134811S I3A0YDITAS *a9Q@ Y3TH IsamoT
ndd yoeg 103 (04D Yoea 03)
837 I0WIY S9TI0WaR L37T1qRT T
Juepunpay Jjuepunpay Y31H
. uorlelx uojlIel
£33TrQeTT9d LITTIqeT1ay -n8y3uo0) -n8j3uop AIFTTqETIAAY
4Y3TH 4y31H Juepunpay Juepunpay y31H
a3epdn - KaowadR a3epdn uBysag K1omal K1omal
JIA0QIITAS payepdn 29A0YDITMS Surasyxy peaepdn vmuwvnb\
8 1] § Z 0 01 8
A [A (4 0 01 <
89} 89X oN ON ON ON
89% oN OoN ON OoN oN
83 sa}% OoN OoN 89X 89X
oN ON oN oN oN 4422
786°0 ZL6°0 696 °0 1L6°0 696 °0 £98°0
99T /SB1/EET 99Z/581 T9Z/1¢1 tse/9tt 62Z/1ST 60Z/1€T
k4 S 4 4 € €
4 Z [4 0 [4 [4
4 z T 0 z 4
9] Y £ [4 1

®38g 9PVl uvorIVANGIIUOH

‘1~z 21qelL

:HION«

sa3ejueapesiq

Vv sadejueApy

Sd
WAH/NdD 1800 daTIET3Y
8pEaY WIW JO TOIJU0) MY
I3mod WAR JO T0I13U0) ARA

udysapoy L1ddng aamog
¥S3INTTRJ Jurog °a13urs
(*2£ 1) LfayTIqPTTSY
yI3mog TeOTdAY

saxog JO °*ON

¥8UB189(sweIg MON
»SUBTSaqg gIH MaN

‘ON NOILVEADIANOD

NOILVYNDI4NGD JII-JWNS *9-2 3¥N9I1d

0/1
WILSAS
F-————--"
WILSAS |
“ ans 1 |'sd no1 WIW Ndd ‘$'d
| awd |} :
O e bt ¥ 0/1

—

¥
§
P
i

_. ﬁ

o
| . 391A30 =
| LINR :
, (1d1) Qvo1 o
| INIWIYNYW fe Sne 071 WYH904d
,W AINYINAGTY WILINI
| a .
|
W ‘ ,
| y
| Y 0/1
: WaW ‘5°d
| "S'd nojJ i

0/1
WILSAS

2.2 REDUNDANCY MANAGEMENT UNIT (RMU) CONCEPT

Optimization of the RMU must be done at the system level and is,
therefore, application dependent. Several major items which are
application dependent are: the time allowed for system recovery,
the need for a degraded mode of operation, the availability of
program load capability, the degree of operator participation vs.
automatic operation, the need for complex interface safing, the
need for selecting from among multiple prime power sources, and the
need to store recovery parameters for transferring control from one

computer to another.

Since mission success is dependent upon the operation of the RMU,
it must be essentially failure proof. If the RMU performs many
functions, then its simplex implementation requires significant
amdunts of hardware and it is both difficult and costly to achieve
the required reliability.

Effective management of system redundancy can involve many acti-
vities. A list follows which represents candidate features which
might be included in an RMU:

o Comparators for checking the outputs of multiple com-
nuters. This could be required for instantaneous
recwvery or where the consequence of an undetected error

is catsstrophic.

o Storage of present status parameters for assistance in

restarting after a detected failure.

-2=11

T

0 Safing all critical spacecraft functions which are under
control of the computer.

o Check "status" signals from the computer to assure that
all critical program segments were executed and in the
correct sequence.,

o Gather status and send it to operator/monitor personnel
in the spacecraft or on the ground.

o Provide auxiliary storage for error and status logging,
program reload, and diagnostic program storage.

o Provide command facilities for remote (probably ground)
personnel to override the automatic redundancy management
features.

o Provide an independent "Watchdog" timer to detect com-
plete loss of computer operations or excessive time in

completing a phase of operations.

o Provide highly redundant (fail-safe) crosstrapping
between/among redundant system elements.

o Control application of power to each redundant element

of the systen.
o Enable/Disable computer 1/0.

Since high level redundancy is required in the RMU to meet the

necessary failure tolerance, even small amounts of functional

2-12

S A OB R e

hardware can have significant impacts on power, weight, etc. There=-

fore, two precepts are proposed for the design of the RMU:

1)

2)

Don't include any function which can be performed
outside the RMU.

Make provisions for but don't include functions which are
not required by all applications.

Applying these rules to the candidate 1list gives the following

results:

Accommodation should be made for the future addition of
compartors but don't include them.

If required for rapid recovery on a specific mission, a
few restart parameters might be included. A large number
should be put in a system storage device and not included
in the RMU. The basic RMU should not include restart

storage.

By putting all 1/0, into a predetermined state when
system confidence has been lost, proper system design

can insure the spacecraft to be safe at all times.

Status checking and proper program seqﬁencing are
important, however, they should be handled by esoftware
checking not the RMU.

General status collecticn should be done by the operating

computer which can send it to the ground via telemetry if
desired.

- 2-13

o Auxiliary storage should bauprovidcd as a system function
not by the RMU.

o The ability to use human intervention to override the RMU
is desirable and should be provided both for test purposes

and as a "last ditch" precaution.

o A "watchdog timer" is an essential part of any RMU.

o Crosstrapping should only be provided in the RMU when
required by the application and there is no other place
for it.

o The RMU should control power to each unit, although the
power switches themselves need not be a part ¢’ the RMU,

o The RMU should have the ability to enable/disable outputs.
Between the time that power is applied to a computer and
the time the computer has initialized and performed self-
test, the RMU should insure that all 1/0 is disabled.

This results in a basic RMU which can be used "as-is" or can be

expanded to suit special requirements. The basic RMU features are
summarized below.

BASIC RMU SUMMARY

o Watchdog Timer

o Ground Commanded Override of RMU

o Power Control to all Units

- 2-14

o I/0 Enable/Disable Capability
o Growth for Special Missions
o Fail Safe Implementation

To communicate with the RMU, the SUMC~II C CPU will use a dedicated
line FLAG RMU which wil) indicate that the output bus has data for
the RMU. FLAG RMU is just a pulse so the RMU must store the data
on the bus or react quickly to it. In addtion to an "IM OK" code,
several codes are generated to signal operational status of the
microprogram handling the FIM analysis and spare plane switching.
This is explained more fully in Section 3.1.2.

2.3 INTERFACES

Crosstrapping and other redundancy considerations can impact the
design of unit-to-unit interfaces. If mission reliability or
application design groundrules will not tolerate single point
failures, the interfaces used must be carefully designed to pre-
vent a short in one circuit or wire from dragging down an entire
function and precluding operation of that functon. The interface
shown in Figure 2-7 illustrates a design approach to eliminate
all single point gailures in a crosstrapped interface.

The circuit of Figure 2-8 is much simpler than that of 2-7

since all drivers and receivers are the ones which would normally
be provided in & simplex unit if one precaution is taken in selec-
tion of the three state driver. The driver must be selected such

2-15

SNS5 121 SNS6 142
1000
VRer
slc - |YRer « 0.8V
—{— 1000
VREF

FIGURE 2-7. CROSS-STRAPPING WITH NO SINGLE FAILURE MODES

SIGNAL |

" SOURCE I

|

|

|
—H— '

!

|

[

UNIT A |
—————— |- @

|

|

|

|

|

|

UNIT B '
FIGURE 2-8.

SYSTEM
CABLING

SIGNAL
RECEIVER

T—-

Ep

=D

UNIT B

SIMPLE CROSS-STRAPPING

2-16

that in its powsred OFF state its output goes to the high impedance
(disabled) state.

The impact on systems reliability of the failure (in a shorted mode)
of one of the interfaces in Figure 2=8 is negligible. However,
the problem of implementing the interface of Figure 2-7 is signti-
ficant. This study, therefore, recommends the use of the simpler
interface since the more complex one can be added later for any
application which requires it.

2.4 FTM CONTROL STRATEGY

The fault-tolerant memory subsystem automatically corrects single
bit errors. This action is completely transparent to both the
computer user and the microprograms. The FTM subsystem does, how-
ever, have control functions to control switching of spare memory
planes and also to perform testing of the memory. The controls are
a combination of hardware and microprogram. The strategy for
switching spare planes can have a major impact on the reliability
of the unit, however, exact techniques for calculating the effect
of switching strategy or reliability are not yet developed.

To understand the significance of the switching strategies, it is
necessary first to understand the types of failures, their impact
on operation, and their method of detection.

0 A "fault" is a hardware malfunction such that the
equipment is not capable of doing everything it was
designed to do, but it might not be causing any
problen at the present time. Example, if a bit is

2-17

unable to go to a 1 state but the correct current value
is a zero, it isn't causing a problem; but it is still
a fault.

[An "error" is the process of the computer getting an
improper cresult at the present time, Example, if a hit
read from memory should be a 1 but it is baing read as s
0, that is an error.

o A "random fault" in the FIM is one which affects a single
bit in a single word in memory.

0 A "systematic fault" is either one which affects the same
bit in many words or many bits in the same word. The
system has been designed, however, to nearly eliminate
the ability of a single fault in memory altering the
value of more than one bit in a word.

o An "address fault" is a fault which causes a valid word
to be stored in and retrieved from the wrong storage
locaticn.

o A "transient store" error is where a transient condition
in the memory caused a word to be stored with a bad bit
in it. However, there is no “hard" fault.

Since the memory can correct single errors, there is not much con-
cern about the existence of words in storage which will give
single (correctable) errors when they are read. The most signifi-
cant problem with single errors is that they have the potential to
become double errors vhich cannot be corrected by the translator

2-18

hardvare. Random faults are the most proieble failure type in a
semiconductor memory and there 1is a low r:obavility that two random
failures will occur in the same word. A memory containing n words
has a probability of about .5 that there is a doudble failure after
n failures., For n=8K that is about 90 failures and for n=64K it is
about 256 failures. Therefore, random failures are predicted to be
a problem only if a very large nunmber of them have occurred.

Three strategies will be considered for switching out bad hardware,
to restore system operation or recstablish a high level of reduan-
dancy. Each approach and its relative merits are discussed below.

STRATECY A

Reconfigure the systum to eliminate the failed bit-plane every time
an error is encountered.

Advantages: This is a simple concept which could be easily
implemented ir hardware without any modification of the current
CPU/Memory interfacc.

Disadvantages: This strategy wastes spare plane usage on random
errors which are amply taken care of by the basic correction code.
When spare planes are needed for systematic faults ,they will not
be available.

STRATEGY B
Reconfigure to switch out a bit-plane vhenever it has been deter-
mined, during normal operation, to contain a predetermined number

of faults, or it is the one which has the most faults whenever a
word containing a double error is encountered.

2-19

Advantages: This strategy focuses on the distinction between
systematic faults and random faults, and would significantly enhance
the long term mission reliabilicy.

Digadvantages: Interruption of the operational program to log the
location of arrors during program execution would have a significant
impact on computer operation. There is iluc: a risk that areas of
the namory infrequently used because of mission structure could
sccumulate multiple errors in words vhich, when they are needed,
cannot be practically reconstructed with the diagnostic decoding
algorithms, thus impacting the mission., Some memory performance
capacity would necessarily have to be¢ allocated tc the error log-
ging operation, especially if errors occur in frequently used
programs such as vehicle control loops.

STRATEGY C

Rely on the ECC capability during normal program execution, then
revert to a test mode whenever a double error is encountered in a
vord, and at periodic intervals. The test mode would utilize the
diagnostic decoding algorithms and properties of the error code

to locate and log faults, verify that single errors signaled by
the translator are not triple errors, and provide the data for the
reconfiguration decision. Reconfiguration would only be performed
if a double fault or a systematic fault was detected.

Advantages: This itrategy has minimum impact on the operating
program yet it utilizes the powerful diagnostic decoding techniques
to effectively attain the full potentials of the bit-plane switch-
ing capability. All memory locations would be tested frequently,
thus mirimizing the likelihood of accumulations of many errors in
any word before detection of the errors.

2-20

Disadvantages: It is difficulc to know how often to go into a self
test mode, howaver, this can be programmer controlled rather than
“built=-1n" to the system either in hardware or microcode.

SELECTION: Strategy A clearly does not provide an effective use of
the tremendous potential of the spare planes. Strategy B makes a
sajor improvement in the effectiveness of the spare planes, but
Strategy C makes sevaral improvements over that of B. Since both
B and C require a significant amount of microprogram support, there
seems to be little difference in the cost of implementation.
Strategy C is selected. The microprogram to support the atrategy
is described in Section 3.1.2 and the FIM hardware is decscribed in
3.1.1.

2.5 STORAGE ADDRESS EXPANSION

The basic HTC computer calculates storage addresses using 16-bit
arithmetic. Since the byte is the basic element addressed in the
computer, this results in 2°%265,536 bytes maximum. Applications
vhich require more storage than this must either manage the move-~
sent of data and programs in and out of the computer or provide
sone means to expand memory beyond 64K bytes (K=1024).

Memory expansion involves several facets:
-] Generating and holding addresses beyond 16 bits.

o Decoding the most significant bits of the address to
form "page select" signals.

2-21

o Driving the signals going to the additional memory.
[Housing the additional memory.
o Powering the additional memory.

The first item was the primary subject of the study, whereas the
other items were resolved during the implementation phase,

Memory addressing is from three basic sources: operant addresses
calculated within the CPU, next instruction addresses taken from
the program counter, and storage addresses taken from a device

over the direct memory address (DMA) interface. 1In the HTC all
address paths, registers and calculations are 16 bits., If the
memory is to be expanded beyond 64K bytes, the maximum memory

size must be determined. Discussions with MSFC personnel identi-
fied that most foreseeable requirements could be met with 18-bit
addressing (256K bytes) and that 20-bit (1 M bytes) would certainliy
statisfy all requirements.

The next primary issue is to establish the basic approach to the

addressing of memory. Both aerospace and commercial computers

. have been successfully applied using a "sectored" memory where the

CPU, I/0, etc. never has access to the full memory at one time.
This approach usually involves one or more sector registers to hold
the most significant part of the address while the CPU manipulates
only the least significant part of the address. With sectored
memory the most significant directly controllable address bit
usually identifies whether the lowest sector or the "current"”
sector is being referenced., Sectoring is illustrated in Figure

2-9 assuming the computer has a basic addressing capability of

2-22

ONIIN3IW93IS AYOW3W GIANILXI "6-2 3uN9I4

yze — e |)
A9
NZE yzg
IOVHOLS NIWW .ITGISIA, NZ€
_ N2g
w %962
NZ€
Nz€
Xz¢
101
¥ILS1933 Aze \\
¥0L93S

2-23

16 bits. The 15 least significant bits (LSBs) identify which byte,
of the 32K bytes in a sector, is being addressed. If the most
significant address bit (MSB) is a zero, the lowest sector is
implied. If the MSB is a one, the value stored in the sector
register is used to identify the desired sector. Thus continued
access 1s provided to the low sector of memory, and one other 32K-
byte sector can be selected.

The advantage of sectored addressing is that it minimizes the amount
of special addressing hardware required. There are, however, some
disadvantages with this approach to address:

o The technique is not S/360 compatible.

o Speclal instructions are required for loading and
storing the sector values.

o The programmer must be concerned with memory management

as well as application programming.

o If a program or data file resides in two different
sectors, many changes in the sector register might be

required.

o The MOVE instruction cannot be used to move across

sector boundaries except sector zero.

1f sectored addressing is not to be used, address computations must
involve the full storage address (18 or 20 bits). Figure 2-10
shows a symbolic flow chart of the S/360 address calculation. Pro-
vision must be made to provide all the identified additions in 18

2-24

RR? YES ' » INSTRUCTION REGISTER

X*| B D
0 12 156 1920 kil
*&
Bs Ds
2 3536 47

* RX FORMAT ONLY
** SS FORMAT ONLY

NOTES: B AND X ARE THE NUMBERS
OF THE BASE AND INDEX
REGISTERS BUT (B) AND
(X) ARE THEIR CONTENTS.

P IS ANY CONVENIENT
WORKING REGISTER.

(Bs)+P=P
e |

(P)-»EA2

g
j—

Y

TO INSTRUCTION
EXECUTION

FIGURE 2-10. FLOW DIAGRAM OF THE S/360 EFFECTIVE ADDRESS CALCULATION

2-25

or 20 bit Arithmetic. There are three approaches to providing
18/20-bit addressing:

o Use the HTC data path as-is and use double precision
calculations (two passes through the ALU) to get the

addresses.

o Expand the data path to 32 bits for greater arithmetic
performance and get the extended addressing free in the

process.

o Extend the data path two or four bits for address calcu-~
lations only.

The double precision microprogramming of the effective address
calculation involves the least hardware but reduces machine per-
formance by stretching execution of all but the register-to-
register (RR) instructions. Going to a 32-bit data path is a
major change in implementation, increases power and weight, and
cannot be justified for the sole purpose of extending memory

addressing.
Regardless of the approach to address expansion, the following
changes to the HTC must be implemented. See the HIC Block
Diagram pf Figure 2-11.
o The program counter (PC) must be extended either as a
counter (preferred) or with a sector register (poot

design).

o The CPU's storage address register (SAR) must be expanded.

2-26

weadeyd ¥20Td JII-DWAS °*TI-Z °2andy

PV
wmo
P por——= 191} tt SNE L5321
A% IO

¢ [susnosneisuy (Ll S o,

- "
r e svaesim
xw

293 suon | 1 NG 08

s 1911 100 58 01 | VINUIVIO
jo——e @il 0uingo | ANUNG A0

o ——— -

i

w
w4110 O M
400 someres w - oy now
i ._ wo _ H.ﬂ
000000 w woav [y "ug
SIS HIM“ o h) w3 ﬁ . won T
A ™ oo vive
jPramnn "
— ﬂ 140 e ue
— _ w L iad i O3 w
w [* 1 WOs Owy
Teunro
=1
viva

aes * et welecle w N R
Wee Wik wusa] Ow $2u
w -~ couainy

t

no

e

i e . s e S

o The address multiplexer combining CPU and DMA addresses
should be expanded.

° The DMA address interface should be expanded, (if the DMA
is to have full access to memory).

o A path must be provided from the PC to the data flow
(for store PSW) and to the SAR for I-FETCH.

The implementation requirements of the various approaches to memory
extension are illustrated in Figures 2-12, 2-13 and 2-14. 1In those
illustrations, it can be seen that sectored memory provides minimum
hardware impact but not significantly less than microprogrammed
addressing. Figure 2-12 assumes the PC to remain at 16 bits and
share the same sector register as the operants of the effective
address calculation. Additional sector registers can be provided
for separate sectoring of the program counter, second operant, and
DMA. The additional hardware, however, does not seem warranted in

an approach with such inherent limitations.

Comparison of Figures 2-13 and 2-14 shows that providing and
controlling 2-4 extra bits of ALU and General register is the signi-
ficant difference between hardware and micropogramming addressing.

Table 2-2 sghows a summary comparison between the three approaches.
The 32-bit data péth approach was eliminated because of the extreme
impact both on production hardware (an extra slice) and on develop-
ment cost. The extended calculation approaches are shown with four
bits per flat pack. The sectored memory, however, is shown with

extension to only 19-bits. The larger the memory the more problems

encountered (with sectored memory) so 18-bit addressing (256K-bytes)

2-28

LK
oL

XNW-Y

1X3

. ¥0ay

wWa
SINIT

NOILVIN3WITdWI AYOW3IW QIIO0LI3S

*¢1-2 3914

41 9044 G3¥01I3S
404 Q31vdLSNII

STV

ST

v

eV

ey

v

SS3Yaay 61

ov

OlmmjN|M]

|

1v3

evi

()

—itN|™M

(=]

£v3

A1)

431S193
40123S

(s1-0)
WYW

1000=t~-TW
WCUW

(11-8)
WYW

2-29

JUYMGYYH WYYI0Ud0UIIW V3 NOISIOIHd 378n00 °€1-2 JWNII4

- Y
[1 2. | |
| S E
TAYMGUYH MINs ¥ \ 3 yy
91y U2 N N
N
»
W3 OL . , XN
XnW v | 02 yaav e ¥)|
oc Ya 4 1x3
W — ¢
U alu dud
Waav WY WOW Wid
we _ T Fr | f _,
&
—W Y oM
nv AYYY) -

11

/\

1

SIHILVI
4oyy3

[

ﬁ

9 XnW

vV XNW

:C,Iﬁlf:

WdS

1

1X3
M

2-30

Wi 0L

XNW v

NOISNILX3 HIVd VIVQ “$T-2 3UN9I4

[

il

4vs

o]

'

.q.ﬁxml_

»XNK

Tt

1X3
d

LY

oy
-

0z~ |

Jd

f Y
o1

g *§—-’

H

-

AYEV)

4]

*

1

SIHILVT 1X3
YoW3 od

— oW

JUYMGUVH MIN =

(v x 2¢)
«1X3 WdS

+
SI-21
Wid

2-31

Mleriiomemy amaico. comie

AS9poy
sag

844 61

‘¥aav 118-0T

‘BIVd OV
QRANVIXE

PO— P r——— il

sa)
oN
I83poy
83}

844 8

‘¥aaV 119-07
‘NOLLVINDIVD VR
' 8a00-0

ISR L4 ¢
s2x
IS3POK
ON

841 L

“¥aCcv LId-61

¢ KEONEH
aadoloas

! aduvwmiojiag aonpay

¢ pearnbayg juamaBvuey Lxomay
paaynbay apod201OTH

! 21qr3Iedwo) 09¢ /walsis

AIBAPIVH paIjwwyIsy

ANDINHDAL YAlIWVEVd XaALS AGVEL
JIVAIANVD

sape1), uorsuwdxg ssaippy jo Lavwemms °7-Z I[qel

2-32.

S . T S, e SHESSESEEETE R

would probably not be exceeced. Aho‘_n-b:ln represents an
efficient use of hardware. The hardware estimates in the table
are those which were balieved at the time of the trade study.

The problems associated with the sanagement of a sectored memory
plus the loss of $/360 compatibility makes sectored memory very
unattractive. The expanded ALU/DATA Path approach was selected over
the microprogrammed approach to get a 10X increase in performance
at the cost of a few flat packs. Section 3.2 of this report shows
the implementation of i{he address expansion.

2-33

3.0 IMPLEMENTATION

3.1 FAULT-TOLERANT MEMORY

The Fault-Tolersnt Memory (FIM) is a storage system which tolerates
single and multiple errors within words read from memory. The FIM
systen is comprised of three major segments: Storage Array,
Translator, and Error Correction Algorithms.

3.1.1 Storage Array

The storage array is composed of basic memory modules (BMMs) which
are hermetically sealed and each contains 8192 bits of N-channel
FET random access storage organized as an 8K x 1 bit array with on
the chip address decoding. Each memory module is part of a bit
plane. There are 16 bit planes corresponding to the 16 bits to be
stored from the CPU, 6 check bit planes and 4 spare bit planes. A
bit plane provides one bit to the word read from storage. The bit
plane organization ensures that any failure in a BMM will affect at
most one bit in any word read from storage. This feature signifi-
cantly enhances the effectiveness of the error correction code,
Any failure in a module can mutate only one bit in any given word
stored. Figure 3f1 contrasts the storage array organization for
64K simplex and Fault-tolerant machines.

3.1.2 Translator

Referring i» Figure 3-2, the Translator is functionally partitioned
into six major data flow areas: a storage data re,izter (SDR) vhich

NOILVZINVIYO AVNYY d9VHOLS

*I-€ 2andyy

€ IDI1S z PIS 1 311
A ‘ v-1 SLIA13S F9vd
eh n— e_n Nh N_. _—
st_m z UVdS
TUVdS 7 TYVdS T 1.NMWMm A [auvas 2 .wmwmm_uL VS 7 RLd
viva 91 viva 9[0D 5 viva 91 WD o Vviva 9
T 91K 4 2IN V 9IN € gIR V

3!

|

|

— y-1 SLO313S I9Vd
1

ALI¥Vd 2
viva 91

41N

ALINVd Z ALINVd Z ALT¥Vd 2
viva 91 viva 91 viva 91 XT1dNIS
ARV a8 § ARV

3-2

e e

RVYOVIA AJ07T14 TVNOLLONNA YOLVISNVIL °Z-¢ 3and1g

0do

193187139y
XdHW In_msumum 1011y

q,IJl_ 1
_. %0 | gs i 4ds
: aa

AN b b
) * « ! « 1931ST39Y4
Juswudfssy
83INOIY) mmuwswuﬂo% _ aiedg
SIENDATY | sysATeuy |e{ SIFIEL 2344 XdW J ¥
1030921109 pPue auwoipuis
lo1xg L
T4 294D ﬂ 1038780y 23TIM
| puBuO)

peay
|

-T T T Ihﬂu”<.lumﬂum|mwl - _HU _”‘_”— U1 B3R

includes an input multiplexer, parity trees, corrector, error
analysis, command and status registers, and spare assignment
register. The SDR is the major working register for the translator.
All data inputs to be stored from the CPU are read into the SDR and
all data read from the storage array is read into the SDR.

3.1.2.1 Parity Trees

Parity trees in the translator are used for four purposes: gene-
rating check bits on store operations, checking byte parity biis on
store operations, generating syndromes on read operations, and
self-cesting of translator circuits.

3.1.2.1.1 Check Bit Matrix

Referring to Figure 3-3, there are 16 data bit positions labeled 1
through 16. There are six check bit columns labeled C1-C6. Each
check bit is generated by parity trees to give odd parity over the
field consisting of itself and eight associated data bits in the
same row of the matrix. Thus, Cl could be generated as zero or one
if data bits 1 through 8 had odd or even parity, respectively.
Similarly, C2 would be generated to give odd parity over the field
consisting of itself and data bits 6 through 13. It should be
noted that each column of the parity check matrix consists of an
odd number of 1's, The data bit columns have three 1's and the
check bit columns have a single 1. This constitutes a Hamming
code of odd-weight.

3-4

e, 2 e

Bit Position.

12345678910111213141516C1C2C3C4C5C6

§1 11111111 1

§2 111111112 1

3 1 1 11 1 1 11 1

84 1 1 1 1 111 1 1

$5 1 11 1 1 1 11 1
S6 11 11 1111 1

Figure 3-3 Parity Check Matrix for 16 Data Bits

On store operations, the 16~bit word from the CPU is first stored
in the SDR. The 16-bit word is then flushed through the parity
trees to generate check bits which are also stored in the SDR.
Subsequently, a 22-bit word is transmitted to the storage array (16
data bits and 6 check bits).

3.1.2.1.2 Error Detection and Location

On read operhcions, each of six fields, consisting of eight data
bits and an associated check bit, is checked for odd parity. The
parity indication signals generated for these six 9-bit fields are
called syndromes labeled S1 - S6 in Figure 3-3. In the event that
one or more syndromes indicate a discrepancy, an error is flagged.
The pattern of the syndromes 18 analyzed to determine the type of
error and, in the event of a single error, the syndrome pattern
indicates the position of the errant bit.

Each data bit and each check bit has a unique pattern of 1's in
its column. Thus, if data bit 1 was in error, then syndromes 1,
3, and 4 would indicate discrepancies. The combination of syn-
dromes (1, 3, 4) uniquely identifies data bit 1 as the errant bit.
In this way, the syndrome patterns are decoded to locate a single-

bit error.

30 10 20 1- 3 self’r&stm =

The construction of the parity trees used in the translator augments
the self-checking/self-testing properties of the translator. Figure
3-4 illustrates the organization for one of the three parity trees
on a parity chip. There are nine input bits per tree and each tree
is divided into a six-bit section and a three-bit section. There

is a partial output for the six-bit section of the tree and another
for the three-bit section. There is also a combined output which
represents the parity over all nine ihput bits. The pair of
partial outputs is called the "morphic" output of the parity net-
work, while the combined output is the usual logical output. Since
odd parity is being used, an error-free syndrome from the morphic
output is indicated by an 01 or a 10 signal on read cycles. 1In the
event of a fault within the parity tree network which results in an
erroneous cutput, only one leg of the morphic output will be
affected. Therefore, single gate failures in these circuits
propagate to the output where they may be detected. Thus an odd
parity input to a parity circuit, containing an error causing

fault, will result in an 00 or 11 morphic output. Of course, an
even parity input to a fault-free parity tree, will also cause

the morphic output to be 00 or 1l1.

3.1.2.2 Corrector

The corrector consists of a correction decoder and exclusive OR gates
which are in line with each of the 22 bits. Correction occurs as
data is being transmitted to the CPU. Correction is complete

before the CPU receives a read data ready indication. The syn-
dromes generated by the parity trees are decoded into 22 bits.

The correction decoder illustrated in Figure 3-5 consists func-
tionally of 27 six-input AND gates which decode each of the 20

3-6

=

Wt i,

9
XOR | | XOR| | XoR| { X0R ,
1|

XOR XOR

XOR

|

XOR

v v
Paritial Combined Paritial
Output Output Output

Figure 3-4. FUNCTIONAL PARITY TREE REPRESENTATION

combinations of six things taken three at a time, the six combina-
tions of six things taken one at a time, and the single combination of
none of six. The outputs from the decoder are wired to the
appropriate SDR bit positions. All twenty of the three of six
combinations are available on the chip; however, only the appropri-
ate 16 are utilized for the sixteen data bit positions in the code
chosen. The inputs to the decoder are the combined outputs of the

six syndrome parity trees.

The outputs of the correction decoder are then exclusively ORed bit-by-bit
with the data as read from the storage array. Whenever the two inputs

disagree, correction occurs.

3.1.2.3 Error Analysis

The error analysis portion of the translator is perhaps the most
unique portion. It is implemented in morphic logic. The morphic

logic uses dual line pairs to replace the single lines in conven-

tional logic gates arranged as two independent tree structures so

3-7

44d0DAA NOILDAYY0D °*S~-¢ 2andfg

12p0d3a(Q UOTIDID110)

9 0 91

that a fault of a single gate in the morphic logic propagates to
the output where it can be detected. Circuits representing morphic
invert, morphic AND, morphic OR, morphic exclusive-OR, etc., have
been devised. Combinations of these morphic gates can be utilized
to implement any logical function. The morphic logic equivalent of

a conventional logic 1 is a Ol or a 10, [0l1], on the line pair.
[10]

The morphic logic equivalent of a conventional logic 0 is [00] on
' 11)

on the morphic line pair. For explanation of the error analysis

circuits for this translator, the nomenclature 1H [01], and OM
(10]

[00] will be used.
[11)

The translator error analysis will be illustrated by explaining its
operation for checking the word read from storage. The verifica-
tion of byte parity checking and generation and check bit generation
will then be explained.)

The ANDM whose output is labeled A in Figure 3-6 has inputs from
the morphic output of the syndrome generation parity trees S1 - S6.
Since odd parity is used in the encoding, on read-out all of the
syndrome partial signals should be 1M if no error has occurred.
Thus, the output A should be IM' Two parity trees are shown as
the input B in Figure 3~6. There are an even number of syndromes
(6). One each of the two morphic lines from each of the syndrome
generators (the byte parity tree inputs are inhibited during read
cycles) are inputs to the two parity trees whose outputs form B.
Since the syndrome no error conditionm is 1M and there are overall
an even number of syndromes, there should be in total an even

number of morphic (and logical) 1's under a no-error conditionm.

SISATVNV dOoWid °*9-¢ 2ian3fg

I13313AUT
orydaoyn puy oyydioy 9211 £L31faeg

= (= —<eE

-

-5
-
DF—ss
s
T013u0)
Illll.mm T Buyien

{0
— L
g —
—<—i
“ d
*£13IN21YD dAoqe aylz jo Lue lAm M
ot

Uyl I01l1d 103 JO UOYILITPUT I01aF
<ef— 4
/—llll m

*d £q pa3eOdTpPUT SY JIANTFEJ IJFNOIFO
ou uaym awv JO UOTIEDTPUT 10113 I[qnOQ

*d £q p31EOTPUF ST JANTFEJ ITNDIFD
ou waym Amwu 3O UOFIEDYPUF 10112 ITBuls ¥
AMMU £q p93®oTpuy 3011g °*IndIno ue jcu S§ 1] “HHH“HHHHWMWWMMWM

*gd 10 YV S8238313U28 jBY3 IINOAYD U 1011F

A%Mv = BaYm *°d°7 ‘adanyyey ITNOAIO OUu UIYM
AMMV JO UOFIBOTPUT I0II3-ON

TTTTTITTTIT]

v 0
v w

~
vn w

3-10

Since this is true, both parity trees should have like parity either
odd or even since the sum of two odds or of two evens is even. The

input B in Figure 3-6 should be OM under a no-error condition. The

ANDn gate whose output is P indicates NO ERROR as 1H when the A and

B signals are normal,

The ANDH gate whose output is Q indicates a translator circuit
failure condition. There is no valid condition of the inputs which
causes outputs A and B to be 1H simultaneously. This condition is
indicative of a failure in the circuits which generate A or B.
Therefore, the ANDM gate whose output is Q senses this condition

as a circuit error.

A single error is mainfest as an odd number of 0H syndromes -~ one
syndrome or three syndromes having a value of OM‘ Under this con-
dition, the output A will be a OM and the output B will be lu.

The output A is inverted to make it a 1y and combined with the
output B which will be lM to cause signal R to be 1M == the single-
error condition signal.

The ANDH gate whose output is S senses a double-error condition.

The output A will be OM as will the output B in the presence of a
double error in the word read from storage. Inversion of both

these outputs makes them both 1H and when combined in the ANDH gate,
whose output is S, indicates the double-error conditionm.

The ANDH whose output is D indicates a circuit-error condition.
The input U is for byte parity circuit checks. The signal Q (men-
tioned previously) is inverted because its normal (no error)
indication is an 0“. In order to maintain consistency, all inputs
to the ANDM should, under normal conditions, be 1M's.

3-11

Therefore, the signal Q inverted is 1H.dur1ng normal operation. The
signal T is used for checking the validity of the generated check
bits on write operations and the validitv of the generated byte
parity bits on read operations. It is proved that, with the code
structure herein utilized, the parity of taue byte parity bits and
the parity of the code check bits should be the same; therefore,
their combined parity should always be ~ven. The signal T is the
morphic output of a parity tree whose inruts are the two byte

parity bits and the six combined outputs ol the parity trees which
generate the check bits.

The two parity trees with T and R inputs together with an inverter
perform the logical operation T = k which 1is true when there is a
valid single error condition and a0 circuit failures. Certain
circuit failures might be detect=2l a3 & single data error without
this check.

A check is made to see that there is not an even number of the
inputs P, R, and S in a 1" state b:cause P, R, and § are mutually
exclusive conditions. Should ncne or two of these three signals
be up, there will be an even number of logical 1's which, dis-
tributed between the two parity trees whose inputs are PRS, will
make their output OM.' That is a failure indication causing the
output D to be OH'

This discussion of the read cycle operation is intended to
illustrate how the morphic logic is utilized to provide self~-
checking during ﬁorral oneration. Since the normal data flow
constantly changes, the translator circuits assume both states,
which provides the self-testing property.

3-12

3.1.2.4 Command and Status Registera

Microcode in the NSSC-1I is used to communicate with the translator
to support fault isolation and correction. Each time the microcode
command NO-OP, is executed the contents of the SDR are interpreted
as a command to the translator and loaded into the command register.
There are four basic types of commands: spare assignment, mcde
changes, loading fake checkbit register, and reset storage address
register (SAR) freeze latch. The spare assignment command is used
to load a spare assignment register which substitutes the spare
assigned for the bit specified. The load fake checkbit is used when
checkbits other than the ones normally generated are to be stored

in memory in support of memory diagnostics. The SAR in the CPU is
frozen vhen a double error occurs so the location may be inter~
rogated and the failing bits identified. At the end of this
interrogation, the latch proyibiting reloading of the SAR is reset
with the reset SAR freeze latch command. Special modes of operation
are required to execute the advanced microcoded storage diagnostics
employed. These modes are specified to the translator by the mcie
command. Figure 3-7 shows the command NO-OP structure and gives a
brief definition of the various modes.

The status register contains the Translator Error/Status word and
is used by the diagnostic decoding algorithms to determine status
after an FTM error interrupt and to support multiple error cor-
rection. Definition of the Translator Error/Status Word is
contained in Figure 3-8.

3.1.2.5 Spare Assignment Register

When the decision is made in microcode to substitute a faulted
bit with a spare bit plane, one of four spare assignment registers

3-13

S —

Load Spare Info
Load Mode Info
Load Fake Checkbits

Reset SAR Freeze latch

0 1 2 3 &4 5 6 7 8 9 10 1112 1314 125

L | Load Reg 1-4] Spare Assignment 10 0}
L | Modes (See Below) | 0 1]
l | Fake Checkbits |1 0]

I 11 1]

Bit Mode Function
6 Use Fake Uses bits stored in Fake Checkbit register instead of
Checkbits stored checkbits on read or generated checkbits on writes
7 Inhibit Write Inhibits checking for CPU parity errors or translator
Error Checks errors on write cycles
8 Inhibit Correct Forces translator timing to not generate the correction
E) clock used in test mode
9 Inhibit Load Forces translator timing to not generate theASDR load
[pulse used in test mode
. 10 Error Check SDR Causes read cycle to use data in CPU SDR rather than
memory data, when used with bit 8; can error check
[generated word without using memory used in test mode;
if used with bit 15, SDR will contain error status of
word at end of cycle
F
’ 11 Reconfigure Mode Force trarslator to read from old bit plane (bit being
~ reconned only) and write TDR data to assigned bit plane
" 12 Test Mode Forces translator to use TDR rather than exclusive ORs
. for corrections and allows for additional control
. 13 Put Errors On Data in bus will contain checkbits and error status
| Data Bus
3
. Figure 3-7. COMMAND °'NO-OP' COMMAND STRUCTURE

O

3-14

Meaning

No error detected during a read in test mode.

Single data error detected during a read in test mode.
Double data error detected during a read in test mode.
Translator error detected during test mode.

Checkbits as read from memory.

Translator or CPU parity error detected on write.
Spare.

Double data error during read in normal mode.
Translator error during read in normal mode.

Spare.

Spare.

Figure 3-8. TRANSLATOR ERROR/STATUS WORD

3-15

bt o

* s

is loaded with the syndrom: pattern of the faulted bit. This syn-
drome pattern is subsequently decoded and the identification of the
faulted bit is provided as inpu: to the SDR. The SDR then switches
the faulted bit plane out of the data path and switches the spare
bit plane into the data path.

3.1.3 Error Correction Algorithms

Several algorithms, implemented in microcode, permit maximum
utilization of the fault tolerant memory feature. A flow diagram
of the microcode routines containing these algorithms i{s shown in
Pigure 3-9. During program execution, the F1¥ operates under
direct hardware control and corrects single errors as they occur.
If an uncorrectable memory error occurs, the microcode routines
depicted in Figure 3-9 are invoked which analyze the error and
take appropriate actions to reconfigure memory to eliminate the
érror. As the routines are executed, the FIM system provides
status reports to the outside world via the FLAGC RMU control
signal and a code word placed on the I/0 channel output bus. The
code words and their meaning are listed in Figure 3-10.

3.1.3.1 Error Location

I1f a double read error is detected, the address of taat word is
frozen by the memory interface hardware and the microprogram takes
two actions: First, the READ is retried 64 times to determine
that it was a hard failure. 1f any retry results in a correctable

error, the normal program execution will be resumed.

1f the error wvas "hard", the microprogram initiates the second
action of identifying the "stuck" locations in the word with the

3-16

Fault
Tally

Catastrophic

Errors
Caused

CPU to Hang

Figure 3-9.

Enter From
Interrupt#

Transient
Exrrork

Form
Fault Word

Identify and
Save Faulted
Bits

2 Faultsf

Check for
and Tally
Stuck Bits

Identify Plane
to be

Reconfigured

~

(Addreéé Frozen)

Stuck Addresses
Don't Show Up Here
|

Check for
and Tally

Address Faults¥*

Correct
Transient Isolated
Errors Write

Identify Bit
Having Stuck
Address

u
|
|
-
|
|
!

Reconfigure
Copy and
Test Correct*

Exit to
Recovery*

Error
Location

Triple Errors Appearing

As Single Errors Will

Be Improved

*Footprints Sent to
RMU Along the Way

DIAGNOSE REPAIR FLOW

Address
Fault
Tally

GT-§ SLIg SV ¥v3addv M013d d3LSI1 $3d0)
SNLVLS {14 3IHL 43aY0T SYH J]-ISSN IHL LVHL Iy 3IHL SWHOIN]

1

$3000 SNLVLS NWY ‘OT-¢ J4N9Id

A3TIVL ONINNG SLINVJ 40 ¥3awnN = N ,,
_NOTLIGNO) ,ONVH, Wld4 ¥ NI siins3y

SNO112313(¥0o¥Y¥J NI HOU]

33N11V4 NOILVYNO14INQIIY

3L1YM ONIYNA HO¥Y] HOLVISNVY|
3¥NT1V{ NOILD3¥YO)

avay ONIYNQ HONH] HOLVISNVYH|
L1XJ 14 7n. 35329nG

a3¥3INT LI3¥H07)/1S3[/AdO)
@3Y¥3LING NOILVHNOI4NOIIY

a3¥3LNg AITIV] LInV4 Ss3¥aay
Q3Y3LNG A3TV] LIv4

A3TIVL ONINNG SLINY4 33¥HL NVHL 3MOYy
| do¥y] 3141170}

3007 SNLYLS

'1nQ sng /] 3HL 40
'¥315193y (/] 3IHL NI

a

+0000 0001
»0T00 0001
«0000 OTOT
«000T 0001
«00T0 0001
0000 0000
0000 OT0O0
G100 0000
0000 1000
0010 0000
«NNNN NOTO :
1000 00V0

3-18

- W 914 O

routine called Form Fault Word which is flow charted in Figure

Read the data word without correction and place in
temporary storage.

Read the check bits and place in temporary storage.

Store the bit-by-bit inversion of the data ard check bits

in the same storage location.

Reread the data and check bits and compare (exclusive
OR) with the original data and check bits.

Zeros will identify the locations of any bits which are
not able to be inverted (stuck at 1 or 0).

If two or more bits are stuck, the fault location data
is stored and the microprogram proceeds to the fault

tally segment.

If less than two bits are stuck, there is an addressing
error or a transient WRITE error which caused the

storage of a bad bit.

If less than two stuck bits were found, the analysis
proceeds to find stuck addresses in the entire memory
(ADDRESS TALLY).

3-19

et Up Inhibit

Correct Mode

Read Word From

Memory and
Save

|

Complemént -
Word and
rite it Back

1

Read Memory
Again; XOR
with Original

Contents; Savi

1

Restore
Original
Memory

Contents

Figure 3-11.

3-20

FORM FAULT WORD

3.1.3.2 ADDRESS TALLY
ADDRESS TALLY is invoked because a double error condition exists
and the fault word routine found less than two faults. This routine

is flow charted in Figure 3-12.

o Stuck addresses are found as follows:

[}

Read word A and store it temporarily.

- Read word B and store it (where the address of B is
different from A by a single bit).

- Complement A and store it in B.

- Check to see if A changed. 1If so one bit of B is
being stored in A.

o Each stuck address which is found is tallied for sub-

sequent reconfiguration.

.0 If there was a transient WRITE problem, it will be
corrected during the final microprogram segment which
is TEST/CORRECT. ’

3.1.3.3 FAULT TALLY
FAULT TALLY is invoked because the fault word routine found *wo or
more faults at the error location. This routine is flow charted in

Figure 3-13. The FAULT TALLY routine checks the entire memory
for "stuck at" faults and tallies them by bit number. At the

3-21

eme————

Set @ Address
For Memory Block
N (Location 'A')

A

ead Location
'A', Save in
nerator Regist

‘

et Location 'B'
ddress = (Loc
+ 2)

~

A

Read Location
IB'

omplement
cation 'B' and
tore Back

!

Read
Location 'A'

Restore

Location 'B'

Address Fault;
locate Faulted

Location 'B'
Address X2

ADDR TES TOK

et @ Address
or Memory Block
lock N +1

Exit

Figure 3-12,

ADDRESS FAULT TALLY

3-22

|
]
E
E

sy

L LR

Mg

Pt

L

-y

Set Up Inhibid

Correct Mode

'

Set Up Error
Counters, Zero

|Address. Counteirs

—

Read a Memory

Location

Any No
Error

es

Form Fault
Word

'

Locate
Faulted Bits

\

Figure 3-13.

Restore
Original Word

[v nle

3-23

Increment
Address

FAULT TALLY ROUTINE

conclusion of this routine the counts .for each bit location are
evaluated and a reconfiguration decision is made. The decision
logic is as follows:

o If a double error caused the diagnostics to be run, a
plane will be substituted in the RECONFIGURE routine as
follows:

- If ERROR LOCATION found two or more stuck at bits
the one substituted will be the one with the largest
number of faults detected by FAULT TALLY.

- If there was only one stuck at fault and an
addressing fault the address fault will be sub-
stituted.

- If there was one stuck bit and a transient WRITE
the stuck bit will be substituted.

o If the analysis microprogram entered via diagnose
instruction, the only reason for z plane substitution
is if the tally of one or more bits excez2ded the thres-
hold of 512 faults. Since each chip contains 2048 bits
this threshold seems reasonable for a systematic fault.
A different threshold can be substituted by burning-in

a different value in the microprogram memory.

The tally operation is essentially the same as the fault location
operation, as it looks for stuck bits by the READ/INVERT/STORE/
READ/COMPARE sequence. This tally operation can be performed on
the entire memory at one time or can be broken into segments.

3-24

TR T Wi mmapweeeww . Saaeeewey. amm—m——

e

3.1.3.4 RECONFIGURE -

The RECONFIGURE routine is the short microprogram sequence which
"tells" the translator which spare plane number should be sub-
stituted for which data or check bit. If the bad bit plane is a
gpare bit plane, it must be unassigned to permit the new spare bit
plane to be effective. This routine is flow charted in Figure 3-14,

3.1.3.5 TEST/COPY/CORRECT

The TEST/COPY/CORRECT routine has two functions: copy the informa-
tion from the old plane to the new plane and correct all possible
errors. This routine works with each location in memory in
sequential order reading from the old plane and writing to the new
plane. This routine is flow charted in Figure 3-15.

Each time a READ operation results in any error, a special correc-
tion routine is used to correct the data. This proprietary routine
is so constructed that it can form the correct word for all single,
double, and triple "stuck at" type faults and one "soft-error" in
combination with zero, one, or two "stuck at" type faults. This

routine is flow charted in Figure 3-16.

3.2 FTM SYSTEM MANAGEMENT

The previous sections presented the implementation of the Fault
Tolerant Memory hardware and microcode. The benefits derived from

this system implementation are: (1) the capability to recover from
permanent and transient type memory errors, (2) extending the

3-25

Retrieve Error
Tally for lst
Error Bit

1
Retrieve Error
iTally for 2nd
l, Error Bit

1st
Greater

Than
2nd

Yes

Get Reconfigure
Code for 1st
Double Error Bit

Get Reconfigure
Code for Bit
with Greatest
No. of Errors

Reconfigure 1lst
Available Spare
Bit Set Spare
Bit Used Ind

Get Reconfigure
Code for 2nd
Double Error Bit

J

Reconfigure lst
Available Spare
Bit Set Spare
Bit Used Ind

<)

Figure 3-14.

Y
Signal
Error to
Controller

A

Hang
TLC

3-26

RECONFIGURE ROUTINE

(Start)

4
Set Location
Address Counter
to First
Location

I

Read a Location
(Failed Plane)
(Participates)

No

Yes

Form Fault
Word

Perform Error
Correction
Algorithm

£

Write Data Back
(Replacement
Plane)

(Participates) Increment
Y Location
Address Counter

Figure 3-15. TEST/COPY/CORRECT ROUTINE

3-27

Initialize Trial

Fault Word From
Rasults of "Form
Fault Word" Routine

Do "Test Read"

With All Fault
Bits Complemented

Save Trial Word,
Increment Solution
Counter A

Single Error, Do
Norw 1 Error
Correction, Save
Corrected Word, [™™
Increment Solution

Counter B

Multiple
Error

Strike LS Fault
Bit From Trial
Fault Word

Any
Fault Bits
Left

Solution
Counter B

Solution
Counter A

No Solution or
Too Many;
Correction Failure

j J

Store Corrected
Word in Memory

Exit

Figure 3~16, MULTIPLE ERROR CORRECTION ALGORITHM

3-28

L

T e e PR R M

usable life of the storage array, and (3).snhancing the overall reliability
of the SUMC-1IC computer. Asscciated with this benefit is the recurring
cost of time. Whenever a double error occurs, the microcode algorithms
which locate the error, reconfigure memory and correct data errors, take
the CPU "off-1ine" for the duration of time that it takes to execute the
algorithas. Table 3-] lists the execution time for each of the microcode
routinas previously discussed, As per the example presented in Table 3-1,
1 double faulted location in a 64K memory size machine would take the CPU
"off-1line" for 687 m sec. It is conceivable that at certain "mission
critical” periods of time, 687 m sec of "off-time" would be intolerable.
The risk of this occurring cannot be completely eliminated, but it can bhe
greatly reduced by managing the tools which the FIM sratem provides.,

The management concept is this: on a periodic basis during non-critical
mission phases, enter via the DIAGNOSE instruction the Fault Tally and
Address Fault Tally microcode routines. This provides the advantages of
(1) the fiight programmer selects the time periods for fault location and
correction and (2) greatly minimizing the probability of a double error
vecurrence. To prevent the occurrence of the accumulation of "soft errors,"
the flight program should, on a periodic basic, read and rewrite all memory
locations., This could be done in increments of 1K or 4K or 16K bytes.

This will further minimize the probability of a double error occurrence.
The disadvantage of this concept is the increased software overhead but,
when weighed against a 687 m sec. "off-line" time during "mission critical"
phases, it seems reasonable to conclude that the FTM management concept

should be included as a part of the flight software.

3-29

Table 3-1

FTM DIAGNOSTIC EXECUTION

DIAGNOSTIC EXECUT: N TIME
A. Fault Tally 62 psec + 19 usec/(halfword locatfon)
B. Address Fault Tallv 253 usec/AY bdlock
C. Reconfigure 7 usec
D.) Copy/Test/Correct 5 usec/halfword location + 62 usec/

halfword location if correction needed)

E. Multiple Error Overhead 390 usec

TOTAL EXECUTION TIME FOR 64K MACHINE WITH 1| DOUBLE FAULTED LOCATION

(A) 522654 usec + (C) 7 usec + (D) 164502 usec + (E) 390 usec = 687 m sec

3.3 IMPLEMENTATION OF ADDRF.,S EXTENSION

Expanding the ALU and appropria%e data paths ard registers was
selected as the approach to address expansion for the SUMC-IIC,
This provides the addition of 20 bit numbers when address calcu-
lations are being done as a part of the effective address
<alculation (EA Calc).

The EA Calculation is: E A = D + (B) + (X) where D 1is the 12 bit

displacement from the instruction register, (B) is the contents of

one of the general registers (now 20 bits) and (X) is the contents

3-30

S i T

of oune of the general registers (20 bits). This addition is per-
formed by caiculating an interim number INIR = D + (B) then getting
the final EA=INIR + (X).

Performing the 20-bit arithmetic for either INTR or EA requires
simultaneous access to 20 bits of the SPM (where the general
registers are implemented) and a 20 bit wide ALU for adding posi-
tive integers. Since the D is a positive integer, only the
extended part of the ALU does not have to propagate any negative
signs from the lower part of the ALU.

Figure 3-17 shows the parts of the SUMC-IIC block diagram which
are affected by the expanded addressing. The salient features of

this hardware are discussed below:

o A four bit extension to the PC was added to accommodate
the 20-bit addressing.

o The extension to the PC can be loaded from the extended
ALU for branch instructions the same as the regular
part of the PC can be loaded from the PRM.

o The PC extension also goes through a new four bit MUX
into the SAR extended for instruction fetching.

~ The PC extension can be read into the data path (MQM)
through a new four bit MUX. This is used for BAL and

store PSW type operations.

o The address MUX was expanded to handle the 20 bit address
both from the SAR and from DMA.

3-31

NOISNALXd HIVd VIVAd - ONISSA4AAV (IANILXT - LT-€ 2an3t4
JAYVMOAVH MAN »

1 avS |« uvsx | X ad x2dx | 1
4 3 ¥
WIK OL M
ooz % |, d¥aav
] } |
AV WOH uiad ¥ UVX d
¢ 3
A @
: WVH WOW Wid x WidX |9 * WYX q ~
Vd - ow
L T 1 ﬁ) ¥ F ¥ L ¢ 3 &
)]
r MSd = YOW
H——b ‘ommw v ¥ XOH @ T Dd = WVK e o_u&ﬁTm 9W + SH
il T ﬁ
> \Y > \

0o/1 D24 p y ﬁll SAHOLVT f Y e
4ouNd
€ XNK V XK x aXWX | @ | vxnxjo
ﬁ 4 b A
FEFT 771 =t 1
‘ LOdNI ady
9t X %9 ¢) ao YHOM
HdS .Nx.:_m v X 9T |V
._¢ ¥ WASX dsx
h b
ALTAM qaav LD
WdsS RdS M/d

SR meTTme e e aemen—S

o The address decode logic was expanded to provide six page
select signals, for up to 96K bvtes in the prime CPU box,
and the full address is available to be sent to an exter-
nal memory unit so that page selects can also be generated

externally.

(] The storage protect registers (not shown) were expanded to
1024 X 2 to accommodate the 1024 segments of 1024 bytes
each associated with the 20 bit address capability.

o Manipulation of SPM for 20 bit arithmetic is not as
straight forward as the items just mentioned and it is

described in the immediately following paragraphs.

To form the intermediate sum INTR = D + (B) in the extended ALU,
the most significant four bits (MSB) of the base address, B must
be added to the zeros which represent the MSBs of the 12-bit D
field. This poses a problem, however, since the 32 bit general
register holding the 20 bit base value is located in two separate
16-bit locations in the SPM. Two SPM locations cannot be read at
the same time so a portion of the SPM is duplicated. Therefore,
when the SPH is reading the least significant 16 bits of a general
register, the SPM extension must be reading what amounts to the
least significant four bits of the most significant half of the
general register. Thus the 20 bit base address (or index regis-
ter) is made available simultaneously tr the ALU and extended ALU.
The ALU extension register, which is cleared, is fed back to the
ALU extension to provide the most significant zeros corresponding
to the uprer part of D (which is only 12 bits). At the end of
this cycle, the ALU extension register contains the four MSBs of

the 20-bit Base Register plus any carry from the displacement

3-33

ooid fed Qeaid akd oSl N G T GEN

Bowg fpang

iy oy

PR el e g eeed

addition. The second addition is like the first except the interim
sum (20 bits) is added to the 20-bit X register value, The full
20~-bit EA 1is loaded into either the PC or the SAR according to the
instruction being executed.

The next problem is getting the MSB portion of the general registers
into the SPM extension. Since the general registers are loaded in
a double precision manner (first the lower half then the upper hali)
the extended SPM must be loaded when the upper half of the register
is loaded. Thus special manipulation of the most significant bits
of the SPM address is used to load when an upper half general
register is being loaded and read at all other times.

The overall operation has been described above. Table 3-1 con-
tains the control equations for the block shown in Figure 3-17.
For definition of some of the signals make reference to the micro-
program control word. For example: S 1 is the first bit of the
SPM field, and R 2 is the second bit of the REGISTER field.

3-34

Table 3-2. CONTROL EQUATIONS

Block Control

A Read 3T * 52
Write 5T * 32 * SPM write
B Read S1 = 1
Write S1 * 7 * SPM Write
c Output = MAR if MUXA = MAR (Al * AZ * A3)

Output = SPM if MUXA = SPM (A1 * AZ * A3)
Else Output = 0
D Output = SPM if MUXB = SPM (A5 * A6 * A7)
Output = F if ALU = A-B (A8 * A9 * AID)
Else Output = 0
E Output Enable MAM = MAR or MAM = ALU or MAM = PC (R3 * R4)
MAR (RT * R2 * R3 * R4)
ALU (R1 * RZ " R3 * RY)
XPC if MAX = PC (R1 * R2 * R3 * R4)

Output = XMAR if MAM
XALU if MAM

F Load = R5 * CKZ (No reset)
G Output = MQR Bits 1215 if MQR to PC EXT (M7 * M8 * M3 * M10)
H Output = 0 if MAM = PC10 (M5 + M6 = 1) ’
Else = PC EXT
I Load = Load PC
J Qutput = PC EXT %f MQR = PSW (R11 * R12 * RI3) and

MAM = PCIO (M5 + M6 = 1)

K Load = CPSAR Load Clock
Reset = POR
L Same as A MUX

3-35

	1980025603.pdf
	0056A02.TIF
	0056A03.TIF
	0056A04.TIF
	0056A05.TIF
	0056A06.TIF
	0056A07.TIF
	0056A08.TIF
	0056A09.TIF
	0056A10.TIF
	0056A11.TIF
	0056A12.TIF
	0056A13.TIF
	0056A14.TIF
	0056B01.TIF
	0056B02.TIF
	0056B03.TIF
	0056B04.TIF
	0056B05.TIF
	0056B06.TIF
	0056B07.TIF
	0056B08.TIF
	0056B09.TIF
	0056B10.TIF
	0056B11.TIF
	0056B12.TIF
	0056B13.TIF
	0056B14.TIF
	0056C01.TIF
	0056C02.TIF
	0056C03.TIF
	0056C04.TIF
	0056C05.TIF
	0056C06.TIF
	0056C07.TIF
	0056C08.TIF
	0056C09.TIF
	0056C10.TIF
	0056C11.TIF
	0056C12.TIF
	0056C13.TIF
	0056C14.TIF
	0056D01.TIF
	0056D02.TIF
	0056D03.TIF
	0056D04.TIF
	0056D05.TIF
	0056D06.TIF
	0056D07.TIF
	0056D08.TIF
	0056D09.TIF
	0056D10.TIF
	0056D11.TIF
	0056D12.TIF
	0056D13.TIF
	0056D14.TIF
	0056E01.TIF
	0056E02.TIF
	0056E03.TIF
	0056E04.TIF
	0056E05.TIF
	0056E06.TIF
	0056E07.TIF
	0056E08.TIF
	0056E09.TIF
	0056E10.TIF
	0056E11.TIF
	0056E12.TIF
	0056E13.TIF
	0056E14.TIF
	0056F01.TIF
	0056F02.TIF
	0056F03.TIF
	0056F04.TIF
	0056F05.TIF
	0056F06.TIF

