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ABSTRACT

The theory of acoustic plane waves incident on an oblique clamped
panel i~ a rectangular duct is developed from basic theoretical concepts.
The cuupling theory between the elastic vibrations of the panel (plate)
and the oblique incident acoustic plane wave in infinite space is
considered in detail, and is used for the oblique clamped panel in the
rectangular duct. The partial differential equationwhich governs the
vibrations of the clamped panel (plate) is modified by adding to it
stiffness (spring) forces and damping forces. The Transmission Loss
coefficient and the Noise Reduction coefficient for oblique incidence
are defined and derived in detail. The resonance frequencies excited
by the free vibrations of the oblique finite clamped panel (plate)
are derived and calculated in detail for the present case.

The detailed features and the oscillatory trends of the experi-
mental Noise Reduction coefficient curves for oblique aluminum panels
of angles 6 = 15°, 30°, 400; 60° in the square duct are explained in
detail, based on the theory presented in this report. All the fre-
quency positions of the downward and upward resonance spikes in the
experimental data are identified theoretically as resulting from four
major resonance phenomena: The cavity resonance, the acoustic resonance,
the wooden back panel resonance and the plate resonance. Detailed
tables are given for the values of these resonance frequencies in

each case. .
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CHAPTER 1
NTRODUCTION

The acoustic research project started on April 15, 1976, when
the Flight Research Laboratory of the University of Kansas began

vork under a grant from NASA, Langley Research Center, entitled, "A

Research Program to Reduce Interior Noise in General Aviation Airplanes"

(NASA Grant No. 1301). Over the past four years a research facility
has been established, in the form of a Beranek tube and additional
equipment, and a large volume of experimental data has been published.

In a previous report by the present author, listed in the
Bibliography, a theory has been presented which explains reasonably
well the detailed features of the experimental noise reduction curves
for normal incidence of acoustic plane waves on a clamped panel in a
rectangular duct (the Beranek tube). Such detailed features include
the general behavior of the noise reduction curve in all its parts,
as well as the frequencies of the numerous resonance spikes, which
are superimposed or the curve both upward and dowaward.

This theory has been based on the in:eraction between two general
fields of study: the theory of acoustic wave propagation in infinite
space and in ducts, and the dynamic theory of plates and the theory
of elasticity. Since the vibratiopa in the panel (plate) and the
acoustic waves in the air are coupled sr:zongly along the whole panel,
and are affecting each other noticeably, the interaction between these
two systems play a major role in this theory. When one sends an
incident acoustic wave in the direction of the panel, this wave will

be reflected from the panel. At the same time it will set the panel
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1§to motion of vibracions, thcﬁ will generate transmittad acoustic
waves on the other side of the panel. The incident, reflected and
transmitted acoustic waves will be coupled strongly together with the
induced transverse displacement of the panel. Because of the experimental
set up in the Beranek tubo. the acoustic wave propagiates in a duct
with a square cross-section. Higher order acoustic wave: modes of
propagation in the square duct, as well as the fundamental mode of A
plane acoustic wave, have been taken into account, in order to
explain the experimental results of resonance at certain particular
frequencies.

The previous report has developed the theoretical derivations
from the basic equations. The theory presented in the previous
raport has successfully explained the detailed features of the noise
reduction curves for one particular aluminum panel, which has been
taken as a typical example. One of the most challenging aspects of
that theory, which has been met successfully, has been to avoid
lengthy numerical analysis, in order not to mask the main features
of the interaction detween the different physical phenomena. All
the calculations in that report have been done on a simple hand
calculator.

The present report should be considered as a sequel to the previous
report by the present author, but it is independent of the previous
report in its presentation. The theory of oblique acoustic wave
incident of an infinite panel (plate) and a clamped panel will be

developed from the basic equations. Some of the general features of




the corresponding experimental noise reduction curves, given at the end
of this report, will be discussed by using the present theory. As in
the prcvigul report, all the calculations in the present report have
beer done on a simple hand calculator.

The Mater, Kilogram, Second system of units is teing used
throughout this report, except at some places where the experimencal
dats is given o;hcrwilo. The factor ‘-1ut is used for harmonic time
variation.

In this report the following vector identities will be used, where

:x’ :y' :z are the unit vectors in rectangular coordinates:

+3 2)ypmea B,5 2,7 2

a5t x 3x y 3y z 3z

cnw(a 245 >+3 4 fe24pLy2
v “-(‘xax+3yay+°zaz) u x+ay+ 2z
. du du duy du, '331 du
Txues Gy R Y R Gty
2 2 2
ox 9y 92
VxVp =0 V+.-xu=0

(Vxa) =9 «a) - 9%
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0 1C WA

The acoustic wave motion, when the wave amplicude is small, can

ba described by the following varying quantities:

. p®pix, ¥, 2, t) = acoustic or sound pressure (N/nz)
i
[ useu(x, y, 2, t) = velocity vector of the air (m/sec)
. E In order to relate these varying quantities for the acoustic wave motionm,
)]
one requires one scalar equation and one vector equation.
[
i Prom the equation of continuity one obtains:
«Raoy.q o)
ot

which states that the velocity 3rad£¢nt produces a compression of the
air, vhere the only forces involved are of compressive elasticity,
measured by the compressibility x. Since in the case of the acoustic
wave motion there is zero heat conduction in the air, one should use

the adiabatic compressibility given as follows for perfect diatomic

gas, such as air:

k ® i%".f%?; = adiabatic compressibility (mz/u) or (mJ/J)

M

where P is the equilibrium pressure of the air.

Pt 1 Y




From the equation of wave motion one obtains:

&- -
P "W )
which states that a pressure gradient produces an acceleration of che
air, vhere p is the equilibrium density of the air.

Taking the divergence on both sides of (2) and substituting
(1) one obtains:
vzp - -1- 3—2% s Q (3)
Cz at

wvhere

c= - -\FD—F = acoustic velocity of wave (m/s)

o

Taking the gradient on both sides of (1) and substituting (2), using

¥ xus=0, one obtains:

2-
vzi--lil—g-o (4)
¢ 2t

Assuming hormonic time variation e i¥¢

» where w is the circular
wave frequency, one may write the basic quantities of the oblique
acoustic plane wave by using the phasor convention as follows:

o T = wt)

p(x,y,2,t) = Re /7 pellk (58)

u(x,y,z,t) = Re/? gellk = ¥ - wt) (5b)
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where P and U are complex constant quantities, and one has:
* ]

k= kx a+ k v ay+ kz a, = propagation vector (constant) (6a)

rT=x ;x+ y ;y+ z ;z = position vector (6b)
ker= kxx + kyy + kzz (6¢)

Omitting the convention ReV2 from (5), one may find from (5) and (6):

B . M-

5€ iwp ot iwu v (7a)
vp = (:lkx a_+ 1ky a, + 1kz az)p = ikp (7b)
v -n-(ikx ux+iky uy+ikz uz)-ik°u (7¢)

where the uperator V E ik when it operates on an oblique acoustic
plane wave given in (5).
Substituting (7) in (1) and (2) one obtains:
~igkp = =ik - u (8a)

~iwpu = -ikp (8b)

Taking the dot product of both sides of (8b) with the propagation

vector k and substituting (8a) one obtains:
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where (9) gives the magnitude of the propagation vector k, The direction
of the propagation vector k 1s given in (5) in the direction of the
propagation of the oblique acous:ic plane wave, and it is perpendicular
to the plenes of constant phase of the oblique acbustic plane wave.

From (8b) one finds that the velocity vector u of the oblique acoustic
wave 1s in the direction of the propagation vector k and the direction

of propagation of the wave; this direction is usually called the

longitudinal direction L, and the corresponding unit vector is denoted

by ;L:
E-]EIZL-RQL, la | =1 (10)

where k is the propagation vector and k = lE] = % = 2n/) is the wave

number, A being the wavelength. Using (10) in (8b) one obtains:

--i&.}- a = a
ST T P TN ()

From (9) and (11) one has:

Lok Vo L, .
u kK wx \l: ke P¢ Z (12)

where Z is the characteristic acoustic wave impedance in infinite

medium in (Nsec/ma) or (Kg/mzsec). An identical result is obtained
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by substituting (10) and (11) in (8a). From the above discussion one

may rewrite the oblique acoustic plane wave in (5) in the form:

i(k « T - wt)

p(x|YDzot) =Pe (13a)

: JAE T - wt) p_E'E p-el(R * T - ur) (13b)

Ny

G(x’Yoz’ t) =

where the convention terms Re/2 have been omitted, and (13) represents
a longitudinal wave.
Let the boundary between two acoustic media, medium 1 and medium 2,

be given by z = 0, as in Figure 1. Let the incident oblique acoustic

wave be propagating in medium 1 and be given from (13) by:

i(EI e r = wt)

91(31Yn29t) - PI e (14a)
' B 1(k, + T - ut)
¥ - S T - wt
. ui(x,y,z.t) 21 a ;e 1 (14b)
7
‘ } The reflected wave from the boundary z = 0 into medium 1 will Se
’ given by:
{
P (x,¥,2,) = P ellg = 7 = we) (15a)
- PR - i(ﬁR « T - wt)
ur(x,y,z,t) = EI ape (15b)

The transmitted wave into medium 2 will be given by:

By e e s .




P (x,7,2,t) = By ol * ¥ 7 uE) (16a)

P - -
Et(x.y,z,:) - Ef ;LT ellkp + T - wt) (16b)

For a given oblique incident acoustic wave PI and EI in (14), one
would like to find the reflected wave P, and ER in (15) and the
transmitted wave 1’.r and ET in (16). The general configuration is
‘given in Figure 1.

The first boundary condition will require that the pressure of
the acoustic waves will be continuous across the boundary z = 0.
Applying this boundary condition at z = O one obtains from (l4a), (15a)

and (16a):

(kg + kg ¥) = Py ellkp® + kp¥)  (19)

P ei(klx* + kIyy)

1 + PR e
The second boundary condition will require that the normal component
to the boundary of the velocity vector of the acoustic waves will be

continuous across the bcundary z = 0. Applying this boundary condition

at z = 0 one obtains from (14b), (15b) and (16b):

P P

Ef a;-’a, ol (kg *+ pg¥) i% 4R % e

. P_'t ;L .3 ei(k'rxx + k.ryy) (18)
B %

Since (17) and (18) should apply to every point (x,y) on the
boundary z = 0, one requires that all the exponential factors will

have the same form, and one obtains:
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e ® Fre ™Ky ® Ty | ase)
ky = kIy = kRy - kTy (19b)

Using (9) one obtains from (19):

T - a - - 2 a
kI kx ax + ky ay + kl k ky a, (20a)
- - - 2 -
kR - kx < + ky ay - \/k k - ky az (20b)
% - a a - - 2 a
k‘r kx a + ky a + kz k ky a, (20¢)

vhere k, = u/c1 - 2«/);1 and k, = m/c2 = 2n/x2. The angle of
incidence @, will be designated as the angle between EI and the
positive z axis direction ;z‘ The angle of reflection 8 will be
designated as the angle between ER and the positive z direction az.
The angle of transmission eT will be designated as fhe angle between
ET and the positive z direction ;z' Taking the cross product of
(20a), (20b) and (20c¢) with ;z one obtains:

ktxz-kkk‘;z-k,rxaz--ka+ka (21)

From (21) one finds that EI’ ER and ET are all vectors in the same
plane of incidence, defined by EI and ;z' From the definition of the
cross product of vectors one obtains from (21):

k1 sin OI - kl sin GR - k2 sin 0 (22a)

T

10
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" From (22a) one has, using (9):

sing k c A
e ey, (22)
T 1 2 2

QR'W‘GI;

where (22b) represents the Snell's law of reflection and refraction.
. < 90°
If ¢, > ¢, one has from (22b) eT > 0. For the case eT 90
the refractive wave will be grazing the boundary, and one has the

corresponding critical angle of incidence eIc given by:
1
sing, . * E;- ¢ < ¢ (23)
If the angle of incidence is equal or greater than the critical
angle 91'3 eIc’ no acoustic wave energy is transmitted into the
second medium.

Using (19) and the angles 8g> © and Op defined above, one

R
obtains from (17) and (18):

PI + PR = PT (24a)
) 4 PR PT
7 coseI + 7 coseR =7 <:o:>se,r (24b)
1 1 2
Substituting bgp =™ - 8y in (24b) one has:
PT - PR - PI (25a)
cosd cosb cosé
T 1 1
P, + P, = P (25b)
Z2 T Z1 R z1 1
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Equations (25a) and (25b) represent two equations of two unknowns
PT and PR in terms of PI’ and their solution gives:

PR choeeI - z1°°°°r

- —— (26a)
PI zzcoseI + zlcosOT

PT ZzzcoseI

PI chqsel + zlcoser

(26b)

where 21 =018 Zz = P,yCys R is the reflection coefficient and T
is the transmission coefficient. For a given oblique incident
acoustic wave (l4a) on a plane boundary z = 0 between two media, one
will obtain the reflected and transmitted oblique acoustic
waves by substituting (20) and (26) in (15) and (16).

From (26a) one finds that there is no reflectiom under the

following condition:
pzczcoseI = olclcoser R=0 (27a)

Taking the square of both sides of (27a) and using (22b) one obtains:

2
22 2 2 2 2 22 €2 .2
p,CoCO8 61 0y cl(l - gin OT) = plcl(l - c2 sin OI) (27b)
1

which will give by using trigonometric identities:

2 2 2
c P °_1___ (oz/ojl) - (°11/°2)

2 2
<, (e;/ex)" =1

p2
2 2
tan GI 3
1

(27¢)
[

= N N

- P

[ S 11 S N

12
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vhere the angle of incidence eI in (27¢) will give transmission
ocaly and no reflection R = 0. The incidence angle (27¢) exists for
this case if pzlp 1> °1/°2 > 1or °2/°1 < cllc2 < 1. This incidence
angle is commonly referred to as the angle of intromission. In
elactromagnetic waves this angle of incidence, where there is no
reflection, but only transmission, is known as the polarizing angle
or Brewster angle.

For the case ¢ > ¢ if the angle of incidence &, - 90° one

finds cos6., -+ O and one has from (26b):

I

e, > ¢y, 0+ 90°, T+ 0 (28)

Consequently, as the angle of incidence approaches 90° there is complete
reflection of the incidence acoustic wave energy, and no transmission,
irrespective of the relative characteristics of the impedances of the

two media.

13
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CHAPTER III

OBLIQUE ACQUSTIC WAVE ON AN INFINITE PANEL

In the present chapter the case of an oblique acoustic plane wave
in an infinite fluid (air), obliquely incident on an infinite panel
(plate) will be discussed.

Assuming harmonic time variation c-imt

» the inhomogeneous partial
differential equation which governs the latarzl displacement of the panel

(plate) situated at z = 0 can be rewritten as follows:

4 e htllz P

Vn--%—n'-bi (29a)
2 2 2 4 4 4
wheuv"n-(-a—z+3—5)n.32+z 32'\24._3_2..
x oy x 3x 3y ay

where n(x,y) = lateral displacement of the plate (m).
Pz(x.y) s external net force per unit area in the positive
z direction (N/mz).

pp = mass density of the plate (Kg/m3).

h = thickness of the plate (m).
.w = 2rf = circular frequency of the wave (1/sec).
3
B = bending or flexural rigidity of the plate (Nm).

12(1-\' ) 2
E = Young's modulus of elasticicy (N/m”).

D=

v = Poisson's ratio (v = .03 for steel and aluminum).

Equacion (29a) may be rewritten in the form:

L Ga 2 29b)
n=-ynm= 3 P, (
ophw '

14
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where tﬁc plate wave numbcf Y is defined by:

2 2, 2
phw  12(1 = vi)p_uw
vl —E—  (1/a% (29¢)
Zh

Let an infinite panel (plate) be situated at 2 = 0 in the x-y plane
as shown in Figure 1. Let an oblique acoustic plane wave propagating
in the direction EI be incident on the infinite plate, and be given by

(14) in the region z < 0 in the form:

ei(kl e T = yt)

Pi(xoy'zpc) - PI (z < 0) {.303)
- Pl o1& - -ue)
uy (%,5,2,8) = = ke @ (z < 0) (30b)

where EI =k ;LI' and the unit vector ;LI has one component in the positive
z-direction. This oblique incident acoustic plane wave will be reflected
by the infinite plate in the form of an oblique reflected acoustic plane
wave propagating in the direction ER’ and be given by (15) in the region

Z < 0 in the form:

P (xiy,z,t) = By et T T WD (31a)
- R ;A T - )
5 (x,7,2,t) = = K o' (z < 0) (31b)

where ER -k ;LR’ and the unit vector ;LR has one component in the
negative z-direction. The oblique incident acoustic plane wave will
cause the infinite plate to vibrate harmonically in the lateral positive

2=-direction in the form:

15
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n(x,y,t) = A allkpg® ¥ kpy¥ = wt) (2 = 0) (32)
vhere n is the lateral displacement of the plate in the positive
z~direction; the velocity of the plate in the positive z-direction may

be found from (32) to give:

wp =32 e-tun ottty T a0 (33)
No plate boundary conditions are applied to (32) and (33) since the
plate is of infinite dimensions in both x and y direccions.
The vibrations of the plate given in (32)Iand (33) will generate
on the other side of the plate z > 0 an oblique acoustic transmitted plane
wave in the direction ET' which will be given by (16) in the region

2 > 0 in the form:

P (x:¥,2,¢) = Py otlp - T - we) (z 20) (34a)
- Pp ik, * T - wt)
5 (x,y,2,0) = = K o' (z > 0) (34b)

where ET -k ;LT' and the unit vector ;LT has one component in the
positive z-direction.

The total external force per unit area p, on the plate at z = 0
in the positive z-direction by the incident oblique acoustic wave (30a),
the reflected oblique acoustic wave (3la) and the transmitted oblique

acoustic wave (34a) is given by:

16




py(x,7,¢) = By ot (bpg® ¥ Ky = wE),

+ By RYCHE R kpy” = we) _ P, o (KX * k.,yy - wt) (33)

vhere the incident and the reflected oblique acoustic waves at 2 < 0
prassure the plate in the positive z-direction, and the transmitted
oblique acoustic wave at z > 0 pressure the plate in the negative
g=-direction. Substituting (32) in (29b) one finds:
1‘ (x,9,t) = 4 40 2, 2 - 4‘_ 4 Aci(erx + k? y = wt)

7 Py %Y, kPx ‘k_Px k!y ku Y y

Dphu :
2 2,2 4 i + -
- [(kPx thp ) -y ]Ac (kpy® + kpyy = wt) (36)

Substitucing (35) on the left hand side of (36) one requires the identity
to be correct for all (x,y) in the plane of the plate z = 0, and as a

result one has:
e i " e ™ e e 370
ky-kly-kky-kry-kpy (37b)

Substituting (35) in (36) and using (37) one obtains:

4

[(kx2 + kyz)2 - y‘] A :Y-h:i [PI + P, - ’r] (38)
)

vhere for the particular case of normal incidence of the acoustic

planc wave on the plate one will have kx = ky = 0.

17




The plate velocity u”. and the fluid (air) velocity of che oblique
acoustic waves in the z-direction ;z on either side of the plate should
be identical. On the positive side of the plate z > 0 at the plate
g2e 0, denoted by z = O+. the plate velocity “pz in the positive

T 2-direction should be identical with the transmitted acoustic wave

velocity vector in the z-direction u__, as follows:

€z

upz(z - O+) - “tz(z - 0+) (39a)

o=t

AT g

¥ Substituting (33) and (34b) in (39a) and using (37) one obtains:
|
-l . |
. ~loA = == (ky - 3)) Py (39b)
R
: 7 i where for the particular case of normal incidence on the plate one will
- have ET -k ;z' On the negative side of the plate z < O at the plate
i : L1 z = 0, denoted by z = 0_, the plate velocity upz should be identical with

the sum of the oblique incident acoustic wave velocity in the positive

o

: E z-direction u,_, and the oblique reflected acoustic wave velocity

in the positive z-direction U, 28 follows:

taienn B e |

upz(z =0) =y, (2=0)+u, (z=0) (40a)

L |

Substituting (30b), (31b) and (33) in (40a) and using (37) one

obtains:
l[ doh etk -a)P +E (& -a)P (40b)
ock ‘71 z' "1 opck kR z” R '
{;[
§
¥
' 1 1




where for the particular case of normal incidence on the plate one

will have EI -k :g and ER - ok :.. From (39b) and (40b) one obtains:

(EI . i') P, = (Er . i:) Py - (kg - a) Pp (41)

vhere for the particular case of normal incidence one has EI - Er--kR =ka .

Prom (6a), (9) and (37) one has:

EI “k a + ky a +k, a (42a)
| - kx 8, + ky ay - kz s, (42b)
l“r'kx'x+ky‘y+kz s, (42¢)
2 _ .2 o 2 - @, 2 w2 _4 2
K, 3\/ L \/(c) K2 -k, (624)
Using (42¢) in (39b) one has:
kz
Using (42a) and (42b) in (40b) one has:
k::
, ~iuh = Sek (P; = Pp) (43b)
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Taking the argle of incidence 6 to be the angle between the incident

wave propagation vector EI and the positive z axis, as shown in Figure 1,

one finds from (42a) and (42d):

k, = k- 32 = k cos@ (44a)

2, 2)fiZ_,2.
\/kx + kg Vk k," = k sing (44b)

From (42b) and (42c) one finds, as shown in Figure 1, that the angle of

transmission is also o, and the angle of reflection is 7 - 6 with

the positive z-axis. Substituting (44) in (38), (43a) and (43b) one has:

6.4 4 4
k'sin'@ - y'| A = —X—= [P_+ P, - P (45a)
2 1 R™ T
p hw
P
coso
=fwA S PT (45b)
- coso -
-1wA e (?; PR) (45¢)

where for normal incidence one has § = 0 in (45).
From a given oblique acoustic incident plane wave PI on the infinite
plate, one obtains the unknown PR’ PT and A by solving the three

linear equations (45). From (45b) and (45c) one obtains:

PI = PR + PT 4ba)

From (46a) one has:

P + pR -:PT = 21’I - 2?_". : (46b)

20
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Substituting (45b) and (46b) in (45a) one obtains:

(PI - P,r) (47a)

4

k‘sin‘e - YA icosg p [ 2¢
wpt T 2

ol

From (47a) one obtains:

p_hw 1 coss

T

[(%—)“sm“e - 1] e p =P _-P (47b)

2pc PT

The coupling parameter M between the plate and the air is

defined as follows:

us= _ng (1/m)
°p

where: p = air demsity (Kg/m3).

Py = plate material demsity (Kg/mB).

h = thickness of plate (m).

By substituting the coupling parameter u = g&% and the acoustic

wave number k = % = 2—;'- one has:

hw
Pp™
2pe

ix

Substituting (48) in (47b) one obtains:

k4 , 4 k
[(v) sin 8 - 1] 1(;)cose P -_ P,

Let us define:

21
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Q) = [1 - (%)4311149] %co'se (49b)

Equation (49a) can be rewritten in the form:

., v y o sl Bt o ) .
MR T e aad i e alt Lt
ey g™ oW WM

.1(2(9)1:.r =P - P (49c)

From (49¢c) one obtains:

Pr
P

(50a)

b=y

- i
1 -1Q(®)

bmastes

Using (50a) in (46a) one has:

¢ 1
[ St ]

P
R . _=19(6)
B, " T 10() (500

U |

Using (50a) in (45b) one obtains:

-
1
P |

A _ 1(1/pcw)cosd (50¢)
P, 1 - 1Q(e) N

U B4
Mrmeec

where (50) are the solutions of (45), and Q(8) is defined in (49b).

e

‘_ " By rotating the x and y coordinates around the z-axis one can
obtain Is:y = 0, and the plane of incidence will be located in the x-z

plane, with no variation in the y direction. Taking ky = () and substituting

; (44a) and (44b) in (30a), (31la), (32) and (34a) and using (37a) and (42),
> one obtains for the oblique acoustic waves:

p, = PI eik(xsine + zcose)e-imt (Slaj

s B o

22
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- - j’
eik(xsine 2cosd) o iwt

Py~ By (51b)
é‘
; py = By olk(x8180 + 2c080) -tue (51¢) '
|
E ;’ n = A elkxsing ~dut (51d)

where PR’ PT and A are given in (50) in terms of PI. For the particular
case of normal incidence on the plate the corresponding results may

be obtained by taking 6 = 0.

23
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CHAPTER IV

NOISE REDUCTION FOR INFINITE PANEL

The Transmission Loss coefficient is defined as the ratio of the

incident acoustic wave pressure power to the transmitted acoustic wave

pressure power. From (51) one obtains the Transmission Loss coefficient

TLdb in decibels in the form:

2
P P_12
TL,, = 10 log L—EL— = log | == (52a)
db 2 P
|2¢| T
Substituting (50a) for the present case in (52a) omne has:
2 2
TLg, = 10 log |1 - 1Q]" = 10 log(l + Q7] (52b)
One has from (49b):
Q=1- sin*s] £ cose (53a)

where ¢ is the angle of incidence, and § = O represents the case of normal

to the plate incidence of the acoutic wave.

k = w/c and u= gg%-in (53a) one obtains:
P

2 p_huw
Q={(1- Dma sinae]
pahc

200 cosd

p_hw?

Substituting y¢ = -1%;-,

(53b)

where (53b) gives the functional variation of Q@ with respect to the angle

of incidence 8 and the wave frequency w.
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Usually the measurements are dome by two microphones which measure
the pressure power of the acoustic waves. One microphone is situated
on the source side of thepanel at z = -d1 (the source microphone), and
it measures the total acoustic wave pressure power at that point of
both the incident and the reflected acoustic waves. The other microphomne
is situated on the other side of the panel at z = +d2 (t@e receiver
micfophone),and it measures the total acoustic wave pressure power at
that point of the transmitted acoustic wave. The Noise Reduction
coefficient in decibels is defined as the ratio of the total acoustic
wave pressure power measured by the source microphone at z = -dl, to
the acoustic wave pressure power measured by the receiver microphone at
zs= +d2. From (51) one obtains the Noise Reduction coefficient NR

db
in decibels in the form:

2
- 2 = =dq
NRdb 10 log ‘ |2
Pei 2 = +do
p e ikdjcose PRe+ikd1cose|2
= 10 log (54a)
p_elkdacose l :

T

Substituting (50a) and (50b) for the present case in (54a) one obtains:

e-ikdlcose_. iQ e+ikd1cose 2

. 1-1q i
MR, = 10 log T
1-1Q
2
= 10 log|(l - 1Q)e 1kd10088 _ joptikdycost) ™ |

-1kdjcosé
Je™*c1

10 log - iQZcos(kdlcose)l2 =

10 log |cos (kd,cos8) -isin(kdlcose)'-iZQcos(kdlcose)]z (54b)
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where (S54b) may be rewritten in the form:

undb = 10 log {cosz(kdlcose) + [sin(kdlcose) + 2Qcos(kd1cose)]2} -
=°10 log(l + 4Qsin(kd1cose)cos(kdlcose) +4Q2cosz(kd1cose)] L54¢)
By using the trigonometric identities:

sin 2q = 2sinacosqg

2cosza = 1 + cos2g
Bquation (54c) can be rewritten in the form:

NR

1 = 10 logll + 2 + 20sin(2kd, cose) + 2q%eos (2kd, cose) ] (54d)

where the Noise Reduction coefficient NRdb depends on the position of

the source microphone z = -d One sees from (54d) that the Noise

1°
Reduction coefficient curve NRdb consists of an average value superimposed
by oscillating component of sine and cosine which are functions of the
distance of the source z = -d1 and the frequency w, since k = w/c.
Denoting the average value of the Noise Reduction coefficient by ﬁiﬁb
one obtains from (54d):

¥R

4 = 10 log[l + 20%]  (see)

where Eiﬁb is the average Noise Reduction coefficient and the parameter Q
d

is given in (53a) and (53b). For the particualr case kdl - 277} << 1

(54d) will reduce to:

26
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¥R, = 10 log [L + iq?) tor |ka, | <1 " (S4f)

For the case |kd1| << 1 the Noise Reduction coefficient NR,, does not
depend on the position of the source microphone z = -dl. From (52b)
and (54d) one finds that for Q >> 1 ome has:

2 2
= 10 log(4Q”) - 10 log (Q°) =

NR,. - TL

db db

= 10 log 4 = 20 log 2 = 20 x 0.3010 & 64b
which may be rewritten in the form:

NR. = TL

db gp + 6db for @ >> 1 and [kd,| << 1 (55)

For the case of k << y one finds from (53a) that ¢ - 0, and from
(52b) and (54d) one has both the TLdb and the NRdb coefficients approach
the values zero; the obliquely incident acoustic plane wave for k << y
will propagate through the infinite panel as if it is completely trans-
parent to it. For the case w » O one obtains from (53b) that Q -+ 0, Thus
for very low frequencies one findg from (52b) and (54d) that both TLdb
and NR

d
the obliquely incident acoustic plane wave will propagate through the

b coefficients approach the zero value; for very low frequencies

infinite panel as if 1t is completely transparent to it. A similar
result will be obtained for 6 = %3 where from (53b) one has Q = 0.
In this case the infinite plate is parallel to the direction of the

acoustic wave propagation, aad will not effect the acoustic wave propagation.

27




R =

L
i
i
|
i

|
T
i

oA R s (TS LI NGRS, A

e moma e g e

P | PN | ponant | resvm—" | ranond

The Transmission Loss coefficient TLd

Reduction coefficient Nndb in (54d) both are functions of Qz(u). which

b in (52b) and the Noise
may be found from (53b) in the form:
Q%) = Fu?(l - 6212 (56a)

where one has:

p_hcoseo 2
) ¢ Y ) (56b)
GwDeind ' (56c)
pphc

Taking the first two derivatives of (56a) with respect to y, one obtains:

2
%a—‘%‘ﬁl =20 (1 - 62+ w220 - 6ud) (-26u) =

. 2,(1 - Gu?) (1 - 3Gu%) (57a)

1 3%? 2 2

?—9—@-2 = 2[1 - Gu2][1 - 36w’ +

w
+ 20[~260][1 - 3Gu?] +
+ 20[1 - Gwo][1 - 6Gw] (57b)
392Sw2
Equating (57a) to zero . 0 and solving for w, one will obtain,

using (56c), (57b) and the numerical values in the present case:

28




Nl =0 Q = min (585)
h 2
1.1/ _¢ 2
Wy @ =t o —e Q° = max (58b)
2 Ak AV D a10?
h 2
1 1/Pp" e 2
Wa @ == Q" = mia (58¢)
3 /5 b siuze

Substitucting (58a), (58b) and (58¢c) in (56a) one finds:
9% = ¥t = 0 057 = P lug) = 0 (59a)
o, =y =+ $?E (59b)

Using (56b), (56c), (58¢c) and u = Bg% one may rewrite (59b) in the
p

form:

3,32
6
2. 2 1 Pp BT L g2g g wpcosd o
QW *=Q “(w, =55 s (= ) (59¢)
2 2 27 pZD sinl‘e 3 ecu

Substituting (59a), (59b) and (59¢) in (52b) one obtains:

’I‘Ldb(u -uw = 0) = TLdb(w = ¢u3) =0 (60a)

122F
'n.db(m = uz) = 10 log [1 + 3'(5) E] =

w,cog’
2.2 __ 4 (60b)

= 10 log(l + (i o

Substituting (59a), (59b) and (59¢) in (54d) one obtains:
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mdb("' “w =0)= Nl’.db(m - “3) =0 (61a)

MRy ‘w =wy) = 10 log [1+-(§) ]'

mzcoce

= 10 log[l + (3- )2 (61b)

Thus one finds from (60a) and (61a) that for ¢ = wy ® 0, and for w = wg
given in (58c), the infinite plate (panel) behaves as if it is transparemt

to the oblique acoustic waves incident on it.
For the case Amz » lor > wq = = . where wy is given in
/A

(58¢c), one obtains from (56a):

Qz(w >> wy = -L) = FG2u6

/A

2.6

= (2n)%8a2¢ (62)

vhere £ = é"—" is the frequency of the oblique incident acoustic plane wave.
For the present case the value of (62) is much larger than 1, and there-

fore,by substituting (62) in (52b) one obtains:
b(m > wy ® -/:) = 10 10g[(2n)61’62f6)
6..2
= 10 log{(2n) FG"] + 60 log £ (63)
Similarly, by substituting (62) in (54d) ome obtains:
b(u > wy = /—(';') = 10 log [4(2m) FG f ] =

- 10 log[4(2m)%FG2) + 60 1og £ (64)
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From (63) and (64) one obtains, using (55):

TLy = C + 60 log ¢ (65a)
mdb = C + 6db + 60 log £ (65b)

whan one has:

¢ = 10 log [(2m)°rc?) (66a)

From (56b) and (56c) one has:

o_hcoseé 4
BAZ - (-L——)Z(M)z' ( D cosesin"e)z -

2c 0 hc" 2 c5
P
s (Dcose 2 ,8in6,8
(——2“ )" (=) (66b)
Substituting (66b) in (66a) one has:
C = 60 log (2r) + 20 log (D_<2=:%°_) + 80 log (2129 (66¢c)

One can see from (65a) and (65b) that by drawing n‘db and Nndb on a log
paper, where the x-axis expressed in terms of log f, one will obtain a

straight line for w >> wy = -j’—_-, with the constant C given in (66c).
G
A doubling of the frequency (= raising the frequency by one octave)

in this case will raise the Transmission Loss coefficint TL ab and

the Noise Reduction coefficient NR

4b by 18 db.
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For the particular case of normal incidence ¢ = 0 one vbtains from

(58a), (58b) and (38¢):
Ul.oo @2'.. 03-“ (67)

Thus for the case of normal incidence the sbove phenomens of maximum

(at v = mz) and minimum (at o = u3) in the TL,, and NR, curves

db db
does not exist. Of course wy and Wy in (67) will not be infinite, but
will be limited by the critical frequency fc to be discussed in the follow-
ing.

Annuﬁing in (29b) that there is no exte:.sl force density P, " 0,

and there is a variation only in x-direction n = n(x), one will obtain:

4
an _ e (68a)

dx‘
which will be solved to give the following free motion elastic plate
waves of the lateral displacement of the plate propagating along the
plate:

tyx-iwt

ne= nye Attenuated plate elastic waves (68d)

1(syx-wt)

N=s noe propagating plate elastic waves (68¢c)

wvhere for the propagating plate elastic waves in (68c), the plate wave

number y can be given from (29¢c) in the form:

4 2 4 2
hw 12(1-v®)e
w _ 2nf _ 21 e \ / o

P P

©




vhere: cP = wave velocity of the elastic plate waves (m/sec)

Ap = yavelength of the elastic plate’'waves (m)

w ® 20f = circular frequency of the wave (1/sec)

Prom (69a) one obtains:

e =i o\4 —'lﬁ Vo u\4/E 7— /It (n/sec)  (69b)
Py Pp [ 121-v%0,,

2 >6/ D 1 \4/ E ‘ﬁwh
A = £l . 2N [ e @) [ e———— | — (m) (69¢)
Py °ph /o 12(1-v2)op £

vhere °p - fxp and cP - cp(f). wich £ being the frequency of the elastic
vave along the infinite plate.

Asgsuming that an oblique acoustic plane wave is incident on the infinite
plate in the x-z plane of incidence in an angle eI with the normal to the
plate ;;. as shown in Figure 1, the oblique acoustic plane wave propaga-
tion vector is given by EI' found for the present case from (20a):

- - = . 32 - - -
kI - kx‘x +\Vk - kx a = ksineIax + kcoselaz (70)
vhere k = w/c, ¢ being the velocity of the acoustic wave in infinite

space. Denoting the phase velocity of the oblique acoustic wave along

the plate by ¢ oone has kx = w/cx. and one obtains from (70):

W W [
C B o B e (71)
x kx in 1 lineI

The critical frequency of radiation fc of the infinite plate is defined

by ¢, = ¢ or by v = k , and one obtains from (69b) for f = £ :
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c, = \/p—”l;\/—‘zwrc (72a)
; p

From (72a) one may obtain the critical frequency of radiation fc in

the form:

c2 p{)l’l
fc | i (72b)

Substituting D = Eh3/12(1—v2) in (72b) one obtains from (72b):

2 IZDP(l-vz)
£ = 2€rh E (72¢)

'~

Substituting the Poisson ratio v for aluminum, one may obtain from

(72¢):

2 \/p
- S \/_E. a
f. " TV for v = 0.3 - (72d)

When the velocity cp of the elastic waves along the infinite plate
is large - than the phase velocity ¢ of the acoustic waves in the air
cP > ¢ , which implies vy <k or £ > fc, the plate will radiate
acoustic wave energy into the air, and it can be shown that the acoustic
radiation ratioe orad’ which is proportional to the acoustic power radiated

" by the plate, is given by:

for £ > fc 7

= 1 = 1
orad ) e
o - B

34
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In the case of £ < fe there is no acoustic wave power radiated from the
infiwite plate, provided that the plate behaves perfectly in accordance
with (68a). Por actual plates, which are not perfect, there is also
some acoustic wave radiation even when f < fc.

Comparing (58b) and (58¢) with (72b) one finds for f, = w,/2r and

f3 = m3/2n:

£ £
f, & ———— f. = (748)
2 /3 sine 3 ain%s

From (74) one has f3 > fc’ while f2 > fc for 6 < 49° and f2 < fc for
8 > 49°. Thus the value of wg in (58c) will be always affected by
the radiated acoustic wave energy from the plate. The value of wy
in (58b) will be affected by the radiated acoustic wave energy from
the plate only if 8 < 49°.

In the experiments under discussion in the present report one
has the numerical valueé:

h=0.025" = 0.635 mm = 0.635 x 10 °m

3 kg/m3

2

=2.7x 10
Dp X

E=7.0 x 100 N/m

c = 343.8 m/sec

Substituting the above numerical values in (72d) one obtains:

fc = 19,240 (1/sec) (74b)
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vhere fc is the critical frequency of radiation by the plate. Since
the experiments discussed in the present report are in the frequency
range f < 5,000 1/sec, one has £ < £, and the effect of acoustic
wave radiation by the plate could be neglected, if one assumes a

perfect plate.
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CHAPTER V

OBLIQUE ACOUSTIC WAVE ON FINITE PANEL

In the present chapter the case of a plane acoustic wave incident
on an oblique finite clamped pamel (plate) in a rigid duc; will be
discussgd.

Itrhas been shown in a previous report that the fundamental mode of
propagation of the acoustic waves propagating parallel to the axis of a
rigid duct is identical with the plane acoustic wave propagating in the
infinite fluid (air) limited by the walls of the rigid duct. The intro-

duction of the walls of the rigid duct parallel io the direction of

- propagation does not affect the plane acoustic wave, since the boundary

conditions of the walls of the rigid duct are obeyed; the fuandamental
mode of propagation of the acoustic wave in the duct propagates parallel
to the axis of the duct as a plane acoustic wave, as if the duct rigid
walls were not there. Thus, the introduction of the duct rigid walls
parallel to the direction of propagation does not alter the behavior
of the acoustic plane waves.

When one introduces a finite rectangular clamped panel (plate)
in an oblique direction to the axis of the duct, one should apply the
boundary conditions for a clamped rectangular plate. Omne is not able to
use the solution for the infinite panel (plate) discussed in the previous
two chapters without any boundary conditions. Thus, the introduction of
the duct rigid walls parallel to the direction of propagation does not
affect the incident plane aocustic waves, but it does introduce the effect

of the clamped boundary conditions of the panel (plate), which is in
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.oblique direction to the axis of the duct, and is now clamped to the rigid
walls of the duct. The solution given previously for the infinite panel
(plate) for the lateral displacement n does not obey the boundary condi-
tions for the clamped edges of the panel (plate). Therefore, the solution
for the infinite panel (plate) given in the previous two chapters should
be modified. |

In order to simplify the analysis and limit it only to the fundamental
resonance frequency of the oblique panel (plate) in the present chapter, it
is assumed that the effect of the four clamped edges of the oblique plate
in the duct is equivalent to a spring, forcing the plate to return to its
position of equilibrium when no acoustic plane wave is incident om it.
Thus, the oblique plate in the duct has been idsalized by introducing the
effect of the clamped edges' boundary conditions as an equivalent system
of a single degree of freedom only. For small lateral displacements n of the
oblique plate in the aunt, the spring-like force per unit area is propor-
tional to the lateral displacement of the plate, and can be expressed in

the followiug form, by using the stiffness constant of the plate:

p, i = Ko (75)

where: pzspring = spring-like force density (N/mz)

n = lateral displacement of the plate (m)
K = gtiffness constant of the plate (N/m3)
The formulation of the structural damping of the vibrating plate can
be accomplished by expressing the damping force per unit area as a purely
imaginary constant, being proportional to the small lateral displacement,

gs follows, taking i = /<1:
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e (76)

where: pzdamp;ng = damping force density (N/mz)
n = lateral displacement of the plate (m)
K = stiffness constant of the plate (N/m3)
a = the damping factor (non-dimensional)
Equation (76) has been employed extemsively in the dynamic analysis of
aerospace structures.
The inertial force density associated with the lateral translation

n{x,y) of a plate element has been given as follows:

2.
inertial d"n
P, -oph e (77)
where: pzinercﬂal = inertial force per unit area (N/mz)

Pp = mags density of the plate material (kg/m3)

h = thickness of the plate (m)

pph = mass of plate per unit area (kg/mz)
The natural fundamental circular resonance frequency Wy will be defined
for a spring-like system of one degree of freedom of this type as follows,

using (75) and (77):

K 1 \/ K
y, = R £ =3 o (1/sec) (78)

Revising the differential equation for static equilibrium for the plate
Dvﬁn =P, by adding the spring force in (75), the damping force in (76),

and the inertial force in (77), one obtains:
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nv“n -p, + pzinertial - pzspr:lng + pzdamping -

2
ep = 4n _ e .
Pz pph dcz Kn iaKn (79a)

which could be rewritten in the form:

2

DVAn + pph d_Izl + K(1 + ia)n = pz (79b)
dt

Substituting K = pphmoz from (78) and assuming harmonic time variation e-i“t

in (79b) one obtains:

2

4 2 Yo
DV n- pphw (1 - -5 (1 + ia)In = p, (x,y) (80a)
w

which may be rewritten in the form:
4 4 1 X
v n- Yo n=*= -D- pz = 3 pz (80b)

where y has been defined in (29c), and the plate wave number Yo for the

present case is defined by:

2 2 2
4 Dphw wo 4 w, 4
Yo == {1 - 3 (1+ia)] =y [1- -5 (1 + 1ia)] (1/m")(80c)
w w

For the particular case of infinite unclamped plate w, = 0, Yo © Y
and (80b) reduces to (29b).
In the subsequent analysis the plate will be considered to be infinite.

However, the effect of the plate being finite in extent, and clamped at the
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edges, will be introduced by the resonance frequency wy io (80¢c). Further-
more, instead of consideriag the plane acoustic wave (the fundamental
mode) propagating along the axis of the duct and incident on an oblique
panel (plate) ia Qccordance with the experimental set up, we will consider
an oblique plane acoustic wave in irfinite space incident on an infinite
plate situated at z = 0, and subject to inertial force, spring-like force
and damping force.

Let an infinite panel (plate) be situated at z = 0 in the x~-y plane.
Let an oblique acoustic plane wave propagating in the direction EI be
incident on the infinite plate, and be given by (14) in the region z < 0

in the form:

pi(x,y,z,t) - PIei(kI T T - wt) (z <0) (81a)
PE - « =

- D o ! ik r - wt)

ui(x,y,z,t) ok e 1 (z < 0) (81b)

where kI = kaLI’ and the unit vector a1 has one component in the positive
z=direction. This oblique incident acoustic plane wave will be reflected
by the infinite plate in the form of an oblique reflected acoustic plane
wave propagating in the direction ER’ and be given by (15) in the region

2 <0 in the form:

p(x,y,z,t) = pallp = T 7 U (z < 0) (82a)
P = .=
5 (x,y,2,t) = pl:% elllg "T-wt) (<0 (82b)
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where ER - k;LR’ and the unit vector :LR has one component in the nega-
tive z-direction. The oblique incident acoustic plane wave will cause
the infinite plate to vibrate harmonically in the lateral positive

2=direction in the form:
n(x,y,t) = Aei(kpmx + I‘pyy - wt) (z = 0) (83)

where n is the lateral displacement of the plate in the positive z-direction;
velocity of the plate in the positive z-direction may be found from (83)

to give:

Uz = %% = -1.mAei(kpxx + kpyy Swt) (= 0) (84)

No plate boundary conditions are applied to (83) and (84) since the plate
is assumed to be of infinite extent in bocﬁ x~ and y~direction. The effect
of the clamped finite plate is introduced by the resonance frequency W,
in (80c).

The vibrations of the plate given in (83) and (84) will generate on
the other side of the plate z > 0 an oblique acoustic transmitted plane
wave in the direction ET’ which will be given by (16) in the region z > 0

in the form:

P (x,¥,2,¢) = PTei(ET + T - wt) (z > 0) (85a)

i o QTN Y

Gt(x,y,z,t) -k °© (z > 0) (85b)
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where ET - k;LT’ and the unit vector ;LT has one component in the positive
z2~direction.

The total external force per unit.area P, on the plate at z = 0
in the positive z-direction by the incident oblique acoustic wave (8la),
the reflected oblique acoustic wave {82a) and the transmitted oblique

acoustic wave (85a) is given by:

P, (x,y,c) = PIei(kax +kpyy - wt) +_pRei(kax + kpy¥ - wt)
- Prai(kax + y = Nt) (86)

where the incident and the reflected oblique acoustic waves at z < 0
pressure the plate in the positive z-direction, and the transmitted
oblique acoustic wave at z > 0 pressure the plate in the negative z-direc~
tion. Substituting (83) in (80b) ome finds:

4

L p,(x,y,¢) = [(kpx2 + kp},z)2 - 704] aet (ke * Kpy¥ = 08 (g7)
p hw

P

Subgtituting (86) on the left hand side of (87) one requires the identity
to be correct for all (x,y) in the plane of the plate z = 0, and as a

result one has:
k. = ka il P S kpx (88a)
ky - kIy = kRy = kTy = kpy (88b)
Substituting (86) in (87) and using (88) one obtains:
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Dphw

4)

Yo R

L 2 2,2 -
; | [(kx + ky ) PT] (89)
where (89) reduces to (38) for the particular case of wy = 0 and Yo" Y

i The plate veloecity npz and the fluid (air) velocity of the oblique

acoustic waves in the z~direction Ez on either side of the plate should

: be identical. On the positive side of the plate z > O at the plate

[ 2z 0, denoted by 2 = 0+. the plate velocity “pz in the positive
z=direction should be identical with the transmitted acoustic wave

| velocity vector in the positive z-direction u,, as follows:

| upz(z =0) = “tz(z =0) (90a)

Substituting (84) and (85b) in (90a) and using (88) one obtains:

-ipA = EEE (kT (90b)
On the negative side of the plate z < 0 at the plate z = 0, denoted by
z = 0_, the plate velocity “pz should be identical with the sum of the
oblique incident acoustic wave velocity in the positive z-direction u,
and the oblique reflected acoustic wave velocity in the positive z-direc-
tion u__, as follows:

re

upz(z =0)=u, (z2=0)+u,(z=0) (91a)

Substituting (81b), (82b) and (84) in (91a) and using (88) one obtains:

~iwA = EEE (k ‘a )P + — pck (kR (91b) -

- T TR,
e O -
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From (90b) snd (91b) one obtains:

Ry " appp = (R, "3 )Py - (R © 2Py (92)

where for the particular case of normal incidence one has EI - ET - -kR -

)

2z
Prom (6a), (9) and (88) one has:

EI - kxix + ky;y + kziz (93a)
ky ka4 ky;y - k,a, (93b)
kp=ka + ky;y +k ziz (93c)
k, - Vi - k2 - kyz . VC%)Z -x 2 - kyz (93d)

Using (33¢c) in (90b) one has:

k

1
=1wA Sek PT (94a)

Using (93a) and (93b) in (91b) one has:

k

z
-ilwA ek (p, - P (94b)

1 R)

Taking the angle of incidence 8 to be the angle between the incident
wave propagation vector EI and the positive z axis, one finds from (93a)

and (93d):

k, - EI . ;z = kcosd (95a)




Ve ? VT - et . (95b)

Prom (42b) and (42¢c) one finds that the angle of transmission is also
0, and the angle of reflection is = - 8. Substituting (95) in (89),
(94a) and (94d) one obtains:

: 4
4, & 4

(k’sin’e - v "1A = O-Y:u-; (P + Py = By) (96a)

P
- S086
-luh = S22 B, (96b)
cosé -
~luk = SX= (Py - Pp) (96¢)

where (96a) will reduce to (45a) for w, = Qand vy = Yo' and (96b) and
(96¢) are identical with (45b) and (45¢). From (96b) and (96¢c) one

obtains:

PI - PR + PT (97a)
From (97a) one will obtain:

Py + Pp - Ppo= 2P, - 2Py (97b)

1 R

Substituting (96b) and (97b) in (96a) one obtains:

4
4 4. _ 4, icosé - =2Y -
(k'sin'é - v '] ope Pr - 7 (e, - Pl (98a)

P

From (98a) one obtains:
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E-L————P .P

Zo¢ T (98b)

kb _, & Yo,4

() 7stn’e - (7)) 1~ Mp
vhere for the case wy = Oand vy = Yo (98b) reduces to (47b).
The coupling parameter y between the plate and the air is defined

as follows:

ue 2o (99a)

Taking the acoustic wave number k = /2 and (99a) one obtaini:

¢, D
N -
2p¢ (99b)

= |5

Substituting (99b) in (98b) one obtains:

4

ky4 Yo,6q, k .
[(Y) sin'e - (1;0 ]1(;0conePT Py -~ Py (100a)
Let us define:
Y
e« [(<2)% - (Ky4 0401 K
Qo(e) [(Y) (Y) sin 8] " cosé (100b)
vhere one has from (80c):
Y 2
2% =125 1+ a) (100¢)
Y w
Using definition (100b) inm (100a) one obtains:
'1Q°(0)PT = PI - PT (101)
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From (101) one obtains:

. |
T 1

- . ——— (102a)
B, " T-1Q,()

Using (102a) in (97a) one has:

sl 2l fian .

P -1Q_(8)
R o
Dy — (102b)
PT 1l- iQo(G)
Using (102a) in (96b) one obtains:
A _ 1i(1/pcw)coss
PI 1~ iQo(S) (102¢)

$o P e ey puwy N BN IR N
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where (102) are the solutions of (96) and Qo(e) is defined in (100b).

gj For the particular case of w. = 0, one obtains from (100c) Yo = Vs
> equation (100b) oecomes identical with (49b) for Qo(e) = Q(8), and the
?: results (101) are identical with (50).

Using the solutions (102) in (51) one obtains the corresponding
g: oblique acoustic waves, where PR’ PT and A are given in (102) in

terms of PI of the incident oblique acoustic wave. For the particular
case of normal incidence on the plate, the corresponding results may

be obtained by taking & = O.

s B e
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CHAPTER VI

NOISE REDUCTION FOR FINITE PANEL

The Transmission Loss coefficient is defined as the ratio of the
incident acoustic wave pressure power to the transmitted acoustic wave
pressure power. From (81) and (85) ome obtains the Transmission Loss

coefficient TLdb in decibels in the form:

2 2
|p1| P .=
TL., = 10 log = 10 log |3~ (103a)
db 2 PT
lp.|
Substituting (102a) for the present case,one has:
2
TLy, = 10 log |1 - 1Q_| (103b)
Substituting (100c) in (100b) one obtains:
" 2
Q) =(1-=, (+ia) - (1;-)“ stn’o] £ cose (104a)
w

Substituting (1042) in (103b), and separating into real and imaginary

parts, one obtains:

2
wy ak
TLyy = 10 log {[1 - 7 cos8] -
w U
w 2 2
- i[1 - —%F - (l;‘-)4 siuael % cose | (104b)
m ¢

From (104b) one has:
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2
ukmo 2
TLdb = 10 log{[l - > cosg]” +
Hw
" 2
+[1- -22— - (%)l' sinl‘e]z (% cose)z} (104¢)
w

where one has from (80c) and (99b):

p_hw
k,w P (105a)
U Cu 2p¢
ky 4 4 _D Diy?
Q"= @ - (105)
B 1 Y ¢ 0 ’huz P hcl‘
i l P P
- H Substituting (105) in (104c) one has:
IR L
b 2
' ow, 2
i 'I'Ldb = 10 log {{1 - P cosf]” +
~ w 2 2
: 4L -2 - Do b1 cose? (106)
2 4 cu
w p_he
P
For the particular case of w, = 0 (106) reduces to (52b).
iﬁ The Noise Reduction coefficient is defined as the ratio of the total
- acoustic wave pressure power measured by the source microphone
}; at z = -dr to the acoustic wave pressure measured by the receiver micro-
r phone at z = +d,. From (51) one obtains the Noise Reduction coefficient
i' qub in decibels in the form:
- 2
o |ps * P
| i. zZ = ’dl
. ) MR, = 10 log 3 =
] |Pe]
[b H = +d
| .
i 2
PIe-ikdlcose + PRe+ikd1cose
r = 10 log " eikdzcose I (107a)

P T
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Substituting (102a) and (102b) for the present case in (107a) one obtains:

22
- =ikd e +1kd ]
Nndb = 1C log I(l - iQo)e 1c086_ 1Q°e 1co8 I
= 10 log |e-1kd1c033 - iQOZcos(kdlcoseil2 (107v)
Equation (104a) may be rewritten in the form:
«n R _ I
Q,(8) = Q" - 1Q, (108a)
" 2
Q‘,R =[1-=- & sins] K coso (108b)
w Y H
o 2
QoI - T:T% cosg (108c)

where %—and (%)4 are given {n (105a) and (105b). Substituting (108a)

in (107b) one obtainms:

]

gp = 10 log ]cos(kdlcose) -1 sin(kdlcose)--

i ZQORcos(kdlcose) - ZQOIcos(kdlcose)I2 =

10 log |(1 - ZQOI)cos(kdlcose) - i[sin(kdlcosé) +
’ R 2
+ 2Q° cos(kdlcose)]l (109a)

Equation (109a) can be rewritten in the form:
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NR

b = 10 log (Q - ZQOI)Z cosz(kdlcose) +

+ [sin(kd, cose)+ 2 * cos(id;c0s0) 1%} (109b)
By opening the brackets (109b) may be rewritten as follows:
NR.,. = 10 log {1 + 4Q I(Q I, l)cosz(kd cosd) +
db 8 o ‘o 1
R R2 2
+ 4Q° sin(kdlcose)cos(kdlcose) + A(Q° )< cos (kdlcose)} (110a)
By using the trigonometric identities
sin2a = 2sinacosa
2cosza = 1 + cos2a
equation (110a) may be rewritten in the form:
R,2 I,.1
Nnab = 10 log [1 + Z(Qo )"+ 2Qo (Qo - 1) +
R .. R\2
+ 2Q_ sin(2kd.cosé) + 2(Q_ ") “cos(2kd,cos8) +
- T 1 o 1
I,.1 . . ‘
+ ZQo (Q° - 1)cos(2kd1cose)‘ (110b)

where QoR and QoI are given in (108b) and (108c). The Noise Reduction

coefficient NRdb in {110b) depends on thz positionof the source at z = -dl.
d
For the particular case kd, = 2#-7% << 1 (110b) will reduce to:
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MRy, = 10 log (1 + (20,2 + 49 T(q. " - 1)) for kg, [<a (i1)

For lkdll«l the Noise Reduction coefficient NR

b does not depend on the

positioa of the source microphone z = -dl. )

For the case where the values of kdl are not small, the last three
terms of (110b), which include the trigcnometric functions, will oscillate
very much by a small change of frequency, especially at the high frequency
region. The average non oscillating part of the Noise Reduction coeffi-

cient ﬁdb mey be found from (110b) by eliminating the oscillating terms:

3

b = 10 log [1+20Q ™% + 20 T T - 1] (112)

From (105) and (108) one has:

2

w 2
Q Ry - Du sinl'e] A cose (113a)
0 2 4 cu
W p_he
p
I woz thm a woz
Qo =a =3 200 cosf = o 7 cosé (113b)

w

Substituting (113) in (112) oue has:

2
w 2
NR,. = 10 log {1 + 2 [1 - 2 D sin"e]z(ﬂ- cose)2 +
db 2 4 cu
w p_he
P
2 2
a Yo a Y
+ 2 [= =~ cos8)[= —— coss - 1]} (114)
cH W cu w

For the case where a = 0 and QoI = 0 (110b) will become:
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R,2 R
NRab = 10 log (1 + Z(Q° )T+ ZQ° sin(delcose) +

+ Z(on)zcos(delcose)] (115)

where QoR is defined in (113a). Equation (115) has the same form as (54d).
The Noise Reduction coefficient NRdb in (115) depends on the posi-
tion of the source z = Pdl. The average non-oscillating part of the Noise

Reduction coefficient NR

ab 28Y be found from (115) in the form:

R

o = 10 log (1 + 2(Q°R)21 (116a)

Equation (116a) has the same form as (54e). Substituting (113a) in

(116a) one has:

2
w 2
NE, =10 log (1 + 2(1 - —3- - 24— 51n%0) 2(L cos0)?] (116b)
db 2 Z e
w pphc

where Eiﬁb 1s the average value of the Noise Reduction coefficient NRdb

over the local oscillacions of the curve due to a finite value of the source

position z = -dl. For w, = 0 (116b) becomes identical with (54e). For
2

the case where Dy A sin“e << 1 equation (116b) will have the form:
h
Dp c
w 2
WR,, = 10 log {1 + 2[L cos8]?[1 - 2%} (117)
~'db cu w2

where u = p—zeﬂ. Equation (117) gives the local average of the Noise Reduc-

tion coefficient NRdb

stiffness, expressed in the form of a resonance frequency wye For the

for the case of an infinite plate, subject to
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case w = w, one finds from (117) that the local average Noise Reduction

coefficient NRab

=0, Some additional discussion of the results in the pre-

sent chapter will be found in a later chapter on the experimental results.
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CHAPTER VII

FREE VIBRATIONS OF THE FINITE PANEL

In the present chapter the characteristic resonance frequencies of the
free vibrations of the clamped oblique finite panel (plate) in the rigid
duct will be discussed. Other possible resonance effects will be also
considered and a general formulation of the Noise Reduction coefficient
will be given.

Let the clamped rectangular plate of dimensions "d" and "b" be situated
obliquely in the rigid rectangular duct of cross-gsection dimensions "a" and
"b." The angle between the axis of the duct and the normal to the plate will
be 9. Thus, one dimension of the rectangular plate will be the same as
one dimension of the rectangular duct, while the other dimension will be

related as follows:

a=d coss b=b (118)

For the plate normal to the axis of the duct one will have &8 = 0 and a = d.
Let the coordinates (f,y,n) be associated with the oblique plate,

where £ = 0, £ = d, y=0, y = b describe the clamped edges of the plate,

with n being the coordinate normal to the plate. The boundary conditions

of the clamped plate (panel) will be given by:

n=20 at g=0 and £= d (119a)

%‘-- 0 at g= 0 and g=d (119b)

n=20 aty=0 and y = b (119c¢)

%% =0 at y =0 and vy = b (119d)
56




The motion of the free vibrations of the clamped oblique finite panel (plate)

in the rigid duct as a function of time could be described in the form:

n(g,y,t) = Am’ncos !%5 cos 5§Z o lut (120) .

|

The value of the lateral displacement n(£,y,t) in (120) obeys the boundary
conditions (119b) and (119d) of the clamped plate at the edges,but does -
not obey the boundary conditions (119a) and (119¢). Equation (120) has -
been chosen in this form, since for normal plate (panel) in the rigid duct
6=0,d=a, and £ = x, it has the same form as the acoustic wave mode

(m,n) propagating in the rigié duct. The boundary con&itions requirement _é

in (119a) and (119¢c) that n = 0 at the edges of the clamped plate will

A——

introduce interaction between the different vibration modes (m,n) of the
clamped plate. The amplitude Am,n in (120) of one vibrational mode of the
clamped plate (panel) will be related to the amplitudes of all the other
vibrational modes (m,n) of the clamped plate (panel). However, in the
present case we are interested in finding the values of the characteristic
frequencies of the free vibrations of the plate and not their amplitudes.
One is able to find these characteristic frequencies of the free vibrations
of the plate by using (120) in the following.

Taking P, * 0 in (29a) one will have for the case of harmonic time

variation:
2
p_hw
véq - L—n=o0 (121)
P
where V' = 6—-5 +‘—-Ef for the present case. Substituting (120) in (121)
13 3y

one will obtain:
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p bhw
(EH? « A2 .2 (122)

From (122) one obtains the resonance frequencies of the oblique clamped

plate in the form:

o 3% (EH? + @Y (123)

where (123) gives the resonance frequencies of the oblique clamped panel
(plate) in the duct, which will cause acoustic waves of the same frequency.

Substituting (118) in (123) one obtains:

u-\,p—:g [ (EEoe8y? , @n?) (126)

where (124) gives the resonance frequencies of the oblique plate (panel)
in terms of the dimensions of the cross-section of the duct. For a clamped
plate perpendicular to the axis of the duct one takes in (124) 6 = 0.

For a rigid duct with a square cross section a = b one could rewrite

(124) in the form:
2\ 5 2, 2
ws Lz-\]—h [(mcose)” + n”] as=bH (125)
a °p

The resonance frequency f of the oblique plate (panel) in the duct may be

found from (125) in the form:

f= f% = ﬂz 325 [mzcosze + uZ] (126a)
2a P

using the trigonometric identity sinze + coszé = 1 (126a) may be rewritten
in the form:
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" of the duct ¢ = 0, one has from (126b):

e :T\/;_:—: (2% + 0 - nsin%s) (126b)

Whare (126b) gives the resonance frequencies of the oblique plate for mode
(m,n) which will produce acoustic waves of the same frequency.

For the particular case of a plate (panel) perpendiculnf to the axis

[ 4

fe -%\,;”—h (a? + 2] for 8 = 0 o
2a P ’

For each mode of vibration (m,n) or (n,m), one will have one resonance
frequency of the normal plate given in (127), but two resonance frequencies
of the oblique plate given in (126). Thus, for the square rigid duct the
number of the plate resonance frequencies for the oblique plate
will be doubled of that of the normal to the axis plate.

Let a uniform plane wave of the fundamental mode in the rectangular

duct be propagating in the positive z-direction in the form:

1
p, = pyet(kEee) (128a)
Pr i(kz-wt)
u, - ;z-e (128b)

vhere k = w/c,and the losses in the lossy duct have been neglected. Let
thae uniform plane wave be reflected by the back wooden panel of the rec-
tangular duct, and the reflected uniform plane wave will propagate in the

negative z-direction in the form:

- -1 (kz+ut)
P, " Pg® (129a)
o R ikzue) (129b)
zr pe :
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Taking the back wooden panel to be rigid and situated at z = L, one has the

boundary condition u, = 0, and from (128b) and (129b) one obtains:

Pr t(ktmue) | PR -1(kitue)

u 0= Uy | + uz'zlL - p Ty (130a)
2=l
From (130a) oue has:
Pp " Py ciZkL (130b)

If one assumes that the back wooden panel is not rigid, but is a purely
reactive surface, which will cause phase shift -2¢ during the reflectionm,
one will obtain (130b) in the form:

o12(kL=¢) (130¢)

Ls Bl $
The total pressure field of the incident and reflected waves may be found

from (128a), (129a) and (130c) in the form:

. - +ikz 12(kL=¢) _-ikz
) p1 + pr PI e + pI e e

(131)
The magnitude of the total pressure at any point z = z, may be found from

(131) in the form:

1Pl jug = Py | €¥%0 4 12(KL0) gtk2o| o
[+] .

-9

oy | a1 (KLo0)| | gllkegm(ko0)] | oilkag-(kL-0)]| (1355
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From (132a) one obtains:
|p|z.= - prlcos[k(zo-n) +¢]] =
o ,
* 2p, |costk(L~z ) ~ o] | (132b)

If the acoustic impedance of the wall is a function of the frequency, one

= 0 one requires ia (132b):

has ¢ ® ¢(u). For che case Iplz-z
o

k(L-2)-¢=(m+1)F (a=0,1,2 3 ... (133)

Taking k = w/c = 25f/c one obtains from (133) the characteristic frequencies
for minimum magnitude of the pressure at the receiver microphone situated

at z = zo.

(4

n
fn'ﬁ———zﬂr__zo)[ﬂn*'l)‘f"‘é] .

el s R S (134)

For ¢ = 0 (134) will become

[~ 2n + 1 [ a1l .
T ST "= G+ D (¢ = 0) (135a)
o [+
For ¢ » - % (134) will beconme
[ 2 .- 1
fWTT-T, 2 (6 == (1350)
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For ¢ = + % (134) will become

c n, 1l -
fn = i_-_z: (2 -+ 2) (¢ - 2) (135¢)

Other possible cases could be found from (134).

When a plane acoustic wave propagating im the rigid duct parallel to
ics axis, is incident on the oblique plate (pamel), there will be an obligue
reflected acoustic wave. This reflected acoustic wave will be reflected
obliquely back and forth from the duct walls and will travel back to the
transmitter microphcne. In addition, the incident plane acoustic wave will
cause the oblique plate to vibrate at the same frequency. These vibrations
of the plate will produce a transmitted acoustic plane wave which will
propagate parallel to the duct axis to the receiver microphone. This transmicted
acoustic plane wave will also propagate as the fundamental mode in the rigid
duct and will be reflected by the wooden back panel. The Noise Reduction

coefficient NRdb may be found in the following form for the present case

by usiang (54b):

WR,, = 10 log |(1 - 1Q) e’ikd1°°se'-1Qeiw(f)|2 (136}
In (136) it has been assumed that the phases and amplitudes of the incident

and transmitted acoustic plane waves of the fundamental acoustic mode in the
rigid duct are the same as in the infinite plate. However, since the reflected
acoustic plane wave will be reflected obliquely back and forth among the

duct walls until it reaches the transmitter microphone, it has been assumed

that ics amplitude remains the same as before ian the rigid ducc, while
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its phase V(f) will be a function of the frequency f of the wave. The

phase delay V(f) in the case of thereflected obliéue acoustic wave will be
caused by the additional leagth it transverses, as well as the phase diffarence
caused by its oblique reflection each time from the duct walls. From (136)

one obtains:

NRdb = 10 log|(1 - 1Q) {cos (kd,cose) - 1 sin(kdlcose)] -

- iQfcosy + 1 sinw]lz (137a)

where the phase delay of the reflected wave from the oblique plate (panel)
in the Juet to the transmitter microphone is given by y = ¢(f). From

(137a) one obtains:

MR, = 10 logi[cos(kdlcoss) - Q sin(kd,cosg) + Q sinyl-

- i[sin(kdlcose) + Q cos(kdlcose) + Q coswll2 (137b)

From (137b) one has:

Nndb = 10 log{[cos(kdlcose) ~qQ sin(kdlcose) + Q sinwlz +

+ [sin(kdlcose) + Qcos(kdlcose) + Q coswlz} (138a)
Opening the brackets in (138a) and using the trigonometric identities:
cosza + sinza s 1

cos(8 + y) = cosR cosy - sind siny

sin(8 + y) = sinB cosy + cos8 siny
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one obtains:

NR

" 10 log (1 + ZQ2 + ZQsin(kdlcose + y) +

+ Zchos(kﬂlcose + )] (138b)

where ¢ = y(f) is the phase delay of the oblique reflected wave. For
the particular case of y = y(f) = kdlcosa Eqn. (138b) is identical with

(54d). Denoting the average value of the Noise Reduction coefficient

by ﬁi&b one obtains from (138b):
R, = 10 log [1 + 20%] (139)

where (139) is identical with (54e). One sees from (138b) that the Noise
Reduction coefficient NRdb, found as a function of the wave frequency £,

will oscillate around the average value ﬁiﬁb given in (139).
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CHAPTER VIII

EXPERIMENTAL AND NUMERICAI. RESULTS

In the present chapter the theory, which has been given in this
report, will be applied in order to analyze aand calculate some of the
outstanding aspects of the experimental results. Figure 2 and Figure 3
give the experimental set up for the oblique aluminum plates (panels)
in the duct. Figure 4 gives for reference the experimental Noise
Reduction curve NRdb when the panel is perpendicular to the axis of the
duct, 1.e. the angle between the normal to the panel and the axis of the
duct is ¢ = 0°, Figures 5, 6, 7 and 8 give the experimental Noise
Reduction curve NR

db
and the axis of the duct are, respectively, 6 = 15°, ¢ = 30°, g = 40°

when the angles between the normal to the panel

and ¢ = 60°. The basic dimensions of the cross-section of the duct are:

Length x Axis: a = 18" = 0.4572 m

Width y Axis: b = 18" = 0.4572 m

In the Beranek tube the boundaries of the square duct are given by
hardwood, which could be considered to be rigid for the present. As
can be seen from Figure 2 and Figure 3, the dimensions of the special
test section are larger than the rest of the duct, and the walls of the
special test section are covered by absorbing material. However, the
dimensions of the cross-section of the air part in the special section

are the same as above. The main effect of the absorbing material as a
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boundary ofiche special test section 6£ the duct will be to cause
additional phase shift, and some attenuation, in the.reflected wave, as
it 18 reflected back and forth between the boundaries of the special
test sectgon of the duct. The aluminum panels, which give the Noise

Reduction curves in Figures 4, 5, 6, 7 and 8 have the following

Py P g pey e

dimensions:

=y

- Thickness: h = 0.025" = 0.635 mm = 0.635 x 10™° m

a_ _ 18" - 0.4572 m
cosé cosé cosé

Length x Axis: d =

pove

Width y Axis: b = 18" = 0.4572 m

mm-’ Bt
.o

where 8 = 0°, 15°, 30°, 40°, 60° for the different cases in the

Al ]

Saveianisy,
.-

corresponding Figures 4, 5, 6, 7, and 8.

The material and the mechanical properties of the aluminum panels

s sttt
.« -t

are as follows:

Material: Alclad 2024T3 Aluminum

Density = Py ® 2.7 x 10° kg/m3
5 10 2
i. Young Modulus of Elasticity = E = 7.0 x 10 N/m
a Poisson's Ratio = v = 0.3 1-viao0.91

uwn’

L 4

The experimeun:s were done in Lawrence, Kansas at about 1,000 ft

above sea level, under the following conditions of the air:
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Temperature = T = 21°C & 70°F = 294.15°K

Pressure = P = 0.97735 atmosphere = 97,735 N/m2

obT e e R e

f Density = p = 1.1575 Kg/m3

Velocity of Acoustic Waves = c = 343.8 m/sec

The coupling parameter p between the aluminum panel and the air

may be calculated from the above:

_ 20 _2x1.1575 _
MR T 207 x 0.633 1.350 1/m

The analysis of the experimental results will be divided into
several parts according to the particualr aspect of the physical phenomena

t0 be discussed.

A. The Average Noise Reduction Coefficient Eﬁﬁb: The average Noise

Reduction coefficient iiAb for the infinite plate is given in (54e) in

the form:
R, = 10 log (1 + 20%) (140)

where one has from (53a) and (53b):

2

Q=(1- &% s1n%] K cose = (1 - 22— sin*g)X cose (161a)
Y u h 4 u
p_hc
P
Eh3
where D = - 5 It should be pointed out that the average Noise
12(1=-v%)

Reduction coefficient NR,. for the infinite panel given in (140) is

db

identical with NR b for the finite panel given in (116b) for the case

d
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Wy << we This is the case for most of the frequency range under consi-

deration in Figures 5, 6, 7 and 8, except in the lowest range of fre-

quencies. It should be also pointed out that NR b given in (140) is

i
i

identical with (139), where tha multiple oblique reflection of the

reflected wave from the oblique plate has been taken into account.

=

One .may rewrite (l4la) in the form:

- —

Q= (1- (?f~)2 sinael k cos@ (141b)
4 u

|

where the frequency fl. is defined in the following form upon comparing

o

(141b) with (l4la) and is evaluated by using the above numerical values:

2\ g 120 (1 = v 2
? f‘. E % = 19,227 1/sec (l4le)

Since for the experiments under consideration £ << f 4* one obtains from

(141b) for the present case:

)r ] Qs s k cosd = ;-é- cosf = (-—) f cosb (142)
|
[
t

=

. Substituting the numerical values one obtains from (142):

2

2 2¢? & 2(2")2 £2 cos?6 = 3.6653 cos e(mo) (143)

From (143) one has the following numerical values for the different

Arr e kv s g

B angles:
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2q? = 3.6653 ‘1%6)2 for 6 = 0° (144a)
2q% = 3.4198 ‘Tgb"z for 6 = 15° (144b) |
2% = 2.7490 (755 for 6 = 30° (L44¢)
2q% = 2.1509 (—1-5-6)2 for 8 = 40° (144d) :
2q? = 0.9163 <1%>2 for 6 = 60° (144e)

Using the numerical results in equations (144) for the different
angles in (140), one obtains the numerical values in Table A for the
average Noise Reduction coefficient ﬁiﬁb' The numerical results in
Table A are represented in Figures 5, 6, 7 and 8 by the lower oblique
straight line for high frequencies. The upper oblique straight line
for hiﬁh frequencies in the same figures, which is 2-3 decibels higher,
represents the theoretical result, when the impedance of the absorbing
material of the Beranek tube is taken into acceunt, as derived and
calculated in a previous report by Grosveld, which is listed in the
Bibliography; It should be pointed out that the results in (140) and
Table A are 3 decibels higher for the high frequency region (the oblique
straight line region in Figures 5, 6, 7 and 8) than the relationship
given in (52b) for the Transmission Loss coefficient TLdb’ which is
also given by Beranek in his book. The slope of all the straight lines
ianigures S, 6, 7 and 8 at the higher frequency region is the same,
namely, increase of the average Noise Reduction coefficient Ei&b by
6 decibels for every octave (= doubling of the frequency). The same
slope appears also in the straight lines in Figure 4, for the case of a

panel perpendicular to the axis of the duct 9 = 0°.
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AVERAGE NOISE REDUCTION COEFFICIENT ﬁdb (DECIBELS)

TABLE A

£ o = 15° o = 30° 6 = 40° o = 60°
20 0.557 0.418 0.358 0.157
50 2.683 2.271 1.870 0.895
100 6.454 5.739 4.984 2.825
200 11.667 10.790 9.824 6.689
500 19.370 18.433 17.386 13.786
1000 25.353 24,409 23.346 19.668
2000 31.364 30.414 29.520 25.653
5000 39.320 38.370 37.306 33.602

Theoretical values calculated from (140) and (144).
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B. The Noise Reduction Coefficient NRdb:

wave in the rigid duct parallel to its axis is incident on the cblique

When a plane acoustic

plate (panel), the transmitted acoustic wave will be in the same direction
towards the receiver microphone. The‘.aflected acoustic wave will be
reflected obliquely back and forth from\the duct walls towards the
transmitter aicrophone. Because of its geveral oblique reflections,

and its additional path length, the phase \of the reflected wave y(f)

when it reaches the transmitter microphome will be a function of the
frequency. The corresponding Noise Reducti&p coefficient NRdb is

\
given in (138b) in the form:

NR

4 = 10 log [1 + 2% + 20s1n(kd, cose + ) +

+ 2Q2cos(kdlcose + 9] (145)
where the phase of the reflected wave is a function of the frequency

v = y(f). The values of the distance d1 from che center of the oblique

panel to the transmitter microphone are given as follows:

o = 15° d; = L.42 m
o = 30° 4, = 1.32a
8 = 40° d, = 1.26 m
o = 60° d; = 0.%n

Comparing (145) with (140) one finds that, because the trigonometric

functions in (145), the value of the Noise Reduction coefficient NRdb
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; will oscillate around the average Noise Reduction coefficient ﬁi&b'
? These oscillations of the curve will be a function of the frequency of
- ¢

the incident acoustic wave, since y = y(f) and k = y/c ® (2¢/c)f in '

\l
S )

(145), and Q » Q(f) in (144). This érend of the Noise Reduction coefficient

Ao R

Nndb to oscillate around the average Noise Reduction coefficient ﬁiﬁb

. - is seen very clearly in Figure 5 (¢ = 15%, Figure 6 (¢ = 30%), Pigure 7

[ . ¢ = 40%) and Figure 8 (o = 60°), and is marked in those figures by

a heavy black line.

o2 s
—
-

. v [
{: This trend of oscillation does not appear in Figure 4 (9 = 0°) for ¢

the panel perpendicular to the axis. The reason is that in this case
§ {; v(£) - kdlcose in (145), the result being given in (54d) for ¢ = Oi},
' . and kdl << 1. The reflected wave for ¢ = 0° propagates along the duct

axis and does hot bounce from the walls of the duct, and the transmitter

LIL SV

! microphone z = -dl is located very close to the panel. The oacillatio;'
trend of Nndb around ﬁi;b will similarly disappear in the case of the
different oblique panels in Figures 5, 6, 7, and 8 if the transmitter
microphene was to be located very close to the center of the oblique
panel. However, in the present experimental set up this has not been
possible to do.

From studying the oscillation trends, marked by heavy lines in
Figures's. 6, 7 and 8, one finds that in Figure 5 (8 = 15°).one has only

three peaks, in Figure 6 (6 = 30°) one has seven peaks, in Figure 7 (0 = 400)

one has six peaks, and in Figure 8 (6 = 60°) one has only two peaks.
These results can be explained in the following way. In Figure 5 (8 = 15°)
> the panel is very close to being perpendicular to the axis (8 = 0%,

and the reflected wave bounce only once from the absorbing material in

{
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the special test section as can be seen from Figure 9. As a result

v(f) does not vary with the frequeancy as much as in other cases, and

+ one has only the peaks in Figures S (¢ = 15%). In Figure 6 (o = 30°)

and Figure 7 (o = 40%) the reflected wave bounces several times from the
absorbing material in the special test section as can be seen from Figure 9.
As a result ¢(f) in (145) varies vcrf much with the frequency, and one

has six or seven peaks in Figure 6 (8 = 30°) and Figure 7 {9 = 40°).

Of particular interest is Figure 8 (o = 60°), where one has only two

peaks. As can be seen from Figure 9 for » = 60°, 1in this case the reflected

' acoustic wave returns along the same ray as the incident acoustic wave,

and bounces only twice from the absorbing material at the special test
section, both times from the same place. This explains why the oscillation
trend in ?1guge 8 (¢ = 60°) has only two peaks, the number of peaks
being closer )to 9 = 15° (three peaks) than either to § = 30° (7 peaks)
ér to 8 = 40° (6 peaks). Thus the oscillation trends of the Noise
Rcduction coefficient for the different oblique panels have been explained
qualitatively reefonably well by using acoustic ray theory. It has been
fouyd experimentally that the above oscillation trends of the Noise
Reduction coefficient is independent of the thickness h of thepanel,
and panels with different thickness h exhibit essen;ially identical
oscillation trends. .
C. The Cavity Resonance: From :;e experimental results for the
Noise Reduction coefficient given in Pigures 5, 6, 7 and 8 one finds
that at the lowest range of the frequencies there are several peaks,

both upward and downward. The resonance frequencies fR < 100 Hz are

listed in Table B.
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TABLE B

CAVITY RESONANCE FREQUENCIES (f§‘”“"< 100 He)
Experimental valuas

o = 18° o = 30° 9 « 40° o= 60° |
3 32 35,41 33,38
42 45,48 45,48 45
57,66 53
80,86 79,85 86 72,85

The resonance effect of the standing plane wave along the length
of the Beranek tube will be called the cavity resonance effect and will
be discussed in the present section. The cavity resonance effect is

described by (134) in the form:

cavity _ < 23 +1 ¢ -

fa T [ e 1’] (s = 0,1,2,3) (146)

where (L - zo) represents the distance transversed by the reflected wave

from the wooden back panel and ¢ = ¢(w) represents the phase shift of the

reflected wave at the wooden back panel and any other possible reflections.
In our experimental set up the distance of the wooden back panel

from the receiver microphone is:

L- z, * 99.5" = 2,527 m
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Taking the acoustic wave velogity for T = 21%¢ & 70°F o be ¢ = 343.8 n/sec

one obctains i{n (146):

I:IVIEy - 2_;_0_ (s + % +% ] 1/sec (147)

vhere t represents the addicional distance factor transversed by the
reflected acoustic wave after additional reflections, to be discussed

later. If one takes t = 1, ¢ = 0 and s = 0 in (147) one obtains:

f::zity « 34.0 l/sec (148)

t=]

where the theoretical resulc (148) agrees well with the first row of
experimental resonance frequencies given in Table B.

As can be seen from Figure 2, the reflected acoustic wave from the
back wooden panel will have additional reflection from the oblique
aluminum panel,as well as the absorbing side walls of the special test
section, which will cause it a phase shift. It will also transverse
addicional disctance after oblique refleccion from the aluminum panel
before it reaches to the receiver microphone. Taking, for exsmple, the
additional distance transversed by the reflected wave to be 30Z longer,
one will be required to divide (147) by a factor t = 1.5 in accordance
with (146). Assuming in addition that ¢ = - %'and taking s = ], one

will obtain from (147):

f“‘;‘" s 45.0 1/sec (149)
.-
t=1.8
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where the result (149) agrees well with the second row of experimental
resonance frequencies given in Table B.

While the additional distance transversed by the reflected wave
can be calculaced exactly for each case of reflection, there is not
enough experimental data available for the phase shift associated with
each reflection. However, within the order of magnitude, it is found
that the resonance frequencies listed in Table B result from (147),
and therefore are the result of the cavity rzsonance phenomena,if one
includes the possible additional multiple reflections by the reflected

wave in the Beranek tube.

D. The Acoustic Resonance:_ The acoustic resonance frequencies
have been discussed in detail in a previous report by the present author
listed in the Bibliography. It was fcund that for the case of normal
incidence on the plate in the square duct, the acoustic resonance fre-
quencies are given by: |

peoesic < \TTE 5o o

comparing (150) with (126b) one may find the acoustic resonance frequencies

for the oblique plate to be in the form:

facoustic

aco -5 sz + 0% - m? sine (1515

In order to use the numerical results of the previous report one could

take m = 0 in (151), and substituting the corresponding numerical values,

one obtains:
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TABLE C

ACOUSTIC RESONANCE FREQUENCIES

| Experimental
o-n Theoretical "
o = 15° 8 = 30° 8 = 40° 9 = 60°

0-1 : 376.0 366 365 380 363
0-2 752.0 x 740 x x
0-3 1,127.9 1,150 x 1,120 X
0-4 1,563.9 1,520 1,500 1,490 1,540
0-5 1,879.9 1,890 1,850 1,900 x

| 0-6 2,255.9 2,250 2,250 2,220 2,260
0-7 2,631.9 2,630 2,630 2,650 x
0-8 3,007.8 2,980 3,000 2,970 2,980
0-9 3,383.8 3,340 3,400 x
G-10 3,759.8 3,760 x 3,820 3,700
0-11 4,135.8 4,200 4,100 4,080 x
0-12 4,511.8 4,560 4,480 4,580 x
0-13 4,887.7 4,800 4,840 x X

Theoretical values calculated from (152).
Experimental numerical values represent spikes.
X represents a break in the experimental curves.
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£a°0U8%1C 2 375.98 0 2 376.00 (@ = 0) (152)
where for mode (o,n) the resulting acoustic resonance frequencies are
independent of the angle 8.

In Table C one finds the theoretical numerical values derived from
{152), as well as the corresponding experimental results values found
from Figures 5, 6, 7 and 8. The experimental numerical values in Table C
represent a major or a minor spike, upward or downward, while the x in
Table C represents a break in the experimental curve.

While the acoustic resonance frequencies may be calculated for every
mode (m,n) in (151), they are almost impossible to identify experimertally
in Figures 5, 6, 7 and '8, because of the large number and the close
proximity of the plate resonance spikes,to be discussed later. The
acoustic resonance frequencies for every mode (m,n) have been identified
separately for the case of normal incidence on the panel {plate) for
g =0° given in Figure 4, and the results are given in a previous report

by the preseant author listed in the bibliography.
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E. The Wooden Back Panel Resonance: Although the wooden back

panel is relatively massive, it can sct as a resonator under the influence
of the plane acoustic wave incident upon it. Thus, the wooden back

panel excites reflected plane acoustic waves at frequencies of its own
wooden "plate" resonance. It was found in a previous report by the present

author listed in the Bibliography that for the wooden back panel one has:

f:°:d = 155 (m2 + 12) (153)
]

Table D gives the theoretical numerical values for the different modes,

together with the corresponding experimental resonance spikes in

Figures 5, 6, 7, and 8. All the listed experimental numbers in Table D

are of large or small separate upward or downward spikes, while the x ;E
represents corresponding breaks in the curve or minor spikes. While

the experimental and theoretical results in Table D indicate that the

back wooden panel is a source of numerous spikes, both upward and down-

ward, it can be tested further if this is really the case. A repetition

of the same experiments without the back wooden panel, and a comparisom

of the spike formation in the present experimental results given in

Figures 5, 6, 7 and 8 and the proposed experiments will hopefully

decide the issue.
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TABLE D

WOOD RESONANCE FREQUENCIES

Py e e gy

i Experimental
'm—n m2+n2 Theoretical
! 9=15° | 0 =30° [ 0 =40° | o =60°
!: 10 1 155 159 150 151 144
It 1-1 2 310 327 300 320 11
" 2-0 | 4 620 625 610 620 640
i i | 2-1 5 775 x 800 800 x
é m 2-2 8 1,240 1,210 x 1,220 1,280
| 3-0 9 1,395 1,400 1,400 ‘ 1,440 1,370
- 3-1 10 1,550 1,540 1,600 1,570 1,540
P 3-2 13 2,015 2,000 2,050 2,000 2,000
l 4-0 16 2,480 2,440 2,540 2,520 2,480
’ -1 | 17 2,635 2,630 2,620 x x
( 3-3 18 2,790 2,820 x 2,750 2,800
42 20 3,100 3,150 3,000 | 3,080 3,100
i a3 | 25 3,875 3,830 3,800 | 3,860 | 3,910
| r 5-0 25 3,875 3,830 3,800 | 3,860 3,910
- 5-1 26 4,030 4,020 4,060 | 4,080 4,090
f’ 5-2 29 4,495 4,410 4,450 1 4,500 | 4,500 1
4~4 32 4,960 4,950 5,000 :3 5,000 5,000

Theoretical values calculated from (153).
Experimental numerical values represent spikes.
X represents a break or a minor spike inthe experimental curves.
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F. The Plate Rescnance: It has been shown in the previous chapter

that the free vibrations of the panel (plate) will establish plate acoustic
wave resonance modes (m,n) of the clamped oblique plate in the rigid

duct, as given by (126a) or (126b). These acoustic wave plate resonance
modes have a freq;ency which 18 much below the cut off frequency of the
corresponding higher order modes of the acoustic waves in the duct, and
therefore will not propagate at all in the duct. Their effect ié prim-
arily a near zone effect near the plate and thus will effect the receiver
microphone near the oblique panel. These panel resonance frequencies will
also interact with the plane acoustic wave excited by the plate, and the
plane acoustic wave of the fundamental mode of the acoustic wave:in the
duct will propagate in the duct at all frequencies, since its cut off
frequency in the rigid duct is zero. By these two aspects the plate (panel)
resonance modes will affect the microphones. The incident acoustic plane
wave of the fundamental mode in the duct and the oblique reflected acoustic
wave will be superimposed in the transmitter microphone. The phase of the
oblique reflected acoustic wave will be determined by the length of its
path, as given in Figure 9, and by the:phase change at the various

oblique reflections from the oblique plate and the duct walls. The trans~
mitted acoustic plane wave of the fundamental mode in the duct and the
plate acoustic resonance mode will be superimposed in the receiver micro-
phone, as well as the reflected acoustic wave from the wooden back panel.
An upward spike (= large noise reduction) in the experimental curves

of Figures 5, 6, 7 and 8 will mean that the waves are added in phase

in the transmitter microphone, but out of phase in the receiver micro-
phone. A downward spike (= small noise reduction or even "amplification')

in the experimental curvesof Figures 5, 6, 7 and 8 will mean that the
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waves are added out of phase in the transmitter microphone, but in
phase in the receiver microphomne.
Equation (126b) gives the oblique plate resonance frequencies in

the following form for a square duct a = b:

gplate _ X Dh [m2 +n? - o? sinze] (154a)
2a~ \[?p
Eh3
Substituting the value of D = 3 in (154a) one obtains:
12(1 - v%)
gplate _ gh) E (m% + 0% - mPsine] (154b)

ma 9.2\, o1 - vd)
Using the numeriéal values for the present case from the beginning of
this chapter, one obtains for the plate resonance frequencies:

= 7.353 [0 + n® - m’sin’e] (154¢)

fplate
m,
All the calculated theoretical plate resonance frequencies for the range
of frequencies under consideration aad for the angles § = 0°, 15°, 30°,
40°, and 60° of the inclined panel are listed in Appendix A.
For the case 8 = 0° the last term 1in (154) will become zero. Thus
for 8 = 0° the plate resonance frequency for mode (m,n) is the same
as the plate resonance frequency for mode (n,m) for the square duct, and
the two plate resonance +odes are degenerate for ¢ = 0°. This is
not the case for 6 ¥ 0°, where the two plate resonance frequencies
for mode (m,n) and mode (n,m) are different. This explains why the
number of the spikes in the experimental curves in Figure 5 (9 = 15%),

Figure 6 (8 = 30°), Figure 7 (8 = 40°) and Figure 8 (8 = 60°) is so
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much larger than the number of spikes in Figure 4 (0 = 06) for

the case of the plate perpendicular to the axis.
For the case of a clamped plate perpendicular (8 = O°) to the

axis of a rectangular duct one has from (120):

n(x,y,t) = Am,n cos '-L:E cos n_;z (155) -

where the plate edges are given by x = 0, x = a, y = 0, y = b. One
could transform the origin to the center of the plate by using a new
‘set of rectangular coordinates (x', y') as follows:

= -5 "- _E
x x =3 y Yy -3 (156)

vhere the clamped plate edges are given by x' = :—;— and y' = 1% Substi-
tuting (156) into (155) one obtains:
[] [] - ﬂ ' é_ .nl ! E
nx',y',t) Am,n cos — (x' + 2) cos (y' + 2) (157a)
which could be rewritten as follows:
. - mrx' . mm nry' . am )
n(x,y‘ »t) Am,n cos ( P 2) cos ( T * 2) (157b)
From trigonometric identities one has:
arx' |, mr nrx' mr mrx' . mw
cos ( " + 2) cos ———co3 3~ - sin 3 Sin 5 (158)




Since the incident plane acoustic wave of the fundamental mode in the

duct has an even symmetry around the axis of the duct, one allows only

L o)

even functions in (158) for the plate displacement. This will require

= |

in (158) that the second term on the right hand side will disappear,
i.e. the characteristic mode number m should be an even number. For
the same reason, the characteristic mode number n should be also an

even aumber. Taking both (m,n) to be even anumbers, one will obtain from

] (158) and (157b):

; Lo
. ‘

! ]
n(x',yit) = tAh,n cos mz: cos n%f (159)

This explains why only the even-even plate resonance modes, where both

(m,n) are even numbers, should be considered for the plate perpendicu-

i aen A MRSELT S YA IR TR
-1

lar to the axis ¢ = 0°,

When the plate is oblique in the x-z plane to the axis of the duct
(8 ¥ 0°), the even symmetry consideration is not valid in the x-directionm,
and both even and odd numbers should be taken for m, while n should
include even numbers only. This 1is another reason why the number §f
spikes in Figures 5, 6, 7 and 8 is so much larger than in Figure 4 for
normal incidence fe - 0°). Of course under the experimental set up
the even symmetry is not perfect, and some odd symmetry is introduced
in both directions. For completeness sake, both odd and even numbers
will be considered for both (m,n) in all the following tables.

In the following tables all the frequencies of the distinct

experimental resonance spikes, both downward and upward, are listed from

Figure 4 (3 = 0°), Figure 5 (g = 15°), Figure 6 (8 = 30°), Figure 7

e 84
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R 40%) and Figure 8 (¢ = 60°). Next to each experimental resonance
spik; frequency the theoretical plate resonance modes (m,n), which have
approximately the same frequency, are identified and are also liscad.
These theoretical results are taken from Appendix A, there the theore-

tical plate resonance frequency for each mode (m,n) has been calculated.

TABLE E-1

PLATE RESONANCE FREQUENCIES (g = 0°, DOWNWARD SPIKES)

S;:::ri;::::§cy Theoretical Plate Resonance Modes (m-n)
62 (2-2),(3=0),(0-3)
220 (4=4), (5=2),(2=5)
380 (6-4), (4=6),(7-2),(2-7)
620 (9-2),(2-9),(7-6),(6-7)
920 (8-8),(10-5), (5=-10), (11-2),(2-11)
1280 (12-6),(6-12),(13-2),(2-13)
1650 (12-9),(9-12),(15-1),(1-19),
(15-0), (0-15)

2400 (18-0), (0-18),(18-2),(2-18),
(15~10), (10-15)

3000 (20-2),(2-20),(17-11),(11-17),
(19"7) ) (7'19)

3300 (16-14), (14-16),(15-1%), (21-3),
(3-21)

3800 (18-14),(14-18), (22-6),(6=22),

' (17-15),(15-17)

4300 (22-10), (10-22),(19~15),(15-19)

4600 ; (22-12),(12-22),(25=1), (1=25)
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TABLE E-2

PLATE RESONANCE FREQUENCIES (8 = Oo, UPWARD SPIKES)

e sy ) e . —— v— Tt e NP
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Sg:l;:ri':::::zcy ‘I’heoreticai Flate Resonance Modes (m-n)
192 (5-1), (1-5) |
370 (6=4), (4=6), (7-1), (1-7)
430 (7-3),(3=7),(7-4), (4-7)
;
F e 590 (8-4), (4-8), (9-0), (0-9)
S - 760 (10-2), (2-10),(9-5), (5-9), (10~1)
- f !5 (1-10)
- r 1000 (10-6), (6-10), (11-4), (4-11)
vose 1080 (12-2), (2-12), (9-8), (8-9),(10-7),
? . (7-10) » (11-5) 1 (5-11) ] (12-1) [} (1-12)
{ g. 1300 (12-6), (6-12), (10-9), (9-10), (13-3),
H (3-13)
- I‘ 1720 (14-6) , (6~14), (13-8), (8-13), (15-3),
oA (3-15)
B i’ 2080 (16-5) , (5-16)
‘ 2900 (14-14), (15-13), (13-15)
i_ 3200 (20-6), (6-20)
. 3500 (16~15), (15-16), (19~11), (11~19)
i~ 4000 (20-12), (12-20}, (23-5), (5-23)
4500 (24-6), (6-24), (21-13), (13-21), (23-9),
‘ s (9-23)
T
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TABLE F-1

PLATE RESONANCE FREQUENCIES (o = 15°, DOWNWARD SPIKES)

Spike Frequency

Theoretical Plate Resonance Modes (m=-n)

Experimental
42
86
280 (6=2),(2-6), (5=4) , (1-6)
327 (3-6), (7-0)
366 (6~4), (0-7),(1-7), (7-2)
430 (8-0), (6~5), (5-6), (3-7)
487 (2-8), (1-8)
650 (5-8), (3-9)
1080 (2-12), (7-10), (31-6) , (1-12)
1290 (6-12), (10-9), (9-10), (i1-8) , (13-4)
2000 (4-16), (16-6) , (9-14) , (7-15), (15-8),
(17-1)
2250 (18-2), (12-13), (14-11), (15-10), (7-16)
2630 (6-18), (12-15), (16~11)
2820 (8-18),(16-12), (13-15) , (5-19), (19-7)
3150
3600 (2-22), (10-20), (16-16) , (22-6), (17-15),
(7-21), (21-9)
4250 (0-24), (2-26) , (21-13) , (7-23) , (23-9)
4630 (8-24), (18-18) , (20-16) , (17-19), (21-15),
(1-25), (3-25), (25-7), (7-25)
4800 (15-21)
87




:“!‘31

|

po

[~ R SO

TABLE F-2

PLATE RESONANCE FREQUENCIES (¢ = 15°, UPWARD SPIKES)

Spike Frequency

Theoretical Plate Resonance Modes (m-n)

Experimental

35 (0-2),(2-1)

80

160

187 (0-5), (1-5)

270 (0-6), (6-2), (1-6)

291 (2-6), (4-5)

356 (6=4),(5-5),(0-7)

404 (7-3) |

475 (0-8),(4~7),(1-8)

520 (6-6), (7-5)

550 (8-4),(9-0)

825 (9-6), (11-0),(11-1)
1040 (0-12),(12-2),(8~9),(10-7),(12-3)
1150 (3-12),(10-8), (9~9), (6~-11), (13-1), (13-0)
1210 (7-11),(5-12), (13-3)
1640 (9-12), (13-8), (0-15)
1810 (14=8), (9~13), (5-15), (15-6) , (16~3)
2120 (6-16),(10-14),(15-9),(16=7), (1-17)
2440 (12-14), (13-13), (15-11), (9-16), (7-17)
3070 (4-20), (10-18), (13-16), (19-9), (21-3)
3480 (20-10), (11-19)
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TABLE F-2 (Continued)

% Sg:::rfrcq:::cy Theoretical Plate Resonance Modes ( )
3920 (12-20), (21-11), (3-23)
r
| 4130 (16-18),(17-17), (19-15)
]
f 4410 (24-8), (13-21), (9-23)

4800 (15-21)
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TABLE G-1

PLATE RESONANCE FREQUENCIES (6 = 30°, DOWNWARD SPIKES)

Lo aa g " NS e ¢

Sg:::ti’;::::?cy Theoretical Plate Resonance Modes (m~n)
% 32 (0-2), (2-1), (1-2)
; 48 (2-2), (3-0)
; 66 (0-3)
. 85 (4=0), (2-3)
3 163 (3-4), (5-2)
; 193 (6=0), (1-5)
: 258 (0-6), (5-4),(6-3)
% 350 (4-6), (8-0)
. 380 (8-2), (6-5), (2=7), (7-4)
l 430 (4-17), (8-3), (9-0)
500 (2-8),(5-7),(9-3)
610 (8-6), (5-8), (0-9), (1-9),(2-9) , (16-3)
i 800 (10-6) , (6=9) , (9-7), (3-10), (12-1)
j 1020 (10-8), (7-10), (5-11) , (11-7)
,3 1440 (0-14), (16-2), (10-11), (6-13) , (1-14),
(16-7), (15-5)
| 1600 (10-12), (8-13), (15-7), (16=5) , (17-1)
ﬁ: 2100 (6-16), (11-14) , (9-15)
§, 2390 (0-18), (2-18) , (13-14) , (7-17)
3000 (4-20),(21-9),(23-3)
I: 3780 (6-22), (16-18) , (26-2) , (25-7)
4450 (6-24) , (15-21)
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TABLE G-2

PLATE RESONANCE FREQUENCIES (6 = 30°, UPWARD SPIKES)

smrm::?cy Theoretical Plate Resoaancle Modes (m-n)
| 45 (3-0)
57 (2-2), (3-1)
79 (4-0), (3-2)

150 (4-3)

179 (0-5)

300 (6-4), (3-6) , (7-2)

365 (4-6), (8-0),(0-7),(1-7),(8-1)

412 (5~6), (3-7), (8=3)

464 (6-6), (8-4), (7-5),(1-8),(9-1)

643 (10-4), (7-7), (3-9), (9-5)
1400 (8-12), (16-0), (11-10), (12-9), (5-13),

(13-8), (16-1)
1500 (4-14),(12~10),(9~12),(7-13),(15-6)
1850 (12-12),(6-15),(15-9)
2190 (20-0), (13-13),(10-15),(17-9), (19-5)
2530 (14-14), (i8-10)
3500 (10-20), (7-21),(23-9),(25-3)
4040 (14-20),(21-15),(5-23)
4700 (5-25)
91
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TABLE B-1

PLATE RESONANCE FREQUENCIES (o -.400, DOWNWARD SPIKES)

Spike Frequency

Theoretical Plate Resonance Modes (m-n)

Exper%mnntal
35 (0-2), (1-2)
45 (2-2), (3-1)
53
100 (3-3), (5-0)
163 (6-0), (3-4) , (6=1)
210 (2-5) , (6=3) , (7-0), (7=1)
320 (4-6), (7-4)
400 (8~4), (3-7), (7-5)
575 (7-7), (5-8) , (11-3)
690 (10-6) , (7-8) , (12-3)
800 (4-10), (7-9) , (10-7) , (11-6) , (12-5) , (13-3)
900 ggzig;,(1o-8),(o-11),(1-11),(2-11).(13-5)%
1100 (12-8) , (14-6), (16-0),, (9-10) , (7-11), (3-12),.
(13-7), (15-4), (16-1) |
1220 (6-12), (16=4), (9-11),(12-9), (14-7), (15-6)
1680 (12-12), (18-6), (10-13) , (14-11), (2-15),
(16-9) 5
1900 (0-16), (2-16), (14-12) , (1-16), (19-7), (21-1)
2380 (0-18), (2-18), (13-15), (11-16) |
2500 (12-16), (24-2), (14-15) , (17-13), (21-9) ;
2750 (14-16), (24-6), (16-15) , (5-19) , (25-3) ;
3080 (6=20), (15-17), (25-7) |
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TABLE H-1 (Continued)

Spike Frequency

Theoretical Plate Resonance Modes (m-n)

Experimental
3400 (10-20), (17-17), (13-19)
3620 (4=22), (20-16), (15~19)
4080 (16-20), (7-23)
4750 (7-25)
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TABLE H-2

PLATE RESONANCE FREQUENCIES (6 = 400, UPWARD SPIKES)

Spike Frequency

Theoretical Plate Resonance Modes (m-n)

FTENIT SIS R A AT R

Experimental
41 (3-0)
48 (2-2),(3-1)
86 (2-3)
119 (0-4) , (1=-4), (5-1)
151 (6-0),(3-4)
200 (2-5),(7-0)
279 (2-6), (6-4), (8-0), (7-3), (8-1)
354 (0-7),(1-7), (9=0)
382 (5-6), (2-7), (9-2)
540 (4-8) , (8-6) , (10~4) , @ -5) , (11=1), (11-2)
620 (6-8), (12-0),(2-9), (9~6) , (10-5) , (12-1)
1030 (10-9), (6-11), (15-3)
1120 (4-12), (14=6), (16=2), (11-9) , (16-1)
1490 (10-12) , (3-14)
1600 (6-14), (14-10) , (9-13), (17-7)
1870 (0-16), (10-14) , (18-8), (7-15) , (15-11),
(1-16)
2150 (8-16), (16-12), (18-10), (13~14), (3-17),
(17-11), (19~9)
2590 (24-4),(13-16)
3200 (8-20), (14-18), (11-19), (19-15), (23-11)
3770 (14-20), (18-18) , (11-21)
4380 (6-24), (14-22), (11~23)
5000 (2-26)
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TABLE I-1

PLATE RESONANCE FREQUENCIES (6 = 60°, DOWNWARD SPIKES )

Spike Fraquency

Theoretical Plate Resonance Modes (m-n)

Experimental
3 (0-2),(2-2), (4-0), (1~2), (4~1)
45 (3-2),(5-0), (5-1)
85 (3-3),(7-0)
119 (0-4), (2-4) ,(8-0), (1-4), (5-3),(7~2),
(8-1)
144 (4=4),(8-2),(9-0)
180 (6=4),(10-0), (0-5), (1-5), (8-3), (9-2)
225 (10-2),(5-5),(9-3)
264 (10-3),(11-2)
325 (6=6),(12-3),(13-1)
350 (14-0),(0-7),(7-6), (11-4), (13~2)
398 (14=2), (4-7), (5-7), (11-5)
464 (0-8), (14-4), (16-0), (1-8)
530 (6~8),(12-6),(15-4),(16-3),(17-1)
640 (10-8), (14-6), (18-2), (5-9)
1170 (8-12),(12-11), (21-7), (23-5), (25-1)
1280 (26-2),(11-12), (4~13), (5-13)
1460 (2-14),(4-14) , (20-10), (11-13), (3-14)
1900 (2-16),(4-16), (16-14),(3-16),(19-13)
2180 (20-14), (13-16),(5-17), (17-15)
2800 (9-19), (19-17)
3000 (6-20),(18-18)
3240 (1-21)
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TABLE I-1 (Continued)
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s?;::!l;;::::?cy Theoretical Plate Resonance Modes (m-n)
3970 (7-23)
4600 (1-25)
E 4780
e 4950 (0-26) , (2-26)
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TABLE I-2

PLATE RESONANCE FREQUENCIES (6 = 60°, UPWARD SPIKES)

Spike Frequency

Theoretical Plate Resonance Modes (m-n)

" Experinmental
k1. (2-2),(1-2), (4~1)
72 (6-0),(0-3),(1-3),(2-3), (5-2), (6-1)
113 (0-4), (8-0), (1-4),(5-3), (7-2)
132 (2-4),(3-4),(6-3),(8-1)
183 (6-4),(10-0),(0-5),(1-5),(8-3),(9-2),
(10-1) :
235 (8-4),(5-5),(11~1)
311 (10-4), (5-6), (8-5), (13-1)
347 (14-0), (7-6), (11-4)
363 (0-7),(1-7),(2-7), (14-1)
410 (5-7),(9-6), (11-5), (15-0), (15-1)
500 (4-8),(9-7), (11-6), (13-5)
560 (7-8),(10~7)
990 (12-10), (16-2), (20-6), (22-4),(7~-11),
(21-5),(23-1)
1370 (22-8), (8-13),(13~12), (16~11)
1540 (8-14),(16-12), (24-8),(13-13),(7-14),
(19-11)
2000 (8-16), (14-15)
2260 (14~16),(9-17)
2840 (16-18)
3100 (10-20)
3500 (11-21)
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TABLE 1I-2 (Continued)
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s::::rrl rcq:::l;cy Theoretical Plate Resonance Modes (m=-n)
; 3700 (8-22)
E’ ; 4300 (6=24)
| | 4600 (1-25) , (3-25)
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CHAPTER IX
SUMMARY

In the present raport the theoretical background has been given
and the theory has been developed for acoustic plane waves obliguely
incident on a clamped panel in s rectangular duct. The coupling theory
batween the elastic vibrations of the panel (plate) and the oblique
acoustic waves propagating in infinite space and in the duct have
been considered in detail. The coupling theory developed in this report
is based on the theory of acoustic wave propagation and the dynamic
theory of elasticity and the plate vibrations. This theory has been
§ applied for the experimencal results of the Noise Reduction curves
% measured for oblique plates of 0 = 15°, 30°. 40°. 60°, which are
i discussed in detail.
| In Chapter I the basic general theoretical considerations are
é introduced. '

In Chapter II the partial differential equations which govern the
propagation of scoustic waves in three dimensions are given, and some
basic concepts of the theory of propagation of oblique acoustic waves
are introduced.

In Chapter III the boundary value problem of an acoustic plane
wvave obliquely incident on an infinite piate is solved rigorously, and
the transmission and reflection coefficients of the corresponding

oblique acoustic waves are found.
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Ia Chapter IV the Transmission Loss coefficient and the Noise

Reduction coefficient for oblique incidince on the infinite plate are
defined and derived in detail. It is found that the Noise Reduction
coefficient in this case consists of an average value, superiaposed by
an oscillating component. The average Noise Reduction ~oefficient is
defined and derived. The theoretical behavior of the above coefficients
is discussed.

In Chapter V the boundary value problem of an scoustic plane
wave obliquely incident on a finite clamped panel is solved. The par-
tial differential equation which governs the vibrations of the plate
(panel) is modified by sdding to it stiffness (spring) forces and damping
forces, and the fundamental resonance frequency is defined. The trans-
licsion and the reflection coefficients of the corresponding oblique
acoustic waves are derived.

In Chapter VI the Transmission Loss coefficient and the Noise
Reduction coefficient are evaluated for the finite clamped oblique panel,
using the results of the previous chapter. The average Noise Reduction
coefficient is found for different cases.

In Chapter VII the resonance frequencies excited by the free
vibrations of the oblique finite clamped plste (panel) are derived.

The reflection of the acoustic wave from the wooden back panel is dis-
cussed and the corressponding resonance frequencies are found. The
Noise Reduction coefficient and the average Noise Reduction coefficient

sre discussed in general, when the reflected oblique acoustic wave is

reflected obliquely back and forth from the duct walls.
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In Chnpcor”?III the experimental results are discussed in detail
io. wiew of the theory presenced in this report, and the corresponding
numerical values are calculated from this theory. The following aspects
of the experimental results for the oblique plates of o = 15°, 30°, 40°, 60°
are discussed with reference to the theories previously presented

in this report:

A, The sverage Noise Reduction coefficient.
B. The Noise Reduction coefficient.
C. The Cavity Resonance.
D. The Acoustic Resonance.
E. The Wooden Back Panel Resonance.
F. The Plate Resonances.
The detailed features and the trends of the experimental curves in
Pigures 5, 6, 7, 8 for 6 = 15°, 30°, 40°, 60° have been explained,
and almost all the experimental resonance spikes have been {dentified,
by using the above listed theoretical considerations, and the theoretical

Tesults agree very well with the experimertal results.
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APPENDIX A

| , PLATE RESONANCE FREQUENCIES

The plate resonance frequencies are given in (154c) in the

form:

551:“ = 7.353 [m + n° - m’sinZe) (160)
where one can define:
gm(e) = (m sine)2 - mzsinze (161)

In the present appendix the calculated values of the plate resonance
frequencies from (160) will be listed for the different plate modes
(m-n).

Table J gives the calculated values of gm(e) from (161). Ta?le K
gives the calcul-+ed values of the plate resonance frequencies from
(160) for all the modes (m-n). It is arranged by the order of tﬂe

increasing parameter (m2 + nz).
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TABLE J

CALCULATED VALUES FOR EQUATION (161)

2 .2

gm(e) = (m sine)2 = n°sin” ¢

6 = 15° 8 = 30° o = 40° o = 60°
0.0670 0.2500 0.4132 0.7500
0.2680 1.0000 1.6527 3.0000
0.6030 2.2500 3.7186 6.7500
1.0718 4. 0000 6.6109 12.0000
1.6747 6.2500 10.3295 18.7500
2.4116 9.0000 14.8740 27.0000
3.2824 12.2500 20.2458 36.7500
4.2872 16.0000 26.4430 48.0000
5.4260 20.2500 33.4675 60.7500
6.6988 25.0000 41.3180 75.0000
8.1055 30.2500 49.9947 90.7500
12 9.6462 36.0000 59.4978 108.0000
13 11.3209 42.2500 60.8272 126.7500
14 13.1296 49.0000 80.9830 147.0000
15 15.0722 56.2500 92.9653 168.7500
16 17.1489 64 .0000 105.7740 192.0000
17 19.3594 72.2500 119.4087 216.7500
18 21.7040 81.0000 133.8700 243.0000
19 24.1826 90.2500 149.1576 270.7500
20 26.7951 100.0000 165.2720 300.0000
21 29.5416 110.2500 182.2119 330.7500
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TABLE J (Continued)

n 8 = 15° 8 = 30° o = 40° o = 60°
22 32.4220 . 121.0000 199.9800 363.0000
23 35,4365 132.2500 218.5717 396.7500
24 38.5850 144.0000 237.9900 432.0000
25 41.8674 156.2500 258.2369 468.7500
26 45.2837 169.0000 279.3100 507.0000
27 48.8341 182.2500 301.2075 546.7500
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THEORETICAL PLATE RESONANCE FREQUENCIES

TABLE K

£P125€ o 7.353 [a® + o® - w’sta’e]
n2m?  8s0°  es15°  g=30°  ge=40°  g=60°
1 7.4 6.9 5.5 4.3 1.8
1 7.4 7.4 7.4 7.4 7.4
2 16.7 14.2 12.9 11.7 9.2
4 29.4 27.4 22.1 17.3 7.4
4 29.4 29.4 29.4 29.4 29.4
5 36.8 3.8 29.4 24.6 16.7
5 36.8 36.3 3.9 33.7 31.3
8 58.8 56.9 51.5 46.7 36.8
9 66.2 61.7 49.6 18.8 16.5
9 66.2 66.2 66.2 66.2 66.2
10 73.5 69.1 57.0 46.2 23.9
10 73.5 73.0 7.7 70.5 68.0
13 95.6 91.2 79.0 68.2 46.0
13 95.6 93.6 88.2 83.4 73.5
16 117.6  109.8 88.2 69.0 29.4
16 117.6  117.6 117.6 117.6 117.6
17 125.0  117.1 95.6 76.4 36.8
17 125.0  124.5 123.2 122.0 119.5
18 132.4  127.9 115.8 105.0 82.7
20 147.1 139.2 117.6 98.5 58.8
20 147.1  145.1 139.7 134.9 125.0
25 183.8 1715 137.9 107.9 46.0
25 183.8  175.9 154.4 135.2 95.6
25 183.8  179.4 167.3 156.5 134.2
25 183.8  183.8 183.8 183.8 183.8
26 191.2  178.9 145.2 115.2 53.3
26 191.2 190.7 189.3 188.1 185.7
29 213.2  200.9 167.3 137.3 75.4
29 213.2  211.3 205.9 201.1 191.2




— a4 8 =0° 0 15° 8 =30° 6 =40° 6 «60°
44 32 235.3  227.4 205.9 186.7 147.1
5-3 3% 250.0  237.7 204.0 174.0 112.1
3-5 % 250.0  245.6 233.5 222.7 200.4
6-0 36 264.7  247.0 198.5 155.3 66.2
0-6 36 264.7  264.7 264.7 264.7 264.7
6-1 37 272.1  254.3 205.9 162.7 73.5
1-6 37 272.1  271.6 270.2 269.0 266.5
6=2 40 204.1  276.4 227.9 184.8 95.6
2-6 40 204.1  292.1 286.8 282.0 272.1
5-4 41 301.5  289.2 255.5 225.5 163.6
4-5 41 301.5  293.6 272.1 252.9 213.2
6-3 45 330.9  313.2 264.7 221.5 132.4
3-6 45 330.9  326.5 314.3 303.5 281.3
7-0 49 360.3 336.2 270.2 211.4 90.1
0-7 49 360.3  360.3 360.3 360.3 360.3
7-1 50 367.7  343.5 277.6 218.8 97.4
5-5 50 367.7  355.3 321.7 291.7 229.8
1-7 50 367.7  367.2 365.8 364.6 362.1
64 52 382.4  364.6 316.2 273.0 183.8
46 52 382.4  374.5 352.9 333.8 294.1
7-2 53 389.7  365.6 299.6 240.8 119.5
2-7 53 389.7  387.7 182.4 377.6 367.7
7-3 58 426.5  402.3 336.4 277.6 156.3
3-7 58 426.5  422.0 409.9 399.1 376.8
6=5 61 448.5  430.8 382.4 339.2 250.0
5-6 61 448.5  436.2 402.5 372.6 310.7
8-0 64 470.6  439.1 352.9 276.2 117.6
0-8 64 470.6  470.6 470.6 470.6 470.6
8-1 65 477.9  446.4 360.3 283.5 125.0

65 477.9  453.8 387.9 329.1 207.7

7-4
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l TABLE K (CONTINUED)
— w+n  g=0° gw15° g=30° 8=40° 8m60°
E 4=7 65 477.9  470.1 448.5 429.3 389.7
, -8 65 477.9  477.5 476.1 474.9 472.4
ii 8-2 68 500.0  468.5 382.4 305.6 147.1
2-8 68 500.0  498.0 492.7 487.9 477.9
!E 6~6 72 529.4  511.7 463.2 420.0 330.9
8-3 . 73 536.8  505.2 419.1 342.3 183.8
z 3-8 73 536.8  532.3 520.2 509.4 487.1
7-5 74 544.1  520.0 454.0 395.3 273.9
5-7 74 544.1  S31.8 498.2 468.2 406.3
-t § 84 80 588.2  556.7 470.6 393.8 235.3
f 4-8 80 588.2  580.4 558.8 539.6 500.0
E 9-0 81-  595.6  555.7 446.7 349.5 148.9
- 0-9 81 595.6  595.6 595.6 595.6 595.6
§ i; 9-1 82 602.9  563.0 454.0 356.9 156.3
i 1-9 82 602.9  602.5 601.1 599.9 597.4
- 9-2 85 625.0  585.1 476.1 378.9 178.3
Pl 7-6 85 625.0  600.9 534.9 476.1 354.8
- 6~7 85 625.0  607.3 558.8 515.6 426.5
1 2-9 85 625.0  623.0 617.7 612.9 602.9
= 8-5 89 654.4 622.9 536.8 460.0 301.5
B 5-8 89 654.4  642.1 608.5 578.5 516.5
’ 9-3 90 661.8 621.9 512.9 415.7 215.1
- 3-9 90 661.8  657.3 645.2 634.4 612.1
. 9-4 97 713.2  673.3 564.3 467.2 266.5
- 4-9 97 713.2  705.4 683.8 664.6 625.0
h 7-7 98 720.6  696.5 630.5 571.7 450.4
S 10-0 100.  735.3  686.0 551.5 431.5 183.8
-l 8-6 100 735.3  703.8 617.7 $40.9 382.4
; ] 6-8 100 735.3  717.6 669.1 625.9 536.8
: 0-10 100 735.3  735.3 735.3 735.3 735.3
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TABLE K (CONTINUED)

- ni4n?  ge0® gm15° gm30° 6=40° ow60°
10-1 101 742.7  693.4 558.8 438.8 191.2
1-10 101 %2.7  742.2 740.8 739.6 737.1
10-2 104 764.7  715.4 580.9  460.9 213.2
2-10 104 764.7  762.7 757.4 752.6 742.7
9-5 106 779.4  139.5 630.5 533.3 332.7
5-9 106 779.4  767.1 733.5 703.5 661.5
10-3 109 801.5  752.2 617.7 497.7 250.0
© 3-10 109 801.5  797.0 784.9 774.1 751.8
8-7 113 830.9  799.4 713.2 636.5 477.9
7-8 113 830.9  806.8 740.8 682.0 560.7
10-4 116 852.9  803.7 669.1 549.1 301.5
4-10 116 852.9  845.1 823.5 804.3 764.7
9-6 17 860.3  820.4 1.4 614.2 413.6
6=9 117 860.3  842.6 794.1 750.9 661.8
11-0 121 889.7  830.1 667.3 522.1 222.4
0-11 121 889.7  889.7 889.7 889.7 889.7
11-1 122 897.1  837.5 674.6 529.4 229.8
1-11 122 897.1  896.6 895.2 894.0 891.6
11-2 125 919.1  859.5 696.7 $51.5 251.8
10-5 125 919.1  869.8 735.3 615.3 367.7
5-10 125 919.1  906.8 873.2 843.2 781.3
2-11 125 919.1  917.2 911.8 907.0 897.1
8-8 128 941.2  909.7 823.5 746.7 588.2
11-3 130 955.9  896.3 733.5 588.2 288.6
9-7 130 955.9  916.0 807.0 709.8 509.2
7-9 130 955.9  931.8 865.8 807.0 685.7
3-11 130 955.9  951.5 939.3 928.5 906.3
10-6 136 1000.0  950.7 816.2 696.2 448.5
6-10 136  1000.0  982.3 933.8 890.6 801.5
11-4 137 1007.4  947.8 784.9 639.7 340.1
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TABLE K (CONTINUED)

a-0 n+a? g=0° g=15° 9=30° g=40° o=60° {

- 4-11 137 1007.4 999.5 977.9 958.8 "919.1 |
12-0 144 1058.8 987.9 794.1 621.3 264.7
0-12 144 1058.8  10%8.8 1058.8 1058.8 1058.8
; 12-1 145 1066.2 995.3 801.5 628.7 272.1
1 : 9-8 148 1066.2  1026.3 917.3 820.1 619.5
8-9 145 i066.2  1034.7 948.5 871.7 713.2
{j 1-12 145 1066.2  1065.7 1064.3 1063.1 1060.7
t 11-5 146 1073.5  1013.9 851.1 705.9 406.3
= 1 5-11 146 1073.5  1061.2 1027.6 997.6 935.7
: 12-2 148 1088.2  1017.3 823.5 650.7 294.1
{ 2-12 148 1088.2  1086.3 1080.9 1076.1 1066.2
N ‘ 10-7 149 1095.6  1046.3 911.8 791.8 544.1
E E | 7-10 149 1095.6  1071.5 1005.5 946.7 825.4
SR 12-3 153 1125.0  1054.1 860.3 687.5 330.9
o 3-12 153 1125.0  1120.6 1108.5 1097.7 1075.4
E e 11-6 157 1154.4  1094.8 932.0 786.8 487.1
= 6-11 157 118.4  1136.7  1088.2  1045.1 955.9
S 12-4 160 1176.5  1105.6 911.8 739.0 382.4
’ ’ 4-12 160 1176.5  1168.6 1147.1 1127.9 1088.2
9-9 162 1191.2  1151.3 1042.3 945.1 744.5
10-8 164 1205.9  1156.6 1022.1 902.1 654.4
8-10 164 1205.9  1174.4 1088.2 1011.5 852.9
| 13-0 169 1242.7  1159.4 932.0 729.2 310.7
5 12-5 169 1242.7  1171.7 977.9 805.2 448.5
f 5-12 169 1242.7  1230.3 1196.7 1166.7 1104.8
f 0-13 169 1262.7  1262.7 1262.7 1242.7 1262.7
) '13-1 170 1250.0  1166.8 939.3 736.6 318.0
= 11-7 170 1250.0  1190.4 1027.6 882.4 582.7
E f B 7-11 170 1250.0  1225.9 1139.9 1101.1 979.8
| . 1-13 170 1250.0  1249.5 1248.2 1247.0 1264.5
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TABLE K (CONTINUED) ' A

| 2-n a2+n?  6=0° 6=15° 6w30° 8e40° 660° .
13-2 173 1272.1  1188.8 961.4 758.6 340.1
2-13 173 12721 1270.1  1264.7  1259.9  1250.0
13-3 178 1308.8  1225.6 998.2 795.4 376.8
3-13 178 1308.8  1304.4  1292.3  1281.5  1259.2
12-6 180 1323.5  1252.6  1058.8 886.0 $29.4
6-12 180  1323.5  1305.8  1257.4  1214.2  1125.0
10-9 181 1330.9 1281.6  1147.1  1027.1 779.4
9-10 181 1330.9 1291.0  1182.0  1084.8 884.2
13-4 185 1360.3 1277.1  1049.6 846.8  428.3
11-8 185  1360.3  1300.7  1137.9 992.7 693.0
8-11 185 1360.3 1328.8  1242.7  1165.9  1007.4
4-13 185  1360.3  1352.4  1330.9  1311.7  1272.1
12-7 193 1619.1 1348.2  1154.4 981.6  625.0
7-12 193 1419.1 1395.0  1329.1  1270.3  1148.9
13-5 19 1426.5  1343.2  1115.8 913.0  494.5
5-13 194 1426.5  1414.2  1380.5  1350.5  1288.6
14-0 196  1461.2  1344.6  1080.9 845.7 360.3
0-14 196  1461.2  1641.2  1461.2  1441.2  1641.2
14-1 197  1448.5  1352.0  1088.2 853.1 367.7
1-14 197  1448.5  1448.0  1446.7  1445.5  1443.0
142 200  1470.6  1374.1  1110.3 875.1 389.7
10-10 200  1470.6  1421.3  1286.8  1166.8 919.1
2-14 200 1470.6  1468.6  1463.2  1458.6  1448.5
11-9 202 1485.3  1425.7  1262.9  1117.7 818.0
9-11 202 1485.3  1445.4  1336.4  1239.2  1038.6 :
14-3 205 1507.4  1410.8  1147.1 911.9 426.5
13-6 205 1507.4  1624.1  1196.7 993.9 $75.4
6-13 205 1507.4  1489.6  1441.2  1398.0  1308.8
3-14 205 1507.4  1502.9  1490.8  1480.0  1457.7
12-8 208 1529.4  1458.5  1264.7  1091.9 735.3
8-12 208 1529.4  1497.9  1411.8  1335.0  1176.48

111




— =3

[yee—) sw—-j Po——

T
= GG,

A

TABLE K (CONTINUED)

Sovaiineg [rONY
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a-n a+n?  9=0° ge15° g=30° 8=40° 8=60°
144 212 1558.8  1462.3  1198.5 963.4 477.9
4=14 212 1558.8  1551.0  1529.4  1510.2  1470.6
13-7 218 1603.0 1519.7  1292.3  1089.5 671.0
7+13 218 1603.0 1578.8  1512.9  1454.1  1332.7
14-5 221 1625.0  1528.5  1264.7  1029.5 544.1
11-10 221 1625.0  1565.4  1402.6  1257.4 957.7
10-11 221 1625.0  1575.7  1441.2  1321.2  1073.5
5-14 221 1625.0 1612.7  1579.1  1549.1  1487.1
15-0 225  1654.4  1543.6  1240.8 970.9 413.6
12-9 225  1654.4  1583.5  1389.7  1216.9 860.3
9-12 225  1654.4  1614.5  150S.5 1608.3  1207.7
0-15 225  1654.4  1654.4  1654.4  1656.4  1654.4
15-1 226  1661.8  1551.0  1248.2 978.2 421.0
1-15 226 1661.8  1661.3  1659.9  1658.7  1656.3
15-2 229  1683.8  1573.0  1270.2  1000.3 443.0
2-15 229  1683.8  1681.9  1676.5  1671.7  1661.8
14-6 232 1705.9  1609.4  1345.6  1110.6 625.0
6-14 232 1705.9  1688.2  1639.7  1596.5  1507.4
13-8 233 1713.2  1630.0  1402.6  1199.8 781.3
8-13 233 1713.2  1681.7  1595.6  1518.8  1360.3
15-3 234 1720.6  1609.8  1307.0  1037.0 479.8
315 23 1720.6  1716.2  1704.1  1693.3  1671.0
15-4 261 1772.1  1661.2  1358.5  1088.5 531.3
4-15 261 1772.1  1764.2  1742.7  1723.5  1683.8
11-11 22 1779.4  1719.8  1557.0  1411.8  1112.1
12-10 264 1794.1  1723.2  1529.4  1356.6  1000.0
10-12 264 179.1  1746.9  1610.3  1450.3  1242.7
14-7 245 1801.5 *© 1704.9  1441.2  1206.0 720.6
7-14 245 1801.5  1777.3  1711.4  1652.6  1531.3
15-5 250  1838.3  1727.4  1424.6  1154.7 597.4
13-9 250  1838.3  1755.0  1527.6  1324.8 906.3
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TABLE K (CONTINUED)

20 a+n?  ee0® gm15° gw30° om40° g=60°

9-13 250  1838.3  1798.4  1689.6  1592.2  1391.6
5-15 250  1838.3  1825.9  1792.3  1762.3  1700.4
16-0 256  1882.4  1756.3  1411.8  1104.6 470.6
0-16 256  1882.4  1882.4  1882.4  1882.4  1882.4
16-1 257  1889.7 1763.6  1419.1  1112.0 477.9
1-16 257  1889.7 1889.2  1887.9  1886.7  1884.2
16-2 260  1911.8  1785.7  1461.2  1134.0 500.0
14-8 260  1911.8  1815.2  1551.5  1316.3 830.9
8-14 260  1911.8  1880.3  1794.1  1717.3  1558.8
2-16 260  1911.8  1909.8  1904.46  1899.6  1889.7
15-6 261  1919.1  1808.3  1505.5  1235.6 678.3
6-15 261  1919.1 1901.4  1853.0  1809.8  1720.6
16-3 265  1948.5  1822.4  1478.0  1170.8 536.8
12-11 265  1948.5 1877.6  1683.8  1511.0  1154.4
11-12 265  1948.5  1888.9  1726.1  1580.9  1281.3
3-16 265  1948.5  1944.1  1932.0  1921.2  1898.9
13-10 269  1978.0  1894.7  1667.3  1464.5  1046.0
10-13 260  1978.0  1928.7  179%.1  1676.1  1426.5
16-4 272 2000.0 1873.9  1529.4  1222.3 588.2
4=16 272 2000.0 1992.1  1970.6  1951.4  1911.8
15-7 274 2014.7 1903.9  1601.1  1331.2 773.9
7-15 274 2014.7  1990.6  1924.6  1865.9  1744.5
14-9 277 2036.8  1940.2  1676.5  1441.3 955.9
9-14 277 2036.8  1996.9  1887.9  1790.7  1590.1
16-5 281  2066.2  1940.1  1595.6  1288.5 654.4
5-16 281  2066.2  2053.9  2020.2  1990.2  1928.3
12-12 288 2117.7  2046.7  1853.0  1680.2  1323.5
15-8 280 2125.0  2014.2  1711.6  144l.4 884.2
8-15 289  2125.0  2093.5  2007.4  1930.6  1772.1
17-1 200  2132.4  1990.0  1601.1  1254.3 538.6
13-11 290 2132.4  2049.1  1321.7  1618.9  1200.4
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TABLE K (CONTINUED)

an pien?  0e0° a=18° om30° ge40° 8m60°

11-13 290 2132.4  2072.8 1909.9 1764.7 1665.1

1-17 290 2132.4 231.9 2130.5 2129.3 2126.9

16-6 292 2147.1  '2021.0 1676.5 1369.3 735.3

6-16 292 2147.1  2129.3 2080.9 2037.7 1948.5

14-10 296 2176.5  2079.9 1816.2 1581.0 1905.6

10-14 296 2176.5  2127.2 1992.7 1872.7 1625.0

li 17-3 298 2191.2  2048.8 1659.9 1313.2 597.4

3-17 298 2191.2  2186.8 2174.6 2163.8 2141.6

16-7 308 2242.7  2116.6 1772.1 1464.9 830.9

l} 7-16 305 2242.7  2218.5 2152.6 2093.8 1972.4

15-9 306 2250.0  2139.2 1836.4 1566.4 1009.2

[E 9-15 306 2250.0  2210.1 2101.1 2003.9 1803.3

] 13-12 313 2301.5  2218.2 1990.8 1788.1 1368.5

E 12-13 313 2301.5  2230.6 2036.8 1864.0 1507.4

= 17-5 314 2308.8  2166.5 1777.6 1430.8 715.1

B $-17 314 2308.8  2296.8 2262.9 2232.9 2171.0

: 14-11 7 2330.9  2234.4 1970.6 1738.4 1250.0

- 11-14 317 2330.9  2271.3 2108.5 1963.3 1663.6

* 16-8 320 2353.0  2226.9 1882.4 1875.2 941.2

8-16 320 2383.0  2321.4 2235.3 2158.5 2000.0

B 18-0 324 2382.4  2222.8 1786.8 1398.0 595.6

0-18 324 2382.4  2382.4 2382.4 2382.4 2382.4

I 15-10 325 2389.7  2278.9 1976.1 1706.2 1148.9

i 10~18 328 2389.7  2340.5 2205.9 2085.9 1838.3

- 18-2 328 2611.8  2252.2 1816.2 1427.4 625.0

2-18 328 2611.8  2409.8 2604.4 2399.6 2389.7

i 16=9 337 2478.0  2351.9 2007.4 1700.2 1066.2

9-16 337 2478.0  2438.1 2329.1 2231.9 2031.3

17-7 338 2685.3  2343.0 1954.1 1607.3 891.6

i 13-13 338 2685.3  2402.1 2174.6 1971.9 1553.3
| .
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TABLE K (CONTINUED)

a-n atn®  gmo° ga15° 8e30° 8w40° 8=60°
7-17 338 2685.3  2661.2  2395.2  2336.6  2215.1
18-4 340 2500.0  2340.5  1904.4  1515.7 713.2
14-12 390 2500.0  2403.5  2139.7  1906.6  1419.1
12-14 340  2500.0  2629.1  2235.3  2062.5  1705.9
4-18 380  2500.0  2692.1  2470.6  2451.6  2611.8
15-11 36  2546.1  2433.3  2130.5  1860.6  1303.3
11-18 W6 2546.1  2486.5  2321.7  2176.5  1876.9
16-10 356 2617.7  2491.6  2147.1  1839.9  1205.9
10-16 356 2617.7  2568.4  2433.8  2313.9  2066.2
18-6 360  2647.1  2487.5  2051.5  1662.7 860.3
6-18 360  2647.1  2629.3  2580.9  2537.7  2448.5
19-1 362 2661.8  2484.0  1998.2  1565.0 671.0
1-19 362 2661.8  2661.3  2659.9  2658.7  2656.3
14-13 365 2683.8  2587.3  2323.5  2088.4  1603.0
13-14 365  2683.8  2600.6  2373.2  2170.4  1751.9
15-12 369  2713.3  2602.6  2299.7  2029.7  1472.4
12-15 369 2713.3  2642.3  2448.5  2275.8  1919.1
19-3 370 2720.6  2542.8  2057.0  1623.8 729.8
17-9 370 2720.6  2578.3  2189.4  1842.6  1126.8
9-17 370  2720.6  2680.7  2571.7  2474.5  2273.9
3-19 370 2720.6  2716.2  2706.1  2693.3  2671.0
16-11 377 2772.1  2646.0  2301.5  1994.4  1360.3
11-16 377 2772.1  2712.5  2549.7  2404.4  2104.8
19-5 386 2838.3  2660.5  2174.6  1741.S 847.4
$-19 386 2838.3  2825.9  2792.3  2762.3  2700.4
18-8 388 2853.0  2693.4  2257.4  1868.6  1066.2
8-18 388 2853.0  2821.4  2735.3  2658.5  2500.0
16-14 392 2882.4  2785.8  2522.1  2286.9  1801.5
15-13 394 2897.1  2786.3  2483.5  2213.5  1686.3
13-15 394  2897.1  2813.8  2586.4  2383.6  1965.1
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TABLE K (CONTINUED)

o-n atm? o=0° e=15° 9=30° 0=40° e=60°
20-0 400 2941.2 2744.1 2205.9 1726.0 735.3
16-12 400 2941.2  2815.1 2470.6 2163.4 1529.4
12-16 400 2941.2  2870.3 2676.4 2503.7 2167.1
0-20 400 2941.2  2941.2 2941.2 2961.2 2941.2
20-2 404 2970.6  2773.6 2235.3 1755.4 764.7
2-20 404 2970.6  2968.6 2963.3 29%8.5 2948.6
19-7 410 3014.7  2836.9 2351.1 1918.0 1023.9
17-11 410 3014.7  2872.4 2683.5 2136.7 1421.0
11-17 410 3014.7  2955.1 2792.3 2647.1 2347.4
7-19 610 3014.7  2990.6 2926.7 2865.9 2764.5
20-4 416 3058.8  2861.8 2323.5% 1843.6 852.9
4-20 416 3058.8  3051.0 3029.4 2010.? 2970.6
15-14 421 3095.6  2984.8 2682.0 2612.0 1854.8
14-15 421 3095.6  2999.1 2735.3 2500.1 2014.7
18-10 426 3117.7  2958.1 2522.1 2133.3 1330.9
10-18 426 3117.7  3068.4 2933.8 2813.9 2566.2
16-13 425 3125.0  2998.9 2656.4 2347.3 1713.2
13-16 425 3125.0  3041.8 2814.4 2611.6 2193.0
20-6 436 3205.9  3008.8 2470.6 1990.7 1000.0
6-20 436 3205.9  3188.3 3139.7 3096.5 3007.4
21-1 - 442 3250.0  3032.8 2439.4 1910.3 818.0
19-9 642 3250.0  3072.2 2586.4 2153.3 1259.2
9-19 442 3250.0  3210.1 3101.1 3003.9 2803.3
1-21 442 3250.0  3249.5 3248.2 3247.0 3244.5
21-3 450 3308.9  3091.6 2698.2 1969.1 876.8
15-15 450 3308.9  3198.0 2895.2 2625.3 2068.0
3-21 450 3308.9  3304.4 3292.3 3281.5 3259.2
16~14 452 3323.6  3197.5 2853.0 2545.8 1911.8
14-16 452 3323.6  3227.0 2963.3 2728.1 2242.7
17-13 458 3367.7  3225.3 2836.4 2689.7 1773.9
13-17 458 3367.7  3284.4 3057.0 2854.2 2435.7
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TABLE K (CONTINUED)

o0 w4+ 6e=0° ge15° g=30° g=40° g=60°
20-8 464  3611.8  3214.7  2676.4  2196.5  1205.9
8-20 464 3611.8  3380.3  3294.1  3217.4  3058.8
21-5 466  3626.5  3209.3  2615.8  2086.8 994.5
s-21 466  3426.5  3414.2  3380.5  3350.5  3288.6
18-12 468  3641.2  3281.6  2845.6  2456.9  1654.4
12-18 468  3441.2  3370.3  3176.5  3003.7  2647.1
16-15 481  3536.8  3410.7  3066.2  2759.1  2125.0
15-16 481  3536.8  3426.0  3123.2  2853.2  2296.0
19-11 482 3544.1  3356.4  2880.5  2447.4  1553.3
11-19 "482  3544.1  3486.5  3321.7  3176.5  2876.9
22-0 484  3558.9  3320.6  2669.1  2088.3 889.7
0-22 484  3558.9  3558.9  3558.9  3558.9  3558.8
22-2 488  3588.3  3350.0  2698.6  2117.7 919.1
2-22 488  3588.3  3586.3  3580.9  3576.1  3566.2
21-7 490  3603.0  3385.8  2792.3  2263.3  1171.0
7-21 490  3603.0  3578.8  3512.9  3454.1  3332.7
22-4 500 3676.5  3438.3  2786.8  2205.9  1007.4
20-10 500 3676.5  3479.4  2941.2  2461.3  1470.6
10-20 500  3676.5  3627.2  3492.6  3372.7  3125.0
4-22 500  3676.5  3668.6  3647.1  3627.9  3588.3
16-16 512 3764.7  3638.6  3294.1  2987.0  2353.0
17-15 514 3779.4  3637.1  3248.2  2901.4  2185.7
15-17 514  3779.4  3668.6  3365.8  3095.9  2538.6
22-6 520  3823.6  3585.3  2933.8  2353.0  1154.4
18-14 520  3823.6  3664.0  3228.0  2839.2  2036.8
14-18 520 3823.6  3727.0  3463.3  3228.1  2742.7
6-22 520  3823.6  3805.9  3757.4  3714.2  3625.0
21-9 522 3838.3  3621.0  3027.6  2498.5  1406.3
9-21 522 3838.3  3798.4  3689.4  3592.2  3391.6
23-1 530 3897.1  3636.5  2924.7  2289.9 979.8
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IE TABLE ¥ (CONTINUED)
- aim? gm0 g=15° om=30° gm40° 6=60°
t 19-13 $30  3897.1  3719.3  3233.5  2800.3  1906.3
13-19 530  3897.1  3813.8  3586.4  3383.7  2965.1
‘ ' 1-23 530  3897.1  3896.6  3895.3  3894.1  3891.6
23-3 538 3955.9  3695.3  2983.5  2348.8  1038.6
: Ii 3-23 538 3955.9  3951.5  3939.4  3928.6  3906.3
i 20-12 544 4000.0  3803.0  3264.7  2784.8  1794.1
i 12-20 S44  4000.0  3929.1  3735.3  3562.5  3205.9
§ 22-8 548 4029.4  3791.2  3139.7  2558.8  1360.3
3 8-22 548  4029.4  3997.9  3911.8  3835.0  3675.5
¥ ]§ 23-5 554  4073.6  3813.0  3101.1  2466.4  1156.3
: . . . 5=23 554 4073.6  4061.2  4027.6  3997.6  3935.7
3 l% 21-11 562 4132.4  3915.2  3321.7  2792.7  1700.4
s 11-21 562 4132.4  4072.8  3910.0  3764.7  3465.1
f % | 24-0 576  4235.3  3951.6  3176.5  2485.3  1058.8
B »
- 0-24 576  4235.3  4235.3  4235.3  4235.3  4235.3
S o 23-7 578 4250.0  3989.5  3277.6  2642.9  1332.7
B 17-17 578 . 4250.0  4107.7  3718.8  3372.0  2656.3
- 7-23 578  4250.0  4225.9  4160.0  4101.2  3979.8
mh 24-2 580  4264.7  3981.0  3205.9  2514.7  1088.2
[ 18-16 580  4264.7  4105.2  3663.1  3280.4  2478.0
. 16-18 580  4264.7  4138.6  3794.1  3487.0  2853.0
o 2-24 S80  4264.7  4262.7  4257.4  4252.6  4242.7
: !T 22-10 584  4294.2  4055.8  3404.4  2823.6  1625.0
o 10-22 584  4294.2  4244.9  4110.3  3990.3  3742.7
: 19-15 586  4308.9  4131.1  3645.2  3212.1  2318.0
' !Z 15-19 586  4308.9  4198.0  3895.3  3625.3  3068.0
b 244 592 4353.0  4069.3  3294.1  2603.0  1176.5
- i; 4=24 592 4353.0  4345.1  4323.6  4304.4  4264.7
b 20-14 596  4382.4  4185.3  3647.1  3167.1  2176.5
- if 14-20 596  4382.4  4285.8  4022.1  3786.9  3301.5
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TABLE K (CONTINUED)

- ni?  em0° 8m15° 8=30° 0=40°  6=60°

23-9 610  4485.3+ 4224.8  3512.9  2878.2  1568.0
21-13 610  4485.3  4268.1  3674.7  3145.6  2053.3
13-21 610  4485.3  4402.1  4174.7  3971.9  3553.3
9-23 610  4485.3  4445.4  4336.4  4239.2  4038.6
246 612  4500.0  4216.3  3441.2  2750.0  1323.5
6=24 612 4500.0  4482.3  4433.9  4390.7  4301.5
25-1 626  4603.0  4295.1  3454.1  2704.1  1156.3
1-25 626  4603.0  4602.5  4601.1 - 4599.9  4597.5
22-12 628  4617.7  4379.3  3728.0  3147.1  1948.5
12-22 628  4617.7  4546.8  4353.0  4180.2  3823.6
25-3 636 4661.8  4354.0  3512.9  2763.0  1215.1
3-25 636 466L.8  4657.4  4645.3  4634.6  4612.2
24-8 640  4705.9  4422.2  3647.1  2955.9  1529.4
8-24 640  4705.9  4674.4  4588.3  4511.5  4353.0
18-18 648  4764.7  4605.2  4169.2  3780.4  2978.0
25-5 650  4779.5  4471.6  3630.5  2880.6  1332.7
23-11 650  4779.5  4518.9  3807.0  3172.3  1862.1
19-17 650  4779.5  4601.7  4115.8  3682.7  2788.6
17-19 650  4779.5  4637.1  4248.2  3901.5  3185.7
11-23 650  4779.5  4719.9  4557.0  4411.8  4112.2
5-25 650  4779.5  4767.1  4733.5  4703.5  4641.6
20-16 656  4823.6  4626.5  4088.3  3608.3  2617.7
16-20 656  4823.6  4697.5  4353.0  4045.8  3411.8
21-15 666  4897.1  4679.9  4086.4  3557.4  2465.1
15-21 666  4897.1  4786.3  4483.5  4213.5  3656.3
25-7 6764  4955.9  4648.1  3807.0  3057.1  1509.2
7-25 676  4955.9  4931.8  4865.8  4807.1  4685.7
26-0 676  4970.6  4637.7  3728.0  2916.9  1242.7
264-10 676  4970.6  4686.9  3911.8  3220.6  179%.1
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TABLE K (CONCLUDED)

a2  amQ° g=15° g=30° 8=40° 8=60°
676  4970.6  4921.4  4786.8  4666.8  4419.2
676  4970.6  4970.6  4970.6  4970.6  4970.6
680  5000.0  4667.1  3757.6  2946.3  1272.1
680  5000.0  4761.6  4110.3  3529.4  2330.9
680  5000.0  4903.5  4639.7  4404.6  3919.1
680  5000.0  4998.1  4992.7  4987.9  4948.6
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Geometrical Configuration for Ohlique Incidence
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Experimental and Theorcetical Noise Reduction Characteristics
of a .025 Inch Thick Aluminum Panel Under 15° Angle of
Sound Incidence.
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Experimental and Theoretrical Noise Reduction Characteristics

of a .025 Inch Thick Aluminum Panel Under 30° Angle of
Sound Incidence.
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Experimental and Theoretical Noise Reduction Characteristics
, of a .025 Inch Thick Aluminun Panel Under 60° Angle of
Sound Tncidence.
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