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A FEASIBILITY STUDY 
. OF: A 

3-D FINITE ELEMENT SOLUTION SCHEME 
FOR 

. AEROENGINE DUCT ACOUSTICS 

By 

A. L. Abrahamson 
Wyle Laboratories 

INTRODUCTION 

Development of two-dimensional (2-D) finite element solution schemes for 

aeroengine duct acoustics was initiated in the mid-1970s and has achieved con­

siderable success. Analysis of acoustic propagation in axisymmetric ducts with 

nonuniform flow was made possible( 1) and schemes for increasing computational 

efficiency have progressed to the stage where repeated analyses for aero­

engine duct liner optimization are possible. (2) 

The satisfactory results with 2-D models and the ability of segmented 

duct liners to give good sound attenuation characteristics indicated a potential 

advantage from the development of three-dimensional (3-D) finite element models. 

The expected advantage was based on the rationale that since axially 

segmented acoustic duct liners have been demonstrated to provide improved 

sound attenuation characteristics over uniform liners, there is a significant 

likelihood that a combination of axially and circumferentially segmented liners 

will provide still better sound attenuation characteristics. In order to model 

the effect of this type of liner segmentation, it is necessary to discard the 

axisymmetric assumption and develop a fully 3-D model. 

With currently available computers ... this was anticipated to be ab 

ambitious task. However, the use of different element formulation techniques 

and different linear equation solution algorithms to those used in the 2-D 

analyses indicated that the task might be possible. 
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SYMBOLS 

Global matrix 

Right-hand side of global matrix equation 

Matrix bandwidth 

Speed of sound 

Identity of matrix 

Number of finite elements along coordinate directions 
of rectangular mesh 

Global matrix order 

Finite element functional 

Acoustic pressure 

Acoustic velocities along coordinate directions 

Mean aerodynamic velocities along coordinate directions 

Solution vector 

Cartesian coordinates 

Over-relaxation parameter 

Acoustic frequency 

Nodal parameter 

Element local coordinates 

Mean density 

CHARACTERISTICS OF THE PROBLEM 

Order 

Numerical solution of the differential equations describing sound pro­

pagation in an aeroengine inlet requires discretization of the space within 

which the solution is required. The order of the discretization is dependent 

upon the spatial rate of change of the variables, which in turn is dependent 

upon acoustic source frequency and geometric and aerodynamic parameters. 

Precise calculation of the required order of discretization is not possible since 

the problem solution is not known a priori. . Approximate calculations of 

required linear finite element discretization meshes for 2-D and 3-D analyses 

of typical aeroengine inlets, based upon a linear one-dimensional analytical 

model, are shown in Table 1. 

2 
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Table I 

Approximate Discretization Order for Solution of 

Sound Propagation Equations in an Aeroengine Inlet 

2-D Solution 3 _D Solution 
Matrix 

Matrix Band- Matrix 
Diameter Length Mach Frequency Order Width Order 
{Meters} {Meters} No. {kHz} M N {No} {B} L M N {No} 

1.5 1.5 0 1 20 40 6.400 320 40 40 40 512.000 

2 40 SO 25.600 640 SO SO SO 4 x 106 

3 60 120 57.600 960 120 120 120 13.S x 106 

-.3 1 20 60 9.600 320 40 40 60 768.000 

2 40 120 38.400 640 80 80 120 6.1 x 106 

3 60 180 86.400 960 120 120 180 20.7 x 106 

2.2 2.2 0 1 30 60 14.400 480 60 60 60 1. 7 x 106 

2 60 120 57.600 960 120 120 120 13.8 x 106 

3 90 ISO 129.600 1.440 ISO ISO 180 46.6 x IS 

-.3 1 30 90 21.600 4S0 60 60 90 2.6 x 106 

2 60 ISO S6.400 960 120 120 ISO 20.7 x 106 

3 90 270 194.400 1.440 ISO ISO 270 70 x 106 

Note: Assumes linear clements. approximately 10 elements Iwavelength. 8 variables Inode. 
2D Solution - No = 8MN. B = 2{SM}. 3D Solution - No = SLMN. B = 4{8LM}. 

Matrix 
Band-
Width 

{B} 

51.200 

2 x 105 

4.6 x 105 

51.200 

2 x 105 

4.6 x 105 

1. 15 x 105 

4.6 x 105 

1. 04 x 106 

1.15 x 105 

4.6 x 10
5 

1. 04 x 106 

The global matrix orders (No) and bandwidths (B) resulting from these 

discretization meshes are also shown in Table!. For the 2-D model, matrix 

orders range from 6,400 to 194,400; while for the 3-D model, orders range 

from 0.5 million to 70 million. It should be emphasized that the wide range 

spanned by these numerical values represent relatively small changes in duct 

physical dimensions, mean-flow characteristics and source frequency. Matrix 

bandwidths span a similarly wide range, from 320 to 1,440 in the 2-D case, 

and 51,200 to 1. 04 million in the 3-D case. 

Computational Effort 

Consider matrices of the dimensions described above relative to the 

computational effort required to generate and solve them. Absolute eval­

uation of computational effort is extremely complicated and is dependent upon 
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computer and compiler characteristics as well as on programming techniques. 

The approach taken in this determination is based upon an approximate eval­

uation of operation counts followed by scaling of central processor unit (CPU) 

time taken from a baseline optimized FORTRAN program (1) on a CDC Cyber 175 

computer. 

The basic finite element process involves two distinct phases, i.e., 

assembling the global matrix, and solving the global matrix. 

In the case of boundary condition optimization, this process is augmented 

by a third phase; specifically, use of the current solution to generate an 

increment in boundary conditions. The complete process is repeated until 

convergence to an optimum set of boundary conditions is obtained. 

By defining an operation as one addition followed by one multiplication, 

we may estimate operation counts as follows: 

4 

• Global matrix assembly - For each element, these procedures 

involve numerical integration of the finite element approximation to 

the differential equations, over the domain. The procedures are 

proportional to the number of finite elements and are thus pro­

portional to the number of degrees of freedom (No). The constant 

of proportionality is typically of the order 10 2 for 2-D models and 

10 3 for 3-D models. 

• Global matrix solution - Solution of a full matrix is most commonly 

achieved by a direct method such as Gaussian elimination which 

requires approximately 1/3 N~ operations. From Table I, however, 

it may be seen that the global matrix is not full, but posseSiSes a 

bandwidth at least one order of magnitude (sometimes 2 orders of 

magnitude in the 2-D case) less than the global" matrix order. In 

these circumstances, Gaussian elimination may be carried out in 

approximately i NoB 2 operations. 



-, 

~ Boundary condition increment generation - Any of the standard 

optimization methods may be used; Davidon~Fletcher-Powell, Simplex, 

or Broyden-Fletcher-Shanno, for example. The computational effort 

in implementing any of these methods is negligible and the impact 

of this phase of the process may be ignored. It is important to 

note, however, that the efficiency of the method used has a vital 

bearing on overall computational time. The most efficient method 

requires the minimum iterations for convergence to an optimum liner 

configuration. 

The operation counts given above may now be scaled by CPU times 

(Table II) from a baseline 2-D finite element model of sound propagation in 

an aeroengine duct. This model uses a numerically integrated bilinear 

isoparametric serendipity element and a block tridiagonal solution scheme 

specifically coded for problem sparsity. Figures 1 and 2 show that a linear 

relationship does hold between the theoretical operation counts given above 

the actual CPU times for assembly and solution phases. 

Table II 

Computing Times for Baseline Model 

Mat CPU Times for 1/4 N B 2 
Order Assembly Solution 0 

M N (N ) B (Sec) (Sec) (Operations) 
0 

40 110 36,408 656 330 2,060 .39 x 

25 59 12,480 416 98 299 .55 x 

12 30 3,224 208 25 35 .35 x 

20 200 33,768 336 304 603 .95 x 

Estimated computer times for the aeroengine inlet examples given in 

Table I, derived from the relations: 

10 10 

10 9 

108 

109 
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-2 
CPUI bl = (.94 x 10 ) No (sees) 

assem y 

are given in Table III. 

Table III 

Estimated CPU Times for Solution of Sound Propagation 
Equations in Typical Aeroengine Inlets 

CPU Times 
2-D 3_D 

Diameter Length Mach Frequency Assembly Solution Assembly Solution 
(Meters) (Meters) No. (kHz) (Sec) (Min) (Min) (Hr) 

1.5 1.5 0 I 6 1.5 8 4.9 x 10 
4 

2 24 23 62 5.9 x 10 6 

3 54 ll8 216 

-.3 I 9 2.2 12 

2 36 35 95 

3 81 176 324 

2.2 2.2 0 I 14 7.4 27 

2 54 ll8 216 

3 122 596 730 

-.3 I 20 II 41 

2 81 177 324 
; 

3 183 894 1,097 

NOTE: Assumes linear finite elements, approximately 10 elements Iwavelength, 
8 variables Inode. 
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Figure 1. - Plot of theoretical operation counts (N ) versus 
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actual matrix assembly times for baseline model. 
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Figure 2. - Plot of theoretical operation counts (N B ) versuS 

o 

actual matrix solution times for baseline model. 



CPU time estimates from Table III show that global matrix assembly 

times are substantially less than solution times. For a 2-D analysis, assembly 

times are measured in seconds while solution times range from a few minutes 

to several hours. From a cursory examination of solution times, it is 

evidently pointless to ever contemplate a 3-D analysis using the techniques 

of the baseline model since CPU times begin at 50,000 hours. 

A 2-D analysis of a single case spans the range from 1. 5 minutes, for 

a I-kHz source and a zero Mach number in a duct 1. 5 m in diameter and 1. 5 m 

long. to 15 hours for a 3-kHz source with a flow Mach number of -0.3 in a duct 

2.2 m in diameter and 2.2 m long. 

Suppose we take one hour as a reasonable upper limit of CPU time per 

case, then a 2-D analysis of the 1. 5-m duct; up to a source frequency between 

2 kHz and 3 kHz is feasible. Alternately, for the 2.2-m duct, the feasible 

upper frequency range lies somewhere between I kHz and 2 kHz. 

Consider the process of duct liner optimization. Depending upon the 

number of degrees of freedom in the duct liner specification, numerical 

optimization requires repetition of the analysis typically between 20 and 200 

times. As shown in reference 2, it is not necessary to multiply CPU times 

given in Table III by this factor, since alternate direct decomposition techniques 

such as the boundary exclusive decomposition method are available. 

Alternate Approaches for 3-D Analysis 

Since the methods used in 2-D models are clearly inadequate for a 

3-D analysis. new approaches are necessary. It has been demonstrated that 

the vast increases in computer time from a 2-D to a 3-D analysis corrie from 

attempting a direct solution to a matrix equation whose bandwidth has 

increased by two or three orders of magnitude. 

The alternative to a direct method is an iterative method. Iterative 

solution algorithms such as Jacobi, Gauss-Seidell and Successive Over-

9 



Relaxation (SOR) differ from Gaussian elimination in .one important respect. 

Whereas, Gaussian elimination generates IIfill,1I i.e., large quantitites of 

intermediate numbers which all require processing., these algorithms always 

work only on the original matrix. 

To provide an indication of the potential savings which may be gained 

from implementation of these algorithms, consider the original number of 

nonzeroes per row in the global matrix for the examples given in Table 1. 

For all 2-D discretizations, these number just 72; while for all 3-D discre-:: 

tizations, 216 non zeroes exist per row. Comparing these numbers with the 

matrix bandwidths shown in Table I, the original degree of sparsity is evident. 

In the process of Gaussian elimination, the entire bandwidth is filled in the 

solution process. 

Two problems exist with iterative solutions, however. They are as 

follows: 

• A positive definite global matrix is required for convergence to be 

guaranteed. 

• The number of iterations required for adequate convergence may 

be very small or very large depending upon the characteristics 

of the matrix. 

The Galerkin method of formulating finite element equations does not give a 

positive definite global matrix. The least squares method~ however, does 

give a symmetric positive definite global matrix but frequently the least 

squares process yields equations that are poorly conditioned. 

/ 
Estimated CPU times for one iteration of each of the typical inlet examples 

are given in Table IV. 

10 
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Table .IV 

Estimated CPU Times IIteration for Iterative Solution 
of Sound Propagation equations in ai)" Aeroengine Inlet 

Diameter Length Mach Frequency 2_D 3-D 
(Meters) (Meters) No. (kHz) (Min. ) (Min) 

1.5 1.5 0 1 1. 02 x 10 -3 .25 

2 3.99 x 10 
-3 

1.9 

3 9.09 x 10 
-3 

6.6 

-.3 1 1. 53 x 10 
-3 

.37 

2 6.12. x 10 
-3 

2.9 

3 1. 37 x 10-2 
9.9 

2.2 2.2 0 1 2.30 x 10 
-3 

.81 

2 9.19xl0 
-3 

6.6 

3 2.07 x 10 
-2 

22 

-.3 1 3.44 x 10 
-3 

1. 24 

2 1. 38 x 10 
-2 

9.9 

3 3.10 x 10 
-2 

33.5 

The critical question regarding the feasibility of a 3-D analysis hinges on 

the convergence rate. That is, how many iterations are required for con­

vergence. Since convergence rate is problem dependent, the only way to 

determine it is by first assembling the global matrix "equation. Thus., for 

practical purposes, the only way to determine the feasibility of the approach 

is by trying it. 

I 

DERIVATION 

Derivation of the equations governing linearized acoustic motion for the 

2-D case, is shown in reference 1. Extension of this derivation to 3-D is 

readily performed and will not be given here. "The four equations are ~ 

11 
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-
av av av + - a v - av + w av + u 
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p 

-
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pc 2 ax ay az az 
p 

- -
(~ 

p 
~ + au ) -:I- (~_' ~ + 
ax ax ay 

p 

av ) + (w_ .!P + aw ) 
ay az az 

p 

= 0 / (4) 

where (u,v,w) and (u,v,w) are the (x,y,z) components of acoustic and 

mean-flow velocities " respectively, p is the acoustic pressure., and p the mean 

density. Acoustic source frequency is wand c is the local speed of sound. 
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A 3-D cubic serendiptity ,element 13) was selected for the analysis. This 

element shown in Figure 3 has a total.of 32' nodes and when applied to 

solution of the above equations with four variables per node (U.,v,w,p) yields 

a local element matrix of order 256. 

The principal reason for adoption of this element over a linear element was 

to take full advantage of the computational speed increases offered by a vector 

computer. With iterative solution algorithms on a vector computer (such as 

the CDC STAR 100), vector lengths for global matrix solution using this 

element lie between 256 and 1080. These vectors are sufficiently long to 

minimize the effect of Itpipeline It processor startup time on this machine. 

Consider the volume of space enclosed by the cube shown in Figure 3. 

Within this cube, a parameter ~(z,y,z) is completely defined by its values 

{~}e at the nodes through the relat~on: 

~ = (N) U}e 

= (N
l
,N

2
, ••• N

32
) 

Functionals IN. where i = 1, 4, 9, 12, 21, 24, 29, 32 take the form: 
1 

Functionals 2N. where i = 2, 3, 10, 11, 22, 23, 30, 31 take the form: 
1 

Functionals 3N. where i = 5, 6, 7, 8, 25, 26, 27, 28 take the form: 
1 

I 
I 
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FunctionalsltN. where i -= 13 ... 14, 15, 16, 17, 18, 19" 20 take the form:. 
1 '" 

In the above expressions, 

z;= Z;C 
"1 

where (l;., n., z;.) represent the non dimensional coordinates of the ith node 
1 1 1 

and may assume values ±i or ± IJ3. 

Suppose (u,v,w,p) and (u,v,\V,p) are given by relations of the form in 

equation (5), then these functionals can be substituted into equations (1) 

through (4). 

After carrying out an isoparametric mapping of the element equations (1) 

through (4), they are squared and summed. The variation with respect to 

each nodal variable is taken to yield a set of 256 equations. These are 

integrated numerically over the volume to give the local element matrix. A 

boundary condition matrix is compiled by squaring and summing the boundary 

condition equations integrated over element boundary surfaces and taking 

variations with respect to nodal variables. The boundary condition matrix is 

mUltiplied by a constant, determined by best numerical conditioning, and 

summed with the element matrix. (The Least Squares Method is described in 

detail in references 4 and 5.) 

PROGRAM ORGANIZATION 

j 

The computer program to perform a 3-D duct acoustic analysis was 

designed in modular form. The principal modules and their functions are given 

in the Appendix. 
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SOLUTION TECHNIQUE EVALUATION 

Checkout with Direct Equation Solver 

To verify the element formulation, boundary condition insertion, and 

program coding, test cases were compiled. The first test case consisted simply 

of a single element, giving a system of equations of order 256, with straight 

sides, Le., a cube. The x-y plane at z = 0 was specified as a source plane, 

and at a z = 1 as a radiation plane with an impedance of pc. All other walls 

were hard (impedance = 00). The source frequency was chosen to be 

sufficiently low so that only the plane-wave mode was cut on, mean flow was 

zero. 

A direct-solution library subroutine was used to solve the resulting system 

of equations. This solution coincided closely with the analytically predicted, 

plane-wave propagation. Conditioning of the set of equations was evaluated 

by investigating the range of eigenvalues. This range (a factor of 10 9
) 

indicated poor conditioning. -Modification of equation weighting factors in the 

element least squares_ formulation and the weighting factors in the boundary 

condition integrals gave only marginal improvement in conditioning. 

Jacobi and SOR Iterative Methods 

Writing the matrix equation as AX = b, we may split the global matrix 

(A) into a lower triangle (L), a diagonal (D) and an upper triangle (U), 

A = D (L 7- I 7- U) 

Jacobi's iterative method is then written as, 

where X (k) is the previous estimate for the solution vector and X (k+1) 

is the new estimate. 

16 
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Similar ly, the SOR method is 

where n, the over-relaxation parameter, lies between 1 and 2. 

For these methods to converge, it is necessary that all eigenvalues of 

their iteration matrices, viz, 

-(L + U) and (I + nL)-l {(l - n) 1- nUl 

r~spectively, should be less than unity (6) • 

Progr.ams were written to construct these iteration matrices, obtain their 

eigenvalues, and implement the two solution schemes for the test problem 

already analyzed using the direct solver. 

For the Jacobi method, the largest eigenvalues were greater than unity 

for the test problem and as expected, solutions diverged. 

For the SOR method, the largest eigenvalues were less than, but 

extremely close to one (~O. 99998) indicating slow convergence. In practice, 

convergence for this method was found to be so slow that its use was 

impractical. No noticeable improvement was found by varying n. 

Conjugate Gradient Method 

The conjugate gradient method is unique among iterative methods since, 

in the limit, it becomes a direct method. That is, for an nth order ~ystem if 
i 

rounding errors are ignored, the nth iteration will give the exact solution. 

Often, however. a good approximation to the exact solution is obtained for 

an iteration well below n. 

The method was first published in 1952 (7) but did not receive much 

attention until recently when it was shown that various preconditionings can 

17 



significantly improve its rate of convergence. In most cases, it is now 

significantly faster than SOR. 

The theory of the method is given in references 7 through 9., and only 

the mechanics of the method will be described here. 

Given a system AX = B with a positive definite nxn matrix A and a start­

ing vector Xo compute 

ro = B-AX o and set Po = roo 

For i = 0,1,2, - - - - n-1 compute 

a. = 
1 

X. + a.p. 
1 1 1 

= r. - a.Ap. 
1 1 1 

= r.-.L1 T b.p. 
1.,- 1 1 

X will be the solution of the linear system if rounding errors are ne­
n 

glected. Often a good approximation to the solution is obtained by some X. 
1 

for i «~no 

18 



r Results from application of the conjugate gradient- method to. the test 

problem showed high initial promise. Without preconditioning" solution of the 

test problem (order 256) was obtained in 140 iterations. With symmetric scaling, 

the number of iterations for solution was decreased to 50" using the same 

arbitrary starting vector. 

General convergence trends were then investigated with the result that 

the total number of iterations for convergence was found to be dependent upon 

several factors: 

• The variance between the first estimate and the actual solution 

• The number of finite elements per wavelength 

cp The conditioning of the global matrix 

I) The order of the global matrix 

In these investigations, the Euclidean norm Of the residual vector (11r i 112) 

was used to assess convergence. For a typical first estimate, Ilr II was 
·02 

of the order of 10
3

; while for a good first estimate, Ilr 112 was about unity. 
o ~ 

Convergence appeared to reach a plateau at values of Ilr.11 between 10-
_ 5 1 2 

and 10 with no further improvement obtainable regardless of the number of 

subsequent iterations. 

Dependence of the number of iterations for convergence on the accuracy 

of the first estimate was expected and is a normal characteristic of iterative 

methods. Dependence on the number of finite elements per wavelength was 

surprising. After further investigation, it was found that varying the number 

of finite elements per wavelength affects the conditioning of the global matrix, 

and that the fewer finite elements allowed per wavelength, the worse the 

conditioning became. 

It had been hoped that a firm trend could be established giving the 

number of iterations required for convergence versus the order of the global 

matrix, but it was discovered that under some circumstances the Euclidean 

norm of the residual vector (1Ir.11 2> would decrease in the usual inverse 
1 -6 

exponential manner until a low value of the error was reached {about 10 >. 
However, the solution differed from a direct solution by unacceptably 
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large margins. Apparently the eq~alions may become sufficiently iU-. 

conditioned that solution accuracy is d~graded by a sigriificant degree. 

This ill-conditioning may be seen from the plots in Figure 4. The 

analytical plane-wave solution is compared with finite element solutions for 

one through four finite elements per acoustic wavelength. In anyone con­

figuration, the global finite element matrix equation is solved in two 

differen t ways: first. using a direct method and second, using the pre­

conditioned conjugate gradient method. In the case of one finite element per 

wavelength, the two solutions not only differ substantially from the analytical 

plane-wave solution, but also differ substantially from each other. In the 

cases of two and three elements per wavelength, the finite element solutions 

fall much closer to the analytical plane-wave solution; while for the case of 

four elements per wavelength, the three solutions are coincident. These 

results indicate that the finite elem.ent global matrix equation becomes increas­

ingly well conditioned, the more elements allowed per wavelength. 

The behavior of the norm of the residual vector Ilr.11 , versus 
1 2 

iteration number for the cases in Figure 4, is illustrated in Figure 5. Here, 

the error norm decreases in a similar manner to similar final values in each 

case. This may be erroneously interpreted as indicating that the conjugate 

gradient solution algorithm has solved all four problems to the same degree of 

accuracy. 

The first estimate solution vector in each case is the analytical plane­

wave solution. Note that the error norm Ilri 112 decreases very rapidly in all 

cases and that the total number of iterations is substantially less than the 

number of degrees of freedom. 

, 
An additional problem was the unexpectedly large number of iterations 

required to reach an acceptablY low value of the error norm when the first 

estimate solution vector differed significantly from the true solution. For 

example, the case presented in Figures 6 and 7 uses a large number of 

elements per wavelength OB) which should give a well conditioned matrix. 
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Figure 4. - Effect of the number of finite elements per 

wavelength (A) on solution accuracy. 
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Figure 6. - Comparison of finite element conjugate gradient; 
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poor first estimate solution vector. 
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The first estimate of the solution 'Vector was chosen to be zero except for the 

real pressure components which were all assilIried to be unity_ 

The total system of equations numbered 1696. After 600 iterations the 
~2 

norm Ilr II was at a value of about 10 (Figure 7) and the solution 
600 2 

differed substantially from the correct solution. Only after 800- 1000 
-It 

iterations, the error norm had decreased to sufficiently low values of 10 
_5 

to 10 At these values, the solution became an accurate copy of the 

analytical plane-wave solution (Figures 6 and 7). 

As a final exercise, some larger finite element meshes were run in order 

to assess typical computer resources required, 

e. g. , 

Mesh - 4 x 4 x 10 elements 

Degrees of Freedom - 13,240 

Computer times on the C. D . C. Star 100 were as follows: 

Global Matrix Assembly - 312 wall clock mins. 

76 CPU clock mins 

Conjugate Gradient Solution 

- 35 wall clock secsiiteration 

5 CPU clock secsiiteration 

Using four elements per wavelength with a good first estimate solution 

vector, Ilr.11 decreased from 4.5 x 10-
2 

to 2.5 X 10- 1t in 50 iterations. 
1 2 

Although the performance of the model in this example was adequate, it 

was based on the premise of an extremely good first estimate solutio:r: vector. 

With a poor first estima te solution 'Vector, several thousand iteration~ would be 

required to achie'Ve a satisfactory solution. 

The magnitude of computer time to perform several thousand iterations 

on this problem is several hours of CPU time and several days of wall clock 

time. When consideration is also made of the fact that 4 x 4 x 10 elements is 
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not a sufficiently large mesh to analyze ev:en :fairly trivial duct acoustic pro­

blems, continuation of the effort· seems urirewarding. 

It seems probable from the problems described earlier regarding poor 

conditioning of the global matrix when too few elements were allowed per wave­

length, that severe changes in bouridary conditions, element geometry or aero­

dynamic mean variables over a short distance., would contribute further ill­

condi tioning . 

CONCLUSIONS 

This report describes an attempt to extend finite element modeling of 

duct acoustics to fully three-dimensional problems. The difficulties which arise 

when the successful 2-D techniques of Galerkin weighted residual formulation 

with a direct matrix solver are extended to 3-D, are described. The reasons 

for believing that an iterative matrix solver might be substantially quicker than 

a direct solver are indicated. Since all known iterative solvers require 

positive definite matrices, a least squares formulation was used instead of a 

Galerkin formulation. 

The root cause of the difficulties encountered in application of iterative 

matrix solvers lies in the tendency of the least squares formulation to yield 

poorly conditioned matrices. Due to this fact, the Jacobi method diverged, 

Gauss-Seidell and SOR failed to converge at a measurable rate, while the 

conjugate gradient and even direct methods were uneven in their performance. 

Of the iterative methods tried, there is no doubt that the preconditioned 

conjugate gradient method was superior. If a formulation to yield well con-
I 

ditioned positive-definite matrices could be found, it seems that this solver 

would give solutions within an acceptable amourit of computing effort. 

Although the goal of this work was not acbieved~ the steps taken and 

methods used represent a logical approach to the problem which should benefit 

future workers in this area. 

26 



...-
I 

r-
I 

APPENDIX 

Principal Modules and Functions 

of 

Computer Program 

AFE3Dl 

J 

27 



This Page Intentionally Left Blank 



Program AFE3Dl 
~ 

Set up Acoustic Source Frequency 
and Physical Constants 

Set up Mesh Parameters J 

CaLL MMPTS MMPTS and GGMM generate global 

matrix map pointers and global 

Call GGMM matrix map 

Allocate memory areas that will be 

needed for solution of this analysis .. 
mesh. 

CaLL ASEMBLE 
I Generate acoustic finite elements 
I 

and assemble them into global 

matrix. 

Call BCINSR T H Insert boundary conditions into 

global matrix. 

Call PRESOL }- Generate first estimate of solution 

for iterative linear equation 

solvers. 

Call SOLVE Solve linear equation set. 
I 

I END I 
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Within this structure, module ASEMBLE is the most significant high-level 

module. It has the following structure. 

Module ASEMBLE 

Initialize global matrix to zero 

Call PRELM 

in 
z-direction 

in 
y-direction 

Cycle on 
number of elements 

in 
x-direction 

Call ELEMENT 

Call LGTRANS 

Module evaluates generalized finite 
element functionals, and their 
derivatives at their Gauss points. 

4 

3 

2 

Module generates element matrix 
for current element. 

I-----l-'Module computes local to global 
~------.~----.......I transformation of node numbers 

for current element. 

LVI 
(Sheet 1 of 2) 
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1 

Call PACK 1-----1 Module packs element matrix into 
~-------r---------~ 

global matrix. 

Take next 
2 

Take next 
3 

Take next 
4 

j 

(Sheet 2 of 2) 
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