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ERRORS IN FINITE-DIFFERENCE COMPUTATIONS
ON CURVILINEAR COCIDINATE SYSTEMS*

C. Wayne Mastin and Joe F. Thompson
Mississippi State University
Mississippi State, MS 39762

ABSTRACT

Curvilinear coordinate systems have been used extensively to solve
partial differential equations on arbitrary regions. An analysis
of truncation error in the computation of derivatives reveals why
numerical results may be erroneous. A more accurate method of com-
puting derivatives is presented.

Research sponsored by NASA Langley Research Center under grant NSG 1577.



1. Introduction

The use of curvilinear coordinate systems has been a major factor

in the solution of many problems by finite difference methods. Some

applications in the area of fluid dynamics appear in the papers by

Godunov and Prokopov [3], Kutler [5], Steger [7], Steger and Kutler [$]

and Thames et. al. [9]. In this report a curvilinear coordinate system

is a fin:.te difference mesh with the property that each neighborhood of

a mesh Foint is topologically equivalent to a rectangular mesh in the

plane. That is, the coordinate lines can be considered as level

curves of some onE-to-one transformation. The solution of a partial

1	 differential equation can therefore be computed by solving the trans-

formed equation on a rectangular region. The finite difference analog

of the transformed equation gives a system of equations which are to

be solved to obtain a solution defined on the curvilinear coordinate

system (see [91).

When solving a partial differential equation on an arbitrary two-

dimensional region, curvilinear coordinate systems can be constructed

so that certain coordina'e lines coincide with the boundary contours

of the region or move with the boundary in the case of a free boundary

problem. By spacing the coordinate lines more closely in regions where

there is a rapid change in the solution, the accuracy can often be main-

tained with fewer mesh points than would be required with a uniform

mesh.

There are also difficulties which arise due to the use of a curvi-

linear coordinate system. The transformed equation will generally be

0
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+	 more complex than the original equation and finite difference methods

1
y	 which can be used to solve the original equation may not be applicable

to the transformed equation. Laplaces equation is a classical example

where efficient direct methods can be used to solve boundary value

problems on rectangular regions. It has also been observed that the

coordinate system can have a substantial effect on the error in the

numerical solution of a partial differential equation. Evidence of

this fact for one-dimensional mesh systems is amply demonstrated by

Crowder and Dalton [2] and in a related article by Blottner and

Roache [1]. In this report the effect of the coordinate system on

error will be analyzed by examining the truncation error in the approx-

imation of partial derivatives by difference expressions on the curvi-

linear mesh. Our analysis reinforces the view that caution should be

used in solving problems on coordinat= systems with large curvature,

_	 rapidly changing coordinate line spacing, or with coordinate systems

which are extremely nonorthogonal. This would be especially true

in the case of a singular perturbation problem where the perturbation

term might be dominated by the truncation error from other terms.

A method of generating difference expressions is also proposed

which incorporates some of the error terms in the traditional method

thereby decreasing the truncation error in the derivative approxi-

mations. Since error terms are needed, the difference expressions

are derived from Taylor series expansions rather than by simpler method

of differencing the transformed equations. Standard second order cen-

tral differences have been used throughout so that an error analysis

or an improved difference formulation could be inserted into an existing

computer program with a minimum of modification to the code. Although
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only quadrilateral meshes are considered in this report, a similar

•	 analysis could be carried out for difference formulations on triangu-

lar meshes used by Winslow [10] and others. kelated results for one-

dimensional finite difference meshes are contained in the paper by Kelney

de Rivas [4] and the book by Roache [6].

2. Difference Equations on a Curvilinear Coordinate System

Suppose that a curvilinear coordinate system is given in a region

R of the xy-plane. Let f be a function in C3 (R). Difference expres-

sions for the first and :second order partial derivatives of f can be

obtained by transforming the curvilinear mesh to a rectangular mesh

and applying the chain rule. The derivatives of f in terms of the

transformed Fn-variables are related to the derivatives in the xy-plane

by the following equations.

of = ax of +	 o	 xf	 of _ ax of	 of
a^	 aZ ax	 aF ay	 an	 'n ax + an ay

a 2 f a 2x of + 2a of + ax 2 a 2 f	 ax a a2f	 x 2 a2f
ac  aF2 ax 9F 2 ay	 aF 

am 22	
aF aF axay	 aF ay2

a 2 f	 a 
2 
x of + a 2y of + ax ax 3 2f + ( ax aX + ax	 )a2f +	 a2f

ac an = a^an ax a^an ay aF an axe
	

a an an aE axay a^ an aye

1
2 f	 a 2x of	 a^ of	 ax 2 a 

2 

f
	 ax a a 2 f	 a 2 92f

ant - an 2 ax + an 2 ay + ( a n) aX2 + 2 an a axay + (a ) ay2

The derivatives with respect to the xy-variables can be expressed in

terms of derivatives with respect to Fn-variables provided the Jacobian

of the transformation does not vanish. Now consider a mesh point P with

neighbors as indicated in Figure 1. All derivatives with respect to

Fn-variables can be approximated using classical difference operators.

Thus we define the following expressions which replace the corresponding

derivatives in (1).
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f & (P) - (f (Q) - f (R)) /2

fn (P) - U(S) - f(T))/2

ftt (P) - f (Q) + f (R) - 2f (P)	 (2)

f&n (P) - (f (U) - f (V) + f (W) - f (X) ) A

fnil (P) - f (S) + f (T) - 2f (P)

Of course these are simpl%r the second order central differences on a

square mesh of unit width in the &n-plane. Note that the coordinates

x and y are also functions defined on the mesh and their derivatives

in (1) can also be approximated by difference expressions. In this

manner the system of equ-itions (1) gives rise to difference approxima-

tions for the derivatives of f at any mesh point P. These approxima-

tions can be used to obtain a finite difference analog of any first

or second order partial differential equation. Unfortunately, this

method gives no information on the accuracy of the difference approxi-

mation.

3. Truncation Error

For a given curvilinear coordinate system defined in a neighbor-

hood of P, we will associate a parameter h which will be a measure of

the fineness of the mesh. It will be sufficient for our purposes to

assume that the distance between any two adjacent mesh points is bounded

above by a constant multiple of h. Thus, when f is x or y, all the

difference expressions in (2) must be of order h, at least.

A Taylor series expansion of the function f about the point P

yields thr following relations between the partial derivatives of f and

the difference experssions in (2).
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f Mx
af

+y af +-I X 
8zf+1

(xy +yx ) aLf + Y a?2+e1E	 tax	 EaY 2 E EE ax2 2	 EE YO &C axay 2 
E EEaY

of	 of	 1	 a2f	 1	 a2f	 1	 a2f
fn xnax + 

ynay + rnx
nn ax2 + 2 (xnynn + ynxnn ) axay + 2 nynnay2 

+ e2

f :x of+ j of + (-lac 2 +x2),f+ (l,c y +2x y ) a 2f
EE	 EEax	 MY	 4 EE	 E 6X2	 2 EE EE	 E E axay

2

+ (tyEE 2 + yE2)8 2 + ellay

2

fFn xEnax + YEnay + 2((x2)Er - 
2xxEn)

ax2 + 
((xY) En - xyEn - yxEn)axay

2

+ 2(( Y2 ) En — 2yyEn )a22 + e12
ay

f s x of +	 of + 
(mac 2 + x 2) axf + -lac	 + 2x ) a2f

nn	 nnax ynn^ay 	4 nn	 n ax 	 (2 nnynn	 nyn axay

2

+ (4^'nn	 n2 + Y2) a 2 + e
-	 ay	

22

All remainder terms are 0(h 3). In the first two equations of (3), if

only the first order terms are retained, the remainder terms, say el'

and c 2 ', would be 0(h 2 ). In this case we would have

TX R J(fEyn - 
f ny E ) - J(e 1 'yn - e2'yE
	 (4)

o f
= I (f x- f x) - 1( c 'X — E ' x)

ay J n E	 E n 1 2 E	 1 n

where

J a xEyn - xnyE.

(3)
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The first terms on the right of (4) are the same difference approxi-

mations for the first order partial derivatives as would be obtained

by differencing the first two equations of (1). Consequently, the

truncation error in the finite difference expressions for the first

	

£+	 partial derivatives of f from the transformation method would be 0(h)

provided

	

j	 I 111 I J s 0(1)

or simply

2
J) =0(1).

Now comparing the last three equations in (1) and (3), we see

that the difference expressions for the second order derivatives from

(1) would derive from the following equations which include a trunca-

tion term.

2	 2	 2
x 2 8 + 

2x^y axfy+ 	
yt 2 a f _ fj^	 J(x^^yn - y£xn)fax	

ay__

- J(Y
E
 x - xYC

) fn + E11'

22	 2af3f

x^xnax2 + (x^
yn + xny ) axay + YEY n

ay 2 
s f&n - J (x&nyn 	 YEnxn)f&

(5)

- J(y&nx& - N nyOfn + '12'

2	 2	 2

xn2 axe + 2xnynaxay + Yn2 aY 2 fnn J (xnnyn YnnxTI

J (Ynnx&	
xnny&)fn + e22'
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Comparing (5) with (3) we note that the terms e
ll ', e12', 

and 
e22'

would be 0(h2) since some second order terms in (3) would have to be

combined with the remainder terms to reproduce the equations in (5).

The determinant of the coefficient matrix is J 3 and there ore the

truncation error in the second derivative approximation is only 0(1)

prov'kded

(J2'	 0(1) .

Jur remarks should not lead one to conclude that the equations (1)

cannot be used to formulate accurate difference equations. The equa-

tions obtained by this change of variable technique have been used

extensively to solve many problems on curvilinear coordinate systems.

It can be said that care should be used in selecting the coordinate

system. For example, if

IxU
I, 

Ixrin1, IYE& I, IYnn l - o(h2),

then the truncation errors In the first derivative approximations

in (4) are 0(h 2). No simple relation between the coefficients in the

equation for f tn in (3) and (5) was found except for the fact that

they would be equal if the differences were replaced by derivatives.

Hence no general conclusions are drawn on the second derivative approx-

imations. In the special case where the transformation is given by

equations of the type

x - OW, Y - *(n),

then the above condition on the second order differences of the coordi-

nate functions implies that the truncation errors for a 2 f/8x2 and a2f/ay2

from (5) are 0(h).
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Geometrically, the requirement that the second order differences

of x and y be small means that the point P in Figure 1 and the midpoints

of the line segments QR and ST should all be close together. This

effectively limits the rate of change in coordinate line spacing and

the curvature of the coordinate lines. Even for the above error esti-

mates, it was necessary to impose limits on the quantity J. Smbll

values of J also produce larger truncation errors due to the factor 11J

in (4) and a 1/J3 factor which would appear in solving the system (5).

Thus we see why extremely nonorthogonal coordinate systems sometimes

give poor numerical results.

4. Increasing Accuracy in Difference Equations

For a general curvilinear coordinate system, more accurate dif-

ference approximations for the partial derivatives of f can be obtained

by using all first and second order terms of (3). If the system (3) is

written in matrix form as

A - AD+E,

where E contains the remainder term, then the derivatives are given by

D-A1A-A1E.

We will assume that

h8
det(A)I - 0(1)

which is analogous to the previous condition on J. Since all components

of E are 0(h3), the first two columns of A are ON and the last three
2

columns of A are 0(U,), it is easily shown that the first two components
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of A lE are 0(h2) while the last three are 0(h). Thus A -16  contains

difference expressions with a truncation error of 0(h 2) for the first

order partial derivatives of f and a truncation error of 0(h) for the

second order partial derivatives of f.

It is difficult to determine the geometric meaning of the condition

on det(A). we do observe a few cases when det(A) - 0, however, they

could not occur under our definition of a curvilinear coordinate system.

For example, if all points of Figure 1 were colinear or if P coincided

with Q, R, S, or T, then det(A) - 0. This observation suggests that

erroneous results could occur with coordinate systems having a value of

det(A) which is too small.

For many problems, the cost in computer time and storage of using

the difference formulations of (3) rather than (4) and (5) would be

very little. A total of 25 coefficients would be needed at each mesh

point to compute all first and second order derivatives rather than 19

in the latter case. The inversion of the fifth order matrix A at each

mesh point would not be prohibitive unless the inverse had to be recom-

puted frequently. This would be the case if the curvAlinear coordinate

system moved during the solution of the problem as might be the case in

solving a free boundary problem.

5. Examples

We now look at a couple or coordinate systems and emphasize some

of the analysis that might be used to determine the appropriate method

of generating difference equations. Let R be the square region give.-

by 0 < x,y < 1. The coordinate lines will be parallel to the x and y

axes and are given by the equations

n

x - (eN - 1) /(e - 1) , n a 0, 1,	 N.
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m
MY	 to - 1)/(e - 1), m	 0, 1,	 M.

Computing the nonzero differences of x, say xE and xEE , we have the

following approximations for large N.

n
2	 N

x^	
N(e - 1) e

n
X 	 1	 N

e

N2 (e - 1)

Similar approximations hold for the differences of y. In this example

we see that, for large values of M and N, the first order differences

are much larger than the second order differen ••c,. If h is taken to

be the minimal spacing between coordinate l ines, then x  < 2eh whereas

xEE < e(e - 1)h2 . Also note that J > 4h 2 . A st:-aightforward differencing

of the transformed equations using (4) and (5) would produce difference

approximations which are second order accurate for a first order partial

derivative and first order accurate for a second order partial derivative.

This is true even for the mixed derivative since (xy) En , xcyn and

(x2 ) En - (y2 ) &n - 0.

Now a coordinate system will be defined on the same region R. but

approximation of derivatives by (4) and (5) would not be advisable due

to the rapid change in coordinate line spacing. Suppose the coordinate

lines are given by

x = (en - 1)1(e
N
 - 1), n - 0, 1, ... , N,

y - (em - 1)/(eM - 1), m - 0, 1, ... , M.



with similar expressions for y. In tLis example, the difference

expressions for second derivatives using (5) would have a truncation

error with terms which are nearly one forth as large as terms used in

the difference formulation. Thus ali first and second order terms

in the series expansions (3) would be needed for accurate difference

approximations of the derivatives of the function f. For rectangular

coordinate systems, the determinant of the coefficient matrix A can be

easily conputed.

det(A) r (xyn ) 2 (yn 2 _ 1	 2 ) (x 2 4 2)

9	 4 4
'— 1 `E^ ynn

9fi8

— 16

The parameter r. c Id be viewed as the local minimal coordinate line

spacing due to the large variation in coordinate line spacing through-

out the region R. The above lower bound on det (A) is sufficient to

guarantee that the approximation of derivatives by (3) would result

in 0(h 2) and 0 (h) truncation errors for derivatives of first and second

order, respectively.



6. Analytic Transformations

The analysis so far has assumed that all derivatives in tt

variables are approximated by differences. If the coordinate s

is generated by a simple continuous mapping function, as in the

example, then the derivatives of x and y can be computed and ue

transformation equations (1). A similar error analysis can be performed

for the difference equations derived from this type of analytic trans-

formation method. The previous method of generating difference equations

will be referred to as a numerical transformation method since only the

coordinates of the grid points are required.

Due to the similarity.in the series expansions for the analytic

and numerical transformations, a detailed analysis of truncation error

will not be included. It is clear from the following approximation

formulas that the order of accuracy would depend on the orders of magni-

tude of all derivatives of x and y with respect to ^ and n.

For the first order central differences in the computational region,

we will assume that f, as a function of C and n, is sufficiently smooth

so that

_ of	 1 a3f

	

f^	 a^ + 6 ac  .

The right hand sides will now be replaced by derivatives with respect to

the physical variables. In order to have a comparison with numerical

transformations, only the first and second order derivatives are retained.

_ ax	 1 a 3x of	 ay	 1 33Y of	 1 ax a 2x a2f
f	

(a^ + 6 aE 3 ) ax + ( 3^ + 6 ac3 ) ay + 2 a^ 
3^ 

2 ax 

.1 ( x a—X a2x ay 3 2f 1 ay a2y 32f
+ 2(3C 

3
^2 + aF 2 a& ) axay + 2 a^ 0 2 ay2

(6)
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The inclusion of additional terms in (6) would introduce additional

higher order terms in the coefficients of the derivatives of f.

Approximations for the second order differences are derived in a

similar fashion. If the assumption is made that

f _ a2f + 1 a4f and f _ 32f _ 1 a 4f	 34f_ a

c 2	 12 a ^4 n 	 aCan	 6 ( a 3 an + 
a3n3)

then the following estimates hold after dropping all but the first and

second order terms.

f = ( a2x + 1 34x) af + (	 + 1 a^)af + [(ax
)2 

+ 1
(a2x)2

E^	 aE2	 12 a ^4 ax	 aE2	 12 a 4 ay	 a	 4 a^2

+ 1 ax a 3x ) a2f + (2 ax ^ + 1 a 2x a2 + 1 ax a3Y
3 a^ at3 ax2 	 2 a^2 aC 2 	3^3

+ 1 a 3x ) a 2f + ( y 2 + 1(2 2 + 1 ay	 32ff
3 a 3 aE axay	 a^	 4 aE 2 	 3 ac 3EV3y2

f

	

&X 	 a 4x 
+ 

3 4x of 32Y 1 a4—
En	 3^3n	 6 3

^ an	
acan3 ) ax + H a an	 6 ( 3E an

+ a 4y of + f ax	 _ Z ( a 3x ax + ax a 3	 1	 3
a ^ an 3 ay	 3^ an	 6 a^3 an
	

3^ an
	 ac

— 2(a^ 
a2x

ac an

ax	 3 3x	
++ an

a 2x a2x	 a 2x	 a 2x	 a 2 f	 ax a•	 ax a+	
]

a+ [a&	 +3x2	 an a&a&an 2
3n

2 	 &an a^an n2 )

ax	 Y + a 3x ay_ 1 (	 a
6 a 	 an

+ ax ate- +
an

a 3x 	 _	 31 ax	 a Y
an aC3 3 ^ 3 an 	 ac ) 	2 ( aE	 a&tan

+ ax	 a 3y
an

+	 9 3x a^

+	a

3x
a^

X	 a 2x	 3 2Y	 a2y

+an + aa&a n 2 a&t an a&an2
&an(a&2	 an 2)
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`	 a 2	 3 2x 	 32x )]L21 	 31y a	 1 a a3	 2 3 a

'i 30 n( ae2	
an2	

axay	 at an	 6 DE an
	 a t
 a 3 an

2`a& at2 an + an 
a ^a n2 + a^2 aEan + atan an2))ay2 .

Again we observe that the traditional difference formulations for the

4	 derivatives of f are accurate only if the higher order derivatives of

the coordinate functions x and y become p- ~--ssively smaller.

In the above erroi analysis for both numerical and analytic trans-

formations, it was assumed that certain remainder terms in the Taylor

series expansions were negligible. This implies the third order deriva-

tives of f with respect to the physical variables must be bounded and

these bounds depend on the coordinate line spacing. A comparison of

the above approximations also suggest that the numerical computation of

the derivative coefficients would be preferred due to the appearance of

error in the first derivative terms when the coefficients are computed

analytically. Un the other hand, for the numerical transformation, the

2
coefficients of the second derivative terms in the expression for 32f

appear to have little relation to the coefficients encountered in the

usual change of variables formulation. The differential analogs of the

corresponding difference expressions for the coefficients would, however,

be equal.

Equivalent estimates would hold for central differences for functions

of three variables. These expressions are omitted since they are even

more length than those given above.
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I'igure 1. Computational molecule
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