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FREE-STREAM DISTURBANCES, CONTINUOUS EIGENFUNCTIONS,

BOUNDARY-LAYER INSTABILITY AND TRANSITION

SUMMARY

The research conducted under this project has been directed toward the

double objectives of providing (1) a rational foundation for the application

of the linear stability theory of parallel shear flows to transition

prediction and (2) an explicit method for performing the necessary

calculations.

The fundamental discovery upon which our subsequent work is based

was that the solutions of the linearized, three-dimensional, incompres-

sible Navier-Stokes equations u,p and the adjoint solutions u,p

satisfy a "continuity" equation

at
+VJ=0
	

(1)

where p is a pseudo-energy density (the dot product of u* and u) and

I is a pseudo-current. This result is derived and discussed in detail
in Appendix A.

We next considered (see Appendix B) the expansion of an arbitrary,

two-dimensional solution of the linearized stream function equation in

terms of the discrete and continuum eigenfunctions of the Orr-Sommerfeld

equation in the half-space, y #[0,-): that is, we considered boundary-layer,

wake, jet or free-shear layer flows. We used equation (1) to derive a

biorthogonality relation between the solutions of the linearized stream

function equation and the solutions of the adjoint problem. T'Zis is the

biorthogonality relation for the mixed initial-boundary value problem.
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For the case of temporal stability, we used equation (1) to derive

the formal solution of the initial value problem as a sum over the discrete

modes plus an integral over the continuum functions and showed that this

expansion is complete. We found that the vorticity distribution at the

initial time is sufficient information to determine the expansion coef-

ficients and gave explicit formulas to calculate these coefficients.

For the spatial stability problem, we showed that the continuum has

four branches. We used equation (1) to derive the spatial biorthogonality

relation and the formal solution to the boundary value problem. We have

(see Appendix Q also derived the Fourier (in t), Laplace (in x) transform

solution of the spatial stability problem and used it to show that our

spatial expansion is complete.

The boundary conditions for the spatial problem are the Fourier

transforms, in time, of the stream function and its first three partial

derivatives with respect to x, evaluated at x = 0. As it stands, this

formal solution will not give a physically acceptable solution because,

given an arbitrary variation with y and t at x = 0 of the stream function

and its first three partial derivatives with respect to x, disturbances

which lie on all four branches of the continuum will be excited. Therefore,

as we show in Appendix B, the spatial wave packet will contain, in addition

to waves propagating toward x = -, waves propagating upstream from x =

and standing waves whose amplitude increases towards x = m.

A condition must be imposed that, for x > 0, all propagating dis-

turbances are traveling in the positive x-direction and all standing waves

have amplitudes which decay in the positive x-direction. It appears that

this should be done by requiring that the stream function and its first

three partial derivatives with respect to x, evaluated at x = 0, be

orthogonal, using the spatial inner product, to all eigenfunctions on

branches 2 and 4 of the continuous spectrum.

It is easy to see that these two orthogonality conditions reduce the

number of boundary conditions at x = 0 from four to two. This means that,

for the spatial stability problem, the proper boundary conditions at x = 0 	 `<

are the specification of the temporal Fourier transforms of the velocity

components u and v, for all y. Although these boundary conditions

were derived from consideration of the continuum eigenfunctions, they
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apply as well to the discrete, Tollmien-Schlicting modes. We have not

yet carried out a detailed investigation of the implications of imposing

this orthogonality requirement on the boundary conditions; however, the

immediate result that the boundary conditions at x = 0 are the specifi-

cation of the temporal Fourier transforms of u and v for all y appears,

on physical grounds, to be correct.

We have presented preliminary numerical results of the application of

this expansion method at the Fifteenth International Conference on

Theoretical and Applied Mechanics (Appendix D). We considered the temporal

stability problem and a simple initial disturbance. We assumed that at

t = 0 the vorticity C was given by

is x

C = CD e o 6(Y - Yo)	 (2)

a periodic layer of vorticity at a distance yo from the boundary.

The stream function is then given by equation (SS) of Appendix B,

and it is easily seen that the expansion coefficients are [from equations

(56a, b) of Appendix B]:

An(a) = CoO* (Yo) 6(a - ao)	 (3a)

A  (a) = Comk (Yo) 6(a - ao)	 (3b)

The solution of this simple problem, which is in effect the Greens function

in y of the initial value problem, showy that the amplitudes of discrete,

Tollmien-Schlicting modes and the continuLm functions are the products of

the magnitudes of the corresponding adjoint functions, evaluated at yo,

the height of the initial disturbance from the boundary and the vortex

strengths.

We applied this result to two different flows. The first is a slip

flow past a bounding plane at y - 0. Although the base flow velocity

r

	

	does not vanish at the boundary, we required that the disturbance velocity

vanish at y - 0. We found (Appendix B) that, because of the simple form

of the base flow, all the calculations could be carried out analytically

M
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and the stream function could be expressed as a finite sum of exponentials

and error functions. We found that the disturbance retains its identity

as a periodic array of vortices for all time, but as time increases it

diffuses, the vortex strength decays, and the centers of the vortices

drift away from the boundary.

The second flow we considered is the Blasius boundary layer. The

velocity scale was taken to be the free-stream speed U  and the length

scale wasvx/Uo . We chose a a 0.179 and R a 580.0. At this a and R,

there are seven discrete Tollmien-Schlicting modes, one of which is

unstable. We'numerically calculated the seven eigenfunctions and adjoint

eigenfunctions and normalized them so that

fin' Om ' a 8 n
	 (4)

Plots of the amplitude and phase of the normalized eigenfunction and

adjoint eigenfunction of the seven modes as a function of y, the dimen-

sionless distance from the boundary, are given in Appendix D. These

modes are numbered in order of increasing stabilit y with mode 1 the

unstable mode and mode 7 the most damped mode.

The amplitude of a mode, say m n , excited by the vortex sheet at

y a yo , is proportional to the amplitude of 0n evaluated at yo . It is

clear from an examination of these figures that when the vortex layer at

t a 0 is in the inner portion of the boundary layer, say y s 2.0 (the top

of the boundary layer is at y - 5.02), there will be a relatively strong

excitation of the discrete Tollmien-Schlicting waves. Modes 1, 2, and

3 will have the largest amplitudes, and the higher modes will have sub-

stantially smaller amplitudes. It is also quite clear that, when the

initial disturbance i more than about four boundar y-laver thicknesses

from the wall at t a 0, the discrete Tollmien-Schlicting modes excited

by the disturbance will have extremely small amplitudes. We believe that

this result is a theoretical explanation of the experimental observation

of Kachanov, Kozlov, and Levchenko (1978) that vorticity disturbances

passing above a boundary layer are ver y inefficient generators of Tollmien-

Schlicting waves in the boundary laver.
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CONCLUSIONS

We believe that we have created a rational foundation for the appli-

cation of the linear stability theory of parallel shear flows to transition

prediction and given an explicit method to carry out the necessary cal-

culations. We have shown that these expansions are complete. We have

also carried out some sample calculations which show that a typical

boundary layer is very sensitive to vorticity disturbances in the inner

boundary layer, near the critical layer; vorticity disturbances three or

four boundary-layer thicknesses above the boundary are nearly uncoupled

from the boundary layer in that the amplitudes of the discrete Tollmien-

Schlicting waves are an extremely small fraction of the amplitude of

the disturbance.

After the completion of this grant we intend to continue these

calculations. We will continue the calculations of temporal disturbances

in typical boundary layers and begin calculation of spatial disturbances.

LITERATURE CITED

Kachanov, Yer S.; Kozlov, V.V.; and Levchenko, V. Ya.: Occurrence of
Tollmien-Schlicting Waves in the Boundary Layer Under the Effect
of External Perturbations. Izvest. Akad. Nauk SSSR; Mekhan. :hid.
Gaza, Vol. S, 1978, p. 85.
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APPENDIX A

EXPANSIONS IN SPATIA'. OR TEMPORAL EIGENMODES OF THE

LINEARIZED NAVIER-STOKES EQUATION
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Expansions in Spatial or Temporal Eigenmodes of the

Linearized Navier-Stokes Equation

by Harold Salwen

Department of Physics and Engineering Physics

Stevens Institute of Technology, Hoboken, N. J. 01030

The expansion of an arbitrary flow field in terms of the temporal or

spatial eigenmodes of the linearized Navier-Stokes (LNS) equations for an

incompressible fluid is developed from a unified perspective. It is khown that,

for (v,p) a solution of the LNS equations for a given base flow and (u,q) a

solution of the corresponding ad4oint equations, a scalar "density",

,v), and a vector "flux", t^ (u,q,v,p), may be defined such that FE and iE(u 

are bilinear in (u*,q*) and (v,p) and satisfy the "continui ty" equation,

Zat + v-r = 0. This equation is then used to derive biorthogonality relations
between the eigenfunctions and adjoint eigenfunctions of the LNS equations for

a general translationally;invariant problem. In the temporal case, the inner

product is II.'edT = III^JPu*•v dT which is the natural extension of Schensted's

inner product for two-dimensional disturbances and satisfies the requirements

for an inner product in a Hilbert space. In the spatial case, the "inner

product" is III rx dydzdt which is not positive definite. The formal solution

of the LNS equations is derived, in terms of the eigenfunctions and the initial

or boundary conditions, for the temporal and spatial cases. It takes the form

of the evolution of a three- or six-dimensional vector --.(v x , vy , v 2 ) in the

temporal case or ( vx , vy , vz , avy/ax, 3v z/3x, p) in the spatial case.

-
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1. Introduction

A few years ago, Grosch and I, after showing that the Orr-Sommerfeld

equation for unbounded flows such as the Blasius boundary layer possesses both

temporal and spatial continuous spectra (Grosch and Salwen, 1975, 1978), set

out to find the form of the wave-packet expansion for the temporal or spatial

evolution of the stream function of an arbitrary two-dimensional "irfinitesimal"

disturbance in terms of the corresponding temporal or spatial eigenfunctions.

We sought to prove a biorthogonality relation between the eigenfunctions

of the Orr-Sommerfeld equation and of its adjoint and, thereby, to solve for

the coefficients of the expansion in terms of the inner products of the adjoint

eigenfunctions with the stream function at the initial time or position.

This worked out easily in the temporal case, with an inner product equivalent

to Schensted's (1960) and only minor complications due to the infinite domain

and continuous spectrum. In the spatial case, on the other hand, we found that

we didn't know the appropriate inner product and vie couldn't find any papers

dealing with the problem. I therefore undertook the spatial expansion problem

and, eventually, was rewarded with the result reported here —a unified treat-

ment of the spatial and temporal expansion problems for solutions of the

linearized Navier-Stokes (LNS) equations for an imcompressible fluid.

Section 2 is devoted to the derivation of a "continuity" equation which

is used, in Section 3, in the definition of the inner products and the derivation

of the biorthogonality relations. These, in turn, are used in Sections 4 and 5

to derive the formal solutions of the (temporal) initial value problem and

the (spatial) boundary value problem, respectively. The application of these

results to two-dimensional disturbances of a boundary layer has been presented

in a separate paper (Salwen and Grosch, 1980).
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In order for the formal solutions derived in Sections 4 and 5 to be

actual solutions of initial and boundary value problems, the eigenfunctions

used in the expansions must form complete sets. Not all the eigenfunction

sets one might want to use have ', en proven to be complete but there are,

by now, proofs of completeness for large classes of temporal eigenfunctions

for bounded flows ( Yudovich, 1965 and DiPrima and Habetler, 1969) and temporal

(Salwen and Grosch, 1980) and spatial (Salwen, Kelly, and Grosch, 1980)

eigenfunctions for unbounded flows.

2. "Continuity" equation

I start with the LNS equations for an incompressible fluid with a base

flow 6,

v•v0	 (la)

i-	
•Ip (

	 + 
U • G' v i + v•	

'

3t	 7 Ui J

7 2 v i - ^ , i = 1.2,3,
i

and the corresponding adjoint equations',

v•u = 0

•	 Du i 	^	
3^*	

Ly
L - 3t -	 ( u i ) 

+ M 	
u

_ a ui + S	 i = 1,2,3.
i

The complex conjugate, G*, is used here in order to obtain the correct formal

expressions. In most applications, L will be real, so 

!^3	

q

(lb)

(2a)

(2b)

= ti,

^10



For any solutions (v,p) of (1) and	 of (2), define*

•	 ti	 ti
(3)

Then

3 	a	 au *	 1
at 	a	 C ui* aLi ♦ ati vi

	

3	 ti

_	 { •a ^(l7 ui *)	 3 v i + v i v • (t? u i *) t

	

_	 -

- a {(ui* 
v)	 G ui - 3x	 (u*

vi)]

	

l	 i

+ u lui* v2vi - v i v2u i *1 - ^--i* ^ + ^ v i ; • i	 (4)

	

i	 i	 ^

so, with

_

	

r ti	 i

	

- ui *v v i ] 
+ T 

lu*p + q* v
J	

(5)

we get

3ti	
(6)

*	 The constant factor, 	 is included in order to emphasize the

	

relation between E and the energy density, 	 v2.
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which has the form of a continuity equation relating the time derivative of

the "density", L , to the divergence of the "flux", r . For any fixed

volume V bounded by a surface S , the "ccntinuiv " equation (6) may be put

into integral form,

Tt Ill F.(u,'v) dr + If n• (%,z,'v,p) dS a 0 .
V	 S

3. Application to a steady . translationall y-invariant ba se flow.

Biorth000nality relationsations

In this section, Equation (7) will be applied to the case in which the

base flow and boundary conditions are indtpendent of x :,nd t . For all x

and t, the base flow U(y,z) , disturbance velocity and pressure ;v,p) and
ti

adjoint velocity and pressure (u,q) are assumed to be defined in a closed,

bounded area, A , of the y,z plane and to satisfy the boundary conditions

ti

v(x.y,Z.t) 8 0 ,	 u(x,y,Z,t) , 0 for (y.z)cC
	

(coa•b)

on the boundary, C, of A. In this case. the temporal and spatial eigerfunctions

discussed below will form discrete sets. (the extension to an unbounded area

is not too difficult (see. e.g.. Salwen and Grosch, 1980) but it requires the

relaxation of the boundary condition (8) and the consideration of continuum as

well as discrete modes.)

Because of the choice of base flow and boundary conditions. (1) and (2)

are now invariant with respect to translations in x and t and. therefore.

possess solutions of the form

17(X.y,Z.t)	
o(y.Z)ei(ax

(7)

11



p (x ,Y, z , t ) = po(y,z)ei(ax - wt) .	 (9b)

A,	 Ilu-	

i(Ox - vt)
u(x,y,z,t) - uo (y,z)e .	 ,	 (10a)

q(x,Y,z,t) a gO(Y.z)ei(sx - 
vt).	

(lOb)

Because of (8), ry = rz = 0 on S. Then evaluation of (7) over a thin slab

perpendicular to the x-axis for functions of the form (9) and (10) gives

i (v* - w) J I	 u,v) dydz = t ff  E (u,v) dydz
A	 A

_ - ax	 rx (u ,q , v , p ) dydz

a) 
ff 

r  (u,q,v,p) dydz	 (11)

which will be used here to prove biorthogonality relations for the spatial

and temporal eigenmodes.

The temporal eigenfunctions are the solutions of (1) and (8a) having the

form (9) with a real. These may be denoted by (Ian' pan)' corresponding to

the x,t variation 
ei((xx - 

wn(a)t). For each such solution, there is an adjoint
ti

eigenfunction 
(pan, 

'q 
an

which is a solution of (2) and (8b) having the variation

e i(ax - 
vn(a)t) with vn(a) : w*(a). Application of (11) to these functions

gives

(wm (a) - wn(a)) fj E('am	 an dydz = 0	 (12)

A

so that the integral vanishes when w  (a) f w n (a) and, with appropriate

normalization,

r t	 12



(The expression is a function of x and t but is constant because the exponentials

in the two factors cancel.) This biorthogonality relation for fixed a leads to

the result for the full set of temporal eigenfunctions,

w (`
`uam, van' - J J1	 uam, v

dn ) dydz dx

A

f
e i(u -a ) x 

dx J1 E(u	 v )	 dydzA	 gym, do ^x=0

ti
2nd(a-d) JJ E uam,val1 	

dydz
A	 x=0

= bta -
a) amn	

for all t	 (14)

The spatial eigenfunctions and adjoint eigenfunctions are the solutions of

(1), (2), and (8) having the forms (9) and (10) with w and v real. These may

be denoted by &wn = ( vwn ^ pwn ), with the variation e i( '̀ n(w)x - wt) , and

^vm	 (uvm , 
qvm), with the variation ei(bM(v

)
x - vt). As in the temporal case,

the eigenfunctions and adjoint eigenfunctions may be paired, with ]
n 
(w) = an*(w)

in this case. The analogous results to (12) and (13) are

(am (w) - a n (w)) j r  (uwm, gwn,vwn, pwn ) dydz = 0	 (15)

A
1^.

and

I
r	 L
J1.

r x (UWin	 n,
vwn, pwn ) dydz = S inn /2

11 ,
	

(16)

A

13
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which lead to the biorthogonality relation for the full set of spatial

eigenfunctions

Ca
ti

&wm, ^vnj

	

	 f jj rx (UWm, gwm,vvn,pvn) dydz dt

A

CO

= J ei(W -v)tdt ff r 
( -I.
	

Al
	p )I	 dydzJ	 xWm, Wm, vn, vn

t=0A 

ff
2,rs(W -v) 	 r  (U Wm, gwm, vwn, pwn ) I	 dydz

A	
t=0

= 6(W-v) 6 
m
	 for all x .	 (17)

We thus see that, with appropriate "inner products" <,> and I , I ,
the temporal and spatial eigenfunctions satisfy biorthogonality relations with

the related adjoint functions. The temporal inner product ,> satisfies all

the conditions ordinarily required of an inner product. The spatial inner

product 1 ,1 , on the other hand, is not positive definite. This is related
to the fact that disturbances can propagate in both the downstream (+x) and

upstream (-x) directions.

4. Temporal expansion of an arbitrary solution of the LNS equations

The temporal inner product introduced in (14),

<u, v>	 ( J^ u*(x,y,z)	 v (x,y,z) dydz dx	 (19)

-^ A

0E
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is defined for any pair of ordinary vector functions of position. In

particular, when applied to a solution (v, p) of (1), it involves the

velocity, v, but not the pressure, p. It is natural then, in seeking an

expansion solution in terms of the temporal eigenfunctions, to expand v

alone in terms of the velocity part {van } of the eigenfunctions.

Let (v,p) be a solution of (1), satisfying the boundary conditions (8a).

Assume that v can be expanded in the form

W

v(x,y,z,t)

n=1 -^
Cant) -' 	 dot.van (x^Y^z, t) d (19)

Z

ii

Then, by (14), the coefficients are

cant) = <uan , V> >

so that (using (7) )

dean -_	 I	 a
dt	 J^ at	 (u 

an, v) dydz dx

`^	 A

ti

_ -	 ^` a• 1 ('	 9	 v, P) dydz dx	 0
an, an,

A

and

ti

Can (t) = Can (o) = `uan,

4.

 V>

t = 0

(20)

(21)

(22)

is



The result is

v(x'y'Z't)	
J `uan, V>1	

van(x,Y,z,t) da

n=1	

.

t=o

On the assumption that the expansion can be differentiated term-by-term,

a	
avi

a^=uv2vi- atat +l vvi +v•v0i^
i

W Go_z r ti

1 
<u an, v>I
	

(4V van
v
ani

n = 1 -^	 t=o

P
3v	 + u • vv n . 

+ v 
n . 

v Ui1 1. da

3n1

C t	 a	 a

_	
ti
-,-•	 pan	 (24)1 `u ' v' i	 ax	 da '

n=1	 t=o	 i

so that, except for an additive function of t only,

00
ti

p(x,Y,z,t) _	 <u,v>	 pun(x,y,z,t) da	 (25)

-^n=1	
It=o

Equations (23) and (25) are the formal solutions for v and p in

terms of the initial velocity, v(x,y,z,0).

5. Spatial ex pansion of an arbitrary solution

The spatial inner product, [ ,I , introduced in (16), cannot be eval-
ti

uated in terms of the values of u , q , v , and p at a fixed x because

r 
	 involves x-derivatives associated with the second derivatives in (lb) and

(2b). To get around this problem, one can regard the flow field at a given x

as a 6-vector and make use of the fact that the velocities under consideration
16
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avx— — 3v — avz

3x	 3y	 3z
(30a)

i

•

3v
-Y = V
ax	 y

( 30b) 1'

have vanishing divergence ((la) and (2a)).

Let & and n be 6-vectors with components

a

^ l = vx , E2 = vy, 
s3 

2 vz , E 4 = vy'	 x , &5 = vz'

au

n l = ux , n2 = uy, 113 = u z , n4 = uy ' 	M , n 5 = uz ' =

and let v - u = v - v = 0 . Then, in terms of these compo

rx(u , q ,v , p ) = 1-2 p(ux*vx + uy*vy + uz*vz) U 

*	 *av	 avz
	 ( auy*+ `2 u 

L
ux*( a—'^ + aZ) - vx ( 3—^ 

+ az )

+ (vyuy '* - uy*vy ') + ( V zuz '* - uz*vz')3

+ ^2 (ux*p + q*vx)
	

(28)

so that

n, ^^ = J JJ r  
(u'q,v,p) dydz dt	 (29)

-^°	 A

may be evaluated in terms of the components of E and n at fixed x .

This choice of coordinates also eliminates second derivatives from (1),

which becomes



'I

3v 	

(30c)
3x	

vz

3v	 3U	 `	 av	 3v	 av	 3U

a^=u a^ vx + 1.0 ( a--^+Uy ivy + U z a--Y-+^vy)

a 2 v	 a 2 v	 au
1 a	

(30d)
Y	 y	 u ay

av aU 	3U	 av	 3 v 	3v	 3Uz = o z v +'^ z v + ^( z +U z+U z+ z v
ax	 u ax	 x	 u 3y	 y	 u at	 y 3y	 z 3z	 3z	 z)

a-vz a2vz	 a	 ^	 1 3- ( a- y' — + â )^ + u Ux vz + u	 ( 30e)

2 v 	 3'-V	 av	 3v	 3v	 3U
2P 
=	 u X + =X) - 0 ( 3tX + Uy ayX + UZ aZ x + 3xx vX)^

3v	 aU	 3v	 3U	 av '	 3v

+ ° (Ux a^y " 3yX v y ) + p (Ux aiz _ azX vz ) " u 
(3
_Y + azz )	

(30f)

It is now straightforward to carry out the formal solution for the

spatial expansion. The expansion is

w

y(x,y,z,t)_

	

	 f c
wn

(x) ;wn(x,y,z,t) dw	 (31)

n=1

with coefficients

cwn (x) _	 nwn, c	 (32)

18
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dd 
a 

1 JJ ax rx (uWn,qWn
 v• p ) dydz dt

^

f(
- J 1^

[Iy—	
y ti

 ry (uwn,gwns 
y
v,P)

+ az rz (uwn I wn,^' P) + at F (uwn, v)J dydz dt

= 0	 (33)

c^n(x) . c wn(0) _	 non' `	 (34)IxzO

The solution is then

Q0

E(x.Y,Z,t) = :E{^ nwn s	 1x	 S n (x,y,z,t) dw	 (35)
n=1 _- 

u.	 =o
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ABSTRACT

he expansion of an arbitrary two-dimensional solution of the
linearized stream `unction equation in ter-rs of the ,4 screte ano continuum
eigenfunctions of the Or--Sommerfeld e q uation is discussed for flows in
the half-s p ace, y	 J, _).	 A recent result of Sal.ven is " sed to derive
a biorthogonality relation between the solution of the linearized equation
for the stream function and the solutions of the adjoint problem.

For the case of tem poral stabilit y , the orthogonality relation
obtained is equ 4 vaient to tnat of Schensted for Sounded flows. 'his -elaticn-
shio is used to Carry out the 4o rmal so lotion of the initial value problem
for temporal Stability.	 It is found that the vorticity of the disturbance at
t = J is the p ro p er initial condition for the temooral stability problem.
= finally, it is shown that the set consisting o f the discrete eigenmodet.
and continuum eigenfuncticns is complete.

For the s patial stab'I ty p roble!h, it is snown that the continuous
szectrum of the 'irr-Sommerfeld equation contains four branches. The biorthogon-
ality relation is used to derive the formal solution to the boundary vaiue

p roblem of s p atial stability.	 It is shown that the boundary value problem
O r s patial stability requires the stream `unCt'cn and its `j rst three -artial

Derivatives with res pect to x be scecified at x = J for all t. -o be a pbli-

caole to p racti_al problems, this solution will require modification to
eliminate :,isturbances originating at x =	 and travelling upstream to

X : J.

For the s pecial case of 3 constant base flow, the Tetnod is used to

calculate the evolution in time of 3 particular initial disturbance.
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ie central probla= here is the solution a: :ae general initial

and boundary value problems for disturbances to boundar1 laver flow— how,

given _he .-a-m of the disturbance at a time 	 0, to _ind its variation

with time and 'how, 3iven the :r,r3 of the disturbance at all times on a

plane, _c - 0, perpendicular to the boundar . la ,,er, to :Ina cut aow _:

propagates dcw,nstrsam. In this pap er, we approach :aese proble=s, in the

aoor^:x=_3ticn obtai.-.ea b y assumi ng parallel flow and 11nearizin; ith

respect to :he disturbances, a-.r e:cpressing the solution as a sum aver t he

discrete nor--al =odes olus an -..:aural over tae continuum e-gen=unctions

of tae Or=-Scumerte-:. equation. .: the (discreta plus :cntinuu3)

el&enijn ctiors for._ a _omplete se:, :his approac will , ie'-d a va:_d

solution of tae aroblem.

Starting wit.. Haupt (191_), a ^umber of autiors -av E '_eait .L ::1 the

completeness of tae se: of tan?oral eigenfuncticns in a boundei domain.

Haupt showed that :he eigen_,;unct-_'cr.s for _:c-diWersianal distur7ancas to

plane Cauat:e flow	 a complete se: and Scaenstad (1960) proved

completeness :or :-a eigensunc:ions :ar _wo-di-ens:anal _isturbances --

plane ?oiseuille :lcw and _cr a:ci-s;r^aetrlc disturbances to ?_iseuilla

flew in a circular pi?e. ?udovica (196:) and J:?riza a:-.d Haoetlar ,l?79)

have proven cor p leteness of the eigenmodes for a large class of bounded

flows. We are unaware of any work on the com p leteness of the spatial

eiaenfunctions or, previous to this paper, on the completeness of the

temporal eigenfunctions in an unbounded domain.

,6
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In Section 2 we fo rnulate the stability problem for two-dimensional

disturbances to a parallel shear flow, U(y), 0 _ y 	 ^, in terms of the

linearized equation for the stream function and boundary conditions.

We next formulate the adjoint problem. .4 new result of Salwen (1979) is

then used to derive a pseudocontinuity relation involvin g solutions of

the linearized equation for tie stream function and the adjoint solutions.

This relation is then used to lino the general biorthoconality condition

for wave-like disturbances to the flow. The oierthoconality relation is

soe 0 alined to the cases of temporal and s p atial stability. The orthogonality

relation for the temporal stability problem is that deri^ed by Schensted (1960)

and discussed by Reid (1?65).

The tem poral stability problem is consillered in -'etail in Section J.

The solution is Fourier anal • :ed with res pect to x. Then the formal solution

o f the initial value oroblem for the tem poral stabil i t y of a two-dimensional

disturbance to a p arallel shear- flow is expressed as an ex p ansion in terms

of the ei genfunctions. The ex pansion coefficients are determined :y inner

products between the initial disturbance ana the ei.,-enfunctions ..f the adjo'nt

equation. We show that the Jisturoance vorticity at t = 0 is the prover initial

condition for the tem poral stabilit y problem.

In Section d we examine the question of the comoleteness of the set of

ex pansion functions for the tomoor3i stabilit y prooiem. Very recently,

Susta y sson (1979) has treated the temporal initial value oroblem by using

Fourier-Laplace transforms. He finds poles in the transform plane which

corres pond to the discrete T-S modes and a brancn cut which cor-esnnds to



moor

the continuous spectrum. We show in this section that the Fourier-Laplace

transform solution of ^usta y sson i s iaentical to our Fourier transform,

ei genfunction expansion solution for the initial value problem of temporal

stability. We therefore conclude that our ex p ansion set is complete.

The soatial stability problem is considered it detail in Section 5.

'he solution is Fourier analvzed in t. The formulae for the :our branches

of the continuous scectrum of the s patial stability Problem are derived and

discussed. The formal solution of the boundary value problem for the spatial

stability of a two-dimensional disturbance to a parallel snear flow is

exDressed as an ex pansion in to —is of the spatial eiaenfunctions. The

ex p ansion coefficients are dete rmined by inner p roducts between the boundary

conditions at x = 0 and the eiaenfunctions of the adjoint equation. The

boundar y conditions at x = 0 are discussed. We have not vet been able to

prove completeness for the set of expansion functions of the spatial stability

problem.

:n Section o. we ap p l y the results of Section 3 to the simple case of a

constant base flow.	 In this case, we find the eigenfunctions and calculate

and discuss the tem poral evolution of a particular initial disturbance.

^S
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2. 'kie linearized, wo Dimensional Navier-Stokes eaua^ions: t o

biortho pnalitr relation.

2.1 Fo:aulation of the Droblex

'_'he basic flow under consideration is a parallel shear flow,

t.^.2 ^2^r'-f l:i`1^2 reg ,-on, ;> > '^. :Je are ;.once^°_Q -,;i:.h the to=oral

Cr spatial davelo:)ment of an 	 two-dimensional distur-

^dnCe to to a ^1CW, (1^:{, 7, t), 7(X, ^, t), 0) • In this Case, u and

V can be a:{7ressed in :e=s of a stream :unction.	 t) , by

u —	 (1)
IV

:CL
V = - ; x	 (2)

s

and -e linearized Yavier-Stokes equacions raduce to a single partial

differential equation,

it	 ox	 dy2 3:{	 R

where

+

	

	 (+)
'V
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in addition, y must satisfv .,a boundary conditions at v - 0,

'i
-v^r, 0, t) - J	 (5)

OXis,J,.

and

u^x. 0.	 (o);y,

:d a '.ini__ness" condi.ion

^	 1^ ♦ 	 ..WW
	 w	 1

i 	 Ŷ ,-	 s - .av	 :1j' + Ivl .dv < n	 ki)

.^	 J0

r

	

As a consequence JL	 1eq. (7), 	 MUS: Sat 4 S4v b o Un.'.ary condi tions it

— — 0	 as	 ? —+	 31
, x	 my

	:or :L\8d X and	 t0 a ^3II1:7^d. M,of :'1nC^^J^5

,^ y l. 53ti5`yinq

43 	 _

all de:	 2n
dv" :y

;(I

:

^3



do d	
-0, I	 zcn:-4auous ondv	 I

dy- 	 IV -)

D(0) - 0	 and	 D'(0) - i

and

.v	
I	 i m , do, 2

( 7) 1 "dy	 and	 -	 -, dy	 both ex:^iz.I dv-
10	 JO

'he :cncinuum aigenfunczions which wili be jiszussed in Sections 	 and

-ic noc sat t-sf-.r eq. '12).	 instead they belong to a manifold `!' =	 of

functions satisfying eqs. (9) - (!-') and a weakened condition.

4,
and	 bounded in :0,d

y

'.re define in inner product.

(3)
	 S ^y 4V

in M. :he std_ -4 enotas -.:e zcmplex zznjug3ta. 7h1s inner -3r,-duc: :.S

4 e`ned for the Cull Hilbert space of	 --zac--sfv4.n-z eq.	 and,

in that space, has the -asua. proper!:-'as cz: inner products.



I

I I	
-'-- - - he adjoint Drablem

,a+
:or functions	 we define :he ad Joint 01I, I of X in the

-,Lsual way Sy

IJ	

-	 -04.
It), *, 1460 g(x.:'.t)..dx-lvdt

f J / - ; (.,,, I t)	 I -
140	

V )-dX-lVdt I- 3CU-143rV .e: s.	 i5)

.he definition of the adjoint :used her-3 v i el-'s an adjoint op erator which

is idencizal :o the formal adjoint (Frieaman, 1969, Pp. 2,3).

An adjoint  st-. aa= function. t3 lx	 s	 3 solution of :he

adjoint equa!:ion (vita U	 U)

;u
dv 'X'V

wi:h :-e boundarl conditions at 7 a 0,

.If	
:7)

3XI	 )v
.X.O,t	 lx.J,t

and the f initeness c.ndticn



JI:	 dy
I 
0
	 ?X'	 .7V

.n

0

:ks above, equatirn l:?) i=plias :hat Z =us: satisfy bcur..iary condi:-Jrs

:xv	
as

wben, as oelJV. we look	 soluzi,:ns :J :he linearize+] stream

:1nC:iJn e q uation lP which have a wavelike •--e.,aV-or in X and

ec. ua:iJn ^3) reduces	 the Orr-So=erfald equation and equation t16)

:educes :J :he ad ll JinC Orr-So=^er:eld ec--atiJn. ^ur ad 4 oinC Orr-

Sc=er:el3 aquatiJn 4_3 :he _cmpiex Con;ugace of :ze ad'aint equation

Jer:.ed by Sc:, ens:ad (I?60) and q uoted	 .he reason	 r

this ,4. 4-_:arence _s :hat we ie__re :he inner -3raduc: _n :he ssua? wav

(14) while Schens:2d's	 of :he _nner przc.uc:	 3) involves

: _nSt23C J: f*.

33



_.3 3iorthogonality

Salwen ( 1.9", Q) has shown that the solut 4-ons JS the linearized.
r

three di=ensiona'- Navier-Stows equations, u, ;J and the ad'oint

soations u - sat is:? a "cortizuit-?" aquacion

r ^ • r o,	 c.u).t

:J [12 r °_

Jw

Z

• (Q"	 u)v -	 _ -l7u7)ui - 1i ^1 i )
-i^1

and, 35 JZ:Jr'_, ..^.e star .4.2^.Qt=s 3 _QCp.2X CQnjuga:e.

'or the two .. 4-=ensi 1 na. dis:-u.t3nC2s JJnS.i2red here +e will

intr:Cuce tv0 ::e •a inner 7roducts. -at -1 'Je anti' 3J1ution of :he Jr:plea_

proD . z1 and	 J2 any 3Jiutt.:n JL t ..^. e 4d40-nt :r:0 _ 2=. tnen

kD J4

').0

:•1

i



(:4)

and

0

'Iith c :he :c _omponent o:	 .sing	 and eY?rzss:ng u, .0 and I,

3 in :e:--s o. u and -0 , is can 'be shou-n :hat

1 O	 7Y3	
:x 3Y

,	 C• 
:x	 3:C3

ixav	 v	 — :xz,l

:x	 :cix - 	 .ix-

- 3v :v

'he 'crm __ _nese inner orcduc:s has .een ;e:z —ne_ by the equations

_cr :`:e s:ream _-^.orlon and the adjoin_ s:rears '-unction. 	 .: cwe •7e7. we

:.an -.se e q uations ;:3) and t_5) to ta:cu_ate inner prc.:uc:s	 3> anc

3.	 a a:ua:ec at :_xec x and	 aP any .`unctions f(%.	 t) and
I



It is strai;htfor,ard to show that	 de:ined for :he full

i.Ser: space of :unctions which satis: . equation (7) and, in that svace,

has _::e .:sual properti es of inner products. On the other nand,

is not positive :efinite. nis is due to the fact that it is possible to

nave :a:eiica solutions :: equation i3) which provagzte is either _::e

(-x) or dc , .-nst_ea= +x) direction.

With these definitions it is eas y 	snow that

.x --

any solutions o: the on;inal and ad'oint prob-ers.

Z-r. ':P and v are wave listurbances 3f the :o^

r

r'xa!	 ^-^J

)eitax
^W 

	 -mot)	 (_^)

equatiza (26) 7e.!Uces to

'his e--.;a:- :n T.2v Se -sed to	 relations :or _-e

e.;e :_ =c:i zns _. :oth :he cez^ors: 3c,. spatial stabi:it? 77:: . a=s.

r

3

,t,



:or the t am?ora '_ stabi-it :: ? rob:e_. L s real and ;i • 'en and

equals z. :'tie orthcgonalit;: _
elation :or tie :emporal stabi:it:' prob.ea

is then

T	 ^,	 (30)

SC t[le 40:'ltions Jt the :29pOL11 5.31_	 p roblem and the ad,oint

	

'	 *	 The .,.tiogonzl : t•' zordit.on.
solutions ars Drtiogonal unless

equation ( 2 0 ) , oan be re_ognited as be
` n3 essentially equi

va:ent t0

and disc^ssea

that _, er' •red .^ 5,;h ensted ( :950: ?9

_;r ji '2rence _s :zat Sc'. enstec s ad' o.a So.6 or.

by Reif (:953 1. :^e on'	 -

_^	 ^Y	 'ugate of ours..s _ e coop-	 ,
ea'_ and given and _ 	 _ 17-d

	

:A the c39t o' s?at'_a: scabi__.:, 	
^s

e ort`cgc'^alit? re_ation is

T/	 (31)

*	 .,
the	 a_g+ en__nctic nz :::c ad;oizt si3t"-

"zus. unless
. :	 s?a. a: 

^duo ie: -e3 ^y e;uat:on^a. its -e inr.e: %r	 -
:sctic rs ale ort:'togc .	-•

(:5) -

1



3. :he :±=oora:

3.1 The --';c-.va:ues and 'c:;en::nc::cns

For tit tecpora: stabi:it y problem we mcc::*: the finiteness c:nSi:ian,

equat-in k '), :.^

I0
	 ;x

-his ensures :aa: ::^.e Fourier ::i:agr2. ex;aas:an ;: S

T	 `' •t

exis_s.	 :.° 'ae issu=e : ha: T= i5	 : he ! o r--n

	

V' z (7, t) - ^^^?fie ...t
	

(33)

.:y en : 2 is a soiutian ^: .,e _.--3cr-et_r:- ^ ^•,a:-:n

- J/3 ,	 (3:^

I- d

44
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51mi.atl7 ve assume :`sat the ad;oinc so:utinr. ^l , also satisfies

equation ;-') :hus ensuring :hac :ne ?curier incegra: ex?ansi:n of

W (x. I., , t) v
1

	lax

exists. it is assuaed :hat 4! is of :he for=
s

*t

v
.ri:h	 :he solution of :he ad, Sc ^er:e:d ecuac_on

^s

L? + iWR (L' - c R )' _ — _ c dv:. ,1
	 0	 (39)

'Ji :i

(4)

30th	 and	 sa:isi the boundar•., :orditicns

^  

and ei:qtr

3
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0	 as

r
and 9OL are in M, or the weaker condition

r	 r	 , 1

	J 4 , ,, , :a , :^	 'bounded as V - M,(43)

if	 ^:, and D, arb in `i . 7lose eigenfunctions which belong to `f will be

called discrete eigenf ,.mc:ibns. °hose which belong to K buc not K will

be called :ontinuum eigenfunc:ions.

__ das been found (`"ack, 1975, Grosch and Salwen, 1975, 1973a) :hat,

in general, :here is a finit e number of discrete eigeniunctions,
::m

with eigenyaluest^+	 and a set, lD	 of continuum eigen:unc:ions-m'	 : k'

with eigenvalues ^k; which de?end continuously on a real parameter, k,

in the range :0, m ). (Noce that :he k of this su er is eq ual to ak of

far_ 1.)

The number of discrete modes, whic:: we shall denot2 by \(a), deuends

not only on	 but also on Z and on : he form of U(V) and ;.an, in some uses,

be zero. he adjoi:lt 2iienfunct 4-ons also include a finite set, 3'
	

or

discrete -igenflncticns and a .:ontinuum,w:k,. i:h eigenvalues {.*^ and

.^
* k .

, rescec:_^e1y (see iiscsssion fol'-cv,ng (30)). ?or a 3. er. :c, ^k
a

ikv
ana ak :a rf __ke a linear _omb_nat_bn o: e -	as y	 ;e therefore

find that

k+---	 •k+?
.k ,(v)dk^	 and	 :k'(v)dk = u	 (+^)

:!

40



and *_hat, for any square-integrable f,

_	 d0+k	
daxk

(`' yak), (	 Iak)	
(	 dv ), (	 dv ) ail exist.	 ^5)

:nner products between _cncinuum functions, such as <a ,k , txk I> do

not exist in the , riinar-, sense but are definable in ter-^s of the Dirac

3-function (Lighthill, 1960, ?o. 10-21).

The discrete ei3envalues must be searched for (mack, 1:76), but :he

continuum ei;envalues 'allow from the asynpcotic xk,
^xk

- linear

combination of e 
=icy
 ) of the ei;enfunctions as -	 and 0 - U,	 = U(=):

(-k` - x - ) ` - (ictZU, - i::.^ ,	 (- k ` 	 0

x") ` + (i,x.RU - iB;.r*k J (-K' - _ ")	 0

so that both equations yield

,̂k = (^) (k , + xZ + iaRU l ) .

,;e also find that no ,:ontinuum ei;envalue is also a discrete e13enval'.:e-

:'hen

RP

('.6a)

(.6b)

(4%)

1
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xn' an 	 In	 In

<, 	 p	 (+3b I
^^n'	 rk	 ,k'	 xn'

and

,I
_	 . 2

^1	
1

A ` - J	 unless	 ?c < k < k	 (+3c)
ak'

I

With orooer la=e lli ng and no rra i- _ation,	 4-_ is then po ssible .O zhoo s e

the eijen'unct_ ons in such a ;,; av _h at

^^9a)

xn in	 nn

„a5 t

xn' xk

and

1,

f
t ^

I



3.2 7-xpansion of an arbitrar? iistur'-^ance.

.f the eigenfunctions form a complete set, then, for any time, c,

we may expand I,3 (y, t) as a linear combination,
a

	

N (a)	 I=
``a (y. c) -	 a^(a. t)^Nn (y) + 

1 

a^(a, c),D (y)dk	 (30)

	

a-1	 0

of those ei3enfunctioes. :'o find the

	

	 .a	 and '.a. •.e may
n

make use of eq. r ya) ca take inner pr^ducts

`v 1n'	 Tay. t) > ° ..	 3^r ^^. t)l), ° 3^^G'. t).	 (51a)
 nn

m

ak	 ^z ' t)'	 a. , (CL . t)^(i - i' )dk'	 a. (a. t).	 (-ib)
'

	

:0 ;	 {

ire then find that

•1 	 r	 ^ l

i t	 +n '	 L

zn	 _.n' Yl  1	 "xn n

find, 3lmi_.Ir_ .

43
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so that

•.mere

a (a) _" an ('a. 0) ^ <j	 ^, (V, 0)>	 (5ya)
n	 ;n '

^x) °- a'c(
	

J)	
^Wxk, W 

(y, 0 )>	 (5^b)

:`y en, _e_e_ in5	 equations (3:) and k3O ) , :e find

.a y (a)
3̂ ix. 'r , t)	 a	 e	 ,n1 ia) ^Y^(y)-i` 

t

J -^ n^ 1

.,a

+	 a. (s)o k y le-iL.:kt
lk; e 

lax 
ja.	 i55

J 0	 .k

where

3

44
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A(v, 0)>
n	 an

	

:T	 D (v ) L	 ^P^X. v, O l e - xxdxav

	

_1	 ^* (V) 	
e-iaxdXdV'

2'r ) 0 an

and, si^i:ar'v,

m	 m	 '

	

A. (a),^	 yak kv) 	 e	 a-xay. .	 Sob
0 

_: :.̀:e discrete and concinuum aiienfl-ncticns :,^ = a complete sec,
.n2n equation ,--) zonstitutes an exna n s_on of :he stream ..:rc:_on of an

arbitrary disturbanc e in to=s of :he discrate \ jil—ien-Schiicilcing,1

and zon:2 nuum wave scluticns,

	

^ zn (v)e
n- ^	

and	 9(V^ei^ax-.,^k:)
ik

	

-- - ne i.iz-,;rbanze equat.--n,	 c2ter'r_^.e d bv he

, f :he discSr^ance	 v, J) . in V e next sect i on we wi l l

snow tnat the jisc rete and continuum eigenfunct'ons are a complete set.

7



.r.e in:ares: 4-ng anz^ s4-,,,ni--'izan: :-esu-: of :his -alzula: 4-Jn is -.ha-, --ne

ini : 4- a -' --^ -' s -. -. 4- 'o ur. ic n o14 vo r: i ^ -4 :-! ,

.
'N	

(37)

0

-3 5'1_- _- _- :::	 =a : -JA :: mete---nine :h a --ce	 an : s A	 ar.d k,

and,	 s-,;'zsec.,.;e nt :ave-'cpme ri tt of -..-ie d—iZ urbance.

16



4. Completeness of the Temporal Expansion Functions

Gusta y sscn (1979) has carried out a formal solution of the initial value

problem of temporal stability for three dimensional disturbances. he uses

the same coordinate system as we do with the addition of the z coordinate

in the cross stream direction. The formal solutionis obtained by taking

Fourier transforms in both x and z and a La p lace transform it t , formally

solving the Orr-Sommerfeld equation in the transform space, and formally

inverting the transforms. 	 If we eliminate the z-variation of Gustaysson's

solution and his Fourier transform in z (replacin g his k by ;a!) the two

solutions should be identical. Both Gusta y sson and we express the solution

in physical space as an inverse Fourier transform over z, the transform

variable in the x direction.	 In order to show that these two methods yield

identical results it is therefore ne.essary to show that his formal solution

in Fourier space, v as given in (G13) 	 is equal to the factor in curly

brackets in our equation (55).

In order to do this we must first translate Gusta y sson's notation into

our notation. Setting :. = 0, after (G3) it is easily seen that we have the

following correspondence,

In order to simolify reference to the ecuat'crs in Gusta y sson's paper

we will nereafter use the -.refix G. Pace references are also to Gustaysscn';

paper.

3
If



t'.

This pa per	 Gustaysson

	

IP	 iv/3

	

A
	

k

	

w	 is

	

k
	

a

	

Ul	
1

in (G3) and thereafter.

Gusta ysson gives the formal solution in Fourier space in equation (G18).

it consists of a sum of the residue values at the poles plus a contour

integral along a oranch cut. Using the definitiongof W as the 'Wronskian.,

diig the O
v)

given after (Go)
)
and the : j , ecuation (G7), it is quite straight-

forward to snow that the residue, R , at a poles is
y	 J

R	 ( e s v t/W) lim ,(s- s , ) [a l (s) 1 ( y ,$) + a2(s)=2(y,$)]ti.	 (58)
V
	 S 'S	 ;

Therefore the residue consists of a linear combination of : l and 
.'2

the solutions of the Orr-Sommerfeld equation that ap p roach zero as y

i.e. they satisfy (G4) and (42). At s = s^	 s l and :2 satisfy the usual

eigenvalue condition at y = 3 for the discrete modes of the Orr - Sommerfeld

ecuation, condition (Gb) (at the bottom of page 1003). This linear comoination

thus satisfies (41). Therefore the residue at s is pro portional to our discrete
J

eieenfunction 
s•. 

(y) with eigenvalue y	 and
Yv

	

e s t =_ ,-i	 t .

48
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It is well known (Coddington and Levinson, 1956, p. 101, problem 19)

thatD j /W]	 the com p lex conjugates of the functions used in (G6), are

solutions of the adjoint equation (39). 	 It can be seen from the form of

(Gll) and the definition of our inner oroduct (23) that

w
aj ' < j .= o ^	 j * 3,4,	 `SOS

so that the coefficient o_ ^ V (y) in tt.e _esic;:e is t;e ;.nner :D.c+duet of

some solution of the adjoint equation , g ith :(y,0).	 Finally, some straight-

forward, but tedious, al g ebra shows that the particular linear combination

of the 0 j involved satisfies the boundary conditions (41) and (42) and

therefore is a multiole of our 	 We- thus find tha t the residue at s is

R  a da) A1)(a) :av a-
ilIV	

(60)

with d 3%d independent of y and A
%
^(a) given by (5 s a). Before determining dY`,,

we turn to the contribution of the branch cut.

Using -he fact that our	 = is, it is clear from (G14) that the branch

cut in the comolex s Plane is our continuous s p ectrum in the complex

., (or c) plane and that the branch point, 	 = 0, corresconds to the limit

Point of our continuous s pectrum at c = U l - i :, 2 iR, with U 1 = 1. The function

F( .%,k; y' in (G18) is, by (G17)and (G19)	 a linear combination of the solutions

j' the Orr-Sommerfeli eauat'on vnich a re	 — n	 t	 '"as y	 , 35:3mntot^c 0	 ,

e-iky, and e
w ' ky .	 It can be sncwn, using (G19), (33 20), (G21), ana (G22), that

F(a.k;O) _ (dy^	 n-0 = ., ,

I I
	 4 9

(61)

h I



anc so F(-,,k; y) is some multiole of our continuum eigenfunction a.,k(y).

Further, it is obvious tnat, in (55),

e -
 
iIIkt	 = .-i .a	 2lt e -(1 *k 

2 
)t/R	 (62)

in (G18) with U 1 = 1.

	

Just as for the discrete moces, the i a l '	 +	 2,3,4 in ;G21 ) are the

inner o rcduct of some solutions of tie aajoint equation with : 0 . Usinc the

definition or the Emn in (G22) and the de finitions of the	 m 
as given

in the next to last paragraph on cage 160 some algebra shows that the

:articular linear combination satisfies the boundary conditions at y a 0

ana so the inner product in (G20) is a multiple of the inner product of our

continuum adjoint, a
:tk

(y), with the initial ccnoit^on.	 Therefore, the integral

term in 018) is

a

I

	

	 I d
,k k	 2k

A (,)	 (y) a -' ik ` dk	 (63)
i 
0

with Ak (1) giver by (54b) and 
dik 

indeoencent of Y. Gusta y sson's result (G18)

thus takes the form (in our notation)

N(n)
(v,t)	 _	 d	 A (2)	 (v) a -i ,vt

a

d' k  A k (Y) ^1k(y) e-'.,,kt dk	 (64)

0

4	 Both Gusta y sson ana we may cneose our initial corcition ar.itrarily,

provided that the various inte g rals of this function with the adjoint functions

ex 11 	 If we ;.noose the initial z:naiticn that 	 4# s (y.0) is one of

so

r

4 I



the discrete ei;enfunctions, say : A (y), then in (55)

'fi n ( ' ) _ ...nm	
(55a)

A k (
.
') - 0 .	 (65b)

in Gusta y sscn's formulation (03` we have

d I 	 "'mA (a) n S	 ^66a)
^ 

Ak (Y) : 0	 (Sob)

We tnus see that

d	 1	 (67)

If we then choose the initial condition

k+e

. 1 (Y. 0 ) =	 I	 , . k , (Y) d k 	 (68)
k - e

a similar argument shows that

d k = 1	 (6^)
a

Substitution of d	 = d	 = 1	 (57) and (69). makes eq. (64), derived from

Gusta y sson's solution, i -̂I entical to the curly bracket in our ex:ansion

solution X55). Ne lave .nus snown that the fo rnal soluticn obtainer oy

Gusta y ssen frc.r. -.e -ourier•Laolace trans forn is identicai, term by tern, to

our formal expansion sclutien.
^ h •

'	 S1

3



Since en y scuare- 4 ntegrable solution possesses a Fourier-Laolace

ex pansion, we nave snown that our ex p ansion X55) is comp lete whenever it

is valid to secar3te the Fourier-Laplace transform solution into a sum over

the poles plus an integral . over the branch Cut — that is. whenever the sum

over the poles (discrete eigenvalues) converses. "his is, of course, •1so

the condition for the validity of Susta y sson's solution.

For the Blasius poundary layer, the numerical evidence (Mack 1970,

indicates that, at a given R and Y , the number of discre te modes is finite,

so that the sun over the soles is a finite sum,. 	 if tn i s ; s so, then the

above condition is certainly satisfied and our expansion functions form a

cocmulete set.

,^e have shown that the Fourier- La p lace transform result and the ei,en-

func'ion expansion result are dif =erent forms of the same solution of the

initial value p rob l em to be cnosen according to convenience in a particular

case. The eiaenfunction ex p ansion formulation g ives ex p licit formulae

(54 a,b) to calcula te the ex p ansion coefficients. This allows cne to calcuiate

_ne amp litudes of the 3iscrete Todes (TS Todes) and the continuum functions,

given the initial distribution of vorticity.



5. '.he snat-al stability pr:blem

5.. '.he e-, ;envalues and ei;er= actions

.he !inLteness zondi zzizm,equation ( 7 ), is modi!itd. t:r -- 6 e s?azial

scabL-i-t-! oroolem ti

-a	 -
Q
	 <

ensurais :naz :he --:urter :.nzegra- ex:arsicn of

ran

ex_sts.	 e i s s	 a t	 n e 'arm

(x

taen	 :	 is	 so!-.iti:n of the

2	 (72)

*.;:.:.I L , ;.:en o--- (36').

148

S.;
i
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and

Si i,ar_Y, we assume chat the adjoinc soluc'_on, S , also satisfies
i

equation (7") taus ensuring chat

l
r	 ^(X, Y, t)	 ^(x, 7)e-

iJtdw
	 (73)

Mists. :;e assume that

:.. :c
*	

(74),j(x, Y) • 
;w(7)e

=hen t is the solution of the ad,4 oinc Or_-Sommerfald eauatior.

.L 2 *+ iZ^(^*U - 
u)Lr* - ^^* dU d—

0	
(75)

z ay dy

:'he Soundar;7 Conditions are

^(0) • ^y(0)	 3 
W
(0) - 3 , (0) - 0	 (76)

V
-0	 as	 (77)

and	 are in `"., :)r
J	 ^!

If



bounded as	 V

^W 
and j^ are in `!^. as above, t:'ie eigenfunctiors which belong to

`! are the ^iscrete eigenfunctiors and those _hat belong to `1 but not `S

are the ,:ontinu= eigeifunct ions.

Jordinson \19'1), Co rner, Hcuston, and Ross ,19 6), and Xurlock and

Stewartscn (19`7) have shown that there is

ei;enf'uncticr.s, (? .in (_r)}, with eigenvalues

adioint eigenfunctions, %gin}, with eigen

he nu= er of discrete modes, V(,j) depenas

only a finite set of discrete

t. he set i f discrete

Values 
(a*	

iS also :finite.
.in

on . as %well as j and can be zero.

In par: 1 'we showed that, in an zibeunded domain, the spatial

stability or_blem always has a continuous soectrum. Since :^en ve have

.iscover>_d (Gresch and Salwen, 1973b) , t:lat : he spatial eont.auum of

?art 1 is onl y one branch of a four branched s patial _cr.tinuu." . It is

quite eas y to show :he existence of the four branches of the spatial

,.entinuum. '.re look for scluticns to equati,rs (, 72) and l75 ) ,	 k \y \ and
L

;k ly), for a given real k, '»nick 'la r'% _-+e a iAV as y— n (:he k used

in discuss ing the s p atial cont 4 nuum'_h ?art 1 .s 2. R titles :he < ':sed :here) .

Voting :hat, as ?	 a , 'J	 0 1 , a c'=nstant, and U',	 J, we have

and

(-x*2- { ' ) (-'x * Z- :< 1 - .a *CU ) - i-^)	 .

(vote that e4uatIins ( 79a and b) are z=p-ax zcn j ug2tas. '

I

	 55

( 79a )

('9b )



at _s obvious that there are four roots, ^a ' , 4 n I, ... ^ a ::i'.`

`
I 

and ::, ".he' :Jots -if
^	 _

1	 ,

J

a.^.z

r

he ei gen ,.a_ue `L I , t -e rant ... equat_.`.Tl X) With 7csitive real Jar',

_s the continu= ei 4envaiue discussed in Par_ .. As Was discussed _1

?art _, the ei3entun,:ti.;rs JL :his branCh JL the sp .atia? z_n t_1uum

3r_ waves Jrocagat:1g i n .1e ..:u-.lSC - '_a= (t;() direction And 4 ecavi1s 41

3IIn 1 _t'1.:2 15 tlev :ravel. _1 the sa=e .av it can be s' c%'Tl	 ^.3t'1^ is

_,e aiAe^.va:1e	 1 ocnt_1uum	 .::11.::1 is a .face :raveling .1

_1e -loscream (-x) direction and decaving as it _ravels.

:'.he =tee stream speed, U, , car be taken to be unit -jJr a JoUnda:-. -
1

:aver, -.rake,	 .r?e snear t:OW. .:1 mcst Ss ,. s of :1taC25t .,1 < < ^.

Lt is easy to see :Rat, with U l n 1, and	 R < < 1,

2

.,_	 _ lam/•^1 _ :3 C 
1

11	 '!) - ..,1/:)-	 ^- _ ^1—^	
(92)

III

With

:.b

I 
It I



(, + 4k 0 /Ri
) 1/2
	X83)

Define, as usual, the phase speed c} by

C.	 z^,,/ ^,	 84)

:hen as

2	 z
(w + k - ) r R - :.	 85a)

~1

i3LI + (^0 - k-),'3"_,	 i85b)

c 1 - 1 - is(v 2 -& 'c')/R`:/('jiR), 	 (86a)

c	 (u^iR),	 i(WrR).l + (W^ + k `)iI	 (86b)

'.'bile as k -

a1	 (uRi .k) - ik	 (87a)

Y_ : 
-z1 I	 (87b)

C' - W R/Ok	 k$$a)

t



The damping race, for the spatial ei3enfunetiors, is A(a) and the

phase s p eed is Re-,c). The equations given above show that th e elyen :'lnctions

On branch :d0 of the sp atial zon tinuum, for bo unda^r lavers, ;lakes, and

free shear :lows, alwa ys have both a ver., larze damping rate and a •:e r?

shall :vase s p eed. :`1.3 .s in marked zcntrasc tJ ^.Ose of branch Jne,

which, as was shown in Part 1, Jr ca n 7e seen .rJQ _ he above results,

contains Ughtl ,! damped eigen'unctions scce JL which have a very slow

?lase s)eea and score Jf which have 3 phase s peed aearl7 equal to the free

stream speed.

.ale s patial continuum ei5en::nct:CRS of branches 3 and 4 are standing

waves in x J2cause the y va .—' like

a ia3x	 - -ti..^	 ei yX r e+C{	
(89a b)

As in the temporal case, the inner Dr:ducts between t he spatial

continuum eigenrunG:ions 10 not 2tii3t in the ordinar y Sense but can be

.; e:i12G 35	 :L`IIGtiJL1S.	 en,w i:h grocer 13b?:^^.3 and normal-cat_Jn,

is 70ssible to :[loose the 2i_2n:'Sect:JCS Such that lwi:. :he sup er-

s^ri^c i or j indizating t he branch o f :he concinuum)

?0a)

-.;k	 _n

r 

I3
If



:12:2

!.in	 "..n .

wn' ,n 	 10	
:	 _n

-*d:
_n '- .,;n ' -

+ x	 - i .,R) 3t :	 , T - dv	 dvW n	 wn .,n

-:n	 in	 .:n	 .;n -:n -,n

*	 t
d^D	 d0 	 d" ^

4 v 	 dv	 'v	 y .m -

and -^2=2	 ^

	

ana_zgous _s r 2ss«ns	 _::2 _.. 2 r ^::duc:s ^n ;90b)

and ^; Q Oc! .

I
59



pansion of an arbitrary Disturbance.

I: -,ne spa-. 4-a. ei;en:unc:_ins form a complete set, :::en, :.Dr a ny

x, we 3av ex?and Wy (x, v) as

W^ l(' 7) 
n 

v(^) 
a 1 (.7. x) : ten (;► ) +	 (^ a. , ' ) (.. %)^(k)(y^dk.	 (92)

nm 1	 i-^ J

:n artier to find the coei_`icients a (w. x); and : a, i) (..j, x) we .:se1

equation (90) to take :ie inner products

T ~
3n	̂

X) an
	

an(w. X) .	 (93a)
n =l

,	 (	 y )] -	 a,^^)(u X)3	 - :<')o	 dk	 a(i)(.j, x).	 (93b)
^k	 ., x '	 ; 0	 .c	 zj

'"hen

3a	 x)	 3w	 _
n 	 is	 y _

x	 =	 .,n	 in	 .in,

is	 a (.j, x) ..:n n
	

(94a)

and

oil



^	 •*	 - is _ ^	 W
.x	 -	 ^wk^ 3x	 wk	 .tc

.,jk	 411C

;o :aat

a (^, x) -	
(w)eixyn=t	 (95a)

^	 n

(i)

c

::here

y)^	 (96a)

n

^(i) (,^) _ a( ) (^, 0)	
W ,
	 (0, y)	 (96b)

c	 ^

+) (92) ar.d (95) , ^e :za :e tae cor•^a: ,ol- -,4n :o
From e?.iations (r	 ,

tao^	 ^r^o.em '
_or _ae =,vo i,aensicna',	 ear_:ec

	

^.e SJa:-3- i	 -

`:avier-Stokes equations

	

^y (	 y (.,J) 
_n 

(v)a`xIM
x,	 n 

	

(k	 4k a __c aw	 (97)

L

bl



:ei_ne

.a

W^ (Y) _ ^^10, y^	 ( ^i0. r, t)eyt	 ( ?8a).^

)3x -	c^^	 :x	
0

	

lY^ )^Y^ - (+
	 , 3	 )	 ^^	

l^	
(:c.	 tl)	 irte 	

dt.	 (98d)
3

J7C	
K =0

ti
a (J)	 =

.4nn . 
W 

^ 
(0 , y)

n 

41	 41

n ^n	 ^n d

^t ;^^=) _	 ^* Ali' -	 _^*	 w %0)
..,a	 _ . n -n'. n _r.	 r

iv'
b^

.nee

r

1

t



(i>
and .:ere _s a iim.'tar =rpress.on :or a.	 (w).

R

:'his is the formal solution of :he spatial stabilit-: problems

'or an arbitrari-y imposed bcundar-, condition at x 	 The boundar-:

ccndi:izns which must be specified are :he -ourier trar.s:or.s in ti me,

of the 3:ream function and _ts 'irsc three partial ieri •:a:i-:es wi:h

respect to x, evaluated at x - 0.

As __ stands, this formal solution :rill not give a ?hysically

ac_e_table solution because, given an arbitrary ^(7 r :, t) and :.eri7at"ies,

disturbances •.rhic h lie on all :our branc :es of :he contiauua will be

excited. hera_ore :he solution will con tain, in aC jition to the wa-:es

pr:pagating towar;s x - p and the standing waves -chose amplitude lecays

towards x	 a , waves prop agating '-,ost:eam _rom x	 and standing waves

whose 3mp lit de incr'-ases :zwards x	 ".

A condition =us: 72 _^posed that, for x > 0, all propagating

turbances are zrave -_,g in :he p05: _:2 x iirect_?f. and al= Stand;..^. g

.;aves have amplitudes which decay in the ?ositi •.-e x ,irection. It ap pears that this

jn0U1d oe dCne b y requiring -..^.3_ + (^, 7 r t) and _ta ._75- --n-ree partial

derivat_:es -wi:h respect to mS 'e 7LtlOgC^al to alb 2:32n:'3nG:iCns on

Drano .^. es _ and ~ of the _-:rtin:;cus spectrum but Ne nave not yet invest4.03t,d

t,e	 piicat_cns of i-oos^,g :his _cndit_.n tr. :he diat_Lhance stream

.szct_cn at x w 0.

7



6. n glizaticn to :1ne iemcoral ^evelcoment :f a mode. _:w

In this section. :e apply the results of section 3. tJ :he sin;le

base flow,

constant,	 _ 0	 (100)
1

.h'ch 's a s: : 2  flow :ast a bounding • :ane at	 - 0. T.tioug^ the rase

_`low •:elocit:r aces not •:anish at :he Scundar 	 w e still : e ? u.:e the

'_istur5ance .^iceity :c ^e c2:o at _ - ). Because o: :he st^pli^_ ;r

the 'rase .ic:. :`e a •, ransien frcu:ns a:-2 eler:enta^: func:_=ns.

In 6. , '.ye find the ex p ans i on functions.	 In this case, the re are no

discrete ei;enmodes; all of the eigenfunctions are continuum functions.

in Sucsect_on 6.2. we soi • :e fcr .ne :i=e-deveicpr..en: 	 a :art._..ar

ini:ial distur`Jance c v expanding - n :e^s :f ::nese a-.en'rnct_: rs . 	 '`ze

l ^ eriJdi _a er o: :Jr:icity ce,.._nea t_ a
d istu rbance _.^.OS2^. _5 3 ^

p lane parallel to the i:r - 0) bounda ^ . Because Of : .̀e s:=ple : : r"s of _- e

i^.-. g al 4 ist 'ar:ance and _he	 _ ::e `ase flow , It is ^_cssi7.e to

t he solution in c losed forts tn :e^s _. e:.:r "not_ S'

6.: 'he = ze- !*-nc:i:MS

he rase flow Jf L?uat_=n(100,̀ :^e	
..fe:ent_a_ ':L'1t_on, X34),

fJr . .̂ e ?:,^_^nsicn f ,=cti cns 7ecc=es

(—: - ..^ - ..:^ _•. - _	 — - _.	 ^	 (101 )

ha



,with :he ienera

•,m ere

1

	

p - x` + ia3(U - c).	 (103;

(:n :his case ): constant U, : aust sat_st . :he same 3i_:erer:i	 ^^ai _y.:acion)

:n addition,	 pus: saris:": _?s. (11) and (13); i.e.,	 and D ' -zus:

^arisaat	 J and be bounded	 : J, n^ ,	 r	 '^

	

Since a	 is snZounded,

3	 0. :o sa:i:s , t7e bounda_ conci_-an a: :he ari;i., ,je =us::_ y en.	 era .

t - [e ^'^' - _csh cv - = Sian ?v_	 (104)

which is -mbounded as	 --=less ? is ;ure 	 7 a soluc_cns5=

are :hen ; 4--,en Sv

	

< k	 n	 (105)

=sk 
(w1 - 

sk	
- .a_^: (i ^' •' - cos xv) - = s... OC7 ►	 (106)

A
..

c. S

is

.1



ahe:a _:-,e	 _z!_ta__on constan.,

.<	 r
A	 -	 J =	 (101)
xk	

k-	 x

_et e^_ned 5y the :onditian

<j
;Lk	 Yk

'> - 3(k - k	 (108)

:n this case, vnere the : A and :lk 
are Known explicitly, one may

snow directly that, 'or F(y) any Continuous, differentiable, scuare-

inte g rable f,nc1, ion in [0,=),

n

<^Yk• F' :3k(y)dk - F ( y ) - e ' l ' Y F (0)	 (109)

0

taus confirming that tie set of .: k : ^s complete for functions in 'I,

with F(0) - 0.

W)



6.2 7he	 if A.-. '.nil tia-' :1-stur5ince

:n ci.er to -4e=cr.s:-.a:e :.he a;?licatian z! this ax?ans;.jn

.;e cons'--l er :he :articular initia: lisvurbance

01 . ^
x.	 I '0x

of -7ortizin? at a distance .*
0 

fro= :*-e --ouncar-7.. 

se ,---'- :n 3.2, -.;e .4 -4 nd :.-.at _ne screa= .-:•.ir.ct-'Zn !ktt any :--:ne

'zy

An ^W	

-t) -	 k (1) : (7) e "Ju z 'k e
J-m JO K	 A

-here

tdD	

121

-.5 easil-r seen. I-V S .,;Zs"citutini 7 c -	 110) into	 Z
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W (x 
	

t) 
	

) J 0 bak (y 0 )6 (`` — a0)^lk(y) a
	 sk` dk e -ax

e ia0(x - Ulc) a-zDt/R)Q t (y0)	 (7) e-k^c/k dk.	 (114)

A.-: :et .sing 3qs. (106) and (107) , for 	
;^k, 

we _ind that each term is the

integral is expressible as sums of error functions. The results are given

in an ?Appendix. From these results, it can be shown that, --'jr t 	 with

_fixed,

1	 _
- rte e	

c1^ 
cos :x - U i t)	 (function of ;^) 	 (115)

and, for y - n with t fixed,

T '70) cos :. (x - U l t) • ( function of t) .	 ;1 1 E )

It is char that, even though the indi •ridual eigenfunctions used in the

expansion oscillat= with constant amplitude as v - n , the •.rave packet behaves

lire e- as y w a
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Figure .11 snows _ontour plots of the stream _,:notion .or :he Disturbance

in a .ra-e of reference moving :ri:h tale free stream %e_ocit;' f at iix different

tines. :.e have :1CSe n x0 - 1.0 and 70 - 1.0 for the example shown :here.

Contours of the disturbance stream function have also been calculated

.: jr other combinations of values z)f s0 and ;: 10 and, for these ocher values,

the evolution of the disturbance in time is quite similar :o that shcwn

in figure 1.

In figure I the (+) and (-) indicate the position of the maximum and

_.._-um . glues of tae stream :,unction. These maxiau.-i and minimum 'values

are 3 4_vea in the cap tion to the figure. _he flow is co unter-clocz ise

around a maximum (+) and clockwise 3rcund a minimum (-) .

It is clear from this Z4 gUre :hat :he disturbance, which is a oeri^)dic

vortex sheet atc a 0, retains its identity as 3 per -̀odic array .- or al!

"me, but as :...-e _.^.creases it diffuses, the strength deca ys, and the

centers of the vor-tices dri:_ away from the boundary at , a 0.

.re could, or course, generall_e this model problem b y considering an

initial Vcrtict;l '_ism:u; inn in the ;t direction. 7:e :aVe not care'-ed out

_..ls nalculaticn 7ecause cur. intent _. s0 _p ing ...1.3 -ocei prcb_en_ :as to

illustrate the expansion p rocedure and :2 io not :hln.k t.-.at it .:arrants

t-_e'er elazcr3:ion.

We wish to thank Kenneth M. Caste, who referred this r y per and

suggested the approach which we used to prove c-ompleteness of the

°mror3'_ eigerfunr-tions, and George F. Carrier, who convinced us that

we could carry out that proof.

The work rerorted in this rarer was supported, in part, by the National

Aeronautics and Space Administration under Jrants NSG 1619 to the first

author ant NZ7 3 1618 to 'he second author.
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Figure 1: CcntJurs of the A ist'1rbance stream function for :he model

problem in a frame of r2=2rence -:owing wit h the free stream

relocity ac s_x di:`erant ti-es. In t`t is examp127 	 1.0
p

z 0	 1.0. ^Rd y a 1.0.	 :`sera Ira t-.:anc	 :cnt^ur 1_nes onO

each plot. .ale Va lues	 on _; , ese con tour:. are 0.9 5 S max,

0.35 ^' pax, ...	 -0.95 t:^ -;ax.	 ::1e (-) :nd (-) _nd_z_te

the positions ..hare 	 and	 4L	 `:ote _fiat^..:3.`C	 111
C.l	 - - V
— 311	 — 3:ix

(a) _. .R'	 1J-3	 , (	 a O. 25
':ax

(b) - 10 2	 , (Z' -
	 - 0.359
ax

Max

le magic

(e)	 t,' R	 :.0	 1 y	 - 0. OS	 10-3
Max

l:)	 ., R - 10.0	 , V	 = 0. 383 :< 10-6
max



m

10

8

5 -

J -

3-.r

2 2	 2

a (x - U1t)

(a)
10

9	 -

6	 -

r

.................. ................
	.

T T	 ^-

2 2	 2

a0 (x - U1t)

(c)

0

rx _	 «)

f^)

i0

8 _

6 -

Y	 -

z0(:c - U1t)

10

8 _

Q
T j
2 Z ^

a0 (x - U1t)

10

r

v ^ v

0

^Q)

71



^ooendix: S:)lutien ^f the :•'odel ?roblem

In sectim 6 we showed that the stream lunction .°or the model

?rcblam is, equation (114),

(	 = ia0(x - Ult) -ltot/3 I^	 ". -: It
a, v, t)	 a	 e	 }	 e	 ti(v0)0 (y)dk,

	0 	 0

:here	 (y) is 3iven b y (106) 2nd (107) . Su:scitsting for 	 (,v) and
. 0 	t0<

^p ( yo ) is thi3 intagrai it is strai3htfcn,at 4 o show that, with
V

r	 t/R,

a v
T(x, 	 e'a0 x - Llt (I1(,701 ,) - e '0' I 1 (a0 ,	 v0)

a0 a a0v I 3 (a0 , -,, :' 0 ) - a 
xOVO I ` (a0 ,	 v

+	 Z ` (a 0 ,	 v + v0 )	 1 I^(a 0 , ^• ?	 'V

0 I 3 (a0 ,	 y + v0) + .t0 e '"OV0 I 3 ( t0 ,	 r)

1 t- 1 (a0 ,	 v - v 3 ) - ` 2- i y (a0 ,	 v . .	 , I	(A-')

3

I I



^c 2ra -'-.e '-:nccians ? j are 3::en by

2	 ^	 ^k`

1	
'T	

Fo	 (k` +	 ) .

`	 r7

^
2 -a `T (' -;c -T,	 k 2

Z) _ — 2	 2	 6	 '1 ^] COs_	 r	
It 	(k ^ + a&)_

xZ	 ^c

+ (1 + ?a 2 7	 -, Z)e	 aric (^;^ + aZ;^^T')

- s`Z ` i `TJ

	

	
('A3)sr

rZ

I	 .a	 1

1 _(:x'• + YZ)e .. ar =- (^T4 
T	 -^ ^)

•f

e rie	 :tZ, _a-,	 (A4)
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-i	 1

0	 (k' + a-)-
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and, as usual
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ill
	 completeness of the

temporal eigenfunctiunS t.ac demonstrated b y Showing that the Fourier-Laplace
transform solution` for the temporal evolution is equivalent to the eigen-
function expansion. Here, we take a Fourier transform in t and a Laplace
transform in x and solve for the spatial evolution of the Fourier components.
As in the temporal case, there are pole contributions equivalent to a sum
over the discrete spatial modes and branch cut ^_)ntributiOnS L •quiva:ent to
integrals over the spatial continua. The two methods are therefore equivalent.
*P ;lrtlall Y supported by NASA grants NSG 1r.15 and 1419.
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L.H. Gusta ysson, Phys. Fluids 	 l(io. (19791.

( 3 ) Prefer standard session 	 Submitted by:

Harold Salaet ►
Dept. of rh,.sics!Eng. Physics
Stevens inst. of Tech.

Hoboken, N.J. 0-030



APPENDIX D

EIGE`FII1c'TION EXPANSIONS AND BoItND,1Rl'-LAYER

RFCEP'Fl%'ITI' IN THE THEORY Or

HYDRODYNAMIC STABUITI

Presented at the 1Bth International Congress of Theoretical

.ind Applied Me_hanics (Toronto, Canada) , Aug. 17-23,  19H

so



FIGENFIINCTIO\ MANSIO NS ,V%1^ BOUNDARY-LAYER RECLPTiVIlY

I\ THE I111.011Y 01 : HYDRODYNXMIC 5TABIIITY`

Chester E. Grosch
Department of Oceanography and Department of 11athematics

Old Dominion University
Norfolk, V.A. _35US

and

Harold Salwen
Department of Physics and En4incerinc Physics

Stevens Institute of Tcchnolo,\'
Hohokcn, N.J. 0-030

1RS RACT

In this paper we give the solution of the hound.iry-layer receptivity problem:
that of detetmining the amplitudes of the I'ollmlc-n-tichlichting -nodes and

continuum ei .̂ ,enfunctions of a boundar y la--or viven the form of the velocity
vrofile and the Jisturhznce, within the context of incom pressible, linear

stabilit y theory fnr a parallel shear flew. we live the forrial solution
to the initial value problem for temporal stability and give the proper
initial condition fUr this problem. The formal solution of the Spatial

stability problem is -also given and the p roper boundary conditions at x • 0
ind rodiation conditions at x - b :Pre discusseJ. lie give examples of the
application of this method to the calculation of the temporal evolution of
a particular disturbance in two flows, a constant hale flow anJ the 31:15ius

houndar y laver.

• Thi% work .%as supported. in part. by the National Aeronautics and Space
Adriinistra'ion under chants NSG 1a15 ano 1c,19.
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EIGENFUN M ON EXPANSIONS AND BOUNDARY-LAYER RECEPTIVITY

IN THE THEORY OF HYDRODYNAIMIC STABILITY

Chester E. Grosch
Department of Oceanography and Department of Mathematics

Old Dominion University
Norfolk, Va. 33505

and

Harold Salwen
Department of Physics and Engineering Physics

Stevens Institute of Technology
Hoboken, N.J. 07030

SUM %1ARY

The last ten years has seen an increasing use of the theory of hydro-
dynamic stabilit y, to predict transition in boundar y lavers. Mack (1977)
gives an excellent, up to date review of various transition prediction
methods. All of these methods include at least one unknown parameter
A 0, the initial amplitude of the disturbance in the boundar y layer.

There are numerous discussions of the boundary-laver receptivity problem,
that is, the problem of determining A 0 given the velocit y profile of the
boundary laver and the disturbance (Obremski, Morkovin, and Landahl, 1969;
Mack, 1977; Berger and Aroesty, 1977). All of these authors conclude

that the mechanism by which free-stream vorticit y and sound disturbances
generate Tollmien-Schlichting waves in a boundar y laver is unknown.

In this paper we give the solution of the boundar y -layer recep

-tivity problem within the context of incompressible, linear stability
theory for a parallel shear flow. The expansion of an arbitrar y two-

;iimensional solution of the lineari:ed stream function equation in terms
of the discrete and co7itinuum eigenfunctions of the Orr-Sommerfeld
equation is discussed for flows in the half-space, y c[0, -). A recent

result of Salwen is used to derive a biorthogonality relation between the
solution of the lineari_ed equation for the stream function and the
-ilution of the adjoint problem.

For the case of temporal stability, the orthogonal i t y relation

obtained is equivalent to that of Schensted (1960) for bounded flows.
This relationship is s:d to carr y out the formal solution of the
initial value probleir, for temporal stability. It is shown that the
vorticit y of the disturbance at t = 0 is the proper .nitial condition

for the temporal stabilit y problem.

For the spatial stabilit y problem it is shown that the continuous

spectrum of the Orr-Sommurfeld equation contains four branches. The
modes on these brances are (1) waves propagating do.cnstream, (2) waves

S-1
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propagating upstream, 131 standing Waves whose :uuplitudcS decrease dowTi-

stream, and (4) standing Waves Whose amplitudes decrease in the upstream
direction. The biorthogonalit y relation is used to derive the formal

Solution to the boundar y value problem of spatial stabilit y . We show

that the boundary value problem of spatial stabilit y requires the stream

function and its first three partial derivatives with respect to x be
specified at x = 0 for all time. The imposition of a radiation condition
dot%rnstream, i.e. at x = -, e1i III iMites dlsturhances wh1CII originate at
x = - and travel upstream to x = 0. The imposition of this radiation
condition reduces the nuriLer of independent boundary conditions at x = 0

from four to two.

We give two examp les of the application of this method to calculate

the temporal receptivity of boundar y lavers to a disturbance. Ive specify

the disturbance at t = 11 to be a vortex sheet parallel to the boundar y and

sinusoidal in the streamwise direction. he then calculate the evolution
in time of this disturbance in (1) a constant base flow, for which the

calculation can be carried out anal yticall y and (2) in the Blasius boundary

laver for which we calculate the amplitudes of the discrete Tollmien-

Schlichting waves and of the continuum eigenfunctions n ►unerically.

Berger, S.A. and Aroest y , J. 1077. "e 9": Stabilit y Theory and Boundary

Laver Transition. R '-1S9S-1RP.1. Rand Corporation.

Mack, L.M. Transition Prediction and Linear Stability Theor y , AGARn

Conference Proceedings No. 224, L;nninar-Turhulont Transition, Paper

\o. 1.

Obremski, H.J., Morkovin, M.J. and Landahl, M., 196' i . \ Portfolio of

:;tability Characteristics of incompressible Soundary La yers, AGARD

No. 1:;4.

Schensted, I.V. , 1960. Contributions to the Theor y of Hydrod\namic

Stabilit y , Ph.D. dissertation, Universit y of `lichi ,
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