NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE



Y

-~

T

OLD DOMNION UNIVERSITY RESEARCH FOUNDATION

2
>

QA2
&

DEPARTMENT OF OCEANOGRAPHY .

SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA

(NASA-CR- 163669) FREE-STREAMN ‘
66 DISTURB
iggﬁ:ggggs EIGENFUNCTIONS, souunaa!—Lgsgg'
LsTABIL fylgng TEANSITION Final Report, 16
Norcorn Sep. 1980 (0ld pominionm Univ,

+ Va.) 92 p HC AOS/MF AG1  CSCL 20D 3,34

: FﬁEEfSTREAM DISTURBANCES, CONTINUOUS
EIGENFUNCTIONS, BOUNDARY-LAYER
INSTABILITY AND TRANSITION

By

Chester E. Grosch, Principal Investigator

Final Report
For the period May 16, 1979 - September 15, 1980

Prepared for the
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia

Under

Research Grant NSG 1618

D.M. Bushnell, Technical Monitor
High Speed Aerodynamics Division

September 1980

N61-10322 "

Unclas
29085

R SN

WIORPRY




e

SRR N

DEPARTMENT OF OCEANOGRAPHY

SCHOOL OF SCIENCES AND HEALTH PROFESSIONS
OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA

FREE-STREAM DISTURBANCES, CONTINUOQUS
EIGENFUNCTIONS, BOUNDARY-LAYER
INSTABILITY AND TRANSITION

5y

Chester E. Grosch, Principal Investigator

Final Report
For the period May 16, 1979 - September 15, 1980

Prepared for the

National Aeronautics and Space Administration
Langley Research Center

Hampton, Virginia 23665

Under

Research Grant NSG 1618

D.M. Bushnell, Technical Monitor
High Speed Aerodynamics Division

Submitted by the

0l1d Dominion University Research Foundation
P.0. Box 6369

Norfolk, Virginia 23508

September 1980




LSS

1”"’"”!

FREE-STREAM DISTURBANCES, CONTINUOUS EIGENFUNCTIONS,
BOUNDARY-LAYER INSTABILITY AND TRANSITION

SUMMARY

The research conducted under this project has been directed toward the

double objectives of providing (1) a rational foundation for the application
of the linear stability theory of parallel shear flows to transition
prediction and (2) an explicit method for performing the necessary

calculations.

The fundamental discovery upon which our subsequent work is based

was that the solutions of the linearized, three-dimensional, incompres-
> T .
sible Navier-Stokes equations u,p and the adjoint solutions u,p

satisfy a "continuity'" equation

¥,9.7a

5t * Veld=20 m

- -: hd
where p is a pseudo-energy density (the dot product of u* and u) and
J isa pseudo-current. This result is derived and discussed in detail

in Appendix A.

We next considered (see Appendix B) the expansion of an arbitrary,
two-dimensional solution of the linearized stream function equation in
terms of the discrete and continuum eigenfunctions of the Orr-Sommerfeld
equation in the half-space, y ¢ [0,«): that is, we considered boundary-layer,
wake, jet or free-shear layer flows. We used equation (1) to derive a
biorthogonality relation between the solutions of the linearized stream
function equation and the solutions of the adjoint problem. Taiis is the
biorthogonality relation for the mixed initial-boundary value problem.
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For the case of temporal stability, we used equation (1) to derive
the formal solution of the initial value problem as a sum over the discrete
modes plus an integral over the continuum functions and showed that this
expansion is complete. We found that the vorticity distribution at the
initial time is sufficient information to determine the expansion coef-
ficients and gave explicit formulas to calculate these coefficients.

For the spatial stability problem, we showed that the continuum has
four branches. We used equation (1) to derive the spatial biorthogonality
relation and the formal solution to the boundary value problem. We have
(see Appendix C) also derived the Fourier (in t), Laplace (in x) transform
solution of the spatial stability problem and used it to show that our
spatial expansion is complete.

The boundary conditions for the spatial problem are the Fourier
transforms, in time, of the stream function and its first three partial
derivatives with respect to X, evaluated at x = 0. As it stands, this
formal solution will not give a physically acceptable solutisn because,
given an arbitrary variation with y and t at x = 0 of the stream function
and its first three partial derivatives with respect to x, disturbances
which lie on all four branches of the continuum will be excited. Therefore,
as we show in Appendix B, the spatial wave packet will contain, in addition
to waves propagating toward x = =, waves propagating upstream from x = «
and standing waves whose amplitude increases towards x = =,

A condition must be imposed that, for x > 0, all propagating dis-
turbances are traveling in the positive x-direction and all standing waves
have amplitudes which decay in the positive x-direction. It appears that
this should be done by requiring that the stream function and its first
three partial derivatives with respect to X, evaluated at x = 0, be
orthogonal, using the spatial inner product, to all eigenfunctions on
branches 2 and 4 of the continuous spectrum.

It is easy to see that these two orthogonality conditions reduce the
number of boundary conditions at x = 0 from four to two. This means that,
for the spatial stability problem, the proper boundary conditions at x = 0
are the specification of the temporal Fourier transforms of the velocity
components u and v, for all y. Although these boundary conditions
were derived from consideration of the continuum eigenfunctions, they

B



apply as well to the discrete, Tollmien-Schlicting modes. We have not

yet carried out a detailed investigation of the implications of imposing
this orthogonality requirement on the boundary conditions; however, the
immediate result that the boundary conditions at x = 0 are the specifi-
cation of the temporal Fourier transforms of u and v for all y appears,
on physical grounds, to be correct.

We have presented preliminary numerical results of the application of
this expansion method at the Fifteenth International Conference on
Theoretical and Applied Mechanics (Appendix D). We considered the temporal
stability problem and a simple initial disturbance. We assumed that at

t = 0 the vorticity ¢ was given by

ia x
g=¢g,e §(y - ¥,) (2)

a periodic layer of vorticity at a distance Yo from the boundary.

The stream function is then given by equation (55) of Appendix B,
and it is easily seen that the expansion coefficients are [from equations
(56a, b) of Appendix B]:

ok e e Ak Al A

A (@) = g 8n(y,) 8o - &) (3a)

A () = 5 g2(y.) 8o - a) (3b)

The solution of this simple problem, which is in effect the Greens function 3
in y of the initial value problem, shows that the amplitudes of discrete,
Tollmien-Schlicting modes and the continuum functions are the products of
the magnitudes of the corresponding adjoint functionms, evaluated at Yor
the height of the initial disturbance from the boundary and the vortex

et

does not vanish at the boundary, we required that the disturbance velocity
vanish at y = 0. We found (Appendix B) that, because of the simple form
of the base flow, all the calculations could be carried out analytically

H strengths.

¢ ’ f

5 We applied this result to two different flows. The first is a slip j

! A

3 flow past a bounding plane at y = 0. Although the base flow velocity i
e
3




and the stream function could be expressed as a finite sum of exponentials
and error functions. We found that the disturbance retains its identity
as a periodic array of vortices for all time, but as time increases it
diffuses, the vortex strength decays, and the centers of the vortices
drift away from the boundary.

The second flow we considered is the Blasius boundary layer. The
velocity scale was taken to be the free-stream speed U_ and the length
o
scale was'va/Uo. We chose o = 0.179 and R = 580.0. At this o and R,
there are seven discrete Tollmien-Schlicting modes, one of which is
unstable. We'numerically calculated the seven eigenfunctions and adjoint
eigenfunctions and normalized them so that

<O Oy > ¢ 6nm (4)

Plots of the amplitude and phase of the normalized eigenfunction and
adjoint eigenfunction of the seven modes as a function of y, the dimen-
sionless distance from the boundary, are given in Appendix D. These
modes are numbered in order of increasing stability with mode 1 the
unstable mode and mode 7 the most damped mode.

The amplitude of a mode, say ¢n’ excit?d by the vortex sheet at
Yy =¥, is proportional to the amplitude of °n evaluated at Yo It is
clear from an examination of these figures that when the vortex layer at
t = 0 is in the inner portion of the boundary layer, say y s 2.0 (the top
of the boundary layer is at y = 5.02), there will be a relatively strong
excitation of the discrete Tollmien-Schlicting waves. Modes 1, 2, and
3 will have the largest amplitudes, and the higher modes will have sub-
stantially smaller amplitudes., It is also quite clear that, when the
initial disturbance i more than about four boundarv-layer thicknesses
from the wall at t = 0, the discrete Tollmien-Schlicting modes excited
by the disturbance will have extremely small amplitudes. We believe that
this result is a theoretical explanation of the experimental observation
ne of Kachanov, Kozlov, and Levchenko (1978) that vorticity disturbances
passing above a boundary layer are very inefficient generators of Tollmien-

Schlicting waves in the boundary layer.
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CONCLUSIONS

We believe that we have created a rational foundation for the appli-
cation of the linear stability theory of parallel shear flows to transition
prediction and given an explicit method to carry out the necessary cal-
culations. We have shown that these expansions are complete. We have
also carried out some sample calculations which show that a typical
boundary layer is very sensitive to vorticity disturbances in the inner
boundary layer, near the critical layer; vorticity disturbances three or
four boundary-layer thicknesses above the boundary are nearly uncoupled
from the boundary layer in that the amplitudes of the discrete Tollmien-
Schlicting waves are an extremely small fraction of the amplitude of
the disturbance.

After the completion of this grant we intend to continue these
calculations. We will continue the calculations of temporal disturbances
in typical boundary layers and begin calculation of spatial disturbances.
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APPENDIX A

EXPANSIONS IN SPATIA'. OR TEMPORAL EIGENMODES OF THE
LINEARIZED NAVIER-STOKES EQUATION

Submitted to Journal of Fluid Dynamics
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Expansions in Spatial or Temporal Eigenmodes of the
Linearized Navier-Stokes Equation

by Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Tochnology, Hoboken, N. J. 07030

-The expansion of an arbitrary flow field in terms of the temporal or
spatial eigenmodes of the linearized Navier-Stokes (LNS) equations for an
incompressible fluid is developed from a unified perspective. It is ihown that,
for (V,p) a solutfon of the LNS equations for a given base flow and (u,d) a
solution of the corresponding adioint equations, a scalar “density",
€@, and a vector "flux", ¥ (4,d,V,p), may be defined such that € and T
are bilinear in (U*,§*) and (V,p) and satisfy the "continuity" equatfon,
3&/at + 7.F = 0. This equation is then used to derive biorthogonality relations
between the eigenfunctions and adjoint eigenfunctions of the LNS equations for
3 general translationally-invariant problem. In the temporal case, the inner
product 1s //Edt = ///%u*-V dt which is the natural extension of Schensted's
inner product for two-dimensional disturbances and satisfies the requirements
for an inner product in a Hilbert space. In the spatial case, the "inner
product" is s,/ Ty dydzdt which is not positive definite. The formal solution
of the LNS equations is derived, in terms of the eigenfunctions and the initial
or boundary conditions, for the temporal and spatial cases. It takes the form
of the evolution of a three- or six-dimensional vector "'(Vx’ Vyr vz) in the

temporal case or (vx, vy. Vys avy/ax. 3vz/3x. p) fn the spatial case.
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1. Introduction

A few years ago, Grosch and I, after showing‘that the Qrr-Sommerfeld
equation for unbounded flows such as the Blasius boundary layer possesses both
temporal and spatial continuous spectra (Grosch and Salwen, 1975, 1978), set
out to find the form of the wave-packet expansion for the temporal or spatfal
evolution of the stream function of an arbitrary two-dimensional "infinitesimal"

disturbance in terms of the corresponding temporal or spatial ei~anfunctions.

We sought to prove a biorthogonality relation between the eigenfunctions
of the Orr-Sommerfeld equation and of its adjoint and, tnereby, to solve for
the coefficients of the expansion in terms of the inner products of the adjoint
eigenfunctions with the stream function at the initial time or position.

This worked out easily in the temporal case, with an inner product equivalent
to Schensted's (1960) and only minor complications due to the infinite domain
and continuous spectrum. In the spatial case, on the other hand, we found that
we didn't know the appropriate inner product and we couldn't find any papers
dealing with the problem. I therefore undertook the spatial expansion problem
and, eventually, was rewarded with the result reported here=-3 unified treat-
ment of the spatial and temporal expansion problems for solutions of the

linearized Navier-Stokes (LNS) equations for an imcompressible fluid.

Section 2 is devoted to the derivation of & “continuity" equation which
fs used, in Section 3, in the definition of the inner products and the derivation
of the biorthogonality relations. These, in turn, are used 1in Sections 4 and 5
to derive the formal solutions of the (temporal) initial value problem and
the (spatial) boundary value problem, respectively. The application of these
results to two-dimensional disturbances of a boundary layer has been presented

in a separate paper (Salwen and Grosch, 1980).
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In order for the formal solutions derived fn Sections 4 and 5 to be
actual solutions of inftial and boundary value problems, the eigenfunctions
used in the expansions must form complete sets. Not all the eigenfunction
sets one might want to use have . en proven to be complete but there are,
by now, proofs of completeness for large classes of temporal eigenfunctions
for bounded flows (Yudovich, 1965 and DiPrima and Habetler, 1969) and temporal
(Salwen and Grosch, 1980) and spatial (Salwen, Kelly, and Grosch, 1980)

efgenfunctions for unbounded flows.

2. "Continuity" equation

I start with the LNS equations for an incompressible fluid with a base
flow U,

Teveo (1a)

v, ) o
[ [-3-{ "‘U'Viv‘l +V.VU1J
2 3 .
LB} v Vi - -3'5'1 ’ 1 ]'2'3' (]b)

s 0 (2a)

i 3 - - _\:

A 3 i=1,2,3 (2b)

¥ The complex conjugate, U*, is used here in order to obtain the correct formal

expressions. In most applications, U will be real, so U* = [,
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For any solutions (v,p) of (1) and (u,4) of (2), define*
E(Uov)'za U"'G- (3)
Then
3 .,
v "
3 AL 4
it 204 [“1'3—*3 ”i]
3 A
'%- { {(Uui') -5vi 4'vi?-(U &1*)',
r . :
L] (?ji* V) o T U1 - %i * (U' vi)J
', 2 2. T L |
+ Bui* vy vy @ ui'! - Lui' 3%; + 3%? vil } (4) 3
s0, with ‘

F e s (ol e g 2 [@ 5y,

! v, j
- *vv]+ ['p'fq"VJ. (5) |
we get
:: - - 2 ->
-t' E(UQV) R'ARY (‘hq'Vop) =0, (6)
* The constant factor, %: y §s included in order to emphasize the

relation betweenE and the energy density, % : vz. f




which has the form of a continuity equation relating the time derivat! e of
the "density", ig , 10 the divergence of the "flux", T . For any fixed
volume V bounded by a surface S , the "continuit: " equation (6) may be put

into integral form,

~ . A
%5164’ € (3,7) dr + o (G.4,7.p) a5 = 0 . (7)

3. Applicatiyn to a steady, translationally-invariant base flow.
Biorthogonality relations

In this section, Equation (7) will be applied to the case in which the
base flow and boundary conditions are independent of x :nd t . For 2all x
and t, the base flow U(y.z) , disturbance velocity and pressure 'v,p) and
A

adjoint velocity and pressure (U,q) are assumed to be defired in a closed,

bounded ares, A , of the y,z plane and to satisfy the boundary conditions
- P
V(xyy,2,t) =0, u(x,y,2,t) =0 for (y.2)cC, (Ea,b)

on the boundary, C, of A. In this case, the temporal and spatial eigenfunctions
discussed below will form discrete sets. (The extension to an unbounded area
is not too difficult (see, e.g., Salwen and Grosch, 1980) but it requires the
relaxation of the boundary condition (8) and the consideraticn of continuum as

well as discrete modes.)

Because of the choice of base flow and boundary conditions, (1) and (2)
are now invariant with respect to translations in x and t and, therefore,

possess solutions of the form

Tniyazat) = Tolyazge' (20 <8,

—
W
[ 244
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Plx,y,2,t) = pyly,ze (9b)
%(X.y’z nt) s Eo(yQZ)ei‘(Bx - \)t) ’ (103)
Q(x.y,2,t) = ao(y-Z)ei(Bx - vt), (10b)

Because of (8), ry =T, = 0 on S. Then evaluation of (7) over a thin slab

perpendicular to the x-axis for functions of the form (9) and (10) gives

§(v* - ) u € (.0 aydz = e [i E,(E,’J) dydz

9 -ﬂ; N >
= - 35 || T (Usd,v,p) dydz

= {(8* - a) ” I (E.?i,”\?.p) dydz , (1)

which will be used here to prove biorthogonality relations for the spatial

and temporal eigenmodes.

The temporal eigenfunctions are the solutions of (1) and (8a) having the

form (9) with a real. These may be denoted by (Vun, p...), corresponding to

an

the x,t variation ei(“x - “ﬂ(°)t). For each such solution, there is an adjoint
N

eigenfunction (Gan Ean) which is a solution of (2) and (8b) having the variation

ei(“x - “n(“)t) with vn(a) = w;(a). Application of (11) to these functions

gives
(uple) = wp(a)) [[ € (g o T, vz = 0, (12)
A

so that the integral vanishes when w (a) # wn(a) and, with appropriate

normalization,

12
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e Vo) dydz Smn/.n .
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(13)

(The expression is a function of x and t but is constant because the exponentials

in the two factors cancel.) This biorthogonality relation for fixed a leads to

the result for the full set of temporal eigenfunctions,

cye

am, Yon” * l JI ii(u am,

Jowna ]l €,

2ns (a-8) Jf Ei(uam an ' .

Siu-8) §on for all

dydz

x=0

dydz

(14)

The spatial eigenfunctions and adjoint eigenfunctions are the solutions of

(1), (2), and (8) having the forms (9) and (10) with w and v real. These may

be dencted by ¢ . = (V. p ), with the variation ef lan(u)x - “t). and

A"

=
Evm - (uvm,

q

why, "wn

vin

), with the variation e'(ﬁm(“)x N “t).

As in the temporal case,

the eigenfunctions and adjoint eigenfunctions may be paired, with Sn(m) = un*(m)

in this case.

v
"’\4-5
(am(w) - an(w)) JJ Ty (uwm, Gun Van,
;o A
; and
J FK (uwm,qwn,vwn’pun) dydz = §
A
3
[

The analogous results to (12) and (13) are

) dydz = 0 (15)
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which lead to the biorthogonality relation for the full set of spatial

eigenfunctions
v [ P
Eamm. "vn] - I ” Ty (Wym, 9um,Vun,Pun) dvdz dt

A

+

T i(w=v)t s

we Yo
[e dt ” i“x(ul.;m.qmm,v\m,p\:n)l dydz
® A t=0

a
218 (w-v) [f l'x (u ’C\] v ) )l dydz

Wi, “why, wn, wn

A t=0

S(w=v) Sen for all «x . (17)

We thus see that, with appropriate "inner products" <,> and E R B R
the temporal and spatial eigenfunctions satisfy biorthogonality relations with
the related adjoint functions. The temporai inner product <,> satisfies all
the conditions ordinarily required of an inner product. The spatial inner
product [[ ,]] s on the other hand, is not positive definite. This is related
to the fact that disturbances can propagate in both the downstream (+x) and

upstream (-x) directions.

4. Temporal expansion of an arbitrary solution of the LNS eguations

The temporal inner product introduced in (14),

P

T ..
<U, v>=[ ” U*(Xyys2) * V (x,y.2) dydz dx , (18)

14




is defined for any pair of crdinary vector functions of position. In
particular, when applied to a solution (v, p) of (1), it involves the
velocity, V, but not the pressure, p. It is natural then, in seeking an
expansion solution in terms of the temporal eigenfunctions, to expand v

alone in terms of the velocity part {Van} of the eigenfunctions.

Y

Let (V,p) be a solution of (1), satisfying the boundary conditions (8a).

Assume that Vv can be expanded in the form

V(X,y,2,t) = Z f ¢yn(t) Van(x,y,z,t) da .

n=l o

Then, by (14), the coefficients are

A

- >
cun(t) ) <uan V>

so that (using (7) )

(=9

(9]

R

=
S— 8

Jf j = ¢ (“:‘an V) dydz dx

and

N
JJ ver (U aan Vs p) dydz dx = 0

(19) i

(20)

.t g

(22)

15




The result is

ap_ . - [_‘_ - >
X Wi = ol t U Ty + 0
XN X A
= > 2
Z J <uun,v>l A
n=1 - t=0
3vanl )
- + .
p[ ot U vvomi
= <u,v>| % do
n=] o t=0 |

T A TR O R

so that, except for an additive function of t only,

]

p(x,y,z,t) =
n=1

" N
<Gs-\7> P (X,.Yaz,t) da B
.l |t=0 an

(23)

P

(24)

(25)

Equations (23) and (25) are the formal solutions for vV and p in

terms of the initial velocity, V(X,y»2

,0).

5. Spatial expansion of an arbitrary solution

The spatial inner product,K ,] , introduced in (16), cannot be eval-
N

uated in terms of the values of U , 5 , V,and p at a fixed x because

an,

rx involves x-derivatives associated with the second derivatives in (1b) and

(2b). To get around this problem, one can regard the flow field at a given x

as a 6-vector and make use of the fact that the velocities under consideration

16
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have vanishing divergence ((1a) and (2a)).

Let ¢ and n be 6-vectors with components

(11}
Wl @
x| <
-

[
(3]

"

-

S Ve B2 T Yy 3 T Ve B 7Yy

3uz
»N5 Y Tax et @

m
w| @
x|

n] = ux’ nz = uyn n3= uz5 n4 = uy

<
<
"

and let ¢ « u = 0 . Then, in terms of these components,

FX(J,Q.V.p) =l o(ux*vx + uy*v.y + uz*vz) Ux

so that

mn, c’.n = T ” Ty (U,q.v,p) dydz dt (29)
A

may be evaluated in terms of the components of £ and n at fixed x .
This choice of coordinates also eliminates second derivatives from (1),

which becomes

v v aV

X . __y_"'z
3X Y (30a)
>y (306) 17

“tay,

Y7




o,

oo Y2 (30¢)
v ! U v dy v U
Y oae Y [g Mau Ny N,y
ax Pax ot LG (5= + Yy tU57 tay Vy)
3%y 3y U
S A 2y e v e 1 3P
(537~ * 722 )] YU 2ty oy (304)

ax X X 3y 'y at y 3y 23 T3z V2
3%v, dv, 5 13
- A ———— -~ ' —
(37 * 7@ )] %Y Yoz (30e)

3y 32y v v v U
B X . Xy o X 4 X SR, . §
3X w3y * 52 ) =o (U * U * 3 V)

y 9y Z 82
ov sl 3V 11 v ' av.'
- X _Z __X - ¥ 4
+o (U 3y 3y Vy) to Uy g7 -37 V) - e (3y t37 ) - (30F)

It is now straightforward to carry out the formal solution for the

spatial expansion. The expansion is

x

£(x,y,2,t) = Z J ¢ n(¥) g a(xe¥s2,t) do s (31)

n=1 -

with coefficients

c (X} = ﬂ_ Ton, {H (32)

18




Then

dc\n I 3 Y o0 s
e I ” 3 Tx (Uyp,Gun,VsP) dydz dt

A
= - f [I [3- r, (0 4§ _V,p)
3y 'y Vwn,wn, ’
-0 A
N AY
3 " 3 -
* -3-2- rZ (uwnngn'v'p) 3? 8 (uanV)} dydz dt
=0 (33)
$0
= v £
PORENOER| [E “ R (34)

The solution is then

g(x,y,2,t) = i T

n=z] -

(X,¥,2,t) do . (35)

[

x=0 “.n
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ABSTRACT

The expansion of an arbitrary two-dimensional solution of the
linearized s.ream function equation in terms of the discrete and continuum
eigenfunctions of the Or~-Sommerfeld equation is discussed for flows in
the half-space, vy ¢ [ 0, =). A recent result of Salwen is used to derive
a biorthogonality relation between the solution of the linearized equation
for the stream function and the solutions of the adjoint problem,

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted for bounded flows. This relation-
ship is used to carry out the formal solution of the initial value problem
for temporal stability. It is found that the vorticity of the disturbance at
t =0 is the proper initial condition for the temporal stability problem.
Finally, it is shown that the set consisting of the discrete eigenmodes
and continuum eigenfuncticas is complete.

For the spatial stabii.ty problem, it is shown that the continuous
spectrum of the Orr-Sommerfeld equation contains four branches. The biorthogon-
ality relation is used to derive the formal solution to the boundary value
problem of spatial stability. It is shown that the boundary value problem
of spatfal stability requires the stream function and its first three partial
derivatives with respect to x be specified at x = 0 for all t. To be apoli-
cable to practi:al problems, this solution will require modification to

eliminate gisturbances originating at x = = and travelling upstream to
x =0,

For the special case of a constant base flow, the method is used to
calculate the avolution in time of a particular initial disturbance.
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Jecent 2alculaticns of she diszcrete eigenmcdes of th rr-dommerseld
equation (Jordinscn, 1371; Mack, 1976; Houstecn, Cormor, and Ross, 1976;

2 given Seynolds

‘s

Murdcch aznd Stewartson, 1377) have indicated that, ¢
number and wave asuzber [ frequency , the Irr-3czmerfell equartion
f1ow 228 only a finite numbter of discrete temporal [spatial) aigenlunctions.
Since a finite set of Sunctions cannct te complete, these fallulatio:
raised the juesticn of how =o expand <he stream fNunetion of an arditrary
iigturbance in cerms 37 the zorma. =odes. These autheors suggested that

‘a addizion <o the Zinise discrese specirum, which <hey Tound, there Is

“
A SonTIiZUCcus spectiun.

ars . (3rosch and Se.wen, 137%a), we iealt with the existence oF

1 ]

-
-
-

she gontinucus spestrim and the form of the related eigenluncticns oo

scta the temporal and spatial problems. We shoved that the (It Scrmerdell

equation,for any =ean shear Jlow approaching 2 onstant relocizy iz =h

- -

far field.,sossesses a sontinucus spectrum; we gave formulae Jor th

--"

locatisn of the sexzporal and spatial sontinua in She omplex wave-speed

4.1
slane; and we salgulated the texporal rcotinuum elgenlunmcticons Ior soze

sacrsizular cases. Iz this jager, Ve

wlommar®a’l i azua=icn

- -
. "0 —. - T eSS e

e i ampedmans { smmts & o -
Srese 1nd 2omtTinuUm elgeniunctains 25 tae .

sa.culate the tezpors or spatial evelution of an ardicrary soL3siss

the Lizear iisturbance equations.




<2 a recent aritijue 3

Y

predisticn of <ransizicn, Zerger ani Arcessy (1377 Foiat out %hat, on

3

the tasis o the lizited experizental avilence =hat is available, <he
scupling of free streax iisturbances :o iisturbances in the Soundary

Layer aprtears <2 Se extracriinari

B
g

b 1 . ‘
extrene.y selective in

Irequency and wvavemuster. lMack (1377) makes =he same soiat ia a 4i2%rent
. - - - -~ - " - - EEE ) r -
7ay. Ze points cut that "if there were nc iissurbances [inside she

Scundary layer., there would be 2¢ sransisisn and <te dcundary _ayer would
Tezain laminar. Consequently, it i3 futile <o salk abous traasition

without in :cze way Sringiag in the iistursances whish cause it ... ".

Mack adlds, '... %he precise z=echanisz 2y which, say, free stream surbulence,

arbus
scund, anl iifferent tytes of roughness zause sransisisn remains <o te
discovered.”

The zost detailed discussicn of <his sreblen appesars <o te that o7

cbremski, Morkovin, and landanl (1563). They zonsider raricus peossidle

Zechanisns Dy which sound or vorsizity waves in the Tree stream =i ghe

- - — e .
izteract with the boundary layer and cause =Transisisn. oo <he hasis

the avallable experizental avidence, they sonclude shet 2aly a small

o< Sl T 4 2 eanley PR : "t PRI p
FOriicn ol the exterznal disturbance Fileli excisaes s el=SCa.iCatan

2 solizien-Schlichsing

\

=S) waves in tae boundary lays- 2ad a significant pertion appears =o

ravel withiin she tcundary layer with Lissle or 2o interscsisn. The

Janstated, toncolusicn seems o e ThAt the mechanism whiam souples Tree
sTresax llisturtences o 2 toundary layer and, sherebv, initistes sransisicn




The central problem here is the solution of the general initial
and boundary value problems for discurbances to boundary layer f{low=— how,
given the form of the disturbance at a time t = 0, to find its variation
with time and how, given the fcrm of the disturbance at all times on a
plane, x = 0, perpendicular zo the boundary layver, to find out how it
propagatas dewnstr2am. I[a this paper, we approach these problems, in the
approxization obtained by assuming parallel flow and lineariziag with
respect to the disturbances, by exprassing the solution as a sum over the
discrets normal modes plus an integral over the continuum 2igenfunctions
of the Orz-Sommerseld equation. If the (discrete plus continuum)
eigenfunctions form a complece sec, this approach will rield a valid
solucion of the problem.

Starting with Haupt (1912), a number of authors have dealt with the
completeness of the set of tamporal 2igenfunctions in a bounded domain.
Haupt showad that cthe eigenfunctions Ior two-dimensional discurbances to
plane Couette flow form a complece set and Schensted (1360) proved
completeness Zor the sigenfunctcions for two-dimensional disturdances to
plane Poiseuille flcw and for axi-symmetric disturbances to Poiseuille
flow in a circular pipe. Yudovich (1965) and DiPrima and Habetler (1269)
have proven completeness of the eigenmodes for a large class of bounded
flows. We are unaware of any work on the completeness of the spatial
eigenfunctions or, previous to this paper, on the completeness of the

temporal eigenfunctions in an unbounded domain.




In Section 2 we formulate the stability problem for two-dimensional
disturbances to a parallel shear flow, U(y), 0 <y < =, in terms of the
linearized equation for the stream function and boundary conditions.

We next formulate the adjoint problem. A new result of Salwen (1979) is

then used to.derive a pseudocontinuity relation involving solutions of

the linearized equation for the stream function and the adjoint solutions.

This relation is then used to find the general biorthogonality condition

for wave-like disturbances to the flow. The biorthogonality relation is
specialized to the cases of temporal and spatial stability. The orthogonality
relation for the temporal stability problem is that derired by Schensted (1960)

and discussed by Reid (1963).

The temporal stability problem is considered in detail in Section 3.
The solution is Fourier anal: ted with respect to x. Then the formal solution
of the initial value problem for the temporal stability of a two-dimensional
disturbance to a parallel shear flow is expressed as an expansion in terms
of the eigenfunctions. The expansion coefficients are determined iy inner
products between the initial disturbance and the eigenfunctions .f the adjoint
equation. We show that the disturbance vorticity at t = 0 is the proper initial

condition for the temporal stability problem.

In Section 4 we 2xamine the question of the completeness of the set of
axpansion functions for the temporal stability oroblem. Very recently,
Gustavsson (1979) has treated the temporal initial value problem by using
Fourier-Laplace transforms, He finds poles in the transform plane which

correspond to the discrete T-S modes and a branch cut which corresponds to




the continuous spectrum. Ne show in this section that the Fourier-Laplace
transform solution of Gustavsson is identical to our Fourier transform,
eigenfunction expansion solution for the initial value problem of temporal

stability. We therefore conclude that our expansion set is complete.

The spatial stability problem is considered ir detail in Section 5.
The solution is Fourier analyzed in t. The rormulae for the four branches
of the continuous spectrum of the spatial stability problem are derived and
discussed. The formal solution of the boundary value problem for the spatial
stability of a two-dimensional disturbance to a parallel shear flow is
expressed as an expansion in terms of the spatial eigenfunctions. The
expansion coefficients are determined by inner products between the boundary
conditions at x = Q0 and the eigenfunctions of the adjoint equation. The
boundary conditions at x = 0 are discussed. We have not yvet been able to
prove completeness for the set of expansion functions of the spatial stability

problem.

-

In Section 6, we apply the results of Section 3 to the simple case of a
constant base flow. In this case, we find the eigenfunctions and calculate

and discuss the temporal evolution of a particular initial disturbance.




2. The linearized, two dimensional Navier-Stokes equations: the

biorthogonality relation.

2.1 Formulation of the problem

o) -
/ a

The basic flow under consideration is a parallel shear flow, Uly), %

the semi-infinita region, v > 0. We are concerned wich the temporal

cr spatial development of an "infiritesimal", two-dimensiomal distur-

bance to tais flow, (u(x, v, t), v(x, v, t), 0). In chis case, u and

-

v can be 2xpressed in terms of a stream func:ion,f?(x, ¥y, t), by

u= %g', (1)
v = -g—s-f (2)

and the linearized Mavier-Stokes aquacions raduce to a single partial

differential equatica,

3 3\ o2 U _1 4 >0
—+ —) S i S G (= ¢ = ’-
(32 ”ax)"p ok - 0 (3)
dy
whera
5 a2 .2
7z s e = (4)
E> S

. 0 o

-~




In additiom, & aust satisfy two boundary conditions at vy = 0,

%% = -v(x, 0, t) =0 (3)
|x,0,¢

and

igi = y(x, 0, ) = 0, (8)

ad a "finiteness' condition

-~ » 0

/ ¥, 2 Y, 2. b w3 1124 "
| :!J—Qf-:- = E%g.-‘d'v " J' "ut o+ |V! Jd.v <., \/\
| <

0 0

As a comsequencs of eq. (7), P ausc satisfy boundary conditions at

infinicy,

3 g
;—f.g—;-*o as g =+ (8)

Tor fixed x and ¢, ‘D(x. v, t) belongs to a mamifold, M,of functicms,

-

3(y), satisfying

iy 7y &2y & 3
d, Eﬁ' L ——?. —= al! defined om -0, =), (9)
* dy” dy” gy

30




9, e R R 7 continuous on _0, =), (10)
© dy dy
2(0) =0 and 3'(0) = Q £11)
and
g - |“ : -
ey [y and ‘ fggf'dy both exist. (12)
0 lo &

-

The continuum eigenfunctions which will be discussed in Sections and 5

w

de not satisfy eq. (12). Instead they belong to a manifold M' = M of

functions satisiying eqs. (9) - (ll) and a weakened condition,

dd . . S u
(y) and ey Sounded in [Q, =). (13)
dy
We define an inner product,
'aﬂ
(£, g) = ; £x(y) g(v)dy, (14)
‘0

in M. The star denotas the complex conjugate. This inner product is
defined for the Zull Hilber: space of functions satisfving eq. (12) and,

in that space, has the usual properties of inner products.
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The adjoint problem

- + .
For functions £, 3 ¢ M we define cthe adjoint, L, of L in the

usual way by

; - i .
'( & £(x,v,t)} {g(x,y,t)rdxdydt + Soundary Terms. (15)

The definition of the adjoint used here yields an adjoint operator which
is ideamtical to the formal adjoint (Friedman, 1969, pp. 2,3).

An adjoint stream functionm, .‘1:-'(:(. v, t), is a solution of che

) --* 124
adjoint equation (with U = U),

o S RN T S\ I - A Y., 2 :
b - v =—)V" 2 2=z += 7k y 16
b ‘e Sx) dy 3x3y R 0 (16)
with the boundary conditions at v = 0,

= i

Jg: = il - o 5 \..‘\

3x 3
Jx!:(.0.: 'y!x.J.:

and the finitaness coenditien

o

L




l‘“ - e e e

- j (132 + |93y < = . (18)
0

As above, equaticn (19) implies that ¥ =musc satisfy boundary conditions

'(u :
un'w
< Ivgg

s
b

When, as below, we look for solutions to the linearized stream
funczion equation (3) which have a wavelike bdehavior in x and ¢,
equation (3) reduces to the Orr-Sommerfeld equation and equation (16)
reduces to the adjoinr Orr-Sommerfeld equatiom. Our adjoint Orr-
Scmmerfeld aquaticn is the complex conjugate of the adioint equation
derived by Schensted (1260) and quotad by Reid (1963). The reason for
this differsnce is that we define the inner product ia the usual way,
(14) while Schensted's definizion of the innmer product (£, 3) involves

f instead of £*.

"1
1



2.3 Biorthogonality

Salwen (1979) has shown that the solutions of the linearized,

three dimensional Navier-Stokes equatioms, :, p and the adjoint

-
solutions U, 7 satisfvy a "continuity" equation

- —
g—:-v-:-o. (20)
where
-~ ot -
Sad o u, 21)
3
- — - 1 - -
Ja (@ VDT +*2 078Ny, = T (Tu):
R ", ¢ i i
i=]
— - -~
+atp+uld, (22)

and, as before, the star denotaes a complex cenjugate.
For the two dimensional discturbances considered here we will
introduce two new inner products. Le:f‘:e any solution of the original

problem and ¥ be any soluticn of the 4djoint problem, then define




and

]
Ca
G
L4
"

,
.
<

(24)

-

with J , the x componeat of J. Using (22) and expressiag u, p and

=
3,

T in terms of ¥ and ¥ , it can be shown that

- o Ad % .2 27 . .13
—g g" - lJ :.L"G*—: 9- 3— —a.gb—s' ’—g- —??w
SEFEE Tl BT o3 i s % i )%
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The Zorm of these inner produccts has been determined by the equations
for the stream functicn and the adioinz scream functicon. However, we

can use aquations (23) and (25) to calculate inner producss <£, g> and

I2, 32, evaluated at fixed x and t, of any funcczioms £(x, ¥, t) and

e
i




It is straightforward to show that <£f, g> is defined for the full
Hilber: space of functions which satisfy equation (7) and, in that space,
has the usual properties of inner products. On the other hand, I £, g2
is not positive definite. This is due to the fact that it is possible to
nave wavelike solutions to equation (3) which propagate in either the upstrean

(=x) or downstream (+x) directiom.

With these definitions it is easy to show that

3.3

4

W

!'s—f—‘”’ ?1 -0, (26)

"
o
"

any solutions of the original and adioint problems.

[N

and ¥ are wave disturbances of the fomm

' - )
@ L |\v\‘i\3 X = = \:,.
“8w > S =
- $(~ -
& -‘:‘ (v\e-\-x “t) y (28)
- Xt
equation (28) reduces o
7 %
'.;' 'd'\ < 'LD ' > 0= \1' - V'\ :d ’ o ' -: “C\
\ -?-J L -h 3 &
This equacion may be used 0 derive bdiothegemality relatioms for the

-

eigeafunctions of both the zexporal and spatial stabilicy problems.
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Tor the temporal gtability problem, 3 i{g real and given and 2
equals 2. The orthogonality -elation for the temporal stabilicy problem

is then

-~

W M <P (30)
&™) T
so the solutions of the temporal stability problem and the adjoint
soluticns are srthogonal unless o = w*. The orthogonality condition,
equation (30), can de recognized as Seing essentially equivalent ©0
that derived BV 3chensted (19603 P8 27, eq. (2.2.3)), and discussed
v Reid (1963). The only difference is that jcmensted s adjiofiat soluticn
{5 the complex zomjugate of ours.

'

Ia the case of spatial scabilicy, = is real and given and &4 = » and

the srchogonality relation is

‘_'? .\yu-- (31)
@-amTPd . Tyl (31)

. - .
Thus, unless > = 2 the spatial eigenfunctions anc adjoint eigen-
éuncticns are orchogonal wich the inner product defined bY equation

(23) .




3. The Temporal Stability Problem

3.1 The Eigenvalues and Zigenfunctions

For the temporal stability problem we modify the finiteness csandition,

equation (7), ¢

a0 -0
[ | "!%2?2 * '? ’:}dxdy < ® (7')
This ensures that the Fourier integral expansion of ';P y
[ iax
Vi, v, 0) = W(r, e &, (32)
lem 3
exists. If we assume that g,} is of the form
Wl(y, L) = :;(y)c-i“: " (33)
then :, is a solution of the Orr-Somsmerieid aquaction
-
o - 4" Vs
(LD = {aRl(U = 2L = ==l}s = ), (38
3 b1 iy 3
wath
e = wfa , (38)
and
N S 36 "
4 - |




Similarly we assume that the adioint solution, @ , alsoc satisfies

-

!
equation (7 ) thus easuring that the Fourier integral expansisn of

‘#7:(7. t)e ™ 4o (an

g(xo Y, t) =

)m

exists., It is assumed that SU; is of che form

-~ -~ *
S"a(v. t) = ’1(:”0'1‘“ . (38)

-
with 3; the solution of the adjoint Orr-Scmmerfeld equaticn

.’2 (U =« a1 -*.dg.l".‘;
.I.; + {aR{(U - ¢ )..1 L2

-0, (39)
with

L] )
M e LYa. (40)

3oth 3_ and 31 satisfy the boundary conditicns

1 34

3,(0) = 31(0) »0_(0) = 3.(0) =0, (41)

and either




4-_,_:

-

—

, -0, =9, 9, =0 as y =+ (42)

3 3 bounded ;g y - (43)

if 3, and 3~ are in M . Those eigenfunctions which belong to M will be

called discrete eigenfunctions. Those which belong to ¥' bur not M will
be called continuum eigenfunccions.
It has been found (Mack, 1976, Grosch and Salwen, 1975, 1978a) that,

in general, thers is a finite aumber of discrete eigenfunctions, (d_ (v)}

2o

with eigenvalues {uw__!} and a set, }, of continuum eigenfunccions

xm tazk

with eigenvalues {ulk} which depend continuously on a real parameter, k,

in the range [0, ®»). (Nota that the k of this paper is equal to xk of
Part 1.)
The number of discrete modes, which we shall denote bv N(x), depends

not only on & dut also on R and on the form of U(vy) and can, in some cases,

be zero. The adjoint eizenfunctions also include a finite set, {aza}’ of

* 3

~ r and
Pind

g ' .
discrate 2igzenfunctions and a continuum, t’zk}' with eigenvalues {(u
fJfk?. respectively (see discussion following (30)). For a ziven &, daie
~

and 2

141 - e - e Siky . ry "
 “ary like a linear comdbination of e as y = =, ¥We therafore

£ind that
S rete ) =

!
9, 1(v)dk and
213

‘R=< k=2

(44)

2
”
n.
=

g
<

10

K




and that, for any square-integrable £,

do do
(2, 8400 (£, B0 (£ =000 (£, —25) all extae. (45)

Inner products between ccntinuum functions, such as Bt 33k-> do

not exist in the ordinary senmse but are definable in terms of the Dirac
d-function (Lighthill, 1960, pp. 10-21).
The discrate eigenvalues zust be searched for (Mack, 1976), but the

continuum eigenvalues Zollow from the asymptotic Iorm (axk’ 33k ~ linear
04'v

combination of e ~7) of the eigenfunctions as v = ® and U = Ul = U(=):

2 2.2 2 2

(=x" = 37)" - (icRU, - iRy )(-k" - 27) =0, (46a)
2 9 9 * - 2 )

(=k° = a%)° + (1oRU, - 1Rl )(~k" - %) =0, (46b)

so that both equatioms yield

402 2, -
% " C?r)(ﬂ + 3 iaRU, ). (&7)

we also find that no continuum eigenvalue is also a discrete eigenvalue.

Then

1




< > = 3 2 - , )
®yn’ “an' 4 =or “sn T “an’ (48a)
<~ . J > <~ * l‘ - . -
®un’ 23’7 " o, Pan 0 (48b)
and
R
D '!k ! dk'> = 0 unless Ry < k< Ky (48¢)
,

wWith proper latelling and normalizaction, it is then possible to choose

the eigenfunctioms in such a way chat

<°.m' Dzn"\ " %an'’ (49a)
<3, > = <3 s > =0, (49h)
an’ k! xk' on'
and
<D ., b > = 3k =k") (49¢)
1k 1k’
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3.2 Expansion of an arbitrary disturbance.

If the eigenfunctions form a complete set, then, for any time, ¢,

we may axpand #&(y. t) as a linear combinationm,

N(&) ™
- T { | F B
Wa(y. t) u:l a_(x, o (v) + Jo 3, (2, Do, (»dk (50)

of those eigenfunctions. To find the cuvefficients {311 and {(a, > we may
. N

nake use of eq. (49) to take inner products

- N(a@)
<°Jn' wa<yv t)> = 1:' anv (3v t)omv = an\a- t)s (513)
n'=l
-0
<q w . NS | / Y& ( .'3‘”' - =) (=lb)
olk, ,3\}, t) 1 ak.\a. e)d(k - k')dk akka. L 3
0
We then find that
-~ -~
:an(a. t) - :QJ: N
5 s <Q__, ™
It an aC
- -iu_ <3 , Wiy, ©)> = =iy a (2, o). (532a)
2a  an > e m a

And, similarly,




h?;.n - 3W%
L T < PR at
it = Doy Bt " ey @ 8,
so that
- -
a (2, ) = A (a)e @ut
a n
a (@, £) = A (a)e Lokt
< <
where

Au(a) Za (e, 0) = S ? #g(y. 0)>
Ak\l) :a (2, 0) = <d,0s 43(?. 0)> .

Then, referring to equations (32) and (50), we find

Yix, vy, e)=| (L A (2o, _(v)e Tan”
}-& n-l PYe
-
‘ -iu « 1oy
+ 1A ()6, (v)e HkE ) ot
g * 1k

where

e e — B

(52b)

(53a)

(53b)

(54a)

(54b)

,
wn
n
~—

e




A (o) m<o , ¥ (v, O)>
al ) oan R
- ® {
- e " | - b, .
-3 J 3;n\y) L 97Lx. y, 0)e a‘dxay
= 0 / - e
(30a)
1 ~ ‘.n A o
= | * o ro- 1 =l4X .
. Jo aan\y) J—nb’ = e dxdy,
and, similarly,
1 ’-n P N _'_ ™
, = ~% coall) -iax, . ,.
—_— Y | Vo> . 5 )
Ak\a) = o b aak\y, l_w-« - e dxdy (560

If the discrete and continuum 2igenfunctions form a complete set,
then equation (53) constitutes an expansion of the stream function of an
arbitrary disturbance in terms of the discrete (Tollmien-Schlichting)

and continuum wave sclutions,

\v\ei(:x-uan:\ i (ax-wykt)
2 ° 2k

©

of the disturbance equaticn, (3), with coefficients determined by the

-

aitial form of che disturdance ¥ (x, v, 0). In the next section we will

show that the discrete and continuum eigenfunctions are a compliete set.
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4, Completeness of the Temporal Expansion Functions

Gustavssen (1979) has carried out a formal solution of the initial value
problem of temporal stability for three dimensional disturbances. He uses
the same coordinate system as we do with the addition of the z coordinate
in the cross stream direction. The formal solutionis obtained by taking
Fourier transforms in both x and z and a Laplace transform int, formally
solving the Orr-Sommerfeld equation in the transform space, and formally
inverting the transforms. If we eliminate the z-variation of Gustavsson's
solution and his Fourier transform in z (replacing his k by |a!) the two
solutions should be identical. Both Gustavsson and we express the solution
in physical space as an inverse Fourier transform over x, the transform
variable in the x direction. In order to show that these two methods yield
identical results it is therefore necessary to show that his formal solution
in Fourier space, v as given in (GIS)*, is equal to the factor 1in curly

brackets in our equation (55).

In order to do this we must first translate Gustavsson's notation into
our notation. Setting 2 = 0, after (G3) it is easily seen that we have the

following correspondence,

* . .
In order to simplify reference to the equations in Gustavsson's paper
we will nereafter use the prefix G. Page references are also to Gustavsson's

paper.




This paper Gustavsson

"P iv/a

la| k
w is
k o
U1 1

in (G3) and thereafter.

Gustavsson gives the formal solution in Fourier space in equation (G18).
It consists of a sum of the residue values at the poles plus a contour
integral along a branch cut. Using the definitiongof W as the NronskianJ

3 equation (G7), it is quite straight-

forward to show that the residue, R , at a pole s is

aad the Dj)given after (56))and the o

R = (eSvt/W) Tim {(s=s ) [ay(s)ey(y,s) + ap(s)ep(y,s)It. (58)
=5,
Therefore the residue consists of a linear combination of ” and 2y
the solutions of the Orr-Sommerfeld equation that approach zero as y - =,
i.e. they satisfy (G4) and (42). At s = s, » % and 3, satisfy the usual

eigenvalue condition at y = 0 for the discrete modes of the Orr-Sommerfeld

equation, condition (Gb) (at the bottom of page 1603). This linear combination

thus satisfies (41). Therefore the residue at s, is proportional to our discrete

eigenfunction :;w(y) with eigenvalue 50 and

- _i -
eS"u z e uv,‘_t )

48




It is well known (Coddington and Levinson, 1955, p. 101, problem 19)
*
that [DJ/N] , the complex conjugates of the functions used in (G6), are
solutions of the adjoint equation (39). It can be seen from the form of

(G11) and the definition of our inner product (23) that
a; = <D, ,8 > j =3,4, (59)

so that the coefficient of ’1;'(Y) in the residue is the inmer oroduct of

some solution of the adjoint equation with :(y,0). Finally, some straight-
forward, but ;edious, algebra shows that the particular linear combination

of the Dj' involved satisfies the boundary conditions (4') and (42) and

therefore is a multiple of our Elv . We thus find that the residue at 5, is

R = dav Av(a) 9 e-ingt , (60)

v av

with d, independent of y and Av(;) given by (54a). Before determining 4.,

we turn to the contribution of the branch cut.

Using the fact that our » = is, it is clear from (G14) that the branch
cut in the complex s plane is our continuous spectrum in the complex
o (or ¢) plane and that the branch point, . = Q, corresponds to the limit
point of our continuous spectrum at ¢ = U] -1 32fR, with Ul = 1. The function
Fla,k; y) in (G18) is, by (G17)and (G19) a linear combination of the soluttons

-

of the Orr-Sommerfeld 2quation which are, as y - =, asymptotic to & ™,

-iky +iky

e 7, and e It can be snown, using (G19), (G20), (G21), and (G22), that

Fla.k;0) = (35) =0, (61)
y=0

dy




and so F(a,k; y) is some multiple of our continuum eigenfunction :)k(y).
Further, it is obvious that, in (55),

; . &4
slu gt falt (aSHKE)/R (62)

e e

in (G18) with U1 =],

Just as for the discrete modes, the aa{} , v=2,3,4in (G21) are the

inner product of some solutions of the adjoint equation with e

definftion of the € in (G22) and the definitions of the Q?m as given

Using the

in the next to last paragraph on page 1604)some algebra shows that the
particular linear combination satisfies the boundary conditions at y = 0

and so the inner product in (G20) is a multiple of the inner product of our
continuum adjoint, Elk(y), with the initial conaition. Therefore, the integral

term in (G18) is

—
n

4 Ada) 5, () e tuskt gk, (63)

o ———— 8

with Ak(;) given by (54b) and d , indepencent of y. Gustavsson's result (G18)

thus takes the form (in our notation)

'.'1 (.Y-t) *

-
(e
4

s

/ / -i t
+ d';k -\ku) ";k‘;’) e “ak” ¢k .

0
Both Gustavsson and we may choose our initial condition arditrarily,
provided that the various integrals of this function with the adjoint functions

exist. If we choose the initial condition that wliy.O? is one of

50




the discrete eijenfunctions, say :lm(y). then in (55)
An(:n) = Enm (65a)
Ak(:) =0, (65b)

In Gustavsscn's formulation (63) we have

d A(a) =8 0 (66a)
Ak(’) 0. (66b)
We thus see that
d ¢ 1 (67)
[f we then chocse the initial condition
k+e
vy (y,0) = R st ly) gk’ (68)
-t
a similar argument shows that
d, ®1. (69)

Substitution of d  =d =1, (67) and (69), makes eq. (64), derived from
Gustavsson's solution, identical to the curly bracket in our expansion
solution (55). We have tnus shown that the formal solution obtained dy
Gustavsson frcnm tie Fourier-Laplace transform is identicai, term by term, to

our formal expansion sclution.

51
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Since any square-integrable solution possesses a Fourier-Laplace
expansion, we have shown that our expansion (55) is complete whenever it
is valid to separate the Fourier-Laplace transform solution into a sum cver
the poles plus an integral over the branch cut e=that is, whenever the sum
over the poles (discrete eigenvalues) converges. This is, of course, -l1so

the condition for the validity of Gustavsson's solution.

For the Blasius boundary layer, the numerical evidence (Mack 197€)
indicates that, at a given R and 1 , the number of discrete modes is finite,
so that the sum over the poles is a finite sum., [f this is so, then the
above condition is certainly satisfied and our expansion functions form 2

complete set.

We have shown that the Ffourier-Laplace transform result and the eigen-
function expansion result are different forms of the same solution of the
initial value problem to be chosen according to convenience in a particular
case. The eigenfunction expansion formulation gives explicit formulae
(54 a,b) to calculate the expansion coefficients. This allows one to calculate
the amplitudes of the discrete modes (TS modes) and the continuum functions,

given the initial distribution of vorticity.




5. The spatial stabilicv problem

.

5.1 The eigenvalues and eigenfunctions

The finliteness condition,equation (7), is modified for the spatial

stability problea 0o

g, 2 w2
[ 3, \
| N IR L IO
| . X v : ’
- Y * .

This ensures that the Fourier integral expansion of V¥

- ,

] -i‘
Pix, v, ) = W ix, ve “Fa
| &

P

LN

exists. If we assume that ¥ is o
-

i

the form

Y (x, v) =2 :'\e';f'x .
- -

then 2 is the solution of cthe Orr-Sommerfeld eguation

-

“
[T
]
v,
3

- (R((a0 - AL - 3 =3}z =D

with L_ given by (36).

(7™

(7n)

~o

w

"
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A

Sizmilarly, we assume that the adjoint solutiom, L.p , also satisfies

equation (7") thus ensuring that

Pix, v, £) = r, S-U'u(x. :r)e-mtdw

exists. We assume that

7 ~ ia*x
‘Pw(x. y) =2 (y)e ;

~
Then 2 is the solution of the adjoint Orr-Sommerield aquation

-

#dU0 d-v»

Bod
\L dy dy ’ *

ot R0 - WL+ 20

-0,
The boundary conditioms are

5,(0) = 3.(0) =3 (0) =3 (0) =0,
and

b * 9 +o =H 0 as y+o

~
i 9 and 9 are in M, or
& "

(74)

(75)



y . 9, 0. ai bounded as v+ (78)

1 Du and 30 are in M'. As above, tle eigenfunc:ioﬁs which belong to
M are the discrete eigenfunctions and those that belong to v’ bue not M
are the continuum 2igzenfunctions.

Jordinson (1971), Corner, Houston, and Ress (1976), and Murdock and

Stewartson (1977) have shown that there is only a finite set of discrets

eigenfunctions, {:aﬂ(?)}' with eigenvalues {&un}' The set of discrete

adjoint eigenfunctioms, {SNn}. with 2igenvalues {1:n} is also finite.

The number of discrets modes, N(w) depends on R as well as » and can be zero.
Ia parc 1 we showed that, in an unbounded domain, the spatial

stability problem alwayvs has a continuous spectrum. Since then we have

discovered (Grosch and Salwen, 1978b), that the spatial continuum of

Part 1 is only one branch of a four branched spatial continuum. It is

quite 2asy to show the existance of the four bdranches of the spatial

continuum. We lock for solutions to equaticms (72) and (79, :_k\y‘ and
-
~ -l
. - . . * . .- o -h‘v .
3ukky)‘ for a given real k, which varv like e © as y = ® (the k used

in discussing the spatial continuum in Part 1 is 2/R ctimes the k used here).

b4 ' . .
Noting that, as v ==, U - U a constant, and U , U = 0, we have

1
and

I N -

(=x*®= k7Y (=a*™= k7 + iy *RUT-LNR\ = 0. (79b)

(Note that equatiomns (7% and ) are complex conjugatas.)



It is obvious that there ara Jfour roots, ‘& j =1,

ses 5 & with

3

ll and 2, the roots of

- b

- - - /

I N (80)

- J
and
) 1
3= ik, 2, = ik (81a,b)
The eigenvalue :1. the root of equacion (80) with positive real pare,

is the continuum eigenvalue discussed in Part 1. As was discussed in

2art 1, the eigenfunctions of this branch of cthe spactial conciauum
are waves propagating in the downstra2am (+x) direction and decaviag in

amplitude as they travel. In the same way it can be shown that A, is

the eigenvalue of a continuum eigenfuncticn which is a wave traveling ia

the upstream (-x) direction and decaying as it travels.

The Iree stream speed, Ul. can be taken to be unitv for a doundary

laver, wake, or frae shear flow. In most cases of iatarest /R < < 1.

It is easy to see that, with U, = 1, and W/R < < 1,
1 2,3 :
: P ) - - - - -
X, 04 ® (/Y = RIS(L =) = (WR)T /YD . 0(= (82)
-y - P - \
R
with

S0




2 2 l/':

vy = (1 + 4k"/RT)

Define, as usual, the phase speed cj by

L
Ci ¥
L

Then as k - 0,

- )

S
w + {R{(w~ + k7)/R7I,

§2
tt

) bl -
., ~ =w = iR(1 + (W™ + k7)/R7.,

b ) 7.
~ 1= 1l(w + k7)/R"I/(W/R),

0
-

— e - , 2 24 re 2=
-(w/R)” = i(W/R)LL + (w + K) /RS

N
[B]
t

“hile as kx = =,

¢

/91

~ (wR/2k) + ik ,

12
-

N -
e - Ay 2 4 1
¢, ~wR/Ik™ - lw/k,

-
~
c, ~ -C.




The damping rate, for the spatial 2igenfunctions, i{s Im(%) and the
phase speed is Re(c). The equations given above show that the eigenfunctions
on branch two of the spatial continuum, for boundary layers, wakes, and
free shear flows, always have both a very large damping rate and a very
small shase speed. This is in marked contrastc to these of bdranch one,
which, as was shown in Part 1, or can dDe seen Zrom the above rasul:s,
contains lightly damped eigenfunctions scme of which have a very slow
ohase speed and scme of which have a phase speed nearly equal to the ifree
stream speed.

The spatial continuum eigenfuncticns of bSranches 3 and 4 are standing

waves in X Secause they vary like

eia.3x - fa,x +ice (89a,b)

As in the temporal case, the inner products between the spatial
continuum 2igenfunctions do not exist in the ordinary sense but can be
defined as 3 Zunctioms. Then,with proper labeling and normalizacion,
it is possible to choose the eigenfunctioms such that (with the super-

script i or j indicating the branch of the continuum)

- = '- s : , Q
1%, '~ o (90a)
- (1) - ~(1) -
" = 2 s 3 = , 9
L% Pk ¢ " *Puk ’ um 120b)
(1) (3IX= e v Ui ,
L9 9?70 = 3(k - k)OS . Q0c¢)
kT Tuk 13 (JUC)

T
7




where

=he inner products in (90b)

and there ara analogous 2xprassions

and (%0¢).




5.2 Expansion of an Arbizrary Disturbance.

£ the spatial eigenfunctions form a complete set, then, Sor any

X, we may expand Wu(x. v) as

N(w) 4

-0
, - « | (L), (L)
a - - y )
¥V (x, v) n;l an(.u. x) .‘.n\y) 4:1 I a.‘ (W, ::):)_’k (v)dk. (92)

: . . (4 \
In order to find the coe:ficientsxan(.u. x)} and -.a.i )(.:. x)} we use

equation (50) to take the inner products

- N(w)
K :'.sn' WJ(K. Y)] = n':l a:v(w. x)o:m' = an(u. x), (93&)
(1) ® W (1)
T N = | 3 (W, X)8(k - %' )5.,dk = a, , %), (93
-2 "f’d(x. y)d o 3 (W, x)3(x = % )éy4 dk 3. (w, x). (93b)
Then
ja_(w, %) . W -~
- = T3 ,=—3 =420 I> ,¥ 1
3X wn’  3x s Tun )
= iam in(\&,p x)n (943)
and

o0

S - —



(1) -
Bak (W, X) . 3V () - .

- a T =T =
3Ix == Dak' 3%~ iauk =Yk’

= iait) aéi)(a, )

so that
, o i
an(u. Xx) = An\u)e wn®
- (1)
4 - i~
D, %) s Al etk
< £
where

An(’—i) E 3°(J' 3) - o ;Jn‘ wu‘\ot Iv'\-

), 3 = L), - T ~(1) L -
Ak (w) = a, (w, 90) 0k’ 9&(0. vd. (96b)

From equations (73), (92), and (95), we nave the formal solutiom 20

the spatial scability sroblem for the TwWo dimensicnal, linearized

Vavier-Stokas 2quations

7, e . i, X
Y, v, 8) = | ¢ A (W (vye ™ *m
. n an
| a=l
-
L oy 4 (L)
- ( b 1 S a s ) p&o Ty K4 -1lu
* 3 at el (pyetTHE T dk dw 97)
i=l 40 %

6l

b



Define
W(Q)( y 2 W ) 1 F@ iwe
S E YO, n) - (0, vy, t)e™ “dt , (98a,
-
9 3‘7” (X, V) [ :w
T ) 22 '
x=0 —» x=0

-
ol
3°Y (x, 3 -0 2
Dy u(“' "')\ 1 [ ,3 g(x. %y ) {we
W i(y) = 3 ) - = ( - ) e dt,  (9g¢)
v Ix~ 'l 3x” E
x=0 : x=0
3
3TQ (x, v) e 3@
(3)., = 4 * 1 "X (x, v, t) iwe |
L.yd (v) = ( 3 ) o~ I ) e dc. (98d)
ax T = Ix
x=0 x=0
Then
A=TI3 , ¥ (0,3
-~
< | 1;;* LP‘J\ L i T Wile) - Ix (J.l)
9 R T +sn Tun W sn Tun T
“a kD)
1 ew (0) a0 " :‘1‘A
- a5 7 < tla - -
anouan W «n dy v
do* - : \
s m ) . -Ya Y- A % Ly"ﬁ "
c dy Qv = - ten ' = v mo
- -k ‘J\:) . ke Yl- , =% W 0)
ttun W “n'in o “n’ e J
qa% s 0) “Tx
Ty =g S Tan Wi
- =28 - POl 4y (29)




(1)

and there is a similar expression for Ak (W) .
This is the formal solution of the spatial stabilicy problem
for an arbitrarily imposed boundary condition at x = 0. The boundary
conditions which must be specified are the Fourier transforms in time,
of the stream function and its firsc three parsial derivacives with
respect to x, evaluated at x = 0.
As it stands, this formal soluticn will not give a physically
acceptable solution because, given an arbitrary ':p'.'), v, t) and derivatives,
disturbances which lie on all four branches of the contiauum will be
excited. Therafore the solution will contain, ia addition to the waves
propagating towards x = ® and the standing waves whose amplitude decays
towards x = ®, waves propagating upstream from X = ® and standing waves
whose amplizude increases tcwards x = »®,
A conditicn zust be imposed thac, for x > 0, all propagating dis-
turbances are traveling in the positive x direction and all standing
~waves have amplitudes wnich decay in the positive x dirsction. [t appears that

J

(0, ¥y, t) and its

Ve

should e done by requiriag that irst three parcial

derivacives with respect to x be orthogonal to all eigenfunctions on
branches I and 4 of the comtinucus spectrum but we have not yet investigatad

the implications of imposing this condition cn the disturbance stream

funczion ac x = 0.

this




6. Application to the Temporal Develooment of a Model Flow

In this section, we apply the results of section 3. to the simple

base flow,

U(y) = Ul = gcenstant, y > 0 , (100)

which i{s a slip flow past a bounding slane at y = 0. Though the base

€low velocity does not vanish at the boundarv, we still require the
{sturbance veloecity to De zero at v = 0. 3ecause of the simplicity of

rhe base flcw, the expansion Iunmcticms are elementary functions.

In 6.1, we find the expansion functions. In this case, there are no

discrete eigenmodes; all of the eigenfunctions are continuum functions.

In Subsection 6.2, we solve for the time-develcpment of a particular
{nirial disturbance oy expanding in terms of chese eigenfunczions. The
inisial disturbance chosen is a periodic laver of vorse
plane parallel to the (v = 9) boundarv. 3ecause of the sizple orm of the

inirial disturbance and the sizplicity af the base flow, it is possible to

obtaia the soluticn in closed form ia terms of ervor functicns.

6.1 The E. zerfunctions

;N

ov the base flow of fquation(100) =he .fferencial equazion, (34),

for the axpansion functions becomes

4” 2 < - 2, A ,
(e = 37 = L3R - o)) (w—— - LT s, \101\




with the general solution (for x # 0, ¢ # Ul),

v

d = Ac-'a‘y + Bc‘a" + c.py + D‘-py

: (102)
where

22
2% =%+ ar(u, - o). (103)

(In this case of comstant U, 5 aust satisiy cthe same diilerential aquaticn).
In addition, ? 2ust satisfy Igs. (l1) and (13); i.e., 3 and 5 aust

vanish at ¥ = 0 and be bounded in 0, ®)., 3ince e sy is unbounded,

3 = 0. 7o satisfy the boundary condition at the origin, we noust :then nave
- 3w

5 = Ale - cosh py + -%L sinh py. , (104)

which Is unbounded as v = ® unless p is purely izaginary. The solutions

are then given by

p = ik; 0 <kc<=, (105)

\

~

=
'
~3

2 (y) = by k(y\ - A*k:(.- Yo ces o) - -%— sin ., (106)



PN )

where the nor=alization constantg,
13 2
2k ok e
+ 3

is detarmined by the condition

S v By Sk - k). (108)

In this case, where the : and ka are known explicitly, one may

show directly that, for F(y) any continuous, differentiable, square-

integrable function in [0,%),

-

| v
< : ’
1K

Fo o (y)dk = F(y) - e7 21 F(0) (109)
:

thus confirming that the set of «: K is complete for functions in M,

with F(Q) = Q.

1 §)



6.2 The Temporal ZIwelution of An Ianitial Disturbance

In ciuer to demonstrate the application of this expansion techaigue,

we consider the particular initial disturbance

==
pr

o

-7 Yix, 7, 0) «F(x, v, 0) =T, o} 0% iy = va),
v

-
v

a pericdic layer of vorticity at a distance ?O from the boundarv.
Tollowing secticm 3.2, we find that the stream function at any time will

be given DY

-0 -0 ~
T ' it iax . o
Y(x, 7,¢8) = C A @), (¥) e €° dk ia , 11
P 40 L
where
-0 -0 <
; - ~ 'p -iax . . 12
A (@) » %= .., (7 T(x, v, e ixdy. 112
£ - "O =K lm

It is easily seen, by substituting Zq. (110) faws ig. (112, chat

-




B e i L e

‘P(x. y, t) = ch

. -1 iax
5 ()80 = 3 )9, (v) o ekt g o390 4
=g k0 0’ %Y

2 2
- oio0(x = U1e) -2qc/R J- 3y (70) e () o E R gy (114)
0o ¥ '

Afcter using Eqs. (106) and (107), Zor Q#. we fiand cthat each term in the
integral is expressible as sums of error functions. The results are given

in an Appendix. From these rasults, it can be shown that, for t = = with

y fixed,

1 2
P -’? /R cos yfx = upe - (function of ¥) (115)

and, for y = ® with t fixed,

@ - e-%(y * ¥0) cos H(x - Ult) * (function of t). (11€)

It is clear that, even though the individual eigenfunctions used in the
expansion oscillate with constant amplitude as y = ®, the wave packet behaves

v
like e-sJ' as y » >,
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Figure . shows contour plots of the stream function for the disturbance,
in a frame of reference moving with the ZIree stream velocity,at six diifferent
times. We have chosen 2 " 1.0 and 1.0 for the example shown here.
Contours of the disturbance stre2am function have also been calculated
for ocher combinations of values of g and Y5 and, for these other values,
the evolution of the disturbance in time is quite similar to that shown
in figure 1.

In figure 1 cthe (+) and (=) indicate the position of the maximum and
ainimum values of the stream function. These maxizum and minizum values
are given in the caption to the figure. The flow is counta2r-clocikwise
around a maximum (+) and clockwise around a minimum (-).

It is clear from this figure that the disturbance, which is a periodic
vortex sheet at ¢t = 0, retains its idencity as a periodic array for all
time, but as time increases it diffuses, the strength decays, and the
centers of the vortices drifc away from the boundary act v = 0.

we could, of course, generalize this model problem dy considering an

initial vorticty distribucion in the y direction. e have not carried out

this calculation decause cur intent in solving this model problem was to
illustrate the expansion procedure and we do nect think that it warrants

further alabeoration.
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Fizure Caption
Figure 1: Contours of the disturbance stream function for the model

problem in a frame of reference moving with the free stream
velocity at six different times. In this example?o = 1.0,

zo = 1.0, and Yo " 1.0. Thera aras twenty contour lines on

each plot. The values of ¥ on these contours are 0.95 g.J:xax,
v o
0.85 (..L':ax, ces 5 =0.95 Y nax. The (+) zand (=) indicatce
sy *+q . L’/ (p - J/ .
the pesiticns whera &Y = & and & . . VNote that
max min

. o= - :

= ain = max

(a) =/R=107° , @ =025
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Appendix: Soluticn of the Model Problem

In section 6 we showed that the stream “unction for the mecdel

problem is, equation (114),

: 2 - p -
T i~ - -y - /
,(x, ¢, 2) = e.\..o(x Upe) . age/R ok t/R JVR(YO)Qwv(?’dk-
* 0 ¥

where °~k(y) is given by (106) and (107). Substituting for °1k(Y) and
) 9

’ak(yo) in this integral it is straightforward 'o show that, with

T = t/R,
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the functions I, are given by

3
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2 2
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Norfolk, V.A. 23508

and

Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Technology
Hoboken, N.J. 07030

ABSTRACT

In this paper we give the solution of the boundary-layer receptivity problem:
that of determining the amplitudes of the Tolimien-Schlichting modes and
continuum eigenfunctions of a boundary laver given the form of the velocity
profile and the disturbance, within the context of incompressible, linear
stability theory for a parallel shear flow. We give the formal solution

to the initial value problem for temporal stability and give the proper
initial condition for this problem. The formal solution of the spatial
stability problem is also given and the proper boundary conditions at x = 0
and radiation conditions at x = = are discussed. We give examples of the
application of this method to the calculation of the temporal evolution of
a particular disturbance in two flows, a constant base flow and the Blasius
boundary laver.

*“This work was supported, in part, by the Naticnal Aeronautics and Space
Administration under Grants NSG 1618 and 1619,




ETIGENFUNCTION EXPANSIONS AND BOUNDARY-LAYER RECEPTIVITY
IN THE THEORY OF HYDRODYNAMIC STABILITY

Chester E. Grosch
Department of Oceanography and Department of Mathematics
0l1d Dominion University
Norfolk, Va. 23508

and

Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Technology
Hoboken, N.J. 07030

SUMMARY

The last ten years has seen an increasing use of the theory of hydro-
dynamic stability to predict transition in boundary layers. Mack (1977)
gives an excellent, up to date review of various transition prediction
methods. All of these methods include at least one unknown parameter
AO, the initial amplitude of the disturbance in the boundary layer.

There are numerous discussions of the boundary-layer receptivity problem,
that is, the problem of determining Ay given the velocity profile of the
boundary layer and the disturbance (Obremski, Morkovin, and Landahl, 1969;
Mack, 1977; Berger and Aroesty, 1977). All of these authors conclude

that the mechanism by which free-stream vorticity and sound disturbances
generate Tollmien-Schlichting waves in a boundary laver is unknown.

In this paper we give the solution of the boundary-layer recep-
tivity problem within the context of incompressible, linear stability
theory for a parallel shear flow. The expansion of an arbitrary two-
dimensional solution of the linearized stream function equation in terms
of the discrete and continuum eigenfunctions of the Orr-Sommerfeld
equation is discussed for flows in the half-space, y [0, =). A recent
result of Salwen is used to derive a biorthogonality relation between the
solution cf the linearized equation for the stream function and the
colution of the adjoint problem.

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted (1960) for bounded flows.
This relationship is 'sed to carry out the formal solution of the
initial value problenm for temporal stability. It is shown that the
vorticity of the disturbance at ¢t = 0 is the proper .initial condition
for the temporal stability problem.

For the spatial stability problem it is shown that the continuous

spectrum of the Orr-Sommerfeld equation contains four branches. The
modes on these brances are (1) waves propagating downstream, (2) waves

g £ 2




propagating upstream, (3) standing waves whose amplitudes decrease down-
stream, and (4) standing waves whose amplitudes decrease in the upstream
direction. The biorthogonality relation is used to derive the formal
solution to the boundary value problem of spatial stability. We show
that the boundary value problem of spatial stability requires the stream
function and its first three partial derivatives with respect to x be
specified at x = 0 for all time. The imposition of a radiation condition
downstream, i.e. at x = », eliminates disturbances which originate at

x = » and travel upstream to x = 0. The imposition of this radiation
condition reduces the number of independent boundary conditions at x = 0
from four to two.

We give two examples of the application of this method to calculate
the temporal receptivity of boundary layers to a disturbance. We specify
the disturbance at t = 0 to be a vortex sheet parallel to the boundary and
sinusoidal in the streamwise direction. We then calculate the evolution
in time of this disturbance in (1) a constant base flow, for which the

calculation can be carried out analytically and (2) in the Blasius boundary

layer for which we calculate the amplitudes of the discrete Tollmien-
Schlichting waves and of the continuum eigenfunctions numerically.
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