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REPORT 995

BLOCKAGE CORRECTIONS FOR THREE-DIMENSIONAL-FLOW CLOSED-THROAT WIND
TUNNELS, WITH CONSIDERATION OF THE EFFECT OF COMPRESSIBILITY

By Jou~x G. Herrior

SUMMARY

Theoretical blockage corrections are presented for a body of
revolution and, for a three-dimensional unswept wing in @ cir-
cular or rectangular wind. tunnel. The theory takes account of
the effects of the wake and of the compressibility of the fluid,
and is based on the assumption that the dimensions of the model
are small in comparison with those of the tunnel throat. - For-
mulas are given. for correcting a number of the quantities, such
as dynamic pressure and Mach number, measured in wind-
tunnel tests.  The report presents a summary and uniﬁcaﬁon
of the existing literatire on the subject.

INTRODUCTION

When a model is placed in a closed-throat wind tunnel
there 1s an effective constriction or blockage of the flow at
the throat of the tunnel. The effect of this blockage is to
increase the velocity of the fluid flowing past the model;
if the model is not too large relative to the tunnel throat, this
velocity increment is approximately the same at all points
of the model so that the model is effectively working in a
uniform stream of fluid the velocity of which is, however,
greater than the free-stream velocity observed at some
distance upstream of the model. It is therefore necessary
to correct the observed velocity, dynamic pressure, Mach
number, and other measured quantities for the cffect of
this constriction. This correction is frequently called the
correction for “‘solid blockage.” 1In addition to this solid-
blockage correction, & correction for “wake blockage” is also
necessary if the true dynamic pressure and Mach number at
the model are to be determined. This wake blockage
arises because the {luid is slowed down in the wake and con-
sequently must be speeded up outside the wake. A further
effect of the wake is to produce a pressure gradient which
must be considered in correcting the drag coeflicient,

Formulas for the solid-blockage correction for a model
mounted in a two-dimensional-flow wind tunnel are given in
references 1, 2, 3, and 4. The first-order cffects of the com-
pressibility of the fluid on these corrections are given in
reference 5, as well as in references 3 and 4. References
2, 3, and 4 consider also the wake-blockage correction, and
reference 3 also considers the drag correction due to the
pressure gradient eaused by the wake. The formulas given
in reference 3 for the solid- and wake-blockage corrections
will usually be found most convenient whenever the engineer
is confronted by a practical problem of determining the
corrections for any configuration met in his experimental
work. :

. pressibility of the fluid.

‘the ratio of wing span to tunnel breadth.

The solid-blockage correction for a model mounted in a
three-dimensional-flow wind tunnel” has been given in a
number of different forms by different authors. Not only
do different authors give the correction for the same con-
figuration in different forms but no one author gives formulas
which are applicable to both fuselages and wings in tunnels
of various shapes; for this reason, the engineer- confronted
with a'correction problem may have to refer to several reports
to get the complete solution of his problem. Moreover the
modifications of the formulas for the first-order effects of
fluid compressibility are given incorrectly in some cases.
References 1 and 2 give a formula for the solid-blockage
correction for a body of revolution in a circular or rectangular
tunnel for the case of incompressible flow. In references 5
and 6 the effect of the compressibility of the fluid on this
correction is discussed, but the result given is incorrect.
Reference 4 gives a formula for the solid-blockage correction
for a body of revolution and for a three-dimensional wing in
a 7- by 10-foot wind tunnel. The modification for com-
pressibility is correct for the wing but wrong for the body
of revolution. Refercnce 7 gives a formula for the solid-
blockage correction for a body of revolution in a circular
tunnel, correctly taking account of the effect of the com-
References 8, 9, and 10 give a
formula for the solid-blockage correction for any body in a
circular wind tunnel together with the appropriate constants
for a body of revolution and for a rectangular wing having
various span-to-diameter ratios; the modification of this-
formula to take account of compressibility is correctly given.

It is clear that no one report gives all the necessary
formulas together with the appropriate constants and com-
pressibility modifications to cnable the engineer to calculate
the solid-blockage correction for any case with which he
may be confronted. Moreover, when the results of two or
more reports overlap, the forms are frequently different so
that it is not obvious whether the results are in agreement.
It is the purpose of the present report to summarize and
extend the results of the previously mentioned reports.

.Formulas are given for the calculation of the solid-blockage

correction for a body of revolution or a three-dimensional
unswept wing in a circular or rectangular tunnel. These
formulas contain two constants, one depending on the shape
of the body and the other on the shape of the tunnel and
(This ratio may
be taken to be zero for a body of revolution.) Values of the
first constant for various bodics of revolution and for a
number of frequently encountered wing-profile sections are
771
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given.  Values of the second constant for a circular tunnel
and for rectangular tunnels of a number of commonly en-
countered breadth-to-height ratios are given for various
wing-span-to-tunnel-breadth ratios. Some of these values
have been taken from the previously mentioned reports;

whereas others appear for the first time in the present report.

The discussion is limited to bodies centrally located in the
wind tunnel.

The wake-blockage correction for a model mounted in a
three-dimensional-flow tunnel is given in references 4, 8, 9,
and 10. For the casc of incompressible flow the formulas
are in agreement, but the modification to take account of
compressibility given in reference 4 differs from that given
in references 8, 9, and 10. This matter is discussed in the
present report. In refercnce 11 the corrections for the
pressure gradient due.to the wake are given with the correct
compressibility factors '

All the final correction formulas together with directions
for their use are given in the final section entitied ““ Conclud-
ing Remarks.”” Mathematical symbols are defined as intro-
duced in the text.  For reference, a list of the more important
symbols and their definitions is given in appendix B.

SOLID BLOCKAG]L IN INCOMPRESSIBLE FLOW

In studying the flow over a thin airfoil of small camber at
a small angle of attack it has been shown that the effects of
camber and thickness may be considered independently.  In
treating the problem of wall interference, it is again con-
venient to consider the thickness and camber effects sep-

arately. The camber effect, as pointed out in reference 3,
contributes nothing to the blockage correction. Conse-

quently it suflices to determine the blockage correction for
symmetrical bodies at zero angle of attack. 'T'his means
that for wings it is necessary to consider only the base profile
of the airfoil, the hase profile being defined as the profile the
airfoil would have if the camber were removed and the re-
sulting symmetrical airfoil placed at zero angle of attack;
bodies of revolution n(-od be considered only at zero angle of

attack. »
RECTANGULAR TUNNEL

Three-dimensional wing.—The blockage correction for a
three-dimensional wing in a rectangular tunnel is considered
in reference 4. Numerical values are given only for a wing
of 6-foot span in a 7- by 10-foot wind tunnel. The method

may, however, be applied to any Joclmwul.u tunnel and any -

span-to-br ondth ratio.

Consider a rectangular tunuel of height H and breadth B.
Suppose that the wing span 2s is in the B-direction so that
28/ is the span-to-breadth ratio.  As in reference 4, let
the wing be represented by a series of finite lines of sources
and sinks: (Sce fig. 1.) The strengths of these sources
and sinks are assumed to depend on the airfoil profile and
the determination of these strengths,” which is a two-
dimensional problem, is.explained presently. 1f each ling
retains the same strength from one end to the other, the
wing section cannot he exactly constant. It will thin
down at the extreme tip and the plan form will not be

exactly rectangular, but neither of these features is such as'

to detract from its usefulness for the present purpose, which
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Fioure 1, —Image system for three-dimensiona) wing in rectangular tunnel.

is to represent an actual wing sufliciently well to enable a
calculation to be made of the velocity along the tunnel
axis “induced” by images of the wing. It is this velocity
induced by the images which represents the effeet of the
tunnel walls on the velocity ‘at the model, and which is the
solid-blockage correction. :

Consider. the image line source €' of strength @ pu unit
l(:ngtll. The velocity potential of a three-dimensional
source of strength Qéy (volume per unit time) is —Q dy/4wr.
1t follows that the component velocity along the tunnel
center line induced at A by the source clement Qéy is
Ny b

=75

where ¢ and are (,lcﬁnc(l in figure 1. Putting 2=

(mB—y)?+n?H*+g* and integrating from —s to s gives
A= Qq |: , mil3+s _
47(’H*+ 9% | yn’H'+ g*+ (mB+s)?
mB—s ] o
VnPH2 4 g2+ (m 3 —s)? :

for the single line source CD. Now C1) is one image of one
finite line source used to represent-the wing in the tunnel.
In order to find the velocity induced by all the images of this
particular line source, it 1s necessary to add the results
obtained from equation (1) by giving m and n all positive
and negative integral values except m=n=0. Thus for a
single line source ‘

Qq Z' [ mB+s- _
'12”2 VRH?+ g2 - (n B4-+)?
mB—s. 2:| @)
NP H 4 g+ (mB—s)*]
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where the prime denotes that the term m=n=0 is to be
omitted from the summation. Equation (2) may be re-
written

Qr/ﬂ £
V=5 O (11 B 11

where

s / , 1
(11 B 11 T2 2 n*+(g/HY

: [ m-+ts/l3 _
¥4 (g/H)* - (m ] B (B H)?

m—s/l3 )
'\/'nz+(_(1/1-I)?+(m——.s'/lf)'l(b’/H)*] o

It s convcnient to define

(L5 ) ( Yo (e, 5By
wrn)=2Gn) Gren) ®

so that
Q=

‘ g s B
Ua= R T

/2 LA
H B'H
Now ¢ and 7 depend only very slightly on g/H and so it
usually suflices to take g/H=0 in the cvaluation of these
quantities. Any wing profile can be represented by a suitable
distribution of sources and sinks along the chord. 1t follows
that the total induced velocity due to the wing images is
obtained by summing over this distribution and is approxi-
mately '

_\U $2Q9 i, (0, £ B)

TGHET T\ B

It may be noted here that setting g/H=0 in th(, evaluation
of ¢ and 7 is equivalent to representing the wing by a line
doublet of strength Qg (analogous to references 1 and 2)
instead of by a distribution of sources and sinks. ‘

The quantity Qg of equation (5) can be determined
approximately from the wing profile and this determination
is a two-dimensional problem. From reference 2, but with
the notation of reference 3, there is obtained

Qg =§ Aerli’ o (6)

where
¢ airfoil chord
U’ apparent free-stream velocity at airfoil as determined
from measurcments taken at a pomt, far ahead of
model. :

A a factor dependent on shape of base profile
Substitution of equation (6) into equupion (5) yields
S
(0 BH

2sct 7 A /s B -
e (0 B @)

AU 25t ¥
U T BE) 16

(5)
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where _

t maximum thickness of airfoil

(’ cross sectional area of tunuel

If V denotes the volume of the wing, then V=2setx; where
1, <1 depends on the shape of the base profile.  Equation (7)

may be rewritten ' .
AU KV :
. U/ - 617:/2 (8)
or : A
MU' Kor2sct
g ®
where : .
s B ;
T=T (0,]3: H (10)
. TP A
Ki=5¢ e (11)
- 71'1/2 A
K:=T5 i (12)

It is clear that r depends only on the tunuel shape and the
wing-span-to-tunnel-breadth ratio; whereas K, K, depend
only on the shape of the base profile. '

The factor A can be determined for any base profile {from
the relation (references 2 and 3)

_16 j JI=P \«1+((Iy,/(l:c)2d< ) (13)
T Jo

where C _

e ordinate of base profile at chordwise station z

dy.fdx slope of surface of base profile at x

P base-profile pressure coeflicient at z in an m(,omplc

sible flow

Values of A for a number of base pxohlv are given in refer-
ence 3. Thus the value of K can be ealculated from equa- -
tion (12). The value of & is immediately found from the
area of the base profile which may be calculated, for example,
by a numerical integration from the ordinates of the base
profile. ~ As soon as & is known, K can then be caleulated
from cquation (11). The evaluation of = requires the sum-
mation of the infinite series in equation (3). The summation
of this series is explained in Appendix A, '

Values of = for rect: mgulm tunnels of various breadth-to-
height ratios and for various wing-span-to-tunnel-breadth
ratios are given in table I and figure 2. Values of K, and K,
for various base profiles are given in tables II and III. The
choice between the two formulas (8) and (9) is entirely a
matter of convenience and should be decided in the light of
the available data.

Body of revolution.—The blockage couecbxon for a body
of revolution in a rectangular tunnel is copsidered in refer-
ences 1, 2, and 4. In reference 4 numerical values are given
for some average streamline body of revelution,in a 7- by
10-foot wind tunnel; whereas in references 1 and 2 numerical
values are given for prolate spheroids and Rankine Ovoids
in square and duplex (breadth cqual to twice the height)
wind tunnels. Either the method of reference 4 in which
the body of revolution is represented by a suitable distribu-
tion of sources and sinks along its chord or the method of
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TABLE I—VALUES OF 7 FOR VARIOUS TUNNEL SHAPI"‘
AND CONFIGURATIONS

~ ~ - - 3-dimensional wing with span-to-breadth ratio
. Body of .
~ . revolu-
tion 23 2% 28 25 . |2
Tunnel shape ”,}—0 Tg=°'25 Tg=°'50 'i;=°""‘ T;="m
\\
Cirealar_________.._.._... 0.797 0.797 0. 812 0, 828 0.8559 | _.__.
Square.__._.___..__. I L8512 812 . 818 LR36 .874 0.951
g1 . K63 i ) . 866 .884 N6
L6 L 6 RU L0 023 037
1028 1. 028 1.017 L 900 L U67 L62
Rectangular. __ 1.720 1.729 1. 630 1,436 1. 204 1. 160
1,726 1.720 1. 783 1. 896 2.196 2.665°
1.028 | N (7 S U R S 1,434
.922 . 922 . 932 L9077 1.063 1.230
BIH=7/10 . 863 -5 T I I 1.110
TABLE II.—VALUES OF K, FOR VARIOUS BASE PROFILES
N . .
AN Conven- NACA low-drag sections
AN Joukow-| tional .
Ellipse| ski NACA
section | sections v v c\ .
£=0.XX \ XX |16-0XX | 64-0XX [65-0XX | 66-0XX
¢
0.06 B T U 2 0 Y 0. 041 0. 938 0.902 - 0.965 0. 987
.09 965 0,991 L072 L 962 L9061 i J984
W12 L ou3 1.016 1. 005 it L9087 LUR9 1. 006
15 1.019 1. 045 1.035 1,028 1.019 1,020 1,082
IR 1.046 1.068 1.063 . 1062 1047 1.031 1,057
.21 10727 1.083 1000 1. 090 1.073 1.079 1.079
.25, 1. 108 :
.30 1.152
.35 1. 196
.50 1.329
1.00 1.772

TABLE III.-—_\-VfALUESOF K, FOR VARIOUS BASE PROFILES

\\_ Conven- - NACA low-drag sections
Ran- Joukow-] tional
kine | Ellipse | skisec- | NACA
Oval tion | sections -\ -\ vy <
t-=0,XX\ . XX |16-0XX | 64-0XX [ 65-0XX | 66-0X X
¢ . N ]
0.06 | _____ 0.737 | ..... 0.644 " | 0.690 0,615 0. 632 0. 679
.09 0.913 L 758 0.599 . 665 L 708 .611 . 630 . 673
.12 . 928 780 L615 68T L7348 624 . 641 . 684
.15 . 935 . 800 NN .708 56 L6840 657 . 6UR
.18 953 .822 652 T2 . 781 654 673 712
.21 91 842 670 746 . 802 666 686 723
.25 979 .870 692 w1 .830 678 697 732
.30 1. 002 . 905 s, 20 (P R I ISR R
.35 1.043 . 940 w3 | L. ISR U S B
.50 1176 | 1,044 876 | ool | cemen | eeeae | meeme | .
1.00 1302 L392 | .o | il | aeen | e | s | el

references 1 and 2 in which the body is represented by a
doublet of suitable strength at its center may be used to
obtain results for any streamline body of revolution in any
rectangular tunnel. Since the method of reference 4 was
used for the three-dimensional wing, it is instructive to use
the doublet method of references 1 and 2 for the body of
revolution case, although both methods give the same results.

Consider a body of revolution of maximum thickness ¢t and

length ¢ centrally located in a rectangular tunnel of breadth

B and height I1.  As in reference 2 the body may be repre-
~sented by a doublet of strength p given by the equation

y=;’£’ AU : (14)

where X is a constant. depending only on the shape and fine-
ness ratio of the hody. The velocity induced at the model
by the tunnel walls is the same as that induced by a doubly
infinite array of images of the doublet and is given by

1

r__ K S
AIU '—4,n.2 WH? 2By (15)

—— 1 I 3 ,‘?ecfanqt}lzTrr tunnel, b/}i-z
100
Rectangular tunnel, BIH-Y Y =
Ttk 1§ |—
Rectangular tunnel, BIH=%{, |_4+="]
. ‘S‘quare tunnel|
) == [ | Grocular tunnel
r.8o ]
[ - 17 for body of revolution
same as for 2s/B=0
. . (a)
’600 .2 4 .6 .8 10

2s/B *
(a) Variationof r with ratio of wing span to tunuel breadth, 2s/ B, for various tunnel shapes.

FIGURE 2.—Values of 7 for various tunnel shapes and configurations.

//
1.00 L4
A
Wing, 2s/B =104 A -
=~ A
T /V ~
70 g, Bs/B . 75] e
S
Wing, 2s/B =50
s
I L=< 1Wing, 2s/B=.25
Pt =] Body of revolution 5
80 _ P SR ()
1.0 1.2 /.4 1.6 1.8 20
. B/H

(b) Variation of r with ratio of rectangular tunnel breadth to height, B/H, for a body of
revolution and for wings of various span-to-tunnel-breadth ratios,

Fi1cuRrE 2,—Concluded.

the summation being taken over all positive and negative

integral values of m and n except m=n=0. If g/H=0
cquation (3) may be rcwrltten
( s B\_B sv (m-{-s/B)I',,,,,—(m—a/B)F,,,,,
g 0; D TT Pl
B H 28 nz Emnrmn
o Lmnﬁ1mn [(7n+s/g)ﬁmn +(’n_s/B)Lmn]
(16)

where the qummtlos Ko and F,, which are introduced for
convenience, are defined by the equations

En= 0T (mF s/ By BIHY
Foun =0T (m — s/ B)XBIHY?

It follows that

B , 1 .
a (0’ 0, H>=Z [7L2+m2(B/[1)2]3’2 (17)

Substitution of equation (17) into equation (15) yields

r__ M ' £
A]U -——”4‘”1:13 [ (0! Ol H)
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If p is replaced by its value from equation (14) and equation
(4) is used, there’is obtained

A,U' w3l ct? w1
T8 (1311)3/2 i (0’ 0 )=t s (0’ 0 77) 18
If V" denotes the volume of the body of revolution, then

F =xct? where k< wf4 depends on the shape of the meridian
scction of the body. (For a right cireular eylinder whose
meridian scction is clearly a rectangle xo=w/4.) Equation
(18) may be rewritten

A,U' I{;;T"v

7= 05 E (19)
or
AU Keret? 20
IJ' - 03/2 . ( )
where
T=T<0, 0,17 . - (21)
32\t ]
- e 4
Ky=— —— 22
h 3 8 C Ky ( : )
3/2
. wEA
h—‘s— - (23)
TABLE 1V. —VALULS OF K; FOR \’ARIOUS BODILS OF
REVOLUTION
AN Sym-
Fuhr- l;]etlric @, 6(\),)
. Prolate |Rankine| NACA | NACA | Juenu | Bubr | -},
. N A source- | mann. | body of
I spheroid| Ovoid | 111 133 \s)h:]k source: rm;g’nw
ody sink 4
¢ \ ' y body
0.08 0. 900 0.913 0.902- [ ... T T
10 905 L9234 909 | ol | oaiie b e | eeaes
12 910 .932 916 § coooo | ool i eeees
14 917 . 941 924 | ... | oo | o aeaio | aoea-
16 924 . 049 |17 N R O AU
18 931 L 957 939 0.933 0.925
20 938 . 964 948 | ..o oo ] .o ] aee
24 954 . 979 964 | ... 1 ..o} .o Lol
30 . 980 1.000 | ..... 0.983 | ... | ..o ..o
40 IR 1 T IR IR R O R R,
50 O (72 SRRSO IR R [T R R
1.00 ) O ¢ N IR RN S T B I
—

TABLE V.—VALUES OF K, FOR VARIOUS BODIES OF

REVOLUTION
N\, Sym-
. Fuhr- | metric (3,6,
Prolate { Rankine| NACA [ Naca | Mann | Fubr. | —1,0) |
: o source- | mann | hody of
¢ spheroid| Ovoid 111 .. 133' sink source- | refer-
c body sink | ence 14
\ body
0.08 0.472 0. 670 0. 405
100 474 . 668 409
.12 AT L 665 413
14 480 L6562 17
Aty L4854 L858 422
L I8 LASK . 658 L4208
.\l 401 L600 RS
24 . 500 0 A4S
n .o14 LI A5 T
40 L5837 607 -
50 . 562 609
1.00 . 696 696

1t should be noted that 7 for the case of the body of revo-

lution is the same as for the limiting casc of a wing when the,

span approaches zero, As pointed out in reference 2, X may

be calculated for any body of revolution whose pressure dis- -

tribution is known. . The necessary formulg is

A= 4( )f (J) \/l—P\/1+(dy/dx)’d< ) (24)

775

where

Y radius of body at chordwise station z

dy/dz slope of meridian seetion at =

P . pressure cocflicient at z in incompressible flow

Values of N for prolate spheroids and Rankine Ovoids are
given in references 1 and 2. As soon as N is known for a
body, K, can be calculated at once from equation (23).. The

“value of x; may be found from the volume of the body of

revolution which may be calculated for example by a numer-

NACA /1/; t/c=0.20

Prolate spheroid; t/c = 0.20

Rorkine ovord; tfc = 0.€0

NACA 133-30; tfe =0.30

NACA 11/;

t/e=0.18

Fuhrmann source-sink body; tje =0.18

Symmetric Fuhrmann source-sink body; tjc =0.18

. (3,6,-/,0) Body of reference /4; tfc =0.18

FiGURE 3.—Sample bodies of revolution.
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ical integration, and Aj can be calculated from equation (22)
as soon as k; is known.

Values of 7 for rectangular tunnels of various breadth-to-
height ratios are given in table [ and figure 2. Values of
K; and K¢ for various bodies of revolution are given m
tables IV and V. Some of these bodies are drawn in figure
3. Unfortunately these tables are rather incomplete and
morcover fusclage shapes used in practice are extremely
varied. However, in table IV it is observed that the values

of K3 do not depend very strongly on the shape of the body, -

although they do-depend on the thickness ratio.  For this
reason it appears that for most fusclages it will be sufliciently

accurate to use the values of K given for the NACA 111-

bodies. As the values of A, givcn in table V are more de-
pendent on the body shape, it is recommended that equation

. (19) and table 1V be used in preference to equation (20) and
table V whenever possible.

CIRCULAR TUNNEL

Body of revolution.-—It is convenient to consider the case

of a body of revolution before considering the case of the.

three-dimensional wing hecause more altention has been
given to the former by other authors.  (Sce references 1, 2,

, 8 9, and 10.)
correction is again given by equations (19) and (20) where
7 has a value appropriate to a civcular {unnel.  Sinee I and

K, depend on the model and not on the tunnel, they are -

still given by equations (22) and (23).
The most convenient starting point is the: formula of
references 1 and 2, namely,

AU

[’ ‘\v 372
T (T)

where S, is the maximum cross-sectional area of the model
It is only necessary to note that

(25)

S,=nt4

V= A‘g(-’t"’
It follows at once that -
AU’ LI A A 72 cf?
'TI;T'——=TX S (..,3/2=T? S _C—':_'VZ (26) )

Substitution from equations (22) and (23) reduces this to
equations (19) and (20), re<pectivelv It should be noted
that 7 of references 1 and 2 is identical with 7 of the present
report.

The value of 7 is given in table I and figure 2. Values of
K; and K, are given in tables IV and V. Again equation
(19) is preferable to equation (20).

The result of reference 7 fails to take into consideration
the body shape and so it is not very useful except for less
exact caleulations. The result of references 8, 9, and 10 is
presented in a different form, namely, '

AUV

U“,‘—-vav ]}3 (27)

1t will now be shown that the blockage

REPORT 995—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where :

Ay factor depending on m()(lcl shape

rv factor depending on tunnel shape

V' volume of model

B diameter of wind tunnel

It is of interest to show that equations (19) and (20) can b
deduced also from cquation (27) showing the latter to b

equivalent to equation (25). From- reference 8, there 1
obtained
7
}\V_:’: v A
4
Ty=—T1T
*

Since also C=nB%/4 equation (27) yields at once

AU’ Tt V 2 M w32 el?
T \iv? T )= F oo

This is the same as equation (26) which yiclds equations
(19) and (20) directly.

Three-dimensional wmg —The blool\a% correction for o
three-dimensional wing in a circular tunnel is given in refer-
ences 8, 9, and 10, the formula being of the same form as for
a body of revolution in a circular tunnel, namely, equation
(27) where rv and Ay have values appropriate to the three-
dimensional wing.  From reference 8 (using the notation of
reference 3 instead of reference 2) there is obtained

(28)

T o (29)

Since also C=D57%/4 equation (27) yields at once

sl I?ifj’,\>(;4_ )V (fE_L>_
0=\8 7 °)\=". 8 %)

This is the same as equation (7) which leads directly to
equations (8) and (9) with the same definitions of K, and
I, given in equations (11) and (12); 7 is, however, given by
equation (29) where 7y is obtained from references 8, 9, or 10,

Thus equations (8) and (9) may also be used for circular
tunnels provided only that the appropriate. values of r are
used. Values of 7 are given in'table I and figure 2. Values
of K, and K, are given-in tables 11 and 111.
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SOLID BLOCKAGE IN COMPRESSIBLE FLOW

In the preceding section the solid-blockage corrections
have been determined under the assumption that the fluid
is incompressible. 1t is now necessary to determine the
modifications required in these formulas to take account of

*the effects of the compressibility of the fluid.  The methods
of references 12 and 13 are very convenient for this purpose.
As the required modifications are given incorrectly in refer-

“ences 5 and 6, partially incorrectly in reference 4, and

correctly in references 7, 8, 9, and 10, it appears worth while
to give some discussion of the matter;
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BLOCKAGE CORRECTIONS

For the purpose of dedueing the properties of a compressi-
ble flow from those of a corresponding incompressible {low
the so-called “Extension of the Prandtl Rule,
first. given in reference 12 and repeated as NMethod IV in
reference 13, is probably of most general application; but
the other methods of reference 13 are sometimes more con-
venient for certain problems. The Extension of the Prandtl
Rule may be expressed in the following manner:

The streamline pattern of & compressible {low to be cal-
culated ¢an be compared with the streamline pattern of an
incompressible flow which results from the contraction of the
¥ and z axes including the profite contour by the factor
\/|._g\,[2 (M =frec-stream MNlach number) (& axis 'in the
direction of the free stream). . In the compressible flow the
pressure coeflicient as well as the inerease in the longitudinal
velocity are greater in the ratio 1/(1—M?%) and the stream-

line slopes greater in the ratio 1/\/1 — M2 than those at. the
corresponding points of the cquivalent incompressible flow.

Since formulas (8) and (19) for the three-dimensional wing
and the body of revolution have the same form and also
apply to both rectangular and cireular tunnels, it suffices to
determine the modification due to compressibility for them.
Let the subseript ¢ réfer to compressible flow and: the sub-
seript 7 to the corresponding incompressible flow, If Vo is
the volume of the model in the compressible flow, then 17,
the volume of the model in the corresponding mwmplos:lblc
flow, is given by : :

Vi=[1— Q)Y

where 37 15 the apparent frec-stream Mach numl)cl at the

model as determined from measurenients taken at a point

far ahead of the model. Also if (', is the cross-scctional
area of the tunnel in the compressible flow, then C; the
cross-sectional area of the tunnel in the incompressible flow
is given by '

C’i:[l*—(:‘l"):’] Ce

7 is unaffected by the transformation and the effect on A,

and Ay is sufliciently small that it imay be neglected.  From
the Extension of the Prandtl Rule it follows that
A, U’) _ 1 (A.U’) _
=M\ U’
1 AN 1 KV,
CF TR G

=7y

where j denotes the numbers 1 or 3. Since equations (8)
and (9) are equivalent as are also equations (19) and (20),
it follows that in all cases it is only necessary to multiply
the blockage corrections given by these formulas by
[1—(M")?7*% in order to take account of the compressibility
of the fluid..

As .a check it is useful to determine the compressibility
modification for the case of a body of revolution in a circular
tunnel by Method 1I of referenee 13, since the derivation
is so simple by this method. Both the body shape and
the longitudinal velocities are the same in the corresponding
compressible and incompressible flows; only the tunnel
dimensions ‘are altered by the factor \/1——(.?\/[')2 so that
Ci=[1—(M")}]C.. There is obtained

* which was .
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<A.U’> <AU C KV, K, Ve
U’ O T (U= (MY T

as before.
WAKE BLOCKAGE IN COMPRESSIBLE FLOW

The blockage due to the wake of a model in a two-dimen-

" sional-flow tunnel is discussed in some detail in reference 3.

Much of this discussion is applicable without change to the
case of a three-dimensional flow tunnel.  The fundamental
idea of replacing the model and its wake by a source (in this
case a three-dimensional source) of suitable strength located
at the position of the model can be used again and in fact the

determination of the source strength @ can be carried out in

exactly the same manner.  The result is identical with that

of reference 3, namely,

VCoS (1 -y (30)

Q pPU LD O

where

@ mass flow of source rather than \olume flow as used
previously

P’ mass density of fluid at point far up\tu'am

Cb" uncorrected drag coefficient referred to apparent dy-
namic pressure ¢’

S area on which drag coeflicient. is based

v ratio of specific heat of gas at constant pressure to

. i . c
specific heat at constant volume (f)
1

In equation (30) powers of M’ higher than (M’)? have been
neglected.

Consider now a rectagular tunnel of height 7 and breadth
B. The tunnel walls are replaced by a doubly infinite.array
of sources of strength @ at distances mB to the side and nH
above and below the position of the model.

By making use of Mecthod IT of reference 13, it is readily
shown that a three-dimensional source of strength @ (mass
per unit time) in a uniform flow of compressible fluid will
induce at the point the coordinates of which are z, y, z rela-
tive to the source a streamwise velocity.

Q x
Frp [0+ (1= MO+ 297

where the uniform flow is in the r direction and p and Af are
the density and Mach number, respectively, of the undis-
turbed stream.

1t follows that the streamise velocity A,07 induced at a
point on the center line of the tunnel by the entire system
of images is

Au=

T

Q
5y 2 A= e P

AU

where p” and M’ are the density and Mach number of the
undisturbed flow in the tunnel and the summation is taken
over all positive and negative integral values of m and n
except m=n=0. The velocity induced by the image
sources at an infinite distance upstream is

N Q p z '
@) -o=lim 55 5 AT = O B - il 7
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But conditions far upstream must remain unchanged and to
achieve this it is necessary to counterbalance this velocity
by superposition of a uniform flow of equal magnitude but
opposite sign.  The addition of this flow at all points in the
field will result in a speeding up of the general flow at the
position of the airfoil by the amount

AU’ —11 m

1w 4T

The summation of this series can be obtained by the following
artifice. Substitution of equation (30) into (-qunl.lon 31)

-and setting: M’=0 gives
77 __’. ("D’S(_j’ 7 X ’ ’ P :
@ )i—l_}lﬁ 8 2 (22 m* 3 - n2H ) 32)
But according to references 4, 8, 9, and 10
AaU’> 1Cp’'S
( 1 BH (33)
Comparison of equations (32) and (33) shows that
z 27 o
lim 2 (2:2—}—17121)’2—{—112117)’/2 =BH (34)

f in,equn.tion. (34) B and H are replaced by +1—(M')? B
and 1 —(Ad')? H, respectively, there is obtained
li , : x . 27
Pl > {22+ [1— (M) (m2B*+a?HY)}P? [1— (M)} BH
' (35)

Substitution of equations (35) and (30) into equatlon (31)
vields

_140.4(M)2C,’'S

AU 1+ (=D (M) C)
1— (M’ aC

U™~ 1=(M'¥  aBH (36)

‘on setting y=1.4. The preceding discussion is for a.rectan-
gular tunnel, but in references 8, 9, and 10 the same formula
is given for a tunnel of any shape for the case M’=0. Con-

sequently, equation (36) may be taken to hold generally for

a tunnel of any shape.

In reference 4 the wake-blockage correction is given cor-
rectly for incompressible flow but the modifieation to take
account of compressibility is given incorrectly, as it is deter-
mined from reference 5 which, as pointed out in reference 13,
is incorrect. The effect of compressibility. on the wake-
blockage correction is determined in references 8, 9, and 10
by means of the correct form of the Extension of the Prandtl
- Rule but there is some question whether this rule is applica-
ble to this problem: It appears that in using this method
to determine the effect of compressibility on the blockage
correction, thie effect of compressibility on the source strength
Q given by equation (30) is overlooked. This explains the
discrepancy between equation (36) and the formula of refer-
ences 8, 9, and 10.

T
Z {TQ'HI—(V')?](m?lf?-}-n?[l'«!))zlz @1 .

WAKEbPRESSURE GRADIENT IN COMPRESSIBLE FLOW

The effect of the pressure gradient caused by the wake is
tiscussed in reference. 3 for compressible flow in a two-
dimensional wind tunnel and in reference 11 for compressible
flow in a circular wind tunnel. The method of reference 11
is equally applicable to the case of a rectangular wind tunnel
if the appropriate value of 7 (table 1) is used.

The longitudinal velocity increment due to the cffect of
the tunnel boundaries on the source used to simulate the
wake has an approximately linear gradient in the stream
direction at the model location. This lincar gradient in the

" velocity is equivalent to a linear gradient in the pressure as

is casily seen from the approximate rélation.

' AQU’
Ap'=—2q’ 74

In reference 11 it is shown that the gradient in 2,07 for a
source in a wind tunnel is identically equal toithe value of
AU’ for a doublet in a wind tunnel. In the notation of
the present report there is obtained

<(l 1)) \‘/; Cp'S
dz 03/2
For combrcssible flow this becomes

dp’ L 1+(—1)(M)? \/; Co'S
dz =1 W PGS
, 14-0.4(M")? \/Tr Cp'S
=- [1_(A41)2]3/2 17 o
The increase in the drag resulting from5this pressure
gradient is equal to the product of the pressure gradient,
by the sum of the actual inodel volume and the virtual
volume (reference 2). It should be noted that the constants
K, and K, of tables 1I and IV are equal to +/(/4) times
the ratio of the sum of the actual model volume and the
virtual volume to the actual model volume, these quantities
being calculated under the assumption of incompressiblé

flow. Thus the increase in drag coefficient caused by the
pressure gradxenb is given by - :

140.4(M’ )2K‘TV Cy’

)] r__
- AC [1_(1‘1’)2]3/2 (73/2 (37)
for the wing, and
‘ , 140.4(M")? K7 Vo' o or”
30, = [Ty g 38)

for the body of revolution,

It is pointed out in reference 11 that the virtual volume is
altered by the compressibility of the fluid. Thus equations
(37) and (38) can be slightly improved if K; and Kj appearing
therein are corrected to take account of this effect. The
necessary modification is made by replacing K; and Kj in
these equations by K, and Ks,,, respectively, where

K,,,_\/ |:1+h(M’)<\/ K,—l)] i=1,3  (39)
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TT LT T,
Kie= o/ [t/ Z Ki-1)
j=/fla
P4

n(M)
\

o < 8 Iz
M‘l

FIrGRE 4.—Linear compressibility correction factor for virtual volume.  From reference 11,

where A (37) is given by figure 4 which is reproduced from
reference 11, It should be noted that the improvement in
modifying A, and /5 for compressibility will be small cs-
pecially in the case of I for the body of revolution. 1t is
important only for quite high Mach numbers, This addi-
tional refinement, was not made in reference 3.

It appears that a similar compressibility modification of
Ky and Kj in the formulas for the solid blockage should be

TABLE VI.—COMPRESSIBILITY FACTORS FOR CORRLECTION EQUATIONS
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-made, but the exact modification required is not known.
However, it is believed to he small.

CORRECTION OF MEASURED QUANTITIES
The true velocity U at a model consisting of a body of
revolution and wing can be obtained from the apparent
velocity U by applying the solid-blockage and wake-

blockage corrections. The true velocity may be written in

the form
U=U'(1+K) (40)
where .
K= [{w + I\'b + Ii}rk (4 1)

In equation (38) I, is the solid-blockage correction due to.
the wing and is given by )

1 KV,
Ko~ [r=(ary§m 0 42
or ’ .
K 1 Kor2scyuty, C(43)

w=[1 (MY o3

K, is the solid-blockage correction due to the body of
revolution, being given by

Ko=p= (1\14’)2];” Kgs;/o 44
or |
B (49)
Ko 1s the '\val-\'c-blocknlgc corrcc_t'ion and is given by
o LROAQ2 S o)

BT TAC

It is evident that a correction to the apparent veloeity in
a compressible low implics corrections also to the appavent
density, dynamic pressure, Reynolds number, and Mach

T o
EX N <
> - -
= = =
boed DM <M
IEN +< +o
n in g R Flo — :: = :«
=5 = = L= o =3 aly a0y & @
= | 2L SE SE O e AT SN S - =
B -~ Lo | Al N N e S A -1 = B ~ -
[ Ll P s 5~ I N - ~ o -~ -
= - i e e T = I o BN = het =
. - - H= =l =l i ~— < < N - 5 -
3 o P St A I A Ot O A < I T B
- - = = = = K ) = = 6] ~ - X
1. 1.063 0. 0400 1. 960 1.008
1. 1. 152 L0900 1. 910 1. 018
1. 1. 209 L1600 1. 840 1.032
L.: 1.540 2500 1. 750 1. 050
1. 4 1717 L3025 1. GY8 1. 060
1. 1953 3600 1. 640 1.072
1. 2.102 3906 L. 609 1.078
1.7 2,279 4225 1. 578 1.084
LR 2.489 4556 1. 544 1.091
1. 2. 746 4900 1. 510 1. 098
2. 3,061 5256 1474 1.105
2. 3. 456 5025 1. 438 1.112
2. 3. 962 HN6 1. 399 1120
2. 1. 630 6400 1. 360 1.128
3. 05 533 6724 1.3z 1. 134
3. 6 7056 1.294 1. 141 *
3. 7 7396 1. 270) 3523 1148
1.4 ¢ T 1. 226 L4579 11155
5. L8100 1.190 1330 1.162
5.1 L8281 1.172 L4203 1. 166
i A, . 5464 1. 154 L4075 | 1.169
KB 11.69 8649 | 1.135 3946 | -L.173
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number. These corrections -are readily obtained on the
basis of the usual assumption that the flow is adiabatic. It
is assumed that the correction terms arc small compared
with unity, so that squares and products of these terms may
be neglected. . The analysis follows the lines of reference 3,
and it is not necessary to repeat the details here.  The fol-
lowing equations are obtained:

p=p'[L—(M'}K] (47)
g=g' (1+[2—@Q)K) - (@8
R=R'{14]1 . T(M)K} | (49)
M= M'{1+{1 +o.2(1\24)2]1c} (50).

The drag coeflicient must be correeted for the effect of the
pressure gradient due to the wake as well as to refer it to the
correct’ dynamic pressure.  There is thus obtained

(70_ ACDw,

p {1—{2—(M"VK}— —AC,,  (51)

where AC'p " and ACp,” are given by equations (37) and (38).
Numerical values of the functions of M’ w lu(h appear in

these equations are given in table VL.
C()NCLUD]NG REMARKSV

Data obtained from tests of three-dimensional models,
which are small relative to the wind-tunnel dimensions, can
be corrected for solid and wake blockage and for the pressure
gradient due to the wake by means of the following equations:

U=U'(1+K) o : (40)

q=¢'{1+[2- (")) K} (48)
R=R'{1+[1 —0.7(M"YK) o
M=M'{1+[{140.2(M")K) © o (50)

Co=Cp'{(1—[2—(M'V|K}—ACs '—AC,  (51)

In the preceding equations K is obtained from the following:

K=K, +K+Ka 1)
where _ S
v ] K ‘Iw
K,.= (1 = (M &71;/2 (42)
or o o
: 1 Kyr2se,d, .
I{”v:"—-' [ 1 _(1‘11)2]3/2 27'613/2 ) (4 3)

K= -—_(1\14*);]3/2 G (44)
or _
K=ir=qpyrn G (45)
o IO vy
a0 =y 69

In these equations 7 is a factor which for & body of revolu-
tion depends only on the shape of the tunnel; whereas for a
three-dimensional wing 7 depends on the ratio of the wing
span 1o the tunnel breadih as well as on the tunnel shape.
(The wing span is in the direction of the tunnel breadth.)
Values of 7 are given in table T and ﬁguw 2. The constants
K, and K, for the three-dimensional wing depend only on
the wing base profile shape and can be caleulated by means
of equations (11), (12), and (13). Values of R, and A, lor
a number of wing profiles are given in tables 11 and 1IL
The constants I3 and K, for the body of revolution depend
only on the shape of the body and can be caleulated by means
of equations (22), (23), and (24). Values of these constants
for a number of body shapes are given in tables IV and V;
some of these shapes are drawn in figure 3. Sinece these
tables are incomplete and fuselage forms are not standard-
ized as are wing secctions, it is recommended that the values
of K; given in table 1V for the NACA 111 series of shapes
be used for any fusclage shape which does not differ too
greatly from an NACA 111 shape.. This implies that equa-
tion (19) and table 1V should be used in preference to equa-
tion (20) and table V whenever possible.” Numerical values
of the functions of A4’ which appear in the correction equa-
tions are given in table VI,

The constants K, and K appearing in equations (37) and.
(38) may be modified for compressibility by means of f‘gunc
4. The modified values of K, and K; are to be used in

equations (37) and (38) only and not in cquntlons (42) and

(44).

AMES AERONAUTICAL LABORATORY,
Nationat Apvisory COMMITTEE FOR Aum\\urlcs
MorFET FIFLD CaLlF.



APPENDIX A
SUMMATION OF THE INFINITE SERIES FOR 4 (0, s/B, Bi )

From cquatlons (3) and (16) it is seen that a(O s/B, B/H) \\:'hcrc the summation is taken for all positive and negative
may be written in the al(unnh\ ¢ forms integral values of m and n except m=n=0 and the quantities
Eme and  Fu,, which are introduced for convenience, are
c N\ B, mAs/B m—s/B defined by the equations »
OB H)" 5 Z o (A1) -
8 smn o fma By =~n - (m s/ B BIH)?
or Fn= /n?—{-(m—\/li)z(B 'H)?
B Ib is possible to cum tlu, series fon o(0, §/B, B/]]) exactly
s , T 2m
4 (0’ BH Z o T ,,.,,[(m—'i—-s‘/B)l’,,,,,—}—('In*s/l.f)E,,,,,] only when s/b’———. In this case (,(ltna\.!.}()lls (A1) and (A2)
(A2) | yield
1 1
1 B LI . nty "3 m
’ Y F7 =2 - -
()72 G2, N Vo Z (A= TAVBIHY
nf-’—{—(m-{——-) (BJH)? n2+<m-—~> (B/H)*
\ 2 2
PR (’”+2> = i 1 1 '
TP G 5| T
+(m+2) (BIH) m +3

1;/11 >

m

s Ny N )
(0’ B H) 8 2 Fn T T B e Fn—sIBEm T2

where N is an arbitrary positive integer and Ry (0, s/B, B/H)
denotes a remainder term. In evaluating (0, /B, B/H) in
the present report, N was usually taken cqual to 7 and the
summations indicated in equation (A3) were carried out ex-

2 ,n”+(B/H)3 13/11[6 (13/11)]

For other values of s/B it is necessary to sum the series numerically.

Tlle series may be rewritten

N 1 m

D N rEn ) Al (B/u)s by [t —<‘/1f>212+”‘

N
(0’ iy 11
(A3)

actly; whereas an approximate value was used for the re-
mainder term. An approximate formula for Ry(0,s/B, B/H)
is C

. . 1\? ’
R (0 s B 1 +4F 2 2 _2\/(]3/}02(N+§>+1/4_
Y\ BH)T 2 B/H " (B/H)? . 1

(BJH)® (N+ 2) (N+ 2) K o (/3/1ﬂ2(1\7+§)

\/(1;/11)2(;/4)+<v+ 3 /(1;/11)2 = »
(B/H)? (N +§) (BIHY? <N+§> ‘
It will now be shown how formula (A4) is obt.ninccl It is easily verified that
: dze 1 v(B/H)'a?F b?
f W ||| vt e G (A9
and that .
(= dz 1 ‘ , '

| f . T8 o (A6)
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p1‘0§ided a, b>0. Now Ry(0, /B3, B/H) is approximately
equal to 125(0,0, B/H) and it is ecasily found that

o« N 1. )
1in(0,0, BiH) =4 rf: m= \+| n§+l :él) [:1,2+717,2(B/H)2]3/2+
) i.L+? o 1
- n=N+1 n? (Ij/[‘l)3 m=N+1 m?

These summations may be approximated by suitable inte-
grals so that approximately

REPORT 995—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RV(O [}ﬁ) (J dyj (Iz:—l—J dyj dz— '

N+

‘o N 1
(lyj dr)— s+
Jﬁqé - )[y24—u%41)xﬂ3“ |

D*wm]J =

If the int.ogg'n-.ls of equation (A7) are evaluated by means of
equations (A5) and (A6), then equation (A4) is obtained.

(A7)



APPENDIX B

LIST OF IMPORTANT SYMBOLS

B tunnel breadth orf diameter

H tunnel height

C tunnel créoss-sectional area

c chord-of airfoil or body of revolution

maximum thickness of airfoil or body of revolution

Vv volume of wing or body of revolution

Sh maximum’ (l()\\—s('(‘l()llill area Of body of rev olu-

. tion

s half span of wing

Co drag coeflicient

S model area on which drag coeflicient is based

U stream velocity

M Mach number

R Reynolds number ,

Y ‘ratio of specific heat of gas at constant pressure to

~ specific heat at constant volume ((',,/c,)

6 mass density

q dynamic pressure

A Ky K, factors depending on shape of airfoil -base profile
(See equations (L1), (12), and (13) and tables
IT and I11.)

N IG, Ky factors depending on shape of body of revolution
(See equations (22), (23), and (24) and tables
IVand V)

h(M") linear compressibility correction factor for virtual
‘volume (reference 11)

T factor depending on tunnel shape and wing-span-
to-tunnel-breadth ratio (See equations (10) and
(21) and table I.)

K total blockage correction (See vquntmn (41).)

K, wing-blockage correction (Sce cquations (42) and
(43).) '

K, body-blockage correction (Sce cqu.ltlons (44) and
(45).)

K wake-blockage correction (See equation (46).)

Superscript:

) when pertaining to fluid properties, denotes values

existing in tunnel far upstream from model;
when pertaining to airfoil characteristics, denotes
values in tunnel, coefficicnts being referred to
apparent dynamic pressure g’

Subseripts:

@S ™. 0

L 3.

10.

1.

12.

13.

14,

.. Lock, C. N. H.:

. Glauert, H.:

. Goldstein, 8., and Young, A. D.:

. Tsien, Hsue-shen, and Lees, Lester:

. Gothert, B.:

. Gothert, B.:

(Used only when necessary to avoid ambiguity)
denotes values in compressible fluid
denotes values in incompressible fluid
“denotes values for wing .
denotes values for body of revolution
denotes values for wake.
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