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This report presents the results of the trade studies conducted on

•-t
contract number NAS 8-31747. These trades cover: establishing the

'.	 basic configuration, establishing the CPU jmamory configuration,

establishing an approach to crosstrapping interfaces, defining the

requirements of the redundancy management unit (RMU), establishing a

spare lane switching stre y for the fault-tolerant memo	 FTMP	 P	 ^	 tal•_ 	 memory ( ),

and identifying the most cost effective way of extending the memory

addressing capability beyond the 64 K-bytes (K-1024) of SUMC-II B.

i	 The results of the design are compiled in Contract End Item (CEI)

_$	 Specification for the NASA Standard Spacecraft Computer II (NSSC-II),

IBM 7934507. The report also presents, in Section 3, the implemen-

tation of the FTM and memory address expansion. The scope of the
a

original contract was reduced so that the IOUs and RMU were not

designed.
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The first item requiring resolution in the SUMO-II C is the basic

configuration.	 The objectives and constraints of the program are

listed balm:

0	 Provide f1rJtility to be able to meet varying levels of

redundancy.

Pt 0	 Make masimum use of hardware developed for the

HTC/SUMC-11 B.

Use0	 error correcting memcry techniques since they pro-

vide the most reliability for the least: amount of

hardware duplication.

0	 Use spare memory planes and a bit-plane organized

memory.

A 0	 Use a fault-tolerant redundancy management unit (RMU)

to control the redundant elements of the system.

Providing redundancy within the CPU or IOU would require develop-

sent of completely new untie and would not represent a cost

effective way of providing reliable systems. 	 Configurations were

limited to CPUs and IOUs as "stand alone" units. 	 The CPU to

memory interface is a significant part of the study. 	 The Top

Level system configuration is shown in Figure 	 2-1.	 Subsequent

2-1
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sections of this report will develop this general concept into a

working approach to the SUMO-I1 C.

Over a period of time a number of candidate subsystems were defined

for the CPU/memory portion of the 8UMCr11 C. These configurations

are shown in Figure 2-2 and are explained below:

o Configuration 1 consists of two CPUs sharing a common

fault tolerant memory built from existing Main Memory

Unit (MMU) hardware. No attempt is made in this con-

figuration to eliminate single point failures in the

memory. A new design is required for the power supply

and the dual port interfaces.

o Configuration 2 consists of two CPUs sharing a common

fault tolerant memory. This memory is an extensively

redesigned MMU and contains no single point failures.

A new redundant power supply would be required for this

design. A new design would be required for the dual

port interfaces.

o	 Configuration 3 consists of two CPUs, each having a fault

tolerant MMU memory.	 The computers will be used in a

redundant manner and no new design is required.

o	 Configuration 4 consists of two CPUs, each having a

E dedicated memory except that the dual port interfaces

are used to provide cross-strapping of ...-mory write when

4 both systems are powered on.	 Each computer supplies

power to its dedicated memory and reads only from its

memory.	 The cross-strapping is provided for rapid

. 2-3
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information transfer between memories during CPU switch-

over.	 This approach requires a am design for the dual

port interfaces but no new power supply design.

o	 Configuration S consists of two CPUs cross-strapped to

two fault tolerant MW memories.	 Both r4 wries share a

- redundant power supply and remain in a powered on state.

Either CPU can read from either memory but always writes

both.	 The dual port design is used for cross-strapping

and the memory raid selection is delegated to the

Redundancy Management Unit (RMU).	 A redundant power

supply and interface designs are required for this

comf iguration.

o	 Configuration 6 is the same as configuration S except

that each memory hoe its own power supply which can be

powered up or down by the MU to save power. A new

power supply and new interface designs are required.

E,	
All configurations use common designed interface boards which can

be populated/depopulated and/or jumpered to fit each requirement.

It	 Figures 2-3 throupb 2-5 show the interfaces except for the clock

switching circuitry. Two CPU interfaces (CPA, CPB) and three

I

memory interfaces (MPA, MPB, MPQ are shown.

The trade data derived fox the six configurations is summarized in

Table 2-1. Based on that data, configuration throe ws selected.

The slight increase in reliability of six over that of three does

not justify the major difference in development cost. The result-

ant configuration is shown in Figure 2-6.

c1	 .2-5
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2.2 REDUNDANCY MANAGEMENT UNIT (RMU)_ CONCEPT

Optimisation of the RMU must be done at the system level and is,

therefore, application dependent. Several major items which are

application dependent are: the time allowed for system recovery,

the need for a degraded mode of operation, the availability of

program load capability, the degree of operator participation vs.

automatic operation, the need for complex interface safing, the

need for selecting from among multiple prime power sources, and the

need to store recovery parameters for transferring control from one

computer to another.

Since mission success is dependent upon the operation of the RMU,

it must be essentially failure proof. If the RMU performs many

Functions, then its simplex implementation requires significant

amounts of hardware and it is both difficult and costly to achieve

the required reliability.

Effective management of system redundancy can involve many acti-

vities. A list follows which represents candidate features which

might be included in an RMU:

o	 Comparators for checking the outputs of multiple com-

puters. This could be required for instantaneous

recovery or where the consequence of an undetected error

is catastrophic.

o	 Storage of present status parameters for assistance in

restarting after a detected failure.

.2-11
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o Safing all critical spacecraft functions which are under

control of the computer.

o Check "status" signals from the computer to assure that

all critical program segments were executed and in the

correct sequence.

o Gather status and send it to operator/monitor personnel

in the spacecraft or on the ground.

Provideo auxiliary storage for error and status logging,

program reload, and diagnostic program storage.

o Provide command facilities for remote.(probably ground)

-' personnel to override the automatic redundancy management

features.

o Provide an independent "Watchdog" timer to detect com-

plete loss of computer operations or excessive time in

completing a phase of operations.

PF o Provide highly redundant (fail-safe) crosstrapping

between/among redundant system elements.

o Control application of power to each redundant element
tk

_ of the system.

o Enable/Disable computer I/0.

Since high level redundancy is required in the RMU to meet the

necessary failure tolerance, even small amounts of functional

2-12
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hardware can have significant impacts . on power, weight, ate. There-

fore, two precepts are proposed for the design of the RMU:

1) Don't include any function which can be performed

outside the RMU.

2) Make provisions for but don ' t include functions which are

not iequired by all applications.

Applying these rules to the candidate list gives the following

results:

o	 Accommodation should be made for the future addition of

compartors but don't include them.

o	 If required for rapid recovery on a specific mission, a

few restart parameters might be included. A large number

should be put in a system storage device and not included

in the RMU. The basic RMU should not include restart

storage.

o	 By putting all I /0, into a predetermined state when

system confidence has been lost, proper system design

can insure the spacecraft to be safe at all-times.

o	 Status checking and proper program sequencing are

important, however, they should be handled by software

checking not the RMU.

o General status collection should be done by the operating

computer which can send it to the ground via telemetry if

desired.

t
t
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o	 Auxiliary storage should be provided as a system function

not by the RMU.

o	 The ability to use human intervention to override the RMU

is desirable and should be provided both for test purposes

and as a "last ditch" precaution.

o	 A "watchdog timer" is an essential part of any RMU.

o	 Crosstrapping should only be provided in the RMU when

required by the application and there is no other place

for it.

o	 The RMU should control power to each unit, although the

power switches themselves need not be a part c: the RMU.

o	 The RMU should have the ability to enable/disable outputs.

Between the time that power is applied to a computer and

the time the computer has initialized and performed self-

test, the RMU should insure that all I/O is disabled.

This results in a basic RMU which can be used "as-is" or can be

expanded to suit special requirements. The basic RMU features are

summarized below.

BASIC RMU SUMMARY

o	 Watchdog Timer

o	 Ground Commanded Override of RAM

o	 Power Control to all Units

- 2-14
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o	 I/O Enable/Disable Capability

o	 Growth for Special Missions

o	 Fail Safe Implementation

To communicate with the RMU, the SINC-II C CPU will use a dedicated

line FLAG RMU which will indicate that the output bus has data for

the RMU. FLAG RMU is just a pulse so the RMU must store the data

on the bus or react quickly to it. In addtion to an "IM OK" code,

several codes are generated to signal operational status of the

microprogram handling the FTM analysis and spare plane switching.

This is explained more fully in Section 3.1.2.

2.3 INTERFACES

Crosstrapping and other redundancy considerations can impact the

design of unit-to-unit interfaces. If mission reliability or

application design groundrules will not tolerate single point

failures, the interfaces used must be carefully designed to pre-

vent a short in one circuit or wire from dragging down an entire

function and precluding operation of that functon. The interface

shown in Figure 2-7 illustrates a design approach to eliminate

all single point failures in a crosstrapped interface.

The circuit of Figure 2-8 is much simpler than that of 2-7

since all drivers and receivers are the ones which would normally

be provided in a simplex unit if one precaution is taken in selec-

tion of the three state driver. The driver must be selected such

.

2-15
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that in its	 .::red OFF state its output goes to the high impedance

(disabled) state.

The impact on systems reliability of the failure tin a shorted mode)

of one of the interfaces in Figure 2-8 	 is negligible.	 However,

the problem of implementing the interface of Figure 2-7 	 is signi-

ficant.	 This study, therefore, recommends the use of the simpler

interface since the more complex one can be added later for any

application which requires it.

2.4	 FTH CONTROL STRATEGY

The fault-tolerant memory subsystem automatically corrects single

bit errors.	 This action is completely transparent to both the

computer user and the microprograms.	 The FTH subsystem does, how-

ever, have control functions to control switching of spare memory

planes and also to perform testing of the memory. 	 The controls are

a combination of hardware and microprogram. 	 The strategy for

switching spare planes can have a major impact on the reliability

of the unit, however, exact techniques for calculating the effect

of switching strategy or reliability are not yet developed.

To understand the significance of the switching strategies, it is

necessary first to understand the types of failures, their impact

on operation, and their method of detection.

o	 A "fault" is a hardware malfunction such that the

equipment is not capable of doing everything it was

designed to do, but it might not be causing any

problem at the present time. Example, if a bit is

2-17

t



unable to go to a 1 state but the correct current value

is a zero, it isn't causing a problem; but it is still

a fault.

o	 An "error" is the process of the computer gettint an

improper result at the present time. Example, if a !sit

read from memory should be a 1 but it is being read as a

O, that is an error.

o	 A "random fault" in the FTM is one which affects a single

bit in a single word in memory.

o	 A "systematic fault" is either one which affects the same

bit in many words or many bits in the some word. 	 The

system has been designed, however, to nearly eliminate

the ability of a single fault in memory altering the

value of more than one bit in a word.

o	 An "address fault" is a fault which causes a valid word

to be stored in and retrieved from the wrong storage

location.

"transiento	 A	 store" error is where a transient condition

in the memory caused a word to be storedd4 with a bad bit

in it.	 However, there is no "turd" fault.

Since the memory can correct single errors, there is not much con-

cern about the existence of words in storage which will give

single (correctable) errors when they are read. The most bignif i-

cant problem with single errors is that they have the potential to

become double errors which cannot be corrected by the translator

1	 2-18
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hardware. Random faults are the most pra^able failure type in a

semiconductor memory and there is a IoM t-:obsoility that two random

failures will occur in the same word. A savory containing n words

has a probability of about .5 that there is a double failure after

n failures. For n-8K that is about 90 failures and for n=66K it is

about 256 failures. Therefore, random failures are predicted to be

a problem+ only if a wry large =umber of them have occurred.

Three strategies will be considered for switching out bad hardware,

to restore system operation or reastablish a high level of redun-

dancy. Each approach and its relative writs are discussed below.

STRATEGY A

Reconfigure the systrm to eliai=ats the failed bit-plane every time

an error is encountered.

Advantages:	 This is a simple concept which could be easily

implemented in hardware without any modification of the current

CPU/Memory interface.

Disadvanta&es: This strategy wastes spare plane usage on random

errors which are amply taken care of by the basic correction code.

When spare pla-es are needed for systematic faults they will not

be available.

STRATEGY 3

Reconfigure to switch out a bit-plane whenever it has been deter-

mined, during normal operation, to contain a predetermined number

of faults, or it is the one which has the most faults whenever a

word containing a double error is encountered.

1	 2-19
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Nvantases:	 this strategy focuses on the distinction between

mystematic faults and random faults, and would significantly enhance

the lor$ term mission reliability.

Disadvantaras: interruption of the operational program to log the

location of errors during program execution would have a significant

Impact on computer operation. 	 There is ulac, a risk that areas of

the memory infrequently used because of mission structure could

accumulate multiple errors in words which, when they are needed,

cannot be practically reconstructed with the diagnostic decoding

algorithms, thus impacting the mission.	 Some wry performance

capacity would necessarily have to be allocated tc the error log-

gin& operation, especially if errors occur in frequently used

program such as vehicle control loops.

STRATEGY C

Rely on the ECC capability during normal program execution, then

revert to a test mode whenever a double error is encountered in a

word, and at periodic intervals. 	 The tee t mode would utilise the

diagnostic decoding algorithms and properties of the error code

to locate and log faults, verify that single errors signaled by

the translator are not triple errors, and provide the data for the

reconfiguration decision. 	 Reconfiguration would only be performed

If a double fault or a systematic fault was detected.

Advantages:	 This strategy has minimum impact on the operating

program yet it utilises the powerful diagnostic decoding techniques

to effectively attain the full potentials of the bit-plane switch-

ing capability.	 All memory locations would be tested frequently,

thus mirimising the likelihood of accumulations of many errors in

any word before detection of the errors.

2-20
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Disadvantages: It is difficult to ka w how often to go into a self

test mode, however, this can be programmer controlled rather than

"built-in" to the system either in hardware or microcode.

SELECTION: Strata" A clearly does not provide an effective use of

the tremendous potential of the spare planes. Strategy a makes a

major improvement in the effectiveness of the spare planes, but

Strategy C makes several improvements over that of S. Since both

S and C require a significant amount of microprogram support, tbere

seems to be little difference in the cost of implementation.

Strategy C is selected. The microprogram to support the strategy

is described in Section 3.1.2 and the FTM hardware is described in

3.1.1.

2.5 STORAGE ADDRESS EXPANSION

The basic HTC computer calculates storage addresses wing 16-bit

arithmetic. Since the byte is the basic element addressed in the

computer, this results in 2 1b,65,536 bytes maximum. Applications

which require more storage than this must either manage the move-

want of data and programs in and out of the computer or provide

some means to expand memory beyond 64K bytes (K-1024).

"Memory expansion involves several facets:

o	 Generating and holding addresses beyond 16 bits.

o	 Decoding the most significant bits of the address to

form "page select" signals.

2-21

I



•	 Driving the signals going to the additional memory.

•	 Mousing the additional memory.

•	 Powering the additional memory.

The first item was the primary subject of the study, whereas the

other items were resolved during the implementation phase.

Memory addressing is from three basic sources:	 operant addresses

calculated within the CPU, next instruction addresses taken from

the program counter, and storage addresses taken from a device

over the direct memory address (DMA) interface. 	 In the RTC all

address paths, registers and calculations are 16 bits.	 If the

memory is to be expanded beyond 64K bytes, the maximum memory

size must be determined. 	 Discussions with MSFCP ersonnel identi-

f ied that most foreseeable requirements could be met with 18-bit

addressing (256K bytes) and that 20-bit (1 M bytes) would certainly

statisfy all requirements.

The next primary issue is to establish the basic approach to the

addressing of memory. 	 Both aerospace and commercial computers

have been successfully applied using a "sectored" memory where the

CPU, I/0, etc. never has access to the full memory at one time.

_ This approach usually involves one or more sector registers to hold

the most significant part of the address while the CPU manipulates_

only the least significant part of the address. 	 With sectored

memory the most significant directly controllable address bit

usually identifies whether the lowest sector or the "current"

sector is being referenced. 	 Sectoring is illustrated in Figure

2-9	 assuming the computer has a basic addressing capability of
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1

16 bits.	 The 15 least significant bits (Liss) identify which byte,

of the 32K bytes in a sector, is being addressed. 	 If the most

significant address bit (MSB) is a zero, the lowest sector is

implied.	 If the MSB is a one, the value stored in the sector

register is used to identify the desired sector. 	 Thus continued

access is provided to the low sector of memory, and one other 32K-

byte sector can be selected.

The advantage of sectored addressing is that it minimizes the amount

of special addressing hardware required.	 There are, however, some

disadvantages with this 	 toapproach	 address;

o	 The technique is not S/360 compatible.

o	 Special instructions are required for loading and

storing the sector values.

o	 The programmer must be concerned with memory management

as well as application programming.

o	 If a program or data file resides in two different

sectors, many changes in the sector register might be

required.

I	 o	 The MOVE instruction cannot be used to move across

sector boundaries except sector zero.

If sectored addressing is not to be used, address computations must

1
	 involve the full storage address (18 or 20 bits). Figure 2-10

shows a symbolic flow chart of the S/360 address calculation. Pro-

t	 vision must be made to provide all the identified additions in 18

2-24



INSTRUCTION REGISTER

X* B D
0	 12 15 ]61920	 31

**
Bs	 Ds

32 3536	 47

* RX FORMAT ONLY
** SS FORMAT ONLY

NOTES: B AND X ARE THE NUMBERS
OF THE BASE AND INDEX
REGISTERS BUT (B) AND
(X) ARE THEIR CONTENTS.

P IS ANY CONVENIENT
WORKING REGISTER.

TO INSTRUCTION
EXECUTION

FIGURE 2-10. FLOW DIAGRAM OF THE S/360 EFFECTIVE ADDRESS CALCULATION
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o	 The CPU's storage address register (SAR) must be expanded.

or 20 bit arithmetic.	 There are three approaches to providing

18/20-bit addressing:

o	 Use the RTC data path as-is and use double precision

calculations (two passes through the ALU) to'get the

addresses.

o	 Expand the data path to 32 bits for greater arithmetic

performance andet the extended addressing free in theg	 8

process.

o	 Extend the data path two or foir bits for address calcu-

lations only.

The double precision microprogramming of the effective address

calculation involves the least hardware but reduces machine per-

formance by stretching execution of all but the register-to-

register (RR) instructions. Going to a 32-bit data path is a

major change in implementation, increases power and weight, and

cannot be justified for the sole purpose of extending memory

}	 addressing.

Regardless of the approach to address expansion, the following

changes to the RTC must be implemented. See the HTC Block

Diagram of Figure 2-11.

o	 The program counter (PC) must be extended either as a

counter (preferred) or with a sector register (poot

design).

2-26
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o	 The address multiplexer combining CPU and DMA addresses

should be expanded.

o	 The DMA address interface should be expanded, (if the DMA

is to have full access to memory).

o	 A path must be provided from the PC to the data flow

(for store PSW) and to the SAR for I-FETCH.

The implementation requirements of the various approaches to memory

extension are illustrated in Figures 2-12, 2-13 and 2-14. In those

illustrations, it can be seen that sectored memory provides minimum

hardware impact but not significantly less than microprogrammed

addressing. Figure 2-12 assumes the PC to remain at 16 bits and

share the same sector register as the operants of the effective

address calculation. Additional sector registers can be provided

for separate sectoring of the program counter, second operant, and

DMA. The additional hardware, however, does not seem warranted in

an approach with such inherent limitations.

Comparison of Figures 2-13 and 2-14 shows that providing and

controlling 2-4 extra bits of ALU and General register is the signi-

ficant difference between hardware and micropogramming addressing.

Table 2-2 shows a summary comparison between the three approaches.

The 32-bit data path approach was eliminated because of the extreme

impact both on production hardware (an extra slice) and on develop-

ment cost. The extended calculation approaches are shown with four

bits per flat pack. The sectored memory, however, is shown with

extension to only 19-bits. The larger the memory the more problems

encountered (with sectored memory) so 18-bit addressing (256K-bytes)

i	 2-28
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would probably not be exceaded. Also 19-bits represents an

efficient use of hardware. The hardware estimates in the tattle

are those which were believed at the tams of the trade study.

The problaw associated with the manalement of a sectored memory

plus the loss of 8/360 compatibility makes sectored memory very

unattractive. The expanded ALU/DATA Path approach was selected over

the micropro=ramsed approach to Set a 102 increase in performance

at the cost of a fern flat packs. Section 3.2 of this report shows

the implementation of Lha address expansion.
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1
1	 3.0 IMPLEKI NTATION

1	 3.1 FAULT-TOLERANT MERRY
The Fault-Tolerant Memory (FTM) is a storage system which tolerates

single and multiple errors within words read from memory. The FTM

system is comprised of three major segments: Storage Array,

Translator, and Error Correction Algorithms.

3.1.1	 Storage Array

The storage array is composed of basic memory modules (BMMs) which

are hermetically sealed and each contains 8192 bits of N-channel

FET random access storage organised as an SK x 1 bit array with on

the chip address decoding. 	 Each memory module is part of a bit

plane.	 There are 16 bit planes corresponding to the 16 bits to be

stored from the CPU, 6 check bit planes and 4 spare bit planes. 	 A

bit plane provides one bit to the word read from storage. 	 The bit

plane organisation ensures that any failure in a BMM will affect at

bit	 from	 This featuremost one	 in any word read	 storage.	 signifi-

cantly enhances the effectiveness of the error correction code.

Any failure in a module can mutate only one bit in any given word

stored.	 Figure 3-1 contrasts the storage array organization for

64K simplex and Fault-tolerant machines.

3.1.2	 Translator

Refer-ing to Figure 3-2, the Translator is functionally partitioned

into six mu'ar data flow areas.	 a storage data re,4x2 ter (SM) which

3-1
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includes an input multiplexer, parity tress, corrector, error

analysis, command and status registers ', and spare assignment

register.	 The SDR is the major working register for the translator.

All data inputs to be stored from the CPU are read into the SDR and

all data read from the storage array is read into the SDR.

3.1.2.1	 Parity Trees

Parity trees in the translator are used for four purposes: 	 gene-

rating check bits on store operations, checking byte parity bits on

store operations, generating syndromes on read operations, and

self-testing of translator circuits.

3.1.2.1.1	 Check Bit Matrix

Referring to Figure 3-3, there are 16 data bit positions labeled 1

through 16.	 There are six check bit columns labeled C1-C6. 	 Each

check bit is generated by parity trees to give odd parity over the

field consisting of itself and eight associated data bits in the

same row of the matrix.	 Thus, Cl could be generated as zero or one

if data bits 1 through 8 had odd or even parity, respectively.

Similarly, C2 would be generated to give odd parity over the field

consisting of itself and data bits 6 through 13. 	 It should be

noted that each column of the parity check matrix consists of an

odd number of l's.	 The data bit columns have three l's and the

check bit columns have a single 1. 	 This constitutes a Hamming

code of odd-weight.

i
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Bit Positioa.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Cl C2 C3 C4 C5 C6

S1 11111111 1
$2 1111 1 1 1 1 1
S3 1 1 11 1 1 1 1	 1
S4 1 1 1 1 1 1	 1 1	 1
S5 1 1 1 1 1 1 1 1 1
S6 11 1 1 1	 1 1 1	 1

Figure 3-3 Parity Check Matri-c for 16 Data Bits

On store operations, the 16-bit word from the CPU is first stored

in the SDL The 16-bit word is then flushed through the parity

trees to generate check bits which are also stored in the SDR.

Subsequently, a 22-bit word is transmitted to the storage array (16

data bits and 6 check bits).

3.1.2.1.2 Error Detection and Location

r

t
t
t

t
t
z

On read operations, each of six fields, consisting of eight data

bits and an associated check bit, is checked for odd parity. The

parity indication signals generated for these six 9-bit fields are

called syndromes labeled S1 - S6 in Figure 3-3• In the event that

one or more syndromes indicate a discrepancy, an error is flagged.

The pattern of the syndromes is analyzed to determine the type of

error and, in the event of a single error, the syndrome pattern

indicates the position of the errant bit.

Each data bit and each check bit has a unique pattern of 1's in

its column. Thus, if data bit 1 was in error, then syndromes 1,

3, and 4 would indicate discrepancies. The combination of syn-

dromes (1, 3, 4) uniquely identifies data bit 1 as the errant bit.

In this way, the syndrome patterns are decoded to locate a single-

bit error.

3-5
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3.1.2.1.3 Self-Testing

The construction of the parity trees used in the translator augments

the self-checking/self-testing properties of the translator. Figure

3-4 illustrates the organization for one of the three parity trees

on a parity chip. There are nine input bits per tree and each tree

is divided into a six-bit section and a three-bit section. There

is a partial output for the six-bit section of the tree and another

for the three-bit section. There is also a combined output which

represents the parity over all nine input bits. The pair of

partial outputs is called the "morphic" output of the parity net-

work, while the combined output is the usual logical output. Since

odd parity is being used, an error-free syndrome from the morphic

output is indicated by an 01 or a 10 signal on read cycles. Tn the

event of a fault within the parity tree network which results in an

erroneous output, only one leg of the morphic output will be

affected. Therefore, single gate failures in these circuits

propagate to the output where they may be detected. Thus an odd

parity input to a parity circuit, containing an error causing

fault, will result in an 00 or 11 morphic output. Of course, an

even parity input to a fault-free parity tree, will also cause

the morphic output to be 00 or 11.

3.1.2.2 Corrector

The corrector consists of a correction decoder and exclusive OR gates

which are in line with each of the 22 bits. Correction occurs as

data is . being transmitted to the CPU. Correction is complete

before the CPU receives a read data ready indication. The syn-

dromes generated by the parity trees are decoded into 22 bits.

The correction decoder illustrated in Figure 3-5 consists func-

tionally of 27 six-input AND gates which decode each of the 20

t
I	 3-6

t



1 2 3 4 5 6 7 8 9

XOR XOR XOR XOR

XOR	 XOR

XOR

XOR

Paritial Combined Paritial
Output	 Output Output

Figure 3-4. FUNCTIONAL PARITY TREE REPRESENTATION

h

combinations of six things taken three at a time, the six combiaa-

tions of six things taken one at a time, and the single combination of

none of six. The outputs from the decoder are wired to the

	

={	 appropriate SDR bit positions. All twenty of the three of six

combinations are available on the chip; however, only the appropri-

ate 16 are utilized for the sixteen data bit positions in the code

	

1$	 chosen. The inputs to the decoder are the combined outputs of the

	

,R	six syndrome parity trees.
i

The outputs of the correction decoder are then exclusively ORed bit -by-bit

with the data as read from the storage array. Whenever the two inputs

disagree, correction. occurs.

3.1.2.3 Error Analysis

The error analysis portion of the translator is perhaps the most

unique portion. It is implemented in morphic logic. The morphic

logic uses dual line pairs to replace the single lines in conven-

tional logic gates arranged as two independent tree structures so

	

a^	 =
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---

that a fault of a single gate in the morphic logic propagates to

the output where it can be detected. Circuits representing morphic

invert, morphic AND, morphic OR, morphic exclusive-OR, etc., have

been devised. Combinations of these morphic gates can be utilized

to implement any logical function. The morphic logic equivalent of

a conventional logic 1 is a 01 or a 10, [01], on the line pair.
[10]

The morphic logic equivalent of a conventional logic 0 is [00] on
[11J

on the morphic line pair. For explanation of the error analysis

circuits for this translator, the nomenclature 1M [01J, and OM
[101

[001 will be used.
[llj

The translator error analysis will be illustrated by explaining its

operation for checking the word read from storage. The verifica-

tion of byte parity checking and generation and check bit generation

will then be explained.

-	 The ANDM whose output is labeled A in Figure 3-6 has inputs from

the morphic output of the syndrome generation parity trees S1 - S6.

Since odd parity is used in the encoding, on read-out all of the

syndrome partial signals should be 1 M if no error has occurred.

Thus, the output A should be 1M.	 Two parity trees are shown as

the input B in Figure 3-6. 	 There are an even number of syndromes

(6).	 One each of'the two morphic lines from each of the syndrome

generators (the byte parity tree inputs are inhibited during read

cycles) are inputs to the two parity trees whose outputs form B.

Since the syndrome no error condition is1M and there are overall

an even number of syndromes, there should be in total an even

number of morphic (and logical) 1's under a no-error condition.

3-9
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Since this is true, both parity trees should have like parity either

odd or even since the sum of two odds or of two evens is even. The

input B in Figure 3-6 should be OM under a no-error condition. The

ANDM gate whose output is P indicates NO ERROR as 1M when the A and

B signals are normal.

The ANDM gate whose output is Q indicates a translator circuit

failure condition. There is no valid condition of the inputs which

causes outputs A and B to be 1M simultaneously. This condition is
s^

indicative of a failure in the circuits which generate A or B.

Therefore, the ANDM gate whose output is Q senses this condition

or	 as a circuit error.

A single error is mainfest as an odd number of OM syndromes -- one

syndrome or three syndromes having a value of OM. Under this con-

dition, the output A will be a OM and the output B will be LM.

The output A is inverted to make it a 1 M and combined with the

output B which will be 1M to cause signal R to be 1M -- the single-

error condition signal.

The ANDM gate whose output is S senses a double-error condition.

The output A will beOM as will the output B in the presence of a

double error in the word read from storage. 	 Inversion of both

these outputs makes them both 1M and when combined in the ANDM gate,

whose output is S, indicates the double-error condition.

The ANDM whose output is D indicates a circuit-error condition.

The input U is for byte parity circuit checks. 	 The signal Q (men-

tioned previously) is inverted because its normal (no error)

indication is an OM.	 In order to maintain consistency, all inputs

_ to the ANDM should, under normal conditions, be 1M'a.

3-11
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Therefore, the signal Q inverted is i,.Auring normal operation. The

signal T is used for checking the validity of the generated check

bits on write operations and the validity of the generated byte

parity bits on read operations. It is proved that, with the code

structure herein utilized, the parity of tae byte parity bits and

the parity of the code check bits should be the same; therefore,

their combined parity should always be Atvea. The signal T is the

morphic output of a parity tree whose inputs are the two byte

parity bits and the six combined outputs of the parity trees which

generate the check bits.

The two parity trees with T and R iapurs together with an inverter

perform the logical operation T . R which is true when there is a

valid single error condition and ao circuit failures. Certain

circuit failures might be detectP4 as & single data error without

this check.

i

A check is made to see that there is not an even number of the

inputs P, R, and S in a 1M state b;:cause P, R, and S are mutually

exclusive conditions. Should none or two of these three signals

be up, there will be an even number of logical 1's which, dis-

tributed between the two parity trees whose inputs are PRS, will

make their output OM. That is a failure indication causing the

output D to be OM.

This discussion of the read cycle operation is intended to

illustrate how the morphic logic is utilized to provide self-

checking during normal operation. Since the normal data flow

constantly changes, the translator circuits assume both states,

which provides the self-testing property.

3-12
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1
t
1	 3.1.2.4 Command and Status Registers,

Microcode in the NSSC-II is used to communicate with the translator

to support fault isolation and correction.	 Each time the microcode

command NO-OP, is executed the contents of the SDR are interpreted

as a command to the translator and loaded into the command register.

There are four basic types of commands: 	 spare assignment, wAe

changes, loading fake checkbit register, and reset storage address

register (SAR) freeze latch.	 The spare assignment command is used

to load a spare assignment register which substitutes the spare

assigned for the bit specified.	 The load fake checkbit is used when

chackbits other than the ones normally generated are to be stored

' in memory in support of memory diagnostics.	 The SAR in the CPU is

frozen when a double error occurs so the location may be inter-

failing bits identified. 	 At	 thisrogated and the	 the end of

interrogation, the latch prohibiting reloading of the SAR is reset

with the reset SAR freeze latch command. 	 Special modes of operation

are required to execute the advanced microcoded storage diagnostics

employed.	 These modes are specified to the translator by the m:3e

command.	 Figure 3-7 shows the command NO-OP structure and gives a

brief definition of the various modes.

The status register contains the Translator Error/Status word and

is used by the diagnostic decoding algorithms to determine status

after an FTM error interrupt and to support multiple error cor-

rection. Definition of the Translator Error/Status Word is

contained in Figure 3-8.

3.1.2.5 Spare Assignment Register

When the decision is made in microcode to substitute a faulted

bit with a spare bit plane, one of four spare assignment registers

1	 3-13
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0	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10 11 12 1316 15
Load Spare Info I Load Re	 1-41	 Spare Ass ignment 0 0

Load Hods Info Nodes (See Below) 0 1

Load Fake Checkbits r Fake Checkbits 1 0

Reset SAR Freese Latch 1 1

Bit Node Function

6 Use Fake Uses bits stored in Fake Checkbit register instead of
Checkbits stored checkbits on read or generated checkbits on writes

7 Inhibit Write Inhibits checking for CPU parity errors or translator
Error Checks errors on write cycles

8 Inhibit Correct Forces translator timing to not generate the correction
clock used in test mode

9 Inhibit Load Forces translator timing to not generate the SDR load
pulse used in test mode

10 Error Check SDR Causes read cycle to use data in CPU SDR rather than
memory data, when used with bit S; can error check
generated word without using metgory used in test mode;
if used with bit 15, SDR will contain error status of
word at end of cycle

11 Reconfigure Node Force translator to read from old bit plane (bit being
reconned only) and write TDR data to assigned bit plane

12 Test Mode Forces translator to use TDR rather than exclusive ORs
for corrections and allows for additional control

13 Put Errors On Data in bus will contain checkbits and error status
Data Bus

Figure 3-7. COMMAND 'NO-OP' COMMAND STRUCTURE

t

i
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Sit	 Meaning

0 No error detected during a read in test mode.

1 Single data error detected during a read in test mode.

2 Double data error detected during a read in test mode.

3 Translator error detected during test mode.

4-9 Checkbits as read from memory.

10 Translator or CPU parity error detected on write.

11 Spare.

12 Double data error during read in normal mode.

13 Translator error during read in normal mode.

14 Spare.

15 Spare.

Figure 3-8. TRANSLATOR ERROR /STATUS WORD
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ilt
is loaded with the syndrome pattern of the faulted bit. This syn-

drome pattern is subsequently decoded and the identification of the

faulted bit is provided as input to the SDR. The SDR then switches

the faulted bit plane out of the data path and switches the spare

	

r=	 bit plane into the data path.

3.1.3 Error Correction Algorithms

a:
Several algorithms, implemented in microcode, permit maximum

	

6	 utilization of the fault tolerant memory feature. A flow diagram

of the microcode routines containing these algorithms is shown in

	

-	 Figure 3-9. During program v.iocution, the FIX operates under

direct hardware control and corrects single errors as they occur.

If an uncorrectable memory error occurs, the microcode routines

depicted in Figure 3-9 are invoked which analyze the error and

take appropriate actions to reconfigure memory to eliminate the

error. As the routines are executed, the FTM system provides

status reports to the outside world via the FLAG RMU control

signal and a code word placed on the I/C channel output bus. The

	

_-	 code words and their meaning are listed in Figure 3-10.

3.1.3.1 Error Location

If a double read error is detected, the address of .'aat word is

frozen by the memory interface hardware and the microprogram takes

	

y	 two actions: First, the READ is retried 64 times to determine

that it was a hard failure. It any retry results in a correctable

error, the normal program execution will be resumed.

If the error was "hard", the microprogram initiates the second

action of identifying the "stuck" locations in the word with the

3-16
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routine called Form Fault Word which is flow charted in Figure

3-11.

o Read the data word without correction and place in

temporary storage.

o Read the check bits and place in temporary storage.

o bitsStore the bit-by-bit inversion of the data and check

in the same storage location.

o Reread the data and check bits and compare (exclusive

OR) with the original data and check bits.

o Zeros will identify the locations of any bits which are

not able to be inverted (stuck at 1 or 0).

o If two or more bits are stuck, the fault location data

is stored and the microprogram proceeds to the fault

tally segment.

o If less than two bits are stuck, there is an addressing

error or a transient WRITE error which caused the

storage of a bad bit.

o If less than two stuck bits were found, the analysis

" proceeds to find stuck addresses in the entire memory

(ADDRESS TALLY).
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Figure 3-11. FORM FAULT WORD
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ADDRESS TALLY is invoked because a double error condition exists

and the fault word routine found less than two faults. This routine

is flow charted in Figure 3-12.

o	 Stuck addresses are found as follows:

-	 Read word A and store it temporarily.

-	 Read word B and store it (where the address of B is

different from A by a single bit).

-	 Complement A and store it in B.

-	 Check to see if A changed. If so one bit of B is

being stored in A.

o	 Each stuck address which is found is tallied for sub-

sequent reconfiguration.

o	 If there was a transient WRITE problem, it will be

corrected during the final microprogram segment which

is TEST/CORRECT.

--	 3.1.3.3 FAULT TALLY

FAULT TALLY is invoked because the fault word routine found two or

more faults at the error location. This routine is flow charted in

Figure 3-13.	 The FAULT TALLY routine checks the entire memory

for "stuck at" faults and tallies them by bit number. At the



Figure 3-12. ADDRESS FAULT TALLY
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conclusion of this routine the counts for each bit location are

evaluated and a reconfiguration decision is made. 	 The decision

logic is as follows:

o	 If a double error caused the diagnostics to be run, a

plane will be substituted in the RECONFIGURE routine as

follows:

-	 if ERROR LOCATION found two or more stuck at bits

the one substituted will be the one with the largest

number of faults detected by FAULT TALLY.

-	 If there was only one stuck at fault and an

addressing fault the address fault will be sub-

stituted.

-	 If there was one stuck bit and a transient WRITE

the stuck bit will be substituted.

o	 If the analysis microprogram entered via diagnose

instruction, the only reason for a plane substitution

is if the tally of one or more bits exce-ded the thres-

hold of 512 faults.	 Since each chip contains 2048 bits

this threshold seems reasonable for a systematic fault.

A different threshold can be substituted by burning-in

a different value in the microprogram memory.

The tally operation is essentially the same as the fault location

operation, as it looks for stuck bits by the REAR/INVERT/STORE/

READ/COMPARE sequence. 	 This tally operation can be performed on

the entire memory at one time or can be broken into segments.

t

i
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3.1.3.4 RECONFIGURE

The RECONFIGURE routine is the short microprogram sequence which

"tells" the translator which spare plane number should be sub-

stituted for which data or check bit. If the bad bit plane is a

spare bit plane, it must be unassigned to permit the new spare bit

plane to be effective. This routine is flow charted in Figure 3-14.

3.1.3.5 TEST/COPY /CORRECT

The TEST /COPY/CORRECT routine has two functions: copy the informa-

tion from the old plane to the new plane and correct all possible

errors. This routine works with each location in memory in

sequential order reading from the old plane and writing to the new

plane. This routine is flow charted in Figure 3-15.

Each time a READ operation results in any error, a special correc-

tion routine is used to correct the data. This proprietary routine

is so constructed that it can form the correct word for all single,

double, and triple "stuck at" type faults and one "soft-error" in

combination with zero, one, , or two "stuck at" type faults. This

routine is flow charted in Figure 3-16.

3.2 FTM SYSTEM MANAGEMENT

The previous sections presented the implementation of the Fault

Tolerant Memory hardware and microcode. The benefits derived from

this system implementation are: (1) the capability to recover from

permanent and transient type memory errors, (2) extending the
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t
usable life of the storage array, and (3)•anhancing the overall reliability

of the SUMC-IIC computer. Associated with this benefit is the recurring

cost of time. Whenever a double error occurs, the microcode algorithms

which locate the error, reconfigure memory and correct data errors, take

the CPU "off-line" for the duration of time that it takes to execute the

algorithms. "fable 3-1	 lists the execution time for each of the microcode

routinss previously discussed. As per the example presented in Table 3-1,

1 double faulted location in 3 64K memory size machin# would take the CPU

"off-line" for 687 m sec. It is conceivable that at certain "mission

critical" periods of time, 687 m sec of 'off-time" would be intolerable.

The risk of this occurring cannot be completely eliminated, but it can be

greatly reduced by managing the tools which the FTM s;rstem provides.

The management concept is this: on a periodic basis during non-critical

mission phases, enter via the DIAGNOSE instruction the Fault Tally and

Address Fault Tally microcode routines. This provides the advantages of

(1) the flight programmer selects the time periods for fault location and

correction and (2) greatly minimizing the probability of a double error

occurrence. To prevent the occurrence of the accumulation of "soft errors,"

the flight program should, on a periodic basic, read and rewrite all memory

locations. This could be done in increments of 1K or 4K or 16K bytes.
i

This will further minimize the probability of a double error occurrence.

The disadvantage of this concept is the increased software overhead but,

when weighed against a 687 m sec. "off-line" time during "mission critical"

phases, it seems reasonable to conclude that the FTM management concept

'	 should be included as a part of the flight software.

I
I
I
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	 Table 3-1

FTM DIAGNOSTIC EXECUTION

DIAGNOSTIC
	

RXEC111 i IN TIME

A. Fault Tally
	

62 Psec + 19 Psec /(halfword location)

B. Address Fault Tally
	

253 Psec/4Y block

C. Reconfigure
	

7 vsec

D. Copy /Test/Correct
	

5 Peet /halfword location + 62 vsec/
halfword location if correction needed)

E. Multiple Error Overhead
	

390 Psec

TOTAL EXECUTION TIME FOR 64Y MACHINE WITH 1 DOUBLE FAULTED LOCATION

(A) 522654 usec + (C) 7 Psec + (D) 164902 Psec + (E) 390 Psec - 687 m sec

E
	 3.3 IMPLEMENTATION OF ADDRF : S EXTENSION

Expanding the ALU and appropriate data paths ar.d registers was

selected as the approach to address expansion for the SUMC-IIC.

This provides the addition of 20 bit numbers when address calcu-

lations are being done as a part of the effective address

r	 .:alculation (EA Calc).

The EA Calculation is: E A - D + (B) + (X) where D is the 12 bit

displacement from the instruction register, (B) is the contents of

one of the general registers (now 20 bits) and (X) is the contents

1-

t`
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of one of the general registers (20 bits). 	 This addition is per-

;. formed by calculating an interim number INTR - D + (B) then getting

the final EA-INTR + (X) .

Performing the 20-bit arithmetic for either INTR or EA requires

simultaneous access to 20 bits of the SPM (where the general

registers are implemented) and a 20 bit wide ALU for adding posi-

tive integers.	 Since the D is a positive integer, only the

extended part of the ALU does not have to propagate any negative

signs from the lower part of the ALU.

Figure 3-17 shows the parts of the SUMC-IIC block diagram which

are affected by the expanded addressing. 	 The salient features of

this hardware are discussed below:

T

o	 A four bit extension to the PC was added to accommodate

the 20-bit addressing.

o	 The extension to the PC can be loaded from the extended

ALU for branch instructions the same as the regular

part of the PC can be loaded from the PRM.

r

o	 The PC extension also goes through a new four bit MUX

into the SAR extended for instruction fetching.

- The PC extension can be read into the data path (MQM)

through a new four bit MUX. 	 This is used for BAL and

store PSW type operations.

o	 The address MUX was expanded to handle the 20 bit xdCress

both from the SAR and from DMA.
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t
o The address decode logic was expanded to provide six page

select signals, for up to 96K'bvtes in the prime CPU box,

and the full address is available to be sent to an exter-

nal memory unit so that page selects can also be generated

externally.

o	 The storage protect registers (not shown) were expanded to

1024 X 2 to accommodate the 1024 segments of 1024 bytes

each associated with the 20 bit address capability.

o	 Manipulation of SPM for 20 bit arithmetic is not as

straight forward as the items just mentioned and it is

1-	 described in the immediately following paragraphs.

To form the intermediate sum INTR = D + (B) in the extended ALU,

the most significant four bits (MSB) of the base address, B must

be added to the zeros which represent the MSBs of the 12-bit D

field. This poses a problem, however, since the 32 bit general

register holding the 20 bit base value is located in two separate

I`	 16-bit locations in the SPM. Two SPM locations cannot be read at

a	 the same time so a portion of the SPM is duplicated. Therefore,

when the SPM is reading the least significant 16 bits of a general4.	 register, the SPM extension must be reading what amounts to the

least significant four bits of the most significant half of the

general register. Thus the 20 bit base address (or index regis-

ter) is made available simultaneously tr the ALU and extended ALU.

The ALU extension register, which is cleared, is fad back to the

ALU extension to provide the most significant zeros corresponding

to the uprer part of D (which is only 12 bits). At the end of

this cycle, the ALU extension register contains the four MSBs of

the 20-bit Base Register plus any carry from the displacement

7 i

I
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addition.	 The second addition is like the first except the interim
sum (20 bits) is added to the 20-bit X register value. 	 The full

20-bit EA is loaded into either the PC or the SAR according to the

instruction being executed.

The next problem is getting the MSB portion of the general registers

into the SPM extension.	 Since the general registers are loaded in

a double precision manner (first the lower half then the upper hall)

the extended SPM must be loaded when the upper half of the register

is loaded.	 Thus special manipulation of the most significant bits

of the SPM address is used to load when an upper half general

register is being loaded and read at all other times.

The overall operation has been described above. 	 Table 3-1	 con-

tains the control equations for the block shown in Figure 3-17.

For definition of some of the signals make reference to the micro-

program control word.	 For example:	 S 1 is the first bit of the

SPM field, and R 2 is the second bit of the REGISTER field.



Table 3-2. CONTROL EQUATIONS

Block	 Control

Read S ' -37

Write ST ' 17 ' SPM write

Read S1 =.1

Write S1 3`^ SPM Write

Output = MAR if MUXA - MAR (Al ' A'f ' A3)

Output = SPM if MUXA = SPM (Al '

Else Output = 0

Output = SPM if MUXB = SPM (A5 ' A6 ' A'T)

Output = F if ALU = A-B (7 ' A9 ' A10)

Else Output = 0

Output Enable MAM = MAR or MAM = ALU or MAM = PC (R 	 )

Output = XMAR if MAM = MAR (R1 R2 ' R3 ' R4)

XALU if MAM = ALU (R1 R ' RRY ' RRT)

XPC if MAX = PC (R1 ' R2 ' -R7 ' R4)

Load = R5 . CKZ (No reset)

Output = MQR Bits 12-15 if MQR to PC EXT (-M7 M8 M9 M10)

Output = 0 if MAM = PC10 (M5 + M6 = 1)

Else PC EXT

Load = Load PC

Output = PC EXT if MQR = PSW (R11	 R12 -R-TY) and

MAM = PCIO (M5 + M6 = 1)

Load = CPSAR Load Clock

Reset = POR

Same as A MUX
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