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Abstract

The effective level of line formation for spectroscopic absorption lines

has long been regarded as a useful parameter for determining average atmo-

spheric values of the quantities involved in line formation. The identity of

this parameter has recently been disputed. Here we re-establish the depen-

dence of this parameter on the average depth where photons are absorbed in a

semi-infinite atmosphere and show that the mean depths derived by others are

similar in nature and behavior.
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The concept of a "level of line formation" is scarcely novel in

Astrophysics (see the review by Stromgren, 1951, p. 204). Nevertheless, this

concept was not introduced into studies of planetary physics until 15 years

ago, in a theoretical paper concerned with the hazy atmosphere of Venus

(Chamberlain, 1965, p. 1190). 	 Recentl 3 , the usefulness and functional

behavior of this parameter have been disputed (Wallace and Hunten, 1978;

Kattawar, 1979). We contend that for a homogeneous, semi-infinite atmosphere

the effective level for line formation is a straightforward matter flowing

from the transfer equation.

We define the mean depth as the first moment of the sink function

fo S(T) TdT
<T> _

	

	 (l)
jo S(T) d T

where	 S(T) = (1 - w) J(-r, uo) ,	 (2)

w is the single scattering albedo, and J is the mean intensity averaged over

direction at depth T. In Chandrasekhar's (1950) first approximation for a

semi-infinite atmosphere we have

J(T, ]JO ) = T (Le-kT + Ye- T/uo)	 (3)

where L and Y are functions of ul , uo , and m, nF is the incident flux;

ul = 1/ 33 and k = (1 - w)1/2/ul . Substitution of (2) and (3) into (1) gives

(adapted from Chamberlain, 1965)
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Note that the first term on the right hand side is the asymptotic limit

for <T> for weak lines with a weakly absorbing continuum (i.e., w - 1).

However, without loss of generality, T can represent optical thickness in the

continuum as well as a line.

A physical interpretation of this result comes from considerations of a

random walk of photons (Chamberlain, 1978, p. 140). Very crudely, the number

of scatterings required for a photon to migrate over depth T >> 1 is T2 . With

a probability of absorption at each encounter of (1 - w), we would expect to

find a substantial fraction of the photons absorbed only when

T2 (1 - w) . 1

or T m (1 - w)-112.

Although the sink function S (T) = (1 - rj) J (T, PO ) technically depends

on Uo , in the limit of weak absorptions and non-grazing incidence, <T> is

practically independent of uo , because the Y or "solar term" (representing

primary scattering) in Equation (3) is relatively unimportant at the great

depths of <T>.

Wallace and Hunten (1978) derive the equivalent width W, which comes from

wavelength integrals of intensity I v (Tv = 0; v, vo ), both in the line and

continuum, and therefore depends on the viewing geometry. The problem lies in

assigning a pressure or depth where the effective pressure-broadening

parameter, ae , can be evaluated.	 In a real atmosphere a varies with depth,

but we suppose there is an effective depth Te where the local a( e
) = e best
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represents the entire composite line. The concept is reasonable, but their

evaluation of ae is suspect. They first of all equate equivalent widths for

constant-pressure and varying-pressure models in the limit of a vanishing

albedo, w + 0, or a single-scattering atmosphere.

As noted above, a v, uo dependence is then built in; but the limit of

S4 ngle scattering scarcely yields a radiative-transfer (multiple scattering)

model. For larger @ they obtain the numerical coefficient of a by matching

curves of growth for the two models (constant and varying pressure), but the

directional geometry remains the same because it is tied to the case w = 0.

Through a trial-and-error method, they multiply the two curves of growth by

different factors which are functions of u, u o, and w to achieve overlap and

derive:

ae	
Tc ( (1 - @)	 (u + uo ))	 (5)

where a/Tc is the line width at unit optical depth. It is surprising to see a

reflecting layer air mass factor n = u 1 + po 1 in a formula for a scattering

layer.	 Chamberlain (1965) showed that for multiple scattering the u, uo

dependence for weak line equivalent widths, was (v + uo ). However, if we

assume that their method of matching curves of growth is correct, it is easy

to suggest an alternative formula with the correct (u + v o ) variation. The

results and figures presented by Wallace and Hunten are for u = po ; in this

case, the factors (u + P  ) and 1/(17 1 + 110-1) are identical in variation.

Therefore, since they use arbitrary numerical factors to force their constant

and	 varying-pressure models to	 give identical	 curves of	 growth, we	 can

multiply	 Equation	 (5) by (u 1 + uo-1 )(u + uo )/4 which is unity when u =	 uo.
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Their formula then reads

s
 T L^	 ^l u 4 J
c (1 - @)

1/2

Not only does this give exactly the same curve of growth as (5), when u = uo,

but it also contains the Chamberlain (1965) u.uo-variation.

Kattawar's (1979) quarrel with Chamberlain's <T> is conceptual. His own

definition of the effective level of line formation is

Teff = fo TN5e (T)dT / jo NSe (T)dT	 (7)

where NSe (T) represents the number of photon scatterings occurring at depth T

for light which emerges. In other words, Teff is the average depth at which

an emerging photon has scattered. 	 On the other hand, Chamberlain's <T>

represents the average depth at which photons are absorbed.

Kattawar's principal argument against Chamberlain's <T> was that as w

approaches unity, <T> goes to infinity. 	 This is a result of the fact that

as w approaches unity the light intensity deep in a homogeneous medium becomes

a constant with depth. Obviously, the depth-averaged value of such a constant

function will tend to infinity.

However, it is a simple matter to show that Kattawar's 
Teff' 

as defined

in Equation (7), has the same asymptotic behavior as <T>. Let N s (T) be the

total number of scatterings occurring at depth T. N Se is less than N s by a
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factor P(w, T) which represents the probability that a photon, which has

scattered at depth T, will eventually random walk out of the atmosphere.

Following the lead given by Chandrasekhar (1943) for the random walk of

photons with an absorbing screen we obtain (see Appendix)

P(W, T) = exp [- (T2 In ( 1 /i?) )1/2 ]	 (8)

Multiplying this probability by the mean intensity, J(T,110 ), gives N se

(times a constant) for insertion into the integrands of Equation (7). We then

have

[k + m] -2 + ' [uo-1 + m)-2

T= ----	 -	 ------- - - -eff	 [k + m]
-1 

+ L [uo
-1 + m)-1

where	 m	 = [ln (1/ 2)]1/2.	 ^;o-e	 that	 for	 1, ^ = (ul - t)i )/t.^ and

M m ul k(2) 1/2 . Since k -0 as w + 1, we have

Teff	 (^ + 
1
(2) 1/2 ^(1 - ^

Jl/2 + ,b 	 u1	 (9b)

This	 approaches infinite	 dQ;:.th	 as	 a, nears	 1	 only	 slightly	 z 	 ;;e 	 than

C'ia:	 erlain's	 <,> in	 ^1 1 1a`ion (4).

This	 raises the	 `V ijous ,";,.s:.ion, if	 T `rf	 is	 110	 S	 . ilar-	 f o	 <T>,	 ..,hy	 ^, as

Ka±`_,a,;,7r	 ryrg:,^d	 o"' -r,:ise? Tl,n	 :r is	 `n	 his

T,

(9a)
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appropriate for a comparison with <T>, which is derived for a semi-finite

homogeneous medium.

The identity of teff is further obscured because the top tenuous cloud

layers are weighted the same as the deep atmosphere since his integration step

size is in kilometers (heff) and not optical depth.

In figure 1 we have compared a typical example of Kattawar's radiance

distribution with a classic source function. In effect, these are the two

weighting functions for the calculations of "eff 
(A) and <0 (8) in Equations

(7) and (1) respectively. The effects of the finite atmosphere on 'eff are

evident. As approaches unity,Taff will remain finite. However, with the

above defects corrected, Kattawar's Yeff would match <T> in behavior.
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Appendix I

The Escape Probability

In order to calculate the probability of escape from a semi-infinite

cloud for a photon which at time t = 0 scatters at depth T, we refer to the

classical random walk problem with an absorbing screen as put forth by

Chandrasekhar (1943). Then, the probability of escape in precisely n

scatterings is given by

P	 T n)	
n T 21/2 e- T2/2n
n Rn.
	

(10)

Therefore, the total escape probability is

J I In 	 )1/ 2 e- T2j2n do
P(w, T)	 i	 A nn	 (11)

I1 n ^ )1/2 a-T2j2n do

Since PP. T. 0) - 0 (i.e. the probability for escape from depth T with zero

scatterings is negligible) then we can extend the integrals' lower limit to

zero. 'thus, we have for the numerator

I n. ^n i j 2 T 
^ 

n-3/2 e -A/n a-,n do

where A = T 2/2 and m = -ln (i)). Consider

f(A)	 Jo 
a-A/n - mn n-3/2 dn.
	 (1?_}
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We see that

f(A)	
d j•

 a
-A/n - m n-1/2 dn.

- - g o

Letting x - (n) 1j2 , we have

f(A) - -2 d jo A/x

2
 - mx

2
 dx.

Now letting x - (A)MY, we obtain

f(A) - -2 d^ ((A) 1J2 g(Y)]	 (13)

where

9(Y) - jb a
-Yy 2 -1/y 

2 
dy	 (14)

and Y - M. Now, considering g(Y), let z - 1 iy2. We then derive

g( Y) - jo e"YJz 2 - t 2 dz/z2

so that

r_
	 2	 2

g (Y) - -	 (jo a-Y/z - z dz ^.

Finally raking the change of variable z - (y)
1/2 

y. we have

2	 2
9( Y) _ - dY j^ e 1/y ' YY ( Y) 112 dy.
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Substituting from Equation (14) then gives

g (Y) • - I [(Y)", 9(Y)

with a solution of

g(Y) - CY-1/2 exp (-2Y1/2)

where C is a constant of integration. Substituting back into Equations (13)

and (12) gives

P(W, T) - exp [- (-^ In (1Jt?) ),1J21.
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radiance distribution for a

!b) and (B) a source function

^Chambertain. 1970).
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