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VOLUME V

PREFACE

The Cogeneration Technology Alternatives Study (CTAS) was performed by the
National Aeronautics and Space Administration, Lewis Research Center, for the
Department of Energy, Division of Fossil Fuel Utilization. CTAS is aimed at pro-
viding a data base which will assist the Department of Energy in establishing
research and development funding priorities and emphasis in the area of advanced
energy conversion system technology for advanced industrial cogeneration applica-
tions. CTAS includes two Department of Energy-sponsored/Lewis Research Center-
contracted studies conducted in parallel by industrial teams along with analyses
and evaluations by the National Aeronautics and Space Administration's Lewis
Research Center.

This document describes the work conducted by Power Systems Division of United
Technologies Corporation under National Aeronautics and Space Administration
contract DEN3-30. This United Technologies contractor report is one of a set of
reports describing CTAS results. The other reports are the following: Cogener-
ation Technology Alternatives Study (CTAS) Volume I - Summary NASA TM 81400,
Cogeneration Technology Alternatives Study (CTAS) General Electric Final Report
NASA CR 159765-159770 and Cogeneration Technology Alternatives Studies (CTAS)
Volume II - Comparison and Evaluation of Results, NASA TM 81401.

This United Technologies contractor report for the CTAS study is contained in six
volumes:

Volume I	 -	 Summary Report, DOE/NASA /0030 -80/1 NASA CR
159759

Volume II	 -	 Industrial Process Characteristics, DOE/NASA/0030-
80/2 NASA CR 159760

Volume III	 -	 Energy Conversion System Characteristics, DOE/NASA/
0030-80/3 NASA CR 159761

Volume IV	 -	 Heat Sources, Balance of Plant, and Auxiliary Systems,
DOE/NASA/0030 -80/4 159762

i
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Volume V	 -	 Analytic Approach and Results, DOE/NASA/
0030-80/5 159763

Volume VI	 -	 Computer Data, DOE/NASA/0030-80/6 NASA CR 159764

The cogeneration analysis presented in this Volume V was developed by United
Technologies Research Center, East Hartford, Connecticut.

e
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INTRODUCTION

This volume describes the analyses which were employed to evaluate the energy

savings, environmental impact, and economic viability of cogeneration using

advanced energy conversion systems to provide on-site electrical power and

thermal energy for industrial process needs. For this study 37 different energy

conversion systems and 26 different industries were combined to formulate candi-

date cogeneration plants. For each of these combinations, the energy conversion

system output was matched to the industrial process needs by four different

strategies. In order to evaluate this large number of systems, two computer

programs were developed to calculate the various parameters which describe the

system performance. In the first program, the industrial data, the energy con-

version system data, and the heat-source and balance-of-plant data are combined

to forr.iulate a cogeneration system and calculate the energy utilization, cost, and

emission characteristics of that system. The same characteristics for a non-

cogeneration system are determined and thv performance improvements which could

be realized through cogeneration are analyzed. In the second program, the output

of the first program is utilized to calculate various economic parameters which can

be used to evaluate the economic viability of cogeneration. This program was used

to evaluate the economics for 120 selected cogeneration systems which have attrac-

tive energy conservation and cost savings potential.

This Volume V describes the data base, the analyses, and the results obtained in

the conduct of the study. It is divided into two major parts: the first concerns

the analyses and the second, results.

The first part of the Analyses section describes the data base for the analyses.

The industrial data base was extracted from the detailed description of the indus-

trial processes provided by Gordian Associates and reported in Volume II. A

• discussion of the energy conversion system data base follows. These data were

provided by the advocates for the various energy conversion systems and are

presented in Volume 111. Next, the heat source data is summarized. These data

were used in conjunction with certain energy conversion systems and for auxiliary

boilers. They were provided by Bechtel National, Incorporated, and reported in

11.
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Volume IV.  A description of the balance-of-plant data is included. These data

were also provided by Bechtel National, Incorporated, and reported in Volume IV.

A brief description follows of heat pump data which was developed in consultation

with Westinghouse Electric Company and presented in Volume IV.

The next section of this volume defines a cogeneration system and its component

parts, followed by a description of the cogeneration performance analysis which

was used to calculate the energy characteristics, emissions, and costs of cogener-

ation and non-cogeneration systems. A description of the computer printouts from

the performance analysis is also included. The final section of the Analyses

section describes the economic analysis which was used to evaluate the economic

viability of cogeneration with advanced energy conversion systems.

The second part of this volume presents a summary of the results of the analysis.

Detail computer printouts are included in Volume VI.

.Z.
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ANALYSES

INDUSTRIAL DATA BASE

Twenty-six industries were chosen for evaluation in this study. Gordian Associ-
ates provided industrial process data which characterized each industry. These
data were reduced to a standard format and stored in the computer file to provide

a common data base for the subsequent cogeneration performance calculations.

The selection of industrial processes for inclusion in the study was based on the
following considerations. The industrial processes should be energy intensive,

have cogeneration applicability (primarily for utilizing topping cycles, although two
industries were chosen for bottoming cycles), provide a wide range of overall

industry electrical-to-thermal ratios, provide a wide range of plant sizes, be large

oil and natural gas consumers, and represent industrial processes expected to be

used in the 1975-2000 time period. The 1975 energy consumption data for the 20

two-digit Sector D, Manufacturing, classifications are shown in Figure V-1. To

meet the energy intensiveness criteria, most of the industries were chosen from
the six two-digit classifications having the highest energy consumption; however,
some industries were chosen from four of the next seven two-digit classifications
which have lower, but significant levels of energy consumption. The selection of

industries within this second group was made by reviewing the available literature
and choosing those which best met the above criteria and had sufficient and reli-

able data available. The ten two-digit classifications represented in this study

consume over 80 percent of the energy used by the industrial sector. Twenty-six
industrial processes meeting the above criteria were chosen for this study. These
twenty-six industrial processes represent approximately 50 percent of the
industrial energy consumed. A discussion of their characteristics is contained in
Volume II of this report. A list of the industries chosen for this study along with
their annual energy requirements is given in Table V-1.

-3-
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Industrial (. ^,aracterization

o	 Plant Data

The cogeneration analysis program required the development of an industrial data

base to store the pertinent information for each of the industrial processes. The

specific plant characterizations stored in the data base were developed from detail-

ed reports of each of the industrial processes provided by Gordian Associates and

reported in Volume II. The typical plant characterization was intended to repre-

sent a plant which is expected to be manufacturing goods by a specified process-

ing method in the 1985 to 2000 time period. The annual production level of the

typical plant was projected by Gordian Associates.

The type of information stored for each industrial process is illustrated in Figure

V-2 which contains data for a typical chlorine plant. The data in Figure V-2 are

for the year 1985. Data were also stored for the years 1978 and 2000.

in developing a general data base for the industrial processes, certain assumptions

were made to limit the quantity of data required without sacrificing overall

accuracy. One such assumption was the use of two types of days in the char-

acterization. Each plant is represented by its energy consumption on productive

days (workdays) and, if necessary, nonproductive days (weekends, holidays,

shutdowns) .

The electrical requirements of the typical plant are summarized by several factors.

The unit electrical consumption (kWh/unit produced) indicates the electrical energy

intensiveness of the process. The unit electrical consumption as well as unit

thermal consumption on nonproductive days has been adjusted by the ratio of

nonproductive days to productive days. Thus, the addition of the two-unit con-

sumption values, when multiplied by the annual production, will yield the annual

electrical energy used by the process.

.ra.
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The average electrical demand listed on this summary was estaUlished using the

annual energy consumption and the working hours. The electric load factor for a

typical day is also listed; it can be used to determine the peak ele--trical demand

for a typical day (i.e., average demand/load factor = peak demand.

.g.
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The average thermal requirements of the various processes were defined in terms

of temperature as well as heat requirements (Btu/unit production). This diversity

of thermal requirements increases the complexity of matching the waste heat from a

given energy conversion system with the requirements of the various industries

because the energy conversion system must be designed differently to supply the

different th, ;rmal requirements of the various industries. In order to reduce the

number of energy conversion system design variations required, the thermal re-

quirements were generalized into five thermal categories: hot water, low temper-

ature steam, medium temperature steam, high temperature steam, and direct heat.

Direct heat denotes thermal requirements met by direct combustion or other speci-

fic source of hot gas. Thermal needs met by steam and hot water are denoted as

indirect heat. The nominal temperatures and pressures established for the thermal

categories were: (1) hot water at 140°F, (2) 50 psig steam at 300°F, (3) 600 psig

steam at 500°F, and (4) 600 psig superheated steam at 700°F. The actual book-

keeping procedure was to characterize all hot water requirements at the nominal

temperature (140°F), all steam requirements from 212°F to 315°F in the 300`•'F

category, all 315°F-515°F steam requirements in the 500°F category and all steam

requirements over 515°F in the 700°F category. The thermal categories generalize

the hot water and steam requirements only; the direct heat requirement is defined

at a specific input temperature.

The unit thermal requirements (millions Btu/unit produced) for productive and

nonproductive days are shown in Figure V-2 The actual temperature of the

thermal requirement is indicated for reference only.

Associated with the hot water and steam requirements are the amount of hot water

and/or steam condensate returned to the boiler. The assumptions were made that

the condensate was returned at 130°F and make-up water was supplied at 60°F.

Boiler blow-down of 10 percent was included. If hot water was returned after

use, its temperature was assumed to be 130°F. The amount of water returned has

an obvious impact on the energy required to heat make-up water for the process.

In many cases, return water temperatures were not available, but the fuel consump-

tion to provide hot water was known. Therefore, Gordian Associates defined the

0
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thermal requirement to provide the 140"F hot water • for the actual situation in the

representation. For example, the energy requirements for hot water in the me'rt

packing industry include the total heat required to heat room-temperature water to

140°F. Thus, even though all this hot water is thrown away, there is no addi-
tional energy requirement to preheat the make-up water to 130°F, the normal hot

water return temperature assumed for the study. To make the energy utilization
correct, all hot water for this industry was listed as being returned. The actual

temperatures, pressures, and hot water and/or condensate return fractions for the

24 processes requiring hot water and/or steam are presented in Table V-2 in the

assigned bins. Glass and cement are not included in this list because they require
only direct heat.

TABLE V-2

HOT WATER AND STEAM REQUIREMENTS IN THE ASSIGNED BINS

Industr
Tam erature ( F) Pressure ( PSIG)  Fraction Returned

HW_1 300 A 500 F 700 F1 300 00 F1700 F HW	 300 17 1 500 e700 P

Meat Packing 140 315 15 1.0 1.0

Baking 180 250 15 0.1 0.17

!Malt Beverages 300 53 0.9

; Fabric Mills 338 100 i

i Saw Mills 331 90 0.7

^0.9

Newsprint 140 307 371 60 160 1.0 0.9 0.9

(Writing Paper 140 307 371 60 160 1 . 0 0.9 0.9

(Corrugated Paper 140 307 371 60 160 1 . 0 0.9 0.9

i
Boxboard 140 307 371 60 160 1.0 0.9 0.9

Chlorine caustic 274 332 30 90 0.9 0.9

Alumina 442 200 0.9

LDPE 300 500 53 600 0.9 0.9

PVC 500 600 0.9

S.B. Rubber 267 371 25 160 0.9 0.9

Nylon 300 470 532 53 495 885 0.9 0.9 0.9

Styrene 300 53 0.74

Ethlyene 850 1500 0.9

Petroleum 500 385 0.9

Tires 406 250 0.9
I

Steel 500 600 0.9

Cray Iron 300 53 0.9

Copper 338 100 ^0.9

Motor Vehicles 353 125 I 0.9	 1

.8-
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The direct heat thermal category represents heat currently supplied to the process

by burning a specified fuel (such as natural gas for hog hair singeing in a meat

packing plant) or burning (of various types of fuel) to provide hot gases for the

process. Therefore, the characterization of the direct heat necessitates the speci-

fication of: (1) the temperature, (2) the specific fuel, if necessary, and (3) any

specific level of cleanliness required by t l v process. The exhaust gas from a

conversion system was used to meet direct .,eat needs when that gas satisfied the

required characteristics. For this study both direct heat requirements and exhaust

gas characteristics were classified and only appropriate combinations were analyzed.

Of the 26 industrial processes considered in the study, 14 had direct heat require-

ments and 10 of these required a specific fuel. A summary of direct heat require-

ments for these 14 processes is presented in Table V-3. The chlorine process, as

indicated in Figure V-2, does not require any direct heat.

TABLE V- 1

DIRECT MEAT, BY-PRODUCT FUEL, AND WASTE HEAT (71ARACTF.RISTICS

Direct	 Requirements __fleet Bv-Product Fuel Characterintics	 _	 _ Waste 11eat
L4ftp t F)	 Fue l	 Cleanliness •# Description ••• '. Used	 ihcrmal f:ft.___ _I^'^'L

 Packing 2000	 Nat. Cas	 1.0

Baking 500	 Vat. Gas	 1.0

Malt Beverages 300	 Nat, Gas	 1.0

Fabric. Mills 400	 Nat. Gas	 1.0

saw Mills 5 n5 etl
Newsprint 4 100 of

Writing Paper 4 10o nl

Corrugated Paper 4 100 ,,2

Boxhoard 4 100 e:

Chlorine 1 25 85

Alumina 21110	 Pet.	 Dist.	 2.11 800

S.B.	 Rubber _1100	 Pet.	 Dist.	 2.0

St yrene 1400	 Nat. Cas	 1.0 1 100 d5 tin,,

Ethy lene .1000	 1.0 1 100 85

Petroleum oe"	 2.0

Gin+s 2800	 Pet.	 Dist.	 2.0 10004

Cement (Dry) :900	 2.0 11001

Steel 1000	 Coal	 1.0 1 100 85

Grav Iron 3000	 3.0

Motor Vehicles 1000	 Vat. Gas	 1.0

• Usable only for bottoming
##	 1.0 - clean

2.0 - moderatel y clean

3.0	 -	 dirry
AA#	 I.0 - gaseous	 fuel

4.0	 hJ.%,'k	 I iquoa

5.0	 solid fuel, only usable in auxiliary	lurnace

.g.
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In certain processes, there is waste heat which may be used to reduce some of the

process thermal requirements. The ability to use the waste heat will depend upon

its temperature and state (steam or hot gas). Waste heat steam may be used to

reduce a steam requirement directly, if the temperature is sufficient to match a

thermal category requirement, or it can be used to preheat make-up water. A gas

stream may be used to reduce a direct-heat requirement if it meets the criteria for

direct heat discussed previously or it may be used as preheat. Additionally,

process waste heat can be used in bottoming applications to generate some or all of

the electrical requirements of the process if the waste heat is of sufficient temper-

ature. Waste heat availability and temperature are also indicated in Table V-3.

In nine of the twenty-six processes, a by-product fuel was available for on-site

use in providing some of the plant thermal requirements. This fuel may be used

either in the energy conversion system directly, or burned in an auxiliary furnace

to provide thermal energy where appropriate. One factor defines the physical

characteristic of the fuel, such as solid (i.e., saw dust, wood chips, and bark in

the saw mill and paper industry) or gaseous (i.e., hydrogen gas in the chlorine/

caustic industry). A second factor specifies the fraction of by-product fuel which

is currently used in the industry. Most of the nine industries currently use 100

percent of their by-product fuel. Only two, saw mills and chlorine, use less than

100 percent. Currently, because of environmental reasons, saw mill operators

burn approximately 65 percent of the saw dust generated during operation, with

the remainder sold. In chlorine production, some plants utilize the hydrogen gas

while others simply flare it. However, on the average, only 25 percent of the

hydrogen gas is used as fuel, industry wide.

Overall plant energy parameters can be defined from the electrical and thermal

energy characteristics discussed previously. One such parameter is the electrical

to thermal ratio of the industry which may be used as a rough indicator for

estimating which energy conversion systems may be best for cogeneration appli-

cations. For example, an industry with an E/T of 0.6 would be better matched to

a gas turbine-generator power plant having an E/T of 0.6 than to a diesel power

plant having an E/T rt 1.0. Many energy conversion systems can be designed to

produce different proportions of electrical and thermal energy, thereby permitting

some flexibility for industrial process cogeneration matching.

-1a
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The electrical -to- thermal coincidence factor is included in Figure V-2. This factor

is defined as the variation of the hourly E/T normalized to the plant average E/T.

The coincidence factor can point out those processes which may show promise for

utilizing thermal storage devices. The high and low range of E/T which occurs

during a typical production day is indicated in Figure V-2.

o National Data

In order to estimate the national benefits of various cogeneration applications, it is

necessary to scale the results generated at the plant level to the national level for

each industrial process. For each of the twenty-six industries, Gordian Associates

has estimated the current (1978) and future production requirements for the vari-

ous processes. Estimation of future requirements is based upon identifying those

industry specific factors which control or influence the production levels. For

example, the current and future output of the meat packing industry is logically

related to the present population level and its anticipated growth to the year 2000.

The production requirements of the saw mill industry are likely to be highly depen-

dent upon the number of anticipated housing starts. Other industries may be

dependent on other factors such as gross national product or possibly a combina-

tion of factors. Gordian Associates has identified those particular factors which,

in their opinion, establish the production requirements at the national level.

In order to Pstimate the fuel usage and savings due to cogeneration, an estimate of

current and future fuel utilization by type was made by Gor,: an Associates. This

estimate is shown as fuel breakdown fractions in Figure V-2. Three specific

categories of fuel type are defined. These are coal, oil, and natural gas. Other,

fuels used by an industry, but not identified as a specific type, would be categor-

ized in the "other" categories. Changes in fuel fractions due to expected shifts

from one fuel to another due to internal (fuel costs) or external (Government

regulations) factors were included in the Gordian Associates estimates.

Each of the industries characterized represents a specific processing method for

producing the product. For example, 75 percent of the chlorine currently pro-

-11-
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duced is made with the diaphragm cell. The remainder is made using mercury

cells. Diaphragm cells are more energy intensive than mercury cells and therefore

account for more than 75 percent of the energy consumed in the chlorine industry.

This percentage (85 percent) is indicated in Figure V-2. The percentage of

energy consumed in the 4-digit classification by the specific process is indicated in

the summary data to permit the evaluation of the national benefits of cogeneration.

Summary of Industrial Data

A complete set of summary data for the twenty-six industries for the years 1978,

1985, and 2000 is presented in Volume V1. Table V-4 presents a summary of the

^stimated production and energy requirements for typical plants in 1985. Electrical

demand varies from 0.32 MW in baking to 200 MW in steel production, and electrical

to thermal ratios vary from 0.002 in ethylene to 2.17 in low density polyethylene.

A review of the thermal requirements in Table V-4 indicates that the majority of

the thermal requirements are found in the 300°F, 500°F, and direct-heat categories

with very little in the 700°F steam requirement.

The estimated national production, fuel breakdown fraction, and energy consump-

tion (as percent of the 4-digit classification) in 1985 are presented in Table V-5.

Many of these industries are expected to consume large quantities of oil and gas in

the time period starting in 1985. Thus, the adoption of cogeneration by these

industries, especially with advanced energy conversion systems employing coal or

coal-derived fuels, could provide substantial resource savings.

.12.
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ENERGY CONVERSION SYSTEMS

The energy conversion systems used in the study were each characterized by the

advocates identified in Volume Ill.

The energy conversion systems included seven generic types having various coh-

figurations and design options. Energy conversion system designations were

assigned to represent a specific conversion system and fuel combination. Further

definition was indicated by the design option. The data base used in this study

comprised 37 conversion system-fuel combinations with a total of 131 design

options. Table V-6 presents a listing of the 37 energy conversion systems used in

this analysis.

Energy Conversion System Characterization

In this study numerals were assigned to represent a specific conversion system-

fuel combination as indicated in Table V-6. Implicit in each numeral is a definition

of the state-of-the-art (current or advanced), the type of conversion system, and

the fuel used. The energy conversion systems included in this study were:

steam turbines, diesels, gas turbines, steam injected gas turbines, combined

cycles, fuel cells, Stirling engines, thermionics and organic Rankine cycles.

Within each technology type, further definition was sometimes necessary to identify

the conversion system. Diesels were classified as high speed or low speed units.

Gas turbines had three classifications: direct fired, indirect fired, or closed

cycle. Combined cycles were either direct or indirect fired. Fuel cells considered

were low-temperature acid cells and high-temperature molten carbonate cells.

Thermionic systems were simple and compounded with steam turbines.

Six fuels were considered in the study. They were petroleum distillate, petroleum

boiler fuel, coal-derived distillate, coal-derived boiler fuel, coal, and coal gas

(gasified on site).

-15-
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TABLE V-6

ENERGY CONVERSION SYSTEMS

i

ECS

401

No. of

Design

Options

State

Of the Art

Technology

Type Fuel

1 10 Current Steam Turbine Petroleum Boiler Fuel

2 10 Current Steam Turbine Coal

3 2 Current Diesel, High Speed Petroleum Distillate

4 1 Current Diesel, Low Speed Petroleum Boiler Fuel

5 4 Current Gas Turbine Petroleum Distillate

6 1 Current Combined Petroleum Distillate

7 10 Advanced Steam Turbine Coal	 Derived hoilr.r	 Fliel

K 10 Advanced Steam Turbine Coal	 (AF%)
y 1 Advanced Diesel, HiKh Speed Coal	 Derived	 ilasl i l l,,t,-

1 t1 Advanced Diesel, Low Speed Coal	 Ue r, ved llu t 1 o t	 Ftie I

11 1 Advanced Diesel, Low Speed goal	 (pulv.r.t.ed)

12 5 Advanced Gas Turbine Petroleum Boiler furl

13 5 Advanced Gas Turbine Coal Derived Boiler Fuel

14 2 Advanced Gas Turbine Coal	 (gasifier)

15 4 Advanced Gas Turbine Coal (PFB)

16 3 Advanced Gas Turbine, Indirect Coal (AFB)

17 5 Advanced Gas Turbine, Closed Cycle Coal Derived Boiler Furl

18 5 Advanced Gas Turbine, Closed Cycle Coal (AFB)

19 2 Advanced Steam Injected Gas Petroleum Boiler Fuel

Turbine

20 2 Advanced Steam Injected Gas Coal Derived Boiler Fuel

21 2 Advanced

22 "_ Advanced

23 3 Advanced

14 3 Advanced

25 1 Advanced

26 1 Advanced

27 2 Advanced

28 2 Advanced

2 Advanced

30 4 Advanced

31 1 Advanced

32 2 Advanced

33 2 Advanced

34 1 Advanced

3 5 3 Advanced

1	
36 10 Current

37 3 Advanced

Turbine

Steam Injected Gas

Turbine

Steam Injected CAN

Turbine, Indirect

Combined Cycle

Combined Cycle

Combined Cycle

Combined Cycle, Indirect

Fuel Cell, Low Temperature

Fuel Cell, Low Temperature
Fuel Cell, High Temperature

Fuel Cell, High Temperature

Fuel Cell, High Temperature

Stirling

Stirling

Thermionics

Thermionics

(compound cycle)

Steam Turbine	 Bottoming

Organic Rankine Bottoming

4'041 (PFB)

Coal (AF11)

Petroleum Boiler Flirt

Coal Derived Boiler Fuel

Coal (PFB)

Coal (AFB)
Petroleum Distillate

Coal Derived Distillate

Petroleum Distillate

Coal Derived Distillate

Coal (Gasifier)

Coal Derived Boiler Fuel

Coal (AFH)

Cost Derived Boiler Fuel
Coal Derived Boiler Fuel

By Product Heat

By Product Heat

-16-
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The industrial process energy requirements vary over a wide range; some require
low temperature heat (usually hot water or low pressure steam), and others re-
quire substantial amounts of intermediate or high temperature heat. Also, the

ratio of thermal to electric energy varies from one industrial process to another.
The choice of energy conversion system design conditions can emphasize heat

recovery at one temperature or another, or electricity. The advocates for each
advanced technology recognized the variability in application and provided data

and information for a number of designs to provide broad cogeneration potential.

The type of design information stored for each conversion system is summarized in
Figure V-3 which contains data for an advanced technology combined cycle.
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Each energy conversion system was limited by a maximum and minimum rated power

and a nominal power conditi ,)n. The data presentee -n Figure V-3 is at the

nominal rated power and serves as an indication of the level of performance;

however, the actu ► performance may vary over the range from the minimum to

maximum power output. While not shown in the summaries, the ratio of the maxi-

mum steady-state power to rated power (i.e., overload capability) is stored in the

data base.

o Performance

The performance of each energy conversion system design option was defined in

terms of the fraction of energy available relative to the higher heating value A the

fuel, as illustrated in Figure V-4. The energy fractions specifically del'ineu were:

electrical (ne), hot water (no, low temperature steam 02), medium temperature

steam (n3 ), high temperature steam (n4 ), stack sensible heat loss (nstack), and

irrecoverable losses (nL
). The irrecoverable losses include the latent heat of

vaporization in the exhaust gases (equal to the difference between the higher and

lower heating value of the fuel), the electrical generation losses and heat leaks
from the conversion system to the surrounding atmosphere. The sensible heat

content of the r:r.:-aust is defined as the theoretical amount of heat energy which
could be recovered without condensing exhaust products. It is equal to the total
heat rejected minus the irrecoverable losses.
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The fraction of fuel energy which is available for direct heat is also listed.

400 ' t %m

^ is the fraction of the sensible heat available as direct heat.

The cleanliness and temperature is noted for thm direct heat available from the

corversion system.

Some of the energy conversion systems require a separate source to heat the

working fluid. The heat sources include steam generators, hot-gas generators,

and waste-heat boilers. The heat sources were assigned numerals for simplicity

and those conversion systems requiring a heat source are indicated on the sum-

mary sheets (i.e., heat source number 12 in Figure V-3). Heat source number 12

is a coal-fired, atmospheric fluidized bed, 1500°F, hot-gas generator. The con-

version system is a combined cycle and requires a condenser indicated by the heat

rejection number 2 for the steam turbine portion of the cycle. The condenser for

design option number 1 must remove 15 percent of the fuel energy input as indi-

cr,ed in the example, Figure V-3. The heat is removed from the condenser by a

cooling tower, a balance-of-plant item.

Three different numbers are assigned to identify the three heat rejection methods

used in the study. Method number 1 applies to those systems where the rejected

heat can be recrvered and used in industrial processes. If the thermal energy by

the process used is less than the heat rejected by the conversion system, then the

balance must be removed by the cooling tower. This approach applies to closed-

. cycle gas turbines, Stirling cycles, and thermionic converters. Heat rejection

method number 2 applies to those systems which require condensers an-i ,:Ie cool-

ing tower is sized to accept all of the condenser heat, i.e., 15 percent for design

option number 1 in Figure V-3. This applies to steam turbines, combined cycles,

and the compound thermionics device having a steam bottoming cycle. Rejection

method number 3 applies to diesels only. For this case, some of the cooling-jacket

water heat must be rejected through a cooling tower if the hot water requirement

.19.
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of the process is less than the hot water av,silable from the jacket cooling. If the

heat rejection code number is "0", there is no need to use a heat rejection system.

This mode applies to open-cycle gas turbines for which the exhaust gases can be

discharged directly to the atmosphere. Fuel cells also fall into this category, not

because they do not need to reject heat, but because the fuel cell design already

contains an integrated heat exchanger for rejectigig waste heat to the atmosphere.

For bottoming cycle applications, the temperature of the usable process heat must

be high enough to operate the bottoming cycle. The minimum temperature for

operating the bottoming cycles is stored with each bottoming conversion system

data set. This information is used to determine the applicability of bottoming to

the specific industrial process considered.

o Emissions Data

The burning of fuels results in the release of various pollutants. The emission%

data stored in the conversion system data file permits an estimation of the amount

of each pollutant and solid waste generated at the site from the various installa-

tions. These emissions were defined in four categories: sulfur oxides, nitrogen

oxides, hydrocarbons, and particulates. The emissions depend on both the con-

version system and fuel type. The levels of emission are expressed in Ibsimillion

Stu fuel input. In certain applications, the burning of fuel results in a solid

waste being formed. The amount of solid wastes (bottom ash and stack-gas clean-

up residues) produced is defined re,etive to the fuel input energy. For the

example shown in Figure V-3, a large amount of solid waste (42 Ibs/mitHion Btu

fuel input) is produced from the burning of the coal in the atmospheric fluidized

bed. This waste includes ash and the spent limestone used to absorb the sulfur

dioxide released during combustion. The handling of the waste is accomplished by

the solids d i sposal systems which are part of the balance-of-plant.

0



Power Systems Division
	

FCR-1333

o Cost Data

A cost accounting system was defined to provide visibility for the various

elements. The complete system is presented ir. Table 15, "Definition of Cost

Elements," in Volume I - Summary Report. The principal cost elements for energy

conversion systems are identified in Figure V-3. They include the energy con-

version equipment and installation costs and the operating and maintenance costs

(excluding fuel). They are broken down to show the conversion equipment, the

electric generator or power conditioner (such as an inverter) and the heat

recovery equipment. In compound or combined systems, each conversion device

and the corresponding electric generator are defined.

The advocates provided cost estimates for the energy conversion system design

options and one set of data for each conversion system was included in the

analysis. The summary data in Figure V-3 are for the nominal design rating.

Further data were included in the computer analysis for each conversion system to

evaluate various system sizes.

The cost estimates for the heat sources, balance-of-plant, and other items were

treated separately from the energy conversion system and are reported in Volume

IV.  Condenser costs are reported in Figure 111-13 of Volume I I l .

The installation elapsed time and cost s provided by the advocates or by

Bechtel National, Incorporated as re'., Led in Volume IV. The installation costs

for the converter/generator sets ar ,_ not separately defined since they are usually

installed simultaneously and are, therefore, combined into the installation cost of

the converter alone. 	 The installation costs for the heat-recovery equipment,

however, are indicated separately.

The operating and maintenance costs of each conversion system were also provided

by the advocates and were applied at a flat rate (cents/kWh) which was not a

function of the size of the system.

-21
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The physical specifications of the energy conversion system included the specific

areas (ft2 /kW ), the specific volume (ft 3 /kW) and the specific weight (lb/kW) at the

energy conversion system nominal size. The area and volume is used to estimate

the size of the building required to house the conversion equipment. 'r deter-

mination of the area, volume and weight is made by utilizing the general relation-

ships below.

AREA	 ^^
SPECIFIC	 VOLUMEMW

WEIGHT I	 a C C n7an

where C is the specific physical factor (ft 2/kW, ft3 /kW, Ibs/kW) at the nominal or

design power level (MW nom ) and m is the size variation exponent. The physical

specifications shown in the summary data are given at the nominal size and, there-

fore, are equal to the specific physical factor (C).

Summary of Energy Conversion System Data

Volume VI presents the summary data for the 37 energy conversion systems and

their design options used in the study. Figures V-5 and V-6 present a breakdown

of the electric energy and the thermal energy available in the steam and hot water

categories for the 37 configurations. These data are presented for the design

option giving the highest electrical efficiency (Figure V-5), and for the design

option giving the highest thermal output in the combined hot water and steam

categories (Figure V-6). These charts provide an indication of the ranges covered

in the available electrical and thermal energies as well as the overall fuel utilization

of the energy conversion system. Table V-7 gives the emissions data at the

nominal power point in pounds per million Btu of fuel input. Table V-8 presents

the physical specifications for each ECS which include the specific area, volume,

and weight factors at the nominal design power and the size scaling exponent.

Table V-9 presents the capital and installation costs along with the operating and

maintenance costs and installation time.

-22-
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TABLE V-7
ENERGY CONVERSION SYSTEM

EMISSIONS DATA

Conversion	 Emissions (lbs/million Btu input) 	 ~

System	 Nominal	 Solid

Number	 Power (MW)	 S02	 NOx	 CH 	 Particulates	 Waste

1 18.0 0.76 0.50 0.02 0.016 0

2 18.0 1.2 0.70 0.014 0.10 6.76

3 0.6 0.516 4.0 0.04 0.02 0
4 18.0 0.757 3.68 0.17 0.012 0

5 30.0 0.52 0.4 0.02 0 0

6 30.0 0.52 0.4 0.02 0 0

7 18.0 0.824 0.5 0.02 0.10 0.053

8 18.0 1.2 0.2 0 0.10 36.0

9 2.0 0.565 4.0 0.04 0.02 0

10 20.0 0.824 3.68 0.17 0.012 0

11 20.0 1.2 3.5 0 0.10 0

12 30.0 0.76 0.5 0.02 0.03 0

13 30.0 0.82 0.5 0.02 0.10 0

14 30.0 0.82 0.5 0.02 0 0

15 30.0 1.2 0.2 0 0.001 33.0

16 30.0 1.2 0.2 0 0.1 42.0
17 30.0 0.824 0.5 0.02 0.1 0.053

18 30.0 1.2 0.2 0 0.1 42.0

19 45.0 0.76 0.50 0.02 0.03 0

20 45.0 0.82 0.5 0.02 0.10 0

21 45.0 1.2 0.2 0 0.001 33.0

22 45.0 1.2 0.2 0 0.10 42.0

23 45.0 0.76 0.5 0.02 0.03 0

24 45.0 0.82 0.5 0.02 0.10 0

25 45.0 1.2 0.2 0 0.001 33.0

26 45.0 1.2 0.2 0 0.10 42.0

27 12.0 0 0.016 0 0 0

28 12.0 0.57 0.042 0 0.034 0

29 12.0 0.51 0.083 0 0 0

30 12.0 0.57 0.087 0 0.034 0

31 100.0 0.07 0.201 0 0 0

r	 32 30.0 0.824 0.50 0.02 0.10 0.053

33 30.0 1.2 0.2 0 0.10 42.0

34 7.2 0.824 0.50 0.02 0.10 0.053

35 12.1 0.824 0.50 0.02 0.10 0.053

36 18.0 0 0 0 0 0
37 0.8 0 0 0 0 0
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TABLE V-8

ENERGY CONVERSION SYSTEM

PHYSICAL SPECIFICATIONS*

Conversion

System Nominal Area Volume Weight

Number Power (MW) C m C m C m

1 18. 0.054 -O.S6 0.90 -0.37 15.27 -0.31
2 18. 0.054 -O.S6 0•90 -0.37 15.27 -0.31
3 0.6 1.50 0 18. 0 20• 0
4 1	 18. 0.40 0 25.0 0 100• 0
5 (	 30. 0.045 0 1.57 0.20 15- 0
6 30, 0.20 0 12.6 0.20 90. 0
7 i	 18. 0.054 -0.56 0.90 -0.37 15.27 -0.31
8 18. 0.054 -0.56 0.90 -0.37 15.2' -0.31
9 I	 2. 1.50 0 18.0 0 20. 0

10 20. 0.40 0 25.0 U 100. 0
11 20, 0.40 0 25.0 0 100. 0
12 30. 0.03 0 1.05 0.20 10. 0
13 30. 0.03 0 1.05 0.20 10. 0
14 30. 0.03 0 1.05 0,20 10. 0

15 30 • 0.07 0 2.28 0.20 21. 0
R	 16 30. 0.07 0 2.28 0.20 21. 0

17 30. 0.03 0 1.05 0.20 10. 0

18 30 • 0.03 0 1.05 0,20 10. 0

19 45- 0.03 0 1.14 0.20 10• 0
20 45 • 0.03 0 1.14 0.20 10 • 0
1 1 45. 0.07 0 2.47 0.20 21 • 0
1 2 45. 0.07 0 2.47 0.20 21• 0

23 45. 0.125 0 8.52 0.20 60• 0

24 45- 0.125 0 8.52 0.20 60• 0
25 45• 0.165 0 9.82 0.20 71• 0
26 45. 0.165 0 9.82. 0.20 71• U

27 12. 1.50 0 24.0 0 - -
28 1:. 1.50 0 24.0 0 - -

29 12. 1.50 0 24.0 U - -

30 12. 1.50 0 24.0 0

1
- -

31 100. 1.50 0 24.0 0 - -

32 30- 0.062 -0.10 1.0 0 50. 0
33 30- 0.062 -0.10 1.0 0 50- 0
34 7.2 0.04 0 0.56 0 62. 0
35 12. 0.13 0 10.50 0	 '. 46. -0.07
36 18.	 I 0.054 -0.56 0.90 -0.37 15.27 -0.31
37 0.8 0.313 -0.56 2.87 -0.37 40. -0.31

* General Relationship

Specific area	 m	 1	 3
Specific Volume	 C ( MW	 where C = ft - ft	 lbs

Specific Weight	 \MWnom	 kl!	 kV ' kt!
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TABLE V-9

ENERGY CONVERSION SYSTEM

MST DATA

$/kw at Nominal Power

Conv Msion

iyeteo

(umber

Nominal

Power (!H)

Equipment tnyr.Installation	 ohm
	 tinv

3.1	 3.21"*'	 3.3	 3.4	 3.6	 o/LP'.	 (Yre)3.1 3.2 3.3 3.4 3.6

1 18.

1121.0

118.4 49.1 0 0 0 6.9 0 0 0 0	 .06 1
1 18. 116.4 49.2 0 0 0 6.9 0 0 0 0.06 1
3 0.6 14.0 0 0 18.0 93.0 0 0 0 0	 .70 1
4 18. 376.7 85.0 0 0 36.7 6.0 0 0 0 0	 .15 1
5 30. 64.0 36.0 0 0 5100.* 24.0 0 0 0 1800. #	. 25 1
6 30. 54.0 21.0 33.0 9.0 22.0 21.0 0 14.0 0 8	 .20 1
7 18. 122.6 52.6 0 0 0 6.9 0 0 0 0	 .06
8 18. 122.6 52.6 0 0 0 6.9 0 0 0 0	 .06 1
9 2. 129.0 24.0 0 0 22.0 85.0 0 0 0 0	 .70 1

10 20• 370.0 85.0 0 0 67.0 8.0 0 0 0 0	 .15 1
11 20. 369.9 85.0 0 0 67.0 8.0 0 0 0 0	 .15 2
12 30. 56.0 36.0 0 0 5100.* 14.0 0 0 0 1800."	 .28 1
13 30• 56.0 36.0 0 0 5100.* 24.0 0 0 0 1800."	 .28 1

+14 30. 54.0 36.0 0 0 5100.* 24.0 0 0 0 1800. 	 .30 3
15 30. 91.0 36.0 0 0 5100.* 24.0 0 0 0 1800. 	 .30 1

16 30. 91.0 36.0 0 0 5100.6 24.0 0 0 0 1800. *	. 10 1
17 30. 21.0 36.0 0 0 5100.* 24.0 0 0 0 1800. 	 .12 1
18 30. 36.0 36.0 0 0 5100.* 24.0 0 0 0 1800."	 .08
19 45. 51.1 34.7 0 0 22.6 23.1 0 0 0 7.14	 .1b 1
20 45. 51.1 34.7 0 0 22.6 23.1 0 0 0 7.7	 .16 1
21 45. 84.7 34.7 0 0 27.3 23.1 . 0 0 0 9.43	 .28 1
22 45. 84.7 34.7 0 0 29.0 23.1 0 0 0 9.5	 .12 1
23 45. 40.4 26.1• 35.1 13.1 16.1 17.7 0 14.4 0 6.5	 .24 2
24 45. 40.4 16.1 35.1 13.1 18.1 17.7 0 14.4 0 6.5	 .24 1
25 45. 73.1 28.9 30.9 9.6 25.2 19.2 0 11.9 0 8.6	 .26 1
26 45. 54.9 22.1 41.1 16.4 44.6 14.6 0 16.6 0 0	 ,	 .10 1
27 12. 226.7 50.0 0 0 12.0 10.0 0 0 0 0	 .22 1
18 12. 302.8 50.0 0 0 40.0 10.0 0 0 0 0	 .29 1
29 12. 276.2 50.0 0 0 10.0 10.0 0 0 0 0	 .27 1
30 12. 218.5 50.0 0 0 20.0 10.0 0 0 0 0	 .23 1
31 100. 150.0 50.0 0 0 20.0 10.0 0 0 0 0	 .30 3
32 30. 164.0 21.8 0 0 55.5 5.9 0 0 0 0	 .45 1
33 30. 128.0 21.8 0 0 46.0 5.9 0 0 0 0	 .45 1
34 7.2 432.0 51.1 0 0 0 22.2 4.4 0 0 0	 .18 1
35 12. 266.4 31.0 83.d 35.1 0 13.9• 2.7 3.6 0 0	 .13 1
36 18. 118.4 49.2 0 0 0 6.9 0 0 0 0	 .06 1
37 0.8 j 166.1 34.8 0 0 147.4 49.9 10.5 0 0 1	 44.2	 .50 I	 1

Cost accounting categories

3.1 Primary converter
3.2 Primary generator
3.3 Secondary converter
3.4 Secondary generator
3.6 Rest Recovery equipment

* $/M31tu 6 100 l0 OHR

**Generator installation included in 3.1.

+ Rae coal gasifier equipmnnt

ECS No. 14 - 415 Equip. - 115 INST
ECS No. 31 - 350 Equip. - 120 INST

c
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HEAT SOURCES

The study employed 14 heat-source designs which were characterized by Bechtel

National, Incorporated for use in various plant and conversion systems. Four

were boilers for providing steam and hot-water needs, nine were used to provide

the thermal input for various energy conversion systems, and one was a waste-

heat-recovery boiler. These designs were differentiated by the type of fuel

burned, the form of the thermal energy, the technology status, and the tempera-

ture of the thermal energy output. These heat sources are described in Volume

IV of this report series. Their key characteristics, which were stored in the

computer data file, are described herein.

Heat Source Characterization

The	 14	 heat	 sources employed in	 this	 study	 are listed	 in	 Table	 V-10.	 Heat

sources numbered 1	 through 4 provide hot water or steam for the cases without

cogeneration	 and also	 provide auxiliary	 thermal energy	 required	 with	 some

cogeneration situations.	 When a cogeneration plant consumes coal or coal derived

fuel,	 the auxiliary heat source consumes coal-derived boiler grade fuel.

Heat sources number 5 and number 10 are current technology oil- and coal-fired

1200 psi steam boilers which are used with current technology steam turbines.

Heat source number 6 is an advanced technology 1800 psi steam boiler using coal-

derived residual oil which is used with an advanced steam turbine.

Heat sources numbered 7 and 8 are advanced technology, hot-gas generators used

with Stirling engines and advanced, indirect-fired gas turbines.

Heat source number 9 is designed specifically as a heat source for a thermionic

r	converter operating at 2400°F.
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TABLE V-10

HEAT SOURCES

No. Description

1 140 F water heater

2 300 F steam generator

3 500 F steam generator

4 700 F steam generator

5 950 F steam generator

6 1050 F steam generator

7 1800 F hot gas generator

8 2200 F hot gas generator

9 2400 F thermionic heat source

10 950 F steam generator

11 1050
*

F steam generator (AFB)

12 1500 F hot gas generator (AFB)*

13 1600
**

F hot gas generator (PFB)

14 950 F waste heat recovery unit

* Atmospheric Fluidized Bed

** Pressurized Fluidized Bed

Fuel

Petroleum Boiler Grade

of

to

11

Coal Derived Boiler Grade

it

it

of

Coal

it

it

to

I

Heat sources 11 and 12 use coal fired atmospheric fluidized bed combustion. Heat
y

r
	 source number 11 provides high temperature steam to advanced steam turbines and 	 . r

heat source number 12 provides high temperature gas to advanced, indirect-fi g ed,	
4

gas turbines, and Stirling engines.

i^
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Number 13 involves a coal-fired pressurized fluidized bed heat source for advanc-

ed, direct-fired gas turbines.

o Performance

Each heat source was characterized by a thermal efficiency (heat energy output/

fuel	 input)	 and	 all associated	 electrical and/or thermal	 parasitic	 losses.	 The

thermal efficiency of the heat sources which were used for auxiliary furnaces was

established	 by	 the study	 ground	 rules. The thermal	 efficiencies	 used	 for the

other heat sources were the design point values developed	 by Bechtel National,

Incorporated.

The auxiliary electrical power required for the peripheral equipment necessary for

the operation of the heat source includes such items as induced draft fans and

feedwater pumps. The thermal parasitic requirements for heat sources 1 through 9

were in the form of low pressure steam (50 psig, 300°F) which was used in the

fuel atomizing system. No thermal parasitic requirement was needed for the

remaining heat sources. The balance of plant equipment has parasitic requirements

discussed in the next major section of this Volume V.

o Cost Data

Costs for the heat sources were broken down into equipment and installation.

These costs were stored in the data base as a function of thermal output and, in

some cases, the costs were also a function of fabrication techniques. For example,

Figure V-7 indicates the estimated cost of heat source 6 is dependent upon the

construction practice which is dictated by the source rating. Large size dictates

field assembly because of transportation, special design, or logistics problems.

These units are generally more expensive than smaller units which are pre-

assembled in the shop. The installation cost for each heat source includes the

direct installation labor cost at $14.00 per manhour plus a 75 percent surcharge on

the direct labor cost for indirect costs.

.29-
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0

J

THERMAL OUTPUT — MILLION BTU/NR	 37.238

Figure V-7. Coal Derived Residual Oil Find 1060 Stem Generator Cosa

In addition to the capital equipment costs and installation fees, each heat source

will have a recurring annual operating and maintenance cost reported in Volume

IV.

The overall cogeneration analysis includes the evaluation of all materials discharged

by the complete system. The heat source data base used in this analysis includes

all materials discharged from the heat sources. The design of the heat sources

includes provision to limit nitrogen oxide emissions and, in many cases, sulfur

dioxide. In some cases, balance-of-plant equipment is necessary to meet the

emission requirements and the appropriate data are included in the balance-of-plant

data base. For example, a flue gas desulfurizer is a balance-of-plant item which

limits the sulfur dioxide emitted by a coal fired heat source.

i	 I

s
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Summary of Heat Source Data

The thermal efficiencies and parasitic electric and thermal requirements for the

heat sources are presented in Table V-11. A summary of the heat source equip-

ment, installation, and operating and maintenance cost for nominal size units is

presented in Table V-12. Table V-13 shows the emissions and wastes discharged

for each of the systems considered. Physical space requirements (area and

volume) and estimated construction time are presented in Table V-14 for the

nominal size units only.

TABLE V-11

HEAT SOURCE ENERGY CHARACTERISTICS

Heat Source Nominal Size Parasitic Requirements

Number (Million Btu/hr) Efficiency(%) Electrical Thermal

(kWh/Million Btu) ( Btu/ Btu)

1 150 88 2.8 .020
2 150 88 1.3 .020
3 150 88 2.3 .020
4 150 88 2.3 .020
5 500 88 3.0 .020
6 500 88.5 4.1 .020
7 125 88.3 1.85 .020
8 125 88.3 2.34 .020
9 125 88.3 1.3 .020
10 500 85 3.5 0
11 250 84 5.9 0
12 250 84 3.9 0
13 250 0.55 0
14

,o

250 53 3.4 0

-31.
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TABLE V-12

HEAT SOURCE COST SUMMARY

Heat

(
Source
Number

Nominal

I	 Size
Million Btu/hr

Cost at Nominal Site ($/Mtu/hr)
Eculament	 Installation	 Total

Operating and
Maintenance
24eartMillion Btu hr

1	 150 2950 1050 4000 175

2	 150 2450 1050 3500 175

3	 !	 150 3450 1050 4500 175

4	 I	 150 3300 1000 4300 175

S	 S00 4400 3400 7800 175

6	 I	 500 4800 3580 8380 175

7	 125 19500 2200 21700 234

8	 125 29500 2000 31500 234

9	 125 16000 6000 22000 234

10	 500 10300 7900 18200 292

11	 230 11800 5100 16900 380

12	 250 17000 9000 26000 380

13	 250 15000 9600 24600 350

14	 250 6940 2200

I

9140 175

TABLE V-13

HEAT SOURCE EMISSIONS AND WASTES

Heat Source Emissions (lbs/milliou Btu Fuel) Wastes Discharged	 lba/million Btu/fuel)

Nusiber 80 NOS ^7t	 CO Terticlat_e Slowdown in Solids Wet Solids

1 0.16 0.5 0.02 0.027 0.016 9.3 0 0

2 0.76 0.5 0.02 0.027 0.016 1	 9.3 0 0

3 0.76 O.S 0.02 0.027 0.016 7.9 0 0

4 0.76 0.5 0.02 0.027 0.016 7.9 0 0

5 0.76 0.5 0.02 0.027 0.016 7.1 0 0

6 0.824 0.5 0.02 0.027 0.10 6.9 0.053 0

7 0.824 0.5 0.02 0.027 0.10 0 0.053 0

8 0.824 0.5 0.02 0.027 0.10 0 0.053 0

9 0.824 0.5 0.02 0.027 0.10 1.3 0.053 0

10 17.2 0.7 0.046 0.093 0.10 6.8 1.87N4.98 6.23*/1.78

11 1.2 0.2 0 0.04 0.10 6.9 36.0 0

12 1.2 0.2 0 0.04 0.10 0 42.0 0

13 1.2 0.2 0 0.04 0.00: 0 33.0 0

14 x x x x x 4.7 0 0

x - dependent upon the process hot-Bas source

a - left values for syatams below 130 x 106 Btu/hr

-32-

it



2
3
4
5
6
7
8
9
10
11
12
13
14

2040
2235
2235
6500
6500
4500
4500
4 000
9500
8500
8500
1750
6250

2
25
25
18
18
24
31
25
28
28
20

150
150
150
500
500

l	 125
125

i	 125
500
250
250
250
250

73500
79500
79500

425000
425000
212500
212500
240000

1275000
630000
630000
98500

350000
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TABLE V-14

HEAT SOURCE SPACE REQUIREMENTS

.Heat Source Nominal Size S ace Re uirements Construction Time
Number (Million Btu/br) lArea	 Ft Volume (Ft3 )1 Months

1 150 (	 2680 94500 2

BALANCE-OF-PLANT SYSTEMS

The balance-of-plant systems used in this study were developed by Bechtel
National, Incorporated and reported in Volume i V . These systems complement the
basic energy conversion systems and heat sources and are necessary for their
operation. The fourteen Balance-of-Plant items used in this study are listed in
Table V-15.

All cogeneration systems require one or more balance-of-plant subsystems. All
facilities require one of the fuel storage and distribution systems (1-3). Fluidized
bed coal combustion requires the limestone/dolomite storage and distribution
systems (4) and the dry-solids disposal system (5). The conventional coal fired
boiler requires the wet-t,-!ids disposal system (6) and the sulfur dioxide scrubber
system (7). The pressurized fluidized bed combustor also requires the hot-gas
cleanup system (8). All steam and hot water systems require a feedwater system

-33•
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(9). Most systems would require a heat-rejection system (10) to dispose of the

excess thermal energy. All systems require an electrical conditioning and control

system (11) . Most energy conversion systems required buildings (12) and all

systems required sfte preparation and development (13). Installation costs for

static and rotating equipment are presented under Balance-of-Plant number 14.

This information was used in determining the energy conversion system installation

cost except in those cases where more directly applicable data was available.

TABLE V-15. 13ALANCE-OF-PLANT SYSTEMS

Number	 System Description

1 Distillate Oil Storage and Distribution System
2 Residual Oil Storage and Distribution System
3 Coal Storage and Distribution System
4 Limestone Storage and Distribution System
5 Dry Waste Solids Disposal System
6 Wet Waste Solids Disposal System
1 Sulfur Dioxide Scrubber System
6 Mot Gas Cleanup System
9 Boiler Feedwater System

10 Most Rejection System
11 Electrical Conditioning and Control System
12 Energy Conversion System Building
13 Site Preparation and Development
14 Energy Conversion Equipment Installation

Balance-of-Plant Data Base

o Energy Requirements

Most balance-of-plant systems require electrical and thermal energy for their

operation. Electrical parasitic power was defined in terms of KWe expended per

unit of resource or material handled. Thermal parasitic energy was defined in

terms of millions of Btu of steam expended per unit of resource or material

handled.	 In iddition to the electrical and thermal parasitics, three systems

•34
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required additional resources such as make-up water for the scrubber, heat

rejection, and wet-waste solids disposal systems and chemicals for the scrubber

systems. Table V-16 shows the parasitic requirements, additional resources, and

wastes generated for balance-of-plant systems 1-10. Items 11-14 have no parasitic

power requirements.

TABLE V-16

BALANCE OF PLANT REQUIREMENTS

1 Million Btu/hr fuel 0.009 0 0 0 0

2 Million Btulhr fuel 0.2 0.007 0 0 0
3 Million Btu/hr fuel 0.07 0 0 0 0

4 lbs/hr limestone 0.45	 I 0 0 0 n

'	 5 (	 Thousand lbs/hr dry solids 0.002	 i 0 0 0 0

6 Ibs/hr vet solids 0.005 0 0.5 0 0

7 Million Btu/hr flue sea 0.20 0.050 100 6.5 11.0

8 Thousand lbs/hr flue gas 0.67 0 0 0 0

i	 9 I	 Thousand lbs/hr feedveter 0.054	
i

Oe 0 0 0

10 Thousand lbs/hr reject heat 3.25 0 1350 0 0

(stage)

* The feedwater system uses 0.11 lb. steam per lb. of water heated. This

requirement is included in the energy requirement for making steam and hot

water. It is not included here to avoid double bookkeeping.

o Cost Data

The capital costs for balance-of-plant systems included equipment and installation

costs. These costs were dependent upon the size of the system as illustrated in

Figure V-8 for the Coal Storage and Distribution System. Table V-17 presents the

capital equipment and installation costs for systems 1-11 at the indicated system

sizes.

The annual operating and maintenance costs of the balance-of-plant systems were

correlated with the type and size of the heat source used in the conversion

system. These costs are presented in Table V-18.
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Resources or

Material Costs ($/Unit)

Handled Equipment Installation Total

Fuel 910 150 1060

Fuel 1180 160 1340

Fuel 8500 4800 13300

Limestone 4550 4200 8750

Dry Solids 83 13 96

Wet Solids 37 15 52

Flue gas 15500 260 15760

Flue gas 2960 1000 3960

Feedwater 680 250 930

Reject Heat 4700 2500 7200

Auxiliary 117 81 198

Power

Balance-

of-Plant	 System

Number Size Units

1 100 Million Btu/hr

2 100 Million Btu/hr

3 100 Million Btu/hr

4 20 Thousand Ibs/hr

5 1000 Lbs/hr

6 1000 Lbs/hr

7 100 Million Btu/hr

8 100 Thousand lbs/hr

9 100 Thousand lbs/hr

10 100 Million Btu/hr

11 1000 We

Power Systems Division
	 FCR-1333

20.000

I
16.000

I

10.000

H 5000

TOTAL

sO1N WSNIT
AND MATERIAL

INSTALLATION

O
J
W	 Q

HEAT CONTENT OF FUEL FLOW — MILLION aTIMMMO	 37-259

Figure V-8. Coal Storage and Distribution System Costa

TABLE V-17

BALANCE OF PLANT COSTS
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TABLE V-18

BALANCE OF PLANT OPERATING AND MAINTENANCE COSTS

Annual Cost ($/Million. Btu/hr)

Oil Fired Heat Source	 117

Coal Fired Heat Source	 204

Coal Fired Heat Source with	 554
Sulfur Dioxide Scrubber

Coal Fired Heat Source with	 258
Hot Gas Cleanup System

The cost of the energy conversion system building was determined by applying the

following relationship:

Building field construction cost = 1.2 K ECS A ECS + K HS AHS

where	 KECS	 =	 conversion system building specific cost ($/ft2)
(the factor 1.2 accounts for the cost of the crane)

A ECS	 =	 conversion system footprint area	 (ft2)

K HS	 =	 heat source building specific cost ($/ft2)

A HS	 =	 heat source foot print area (ft2)

Diesel engines, Stirling engines, steam turbines, and organic Rankine cycle con-

version systems were housed in a building. The gas turbine costs included

housing and silencing. The fuel cells were designed for outside installation.

The cost of site preparation and development was estimated to be 1 percent of the

total cogeneration plant direct cost.
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TABLE V-19

BUILDING COSTS

Building Height (ft) 	 KECS($/ft2)	 IHS ($/f t2)

	0 - 20	 50	 30

	

20 - 40	 70	 42

	

40 - 60	 95	 57

	

60 - 80	 125	 75

where Height - Volume
Area

HEAT PUMP

The heat pump performance used in the study was developed in consultation with

Westinghouse Electric Company. Figure V-9 shows the coefficient of performance

as a function of the normalized temperature lift for single- and two-stage units.

This performance was developed from published data for heat pumps with outlet

temperatures in the range from 140°F to 220°F. Although there are no current

heat pumps which are designed to operate in the 300°F to 500°F temperature

range, it was assumed for this study that such heat pumps could be developed,

and that they would have normalized performance curves similar to that presented

in Figure V-9. Heat pumps with higher outlet temperatures were not considered in

this study.

Figure V-10 presents the heat pump cost ($/million Btu/hr output) as a function of

heat output (million Btu/hr). The cost of heat pump installation was estimated to

be equal to the equipment cost.
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COGENERATION SYSTEMS

A cogeneration system is an integration of the various components (energy conver-

sion system, balance-of-plant systems, heat source, heat pump, etc.) into a total

system which provides the electrical and thermal requirements of a specified

industrial process. The overall cogeneration system model used in this study is

illustrated in Figure V-11. Fuel is provided to the conversion system and any

on-site furnace. Electricity is produced for the process and, if there is a surplus

or a deficit, electrical energy can be bought from or sold to the electric utilities.

The cogeneration system also provides thermal energy in appropriate categories for

the industrial process. If the process produces a by-product fuel, that fuel is

used in the conversion system, if possible. Also, if the process produces surplus

heat, that energy could be used in a bottoming cycle.

	

EXTERNAL '	 COGENERATION	 PROCESS ENERGY

	

ENERGY	 SYSTEM	 I	 REQUIREMENTS

	

f	 FUEL

	

I	 '

	

BUY E	 I
• ENERG"	 E

	

SELL E	 CONVERSION	 HOT GAS

	

'	 SUBSYSTEM	 '	 700°F	 PRODUCT
I	 PROCESS ^^^ (TONS)

	

FUEL	 *ON-SITE FURNACE	 T^ 500°F

	

I	 '	 300° F

	

'	 SHEATPUMP	 140°F

f O

I

	

'	 I	 37.261

Rgure V•11. Cogeneration System Model
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A diagram showing the relationship of the various components which may comprise

a topping-cycle cogeneration system is shown in Figure V-12. All of these ele-

ments would not appear for every system. The specific components comprising a

cogeneration plant will depend upon the industry, tha energy conversion system,

and the strategy picked for sizing the energy conversion system. For example, if

an open-cycle gas turbine were sized to meet the energy requirements of an indus-

trial process, there would be no need for a separate heat source, waste disposal

or cleanup system, condenser, or heat rejection system. Depending on the indus-

trial requirements and matching strategy used, the auxiliary furnace or heat pump

may not be used, i . e. , if the gas turbine system were sized so that the waste heat

recovered from its exhaust met the thermal requirements of the industrial process,

no additional heat, nor heat pumping of the waste heat to a higher temperature

would be required.

I
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EXTERNAL!	 WASTE	 ELECTRICAL

	

ENERGY I	 DISPOSAL	 GAS	 CONDITIONING	 9UILOING

	

I	 CLEANUP

I

I
BELLE

I
I
(	 NEAT

SOURCE
UEL

OIING	 I	 OASIfIERLI
^	 I

iEMEAT

I	 FEEDWATER
SYSTEM!

FUEL

• REJECTION PUM►

	

FUEL I	 AUXILIARY

	

HANDLING	 FURNACE
^'	 I
1	 I

Imo_ FEEDWATER
SYSTEM

Figure V-12. Cogeneration Plant — Topping Cycle
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Other energy conversion systems would require a heat source and some of these

heat sources would require waste disposal and exhaust cleanup systems. All

systems would require a fuel handling system, generator, heat recovery equip-

ment, feedwater heater, and electrical conditioning equipment. Many systems

require buildings.

A similar diagram for a bottoming cycle cogeneration plant is shown in Figure

V-13. In this system, the vapor generator replaces the heat source. Neither a

furnace nor cleanup system is needed in the cogeneration system.

I
PROCESS ENERGY
REQUIREMENTS

I

I

I
I

I
EXTERNALI
ENERGY

BUY E I

I
FEEDWATER

I	 SYSTEM

I	

I	 I

I	 ^
(	 I	 I

VAPOR
GENERATOR

ELECTRICAL
	 FOUILDINGCONDITIONING

GENERATOR

ENERGY	 NEAT
CONVERTER	 RECOVERY

PROCESS
T

NEAT

CONDENSER

SEAT
gEJECTION

I	 BY-PRODUCT NEAT (NIGH TEMPI
FUEL

I	 37.263

Figure V-13. Cogeneration Plant — Bottoming Cycle

Table V-20 lists the required heat source and balance-of-plant systems for each of

the 37 energy conversion systems based on the identification numbers defined in

Tables V-6, V-10, and V-15. To these systems are added any additional systems
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(such as an auxiliary furnace) which may be required as a result of a pplying a

specific conversion system and matching strategy to a given industrial process.

TABLE V-20

COGENERATION PLANT COMPONENTS

Conversion Balance of Plant*
System Heat Source Fuel/Waste
Number Number Handling Clean Up	 Heat Rejection Build",

1 5 2 10 12

2 10 3,6 7 10 12

3 - 1 10 12
4 - 2 10 12

5 - 1

6 - 1 10 12
7 6 2 10 12
8 11 3,4,5 10 12
9 - 1 10 12

10 - 2 10 12

11 - 3 10 12

12 - 2

13 — 2
14 Gasifier 3

15 13 3.4,5 8

16 12 3,4.5

17 8 2 10

18 12 3,4.5 10

19 - 2
20 - 2

21 13 3,4,5 a
22 12 3.4,5

23 - 2 10 12
24 - 2 10 12
25 13 3,4,5 8 10 12
26 12 3,4.5 10 12
27 - 1

28 - 1

29 - 1
30 - 1
31 Gasifier 3
32 7 2 10 12
33 12 3,4,5 10 12
34 9 2 10 12
35 9 2 10 12
36 14 - 10 12
37 - 0 12

* All systems use BOP No. 9 - Boiler Feedvater System
11 - Electrical Conditioning and Control System

12 - Site Preparation and Development
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COGENERATION PERFORMANCE ANALYSIS

A computer program was developed to assemble the appropriate data and calculate

energy consumption, costs, and environmental impact of cogeneration systems.

These calculations used the data base contained in the industry, energy conversion

system, heat source, and balance-of-plant data files.

Overview

To analyze a particular cogeneration system, it is necessary to prescribe the

(1) industry, (2) energy conversion system, (3) year, and (4) cogeneration

strategy. Specification of the industry and conversion system allows selection of

the data sets from the 26 industry and 131 conversion system data files. Although

there were only 37 different energy conversion systems, each had several design

options such that the total number of conversion system data files was 131. These

data contain codes defining which heat sources and balance-of-plant items must be

included. The appropriate data from the heat-source and balance-of-plant data

files are selected for use.

Definition of the year to be studied establishes the industrial requirements and

certain economic factors (such as the cost of fuel).

Various strategies may be used to match a conversion system to an industry:

(1) Meet the electrical requirement exactly and use all the heat possible for meet-

ing thermal needs. A supplemental furnace provides additional heat for larger

thermal requirements. Excess heat is rejected if the thermal requirement is smaller

than that provided by the conversion system. (2) Meet the electrical requirement

and meet the thermal requirement by using high temperature heat directly and by

heat pumping low temperature waste heat to suitable temperatures for process

needs. (3) Meet the thermal requirements with conversion system heat, and buy or

sell electricity as required. (4) Select the system which optimizes fuel energy

utilization.
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The computer program was used to calculate the fuel use, costs, and emissions for
both a single cogeneration plant and for the entire industry as typified by the

representative plant. The same characteristics were calculated for a conventional

plant and for the entire industry without cogeneration. These non-cogeneration
results were used as a basis for subsequent comparisons. The total number of
cases analyzed by the computer was more than 11,000. The first step in reducing
the number of cases was to select the best conversion system design option for

each cogeneration system. The performance for each design option was calculated
and the design option with maximum fuel savings was chosen for each matching

strategy. These results were stored in a master output data file. The master
data file was subsequently used to retrieve data and print it out in various for-
mats in order to make additional comparisons, eliminate cases which did not con-

serve fuel energy or were economically unattractive, and select 120 cases for more

detailed economic studies.

Energy Consumption Without Cogeneration

In a conventional, non-cogeneration industrial process electricity is bought from a
utility and thermal requirements are met with on-site furnaces. To evaluate the

energy consumption for a typical industrial situation, the necessary information for

that industry is gathered from the industrial data file described previously.

Among the data gathered are the following: product output, normalized temporal

energy requirements per unit production, by-product fuel and heat availability,
temperatures and pressures for thermal requirements, specified fuels and cleanli-
ness requirements, national fuel breakdowns for the industry, and information
allowing projection of the 1918 data to 1985-2000.

To find the energy requirements for a typical plant, the normalized temporal
profiles are scaled up to annual requirements by multiplying by the annual plant
production. The energy requirements are divided up into six categories:
(1) electricity, (2) hot water, (3) low temperature steam, (4) medium temperature
steam, (5) high temperature steam, and (6) direct heat (i.e., a hot gas).

3	 -45-
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The energy requirements given in the industrial data base are gross energy re-

quirements needed by the actual manufacturing process; they are independent of
any requirements to preheat make-up water or any parasitics associated with the

equipment (furnaces, etc.) used to supply energy to the process and they do not

include the use of any by-product heat or fuel from the process that could be

used to reduce the requirements.

The fraction of steam condensate and hot water returned is included in the indus-

trial data base and presented in Table V-2. If all of the steam or hot water is not
returned for re-use in the process, it must be replaced by ambient water at 60°F.
The fractions to be made up are stored in the industry data file. Thus, the total
amount of makeup water required can be calculated and used to find the additional

energy needed to heat it to the proper temperature. That value is added to the

calculated hot-water requirement.

If an industrial process generates waste heat, this by-product process heat could

be used to reduce the thermal requirements that have been specified. The com-
puter program is based on using that available by-product heat whenever possible.

The available by-product heat is given in terms of its temperature, and its Btu

content referenced to ambient condition (i.e., 60 0 F). There is also an indicator

telling whether the heat is available in the form of steam or hot gas. If it is
steam, it can be applied directly to meet thermal requirements. If the heat is in
the form of hot gas, only that portion with temperature greater than the exhaust

stack temperature is available for use. The by-product heat is used to its fullest
extent. Thus, it can be applied against thermal requirements in any category
having a lower temperature, or to preheat higher temperature requirements up to
the temperature of the by-product heat.

For those industries having direct heat requirements, there are special restrictions
regarding how these requirements may be met. A particular fuel may be specified
or a minimum cleanliness required of the hot gas. In cases where use of process
by-product heat would be inappropriate, by-product heat is applied to the steam
and hot water requirements.
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After using the by-product heat to meet thermal needs in accordance with the
above restrictions, the net thermal and electrical requirements, except for parasitic
effects, are specified. These values are the starting point for both non-
cogeneration and cogeneration calculations. The final requirements will differ in

each case only by the differences in the parasitics.

Thermal parasitics in a conventional plant come primarily from two sources: fuel

storage and handling, and operating the furnaces. Thermal energy (usually low
temperature steam) is used to heat boiler grade oil in order to transport it and
atomize it in the furnace. The parasitic requirement for fuel handling is propor-

tional to the amount of fuel consumed by the furnace. Thus:

Cr - 101F  *OF urn)  cr

where	 QP	 =thermal parasitic (Stu)

QF t	 = quantity of fuel (Stu)

aFH	 = fuel handling parasitic thermal factor

aFurn	 =furnace parasitic thermal factor

The parasitic factors aFH and aFurn are calculated from balance-of-plant data for
the fraction of fuel that is boiler grade. If Q  is the net thermal requirement

except for parasitics, the total fuel consumption can be written as:

tot
OF - (GN + Cp) /??F

where n F is the average furnace efficiency. This can be rewritten as

O F - (GN+IaFH+afum)QtFIMF

After some algebraic manipulation

OF -	 (aFH +aFurn)

'IF - (CFH +aFurn) N
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Hence, once the net thermal requirement except for parasitics, QN , is known, the

parasitic requirement is also known. This requirement is considered to be for

300°F steam referenced to ambient conditions (600F).

The electrical parasitic requirements are equally straightforward to calculate.

Contributions arise from fuel handling, furnace operation, and the boiler feedwater
system. Once the on-site fuel requirements are known, the fuel handling para-
sitics are calculated. The furnace parasitic is proportional to the furnace ot-tput

(i.e., QN + Qp ) and thus is directly calculable. Finally, the water flow associated

with the total thermal requirement is evaluated from data in the heat-source file
and used to c,21culate a feed-water supply electrical parasitic. These parasitics are

added to the nominal electrical requirement to find the total electrical requirements.

Once the total thermal and electrical requirements are known we can calculate the
amount of fossil fuels that must be burned to meet them. Fuel burned at the plant
site is calculated by dividing the total requirement (Q N + Qp ) by the average

furnace efficiency n F . If there is any by-product fuel available from the process,
QBp , it can displace fuel for the furnaces by the amount

t^* - cl' 9.'tqF

where n B p is the efficiency with which the by-product fuel may be burned. Thus
the net fuel consumed at the industrial site without cogeneration is

FO	 F
17F

Here, Q N , Qp and nF are previously calculated values, and QBP an d nBp are
given in the industrial data base.

All electricity used in a non-cogeneration plant is bought from a utility. The fuel
required to generate that eiectricity is found by dividing the requirement by the
utility efficiency, nu , which was specified to be 0.32.

The total fuel consumption associated with a single industrial process is found by
adding the fuel consumption at the utility to the fuel burned at the site.
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The total national annual fuel usage for the industry is evaluated by the following

procedure. The fuel consumption at the industrial site is scaled up by the ratio
of national production to the representative plant production. This national con-

sumption is broken down by fuel type using the breakdown percentages given in
the data base. National utility fuel consumption associated with the industry in
question is also found by scaling plant-level utility fuel consumption by the ratio
of national-to-plant production. This fuel consumption is assumed to be all coal,

and is added to the coal consumed at the plant to give the overall national break-

down of fuel usage for the industry.

Energy Consumption with Cogeneration

A cogeneration plant differs from a conventional plant in that all or part of the

required electricity is provided by an on-site energy conversion system, and the

heat from the cogeneration system is used to help meet the plant thermal require-

ments.

The industry information required to calculate performance for a cogeneration
system is the same as used for the non-cogeneration case. Energy requirements

are the same except for parasitics, which must be specifically calculated for each
conversion system - industry combination. The conversion system information

required is retrieved from the data file. Among the data retrieved are the
following: maximum and minimum sizes per unit, the relationship of normal

operating power and peak power to rated power, exhaust temperature and cleanli-
ness, emissions data, the type fuel used, the type of heat source needed, and
provisions for rejecting excess heat. Also provided in the data set are tables
telling what fractions of the fuel energy input to the conversion system are

recovered in the variuus thermal categories (hot water, low temperature steam,
medium temperature steam, high temperature steam, and direct heat) as described
previously. Along with these, the fraction of the input energy that cannot be
recovered (irrecoverable losses) is also given. These tables are presented as a

function of rated output. Separate tables of data are given for each design option

of interest.

-49-
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o Conceptual Approach

Given the industrial process requirements and breakdown of available energy from

the conversion system, a cogeneration energy calculation can then be made. By

varying the conversion system size, the perfor-micince of any cogeneration system of

interest can be evaluated. If the selected electrical output falls short of the

industrial process requirement, E p , the difference must be made up by electricity

purchased from a utility. 	 If there is excess electricity, it can be sold to the

utility. Corresponding to a given electrical output there is a thermal output. If

more thermal energy is provided than is required by the process, the excess must

be thrown away. On the other hand, if the conversion system cannot meet all the

process thermal requirements, the shortfall must be made up with an auxiliary

furnace.

When dealing with more than one category of thermal energy, the matter of meeting

all thermal requirements introduces some complications. Thus a basic set of ground

rules has been applied. In matching a conversion system to an industrial process

thermal requirement, higher temperature needs are considered first. If there is

an excess of available thermal energy, it can be used to meet lower temperature

thermal needs (i.e., the energy can "cascade" downwards). Any excess low

temperature thermal energy may be applied against higher temperature needs by

using that energy to provide preheating for the higher temperature requirement;

i.e., 300°F steam may be applied to preheat the water for a 500°F steam boiler.

With that general approach, consider some simple examples of the consequences of

gradually increasing the output of the conversion system in a cogeneration system

from zero to an arbitrarily large size.

First, assume an industrial process with an electrical requirement, E p , and a

single thermal requirement, 6 P . Assume also that there is a conversion system

design option that has a thermal output in the same temperature category as the

requirement. When the conversion system electric output is E, the corresponding

thermal output is 6 = pE. 	 For simplicity let N, the thermal-electric ratio, be
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constant, independent of the conversion system size. Similarly let the electrical

efficiency, ne , remain constant.

The total fuel consumption includes contributions from three sources: the con-

version system, the utility, and the auxiliary furnaces. The fuel consumption

contribution from the conversion system is:

DECS - E/%

The utility fuel consumption depends on the difference between the electricity

provided by the conversion system, E, and that required by the process, E p . If

E i.s greater than E p , electricity is sold to the utility and utility fuel is saved that

normally would have been burned to provide electricity to other customers. The

net utility fuel consumption is:

Ou s EP - E

176

The fuel consumption of the furnaces is:

OF = 41%
where	 -V - ap - 9 - ap - µE if OP > 9

60 -O	 ifap<e

The net fuel consumption thus can be written as

O - QECS +0 
U  + aF

a - E + Ep - E + Op - µE , for Op> µE
ne	 17u	 77F

I	 or a- E + Ep-E
	

for Op< µE
71e	17u

Consider a case where the conversion system electrical efficiency, n e , is less than

that for the utility, n u . This is illustrated in Figure V-14. When E =0, the non-

cogeneration case applies and the fuel consumption is that for a conventional

situation:
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Figure V-14. Variation of Fuel Energy Consumption with Conversion
ECS Efficiency Less Then Utility

As E increases the conversion system replaces some of both the electrical and the

thermal requirements. In a efficient system, the quantity of fuel required to run

the conversion system is smaller than that required by the utility and by the

furnaces. Thus the total fuel consumption decreases. This trend continues until

the point at which the thermal requirement is matched. Beyond that point excess

thermal energy is being thrown away and the net fuel consumption starts to rise

again. Note that the electrical requirement is met (Match-E point) before the

thermal requirement is met (Match-T point). Thus at the Match-T point electricity

is being sold back to the utility. It is also possible for the Match-T point to

occur before the Match-E point, in which case electricity would be bought, but the

basic shape of the curves would not change.
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In a case where the conversion efficiency, ne , is greater than that of the utility,

Figure V-15, the fuel consumption continues to decrease, even after the Match-T

point has been reached. Although heat is being thrown away, less heat is being

thrown away by the cogeneration system than would have been rejected by the

utility when generating that electricity.
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Figure V-15. Variation of Fuel Energy Consumption with Conversion
ECS Efficiency Greater Then Utility

Consider next the situation when there are two categories of thermal energy: high
temperature and low temperature. The energies required by the process are 0-H
and 0L respectively; and the available thermal energies provided by the conversion
system are P H E and PL  respectively.

If	 NH	 0H	 the high	 temperature	 requirement would	 be met	 first	 as	 the

—P L 	 OL
conversion	 system size increases. Then	 any additional	 available high temperature
energy	 would	 be	 applied towards the low temperature thermal requirement.	 No
heat	 would	 he	 thown away	 until all	 the	 thermal	 requirements are	 met.	 This
situation is effectively the same as that described previously.
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If N H < eH 	 then the low temperature requirement will be met first (match

P L eL

Point 1, Figure V-16). Beyond that point, available low temperature energy can

be used to preheat the high temperature requirement until all the possible pre-

heating (i.e., the water for the high temperature steam is preheated up to the

temperature of the low temperature stream) has been achieved (Match Point 2,

Figure V-16). The energy consumption up to this point is represented by the

equation:

a . E + Eo — E + (ON + 9L1-1µK + µel E

^i 176	 nF
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Figure V-18. Variation of Cogeneration Fuel Energy Consumption for an Industry
Having High and Low Temperature Requirements

Beyond Match Point 2, Figure V-16, the excess available low temperature heat must

be thrown away, although all the available high temperature heat is used. This

causes a break in the curve as shown. This continues as the conversion system

output increases until all thermal requirements are met (Match-T Point, Figure

V-16). The energy consumption in this range is presented by the equation.
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u . E + Op-E + (9H - 9pto - p H E

17u
	

'?F

where @PH is the amount of preheat possible with the low temperature recovered

heat.

Finally, beyond the Match-T point excess high temperature energy, as well as

low-temperature energy, is thrown away and a second break in the curve occurs.

The energy consumption for this region is just

Q .E + Ep -E

%	 '?u

as was true for the previous examples.

The case shown in Figure V-16 is for n  < n u . Further, NH and PL are of such

magnitude that Match Point 2 is lower than the Match-T point. It is equally

possible to have a situation in which the Match-T point is lower than Match

Point 2. The slope of the curve beyond the Match-T point will be positive or

negative depending on whether n  < nu or n  > nu respectively.

In the general case with an arbitrary number of thermal energy categories, it is

possible to have as many breaks in the curve as there are categories. Which point

will represent the minimum energy consumption depends on the interrelationship

between all the efficiencies and electrical-thermal ratios involved. Further compli-

cations arise from two other considerations. First, it is possible that there is a

thermal requirement (e.g., direct heat from a specified fuel) that can never be

met by the conversion system no matter how large. The fuel consumed for such

requirements will simply be a constant value added. Second, the electrical

efficiencies and electric-thermal ratios generally vary with conversion system size

and output. Thus, each segment on the curve will typically not be a straight

line. The essential features of the curves presented will be maintained, however.
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o Matching Strategies

The cogeneration performance curves just discussed are useful in describing

possible matching strategies that might be employed in a cogeneration scheme.

Two matching strategies that are obvious in the previous examples are: (1)

Exactly match the electrical requirement and either supplement thermal needs with

auxiliary furnaces or throw away excess heat. This is known as the Match-E

strategy. (2) Meet all thermal requirements that can be met by the conversion

system and buy or sell electricity, as needed. This is known as the Match-T

strategy.

For the Match-E strategy, the industrial process could, in principle, be

disconnected from the utility electrical grid. If all thermal requirements have not

been met, additional fuel is required to fire the auxiliary boilers. If all thermal

requirements have been met, the only fuel requirement is for the conversion

system.

For the Match-T strategy, no auxiliary furnaces are required, except for thermal

requirements that can't possibly be met by the conversion system. With this

strategy, the plant must be connected to the utility electrical grid since electricity

must either be bought or sold. The Match-T point does not necessarily

correspond to an exact match of all available and required thermal energies. For

example in Figure V-16, some low temperature energy is thrown away when the

high temperature requirement is met. If there is a high-temperature requirement

that the conversion system cannot ever meet (e.g., a conversion system that can

only provide 500°F heat when 800°F heat is required), then an auxiliary furnace

would be needed at the Match-T point.

Figure V-16 illustrates a case where neither the Match-E nor the Match-T strategy

results in the minimum fuel energy consumption. A third strategy that might be

employed does not dictate that any particular requirement be met. The conversion

system size is selected at a value that corresponds to the minimum energy con-

sumption. This is called the Optimum Energy strategy.
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One possible definition of the optimum point might be the point corresponding to

the minimum total consumption of fuel at the industrial plant and the utility. With

this definition, the optimum in Figure V-16 occurs at Match Point 2. An auxiliary

furnace is needed to meet part of the high temperature requirement, and some

electricity must also be purchased from the utility grid.

For the example shown in Figure V-15, which is representative of a case where n 

> nu , the total energy consumption decreases indefinitely as the conversion system

size increases. The minimum energy consumption would occur when the conversion

system completely replaces the utility. To restrict considerations to more realistic

configurations, certain ground rules were established. The maximum conversion

system size is limited to the larger size for the Match-E or Match-T strategy. In

addition, in no case is the conversion system electrical size allowed to exceed ten

times the process electrical requirement, Ep.

It is also possible to specify different criteria to define the optimum fuel utilization.

In the discussion above, the total cogeneration system plus utility fuel energy

savings was the criterion. In cases where the fuel has been converted from its

natural form to a more convenient state (e.g., liquefaction of coal), the fuel

energy used at the industrial site would correspond to more energy of the raw

fuel; i.e., in its natural form at the source where it comes out of the ground.

For example, the conversion efficiency for producing a coal-derived boiler-grade

fuel is 0.70; thus for every Btu of fuel energy used at the plant, 1.43 Btu of coal

energy was consumed. Using these conversion factors, the energy content of the

fuel in its natural form can be calcul;sted for both cogeneration and non-cogeneration

cases. The figure of merit could then be the minimum consumption of fuel in its

natural form.

In this study, the 'optimum" strategy was chosen as providing the maximum fuel

energy savings ratio (FESR) which is defined as:

FESR = Q Non cogeneration - QCogeneration

QNoncogeneration
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The cogeneration fuel includes the fuel consumed by the conversion system, the

fuel required by any auxiliary furnace, and the fuel consumed by the electric

utility to provide any imported electricity. The non-cogeneration fuel consists of'

the fuel used by on-site furnaces and by the electric utility to meet the process

electric requirements. For consistancy, when the cogeneration system exports

electricity to the utility, the non-cogeneration fuel includes the additional utility

fuel necessary to provide the exported electricity in the absence of the cogeneration

equipment.

An example of different types of conclusions that might be drawn by using the

fuel energy savings ratio as the criterion for picking the optimum strategy is

shown in Figure V-17 for the examples discussed previously. The curve labeled

Case 1 corresponds to the cogeneration system shown on Figure V-14. For this

case, the maximum energy savings occurs at the Match-T point and corresponds

exactly to the point of minimum energy consumption. The curve labeled Case 2

corresponds to the case shown in Figure V-15, which has maximum fuel energy

savings ratio at the Match-T point. Finally the curve labeled Case 3 corresponds

to Figure V-16. The optirr:um occurs at a point which is neither Match-T or

Match-E. Usually the optimum will occur at the breaks in the curve corresponding

to the matching of some need (either a particular thermal requirement or the

electrical requirement) but in the most general case, with multiple requirements

and efficiencies that vary with size, the optimum might occur at any converstion
system size.

There is another matching strategy of potential interest, namely, the Heat-Pump

strategy. This strategy is basically a variation on the Match-E strategy with an

additional piece of equipment. In some cases, when a conversion system is sized

to match the process electric requirement, E p , there will be surplus low temperature

energy available while there remains a higher temperature energy requirement.

The conversion system size could be increased beyond E  and the additional

electricity could be used to drive a heat pump that would transform low tempera-

ture energy to the higher temperature required.
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Figure V-17. Variation of Energy Savings Ratio with Conversion System Site

A sample heat pump case is illustrated in Figure V-18 with two thermal require-

ments --high temperature and low temperature. The low temperature requirement

is met first (Point 1), before the electrical or high temperature requirements are

met. As the conversion system size increases, additional low-temperature energy

is used for preheating up to point 2. Beyond point 2, additional low temperature

energy is discarded. High temperature energy is still being used to reduce the

high temperature requirement. At point 3, the electrical requirement is met, but

there is still a shortfall of high temperature heat. For a larger conversion system,

the excess electricity is not sold to the utility; instead it is used to drive a heat

pump which converts surplus low temperature heat to high temperature heat. This

helps reduce the remaining thermal requirement. Eventually the heat pump is

.	 large enough (Point 4) to reduce the high temperature requirement to zero. This

is the Heat Pump Match Point.

._:^
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Figure V•18. Variation of Fuel Energy Consumption with Heat Pump 8tratogy

As the size increases beyond the match point, the conversion system can meet

more and more of the high temperature requirement directly, thus reducing the

heat pumping requirement and the heat pump size. As the heat pump size is

reduced, its electrical requirement is reduced. This additional electricity can be

sold to the utility. Eventually the normal Match-T point (5) is reached. At point

5, the heat pump size has been reduced to zero. The dashed lines 3-5 and 3'-5'

represent the performance curves for a case without a heat pump. Beyond the

Match-T point, performance is the same as for a case without a heat pump.

This section outlined a general method of evaluating performance for cogeneration

systems and described four potentially attractive matching strategies: (1) Match-E,

(2) Match-T, (3) Optimum-Energy, (4) Heat Pump. The following sections describe

how the calculations are actually implemented.
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o Energy Utilization and Fuel Consumption

The first major segment of the analysis is the computation of the fuel consumption

for each industrial process - energy conversion system - cogeneration strategy

combination. Certain calculations are employed regardless of cogeneration strategy.

They include: establishing the industrial process energy requirements and the

conversion system characteristics from the data base; determining the by-product

heat and by-product fuel situation; examining the direct heat question; deter-

mining the steam and hot water requirements; and calculating the parasitic losses.

With this information the analysis of fuel consumption for a specific strategy car,

be performed.

The overall fuel and auxiliary furnace requirements are determined when a con-

version system of a specified size and electrical output is used to help meet given

process thermal requirements for hot water, low-temperature steam, medium-

temperature steam, high-temperature steam, and direct heat. These requirements

are denoted as 
Q1R0 

n2R ^ Q3 R , Q4R, and QDR respectively.

When the size is known, the conversion system data file can be used to calculate

the available energy in each category. The type of data stored in the data file is

illustrated graphically in Figure V-19A. For a specific conversion system size, the

fraction of the fuel input energy that is output as electricity (ne ), hot water (n1),
low-temperature steam (n2 ), medium-temperature steam (n 3 ), and high-temperature
steam (n4 )are given. :-..so given is the fraction of energy trapped as irrecoverable

losses (n L ). Any remaining fraction is assumed to be stack losses

ISUck ` t —(tie+J7t +n2+1?3+'114+r)L)
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Figure V•1!. Energy Con"nion aystmll output with and without Diner Nett

These data represent a case for which all of the conversion system heat has been

used to generate steam and hot water. To calculate the available thermal energy

in any category we use the equation

O A1 	 171 (E/14)

where the superscript "A 11 represents the case where all possible rejected heat is

used to generate steam and hot water, the subscript i may be 1,2,3 or 4 and E is

the conversion system electrical output.

Industrial process heat is normally dealt with prior to any actual cogeneration

calculations. The thermal requirements used in the cogeneration calculations are

net requirements reflecting the use of by-product heat to reduce actual process

requirements whenever possible.

.gZ.

t
s



Power Systems Division	 FCR-1333

If an industrial process generates a useable by-product fuel, that fuel is used to

replace fuel that would otherwise be purchased. The by-product fuel is first used

to provide direct heat needs requiring supplementary firing (except for those

cases where a particular fuel is specified for direc` heat). If there is any

by-product fuel remaining, it can be used, without restriction, to fire auxiliary

boilers for steam and hot water. if there is still by-product fuel remaining, it can

be used in the conversion system provided that it is compatible. Compatibility is

determined by comparing fuel quality parameters specified in the industry and

conversion system data files. The requirements met with by-product fuel

represent a savings of purchased fossil fuel. This saving is subtracted from the

total fuel requirement to give the net fuel requirement for the cogeneration plant.

The thermal energy supplied by the conversion system is typically in two forms:

hot exhaust gases or hot water. Some systems also produce steam directly but, in

most cases, the steam is produced from the hot exhaust gases. Since some

industrial processes require heat in the form of hot gases, direct use of hot

exhaust gases is examined first.

If all	 the hot exhaust gas were to be us_d as direct heat, there might still be hot

water and/or	 steam available that was generated from sources other than the hot

exhaust	 (e.g.,	 jacket cooling water in diesels).	 Another parameter given	 in the

conversion system data file	 is	 t the fraction of the sensible	 heat that is avai!able

as direct heat.	 Then the amount of sensible heat that is available for meeting the

heat needs is

08  ° t 77sens (E/77e)
H

where	 the	 superscript	 "a"	 indicates	 that all of	 the hot-gas	 exhaust was used

directly,	 and	 the	 subscript	 DH	 indicates the energy available	 as	 direct heat.

11 sens is the fraction of conversion system fuel energy available as	 sensible heat.

77
sens ' 1 —1114 + 770
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The remaining energy is available in the form of lower quality heat,	 i.e.,	 steam or

hot water as shown in Figure V-198.	 The distribution of this energy is established

according	 to an	 algorithm	 depending	 upon the	 type of	 conversion system	 and

sensible heat fraction,	 !.	 For example, diesels which require cooling jacket water

must	 retain that	 fraction	 of	 the	 hot water which is	 used for	 cooling.	 New

efficiencies, rj, can be calculated to give the available heat as

17 IE/q

where the superscript "a" indicates that minimum available steam and hot water

remaining after all available conversion system exhaust gases are used for direct

heat. The subscript "i" may take on the values 1 through 4.

In summary, there are two sets of values for the available thermal energy in the

data base. The first set comprises the available steam and hot water if no direct

heat is used:	 QJA, Q'A' Q U A , and Q4 	 The second set applies when all

the direct heat that can possibly be used is so used:Q l a , Q 2a , Q 3 a , Q 4 a , and QDa

The next step is to determine the amount of direct heat used in meeting the

industrial process requirement and then to convert the remaining conversion system

exhaust energy to useful steam to meet further industrial requirements. All of the

exhaust energy can be converted to steam if 1) there is no direct heat requirement;

2) there is specified fuel for the industrial requirement and the need is met by a

separate furnace, and 3) the direct heat available from the conversion system is at

lower temperature than the highest temperature steam. None of the conversion

system exhaust heat can be used as steam if it all is used for direct heat. In

some cases a portion of the conversion system exhaust heat is used as direct heat

leaving the remaining fraction, X, to be converted to steam

o	 _ QAcess
X ' Avail	 DH

C'
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The energy available from the conversion system in any given category is equal to

the energy available from sources other• than the exhaust (e.g., jacket cooling

water) plus the energy in that category that can be obtained from the remaining

exhaust (i.e., the part not used for direct-heat needs). This contribution is

assumed to be directly proportional to the fraction of the exhaust still available for

use (x) . Thus,

QAy ail . p e + X (CI a

where the subscript i may take the values, 1, 2, 3, or 4.

The requirements against which these available energies may be applied are the hot

water and steam, QR through Q R, and any remaining direct heat, Q off To

gain maximum benefit from the available energy, energy available at a given tem-

perature T is used for any lower temperature thermal requirements or to preheat

up to T for higher temperature requirements.. An approach that automatically

accounts for preheating involves redistributing the available and required energies

in each category into bins with specified temperature ranges. The temperature

ranges chosen are:

Bin Temp Range (°F)

1 <140

2 140 - 300

3 300 - 500

4 500 - 700

5 >700

To redistribute the energy from the steam categories to the steam bins, standard

steam tables are used.	 An example of the 700°F steam category is shown in Figure

V-20, which	 is a	 plot of temperature versus	 specific enthalpy	 for	 water at 600

psig. Each pound of the 700°F steam represents 1242 Btu of energy based upon a

140°F reference temperature.	 Of that total,	 162	 Btu are	 required	 to	 raise the
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temperature of the water from 140°F to 300°F. This amount is assigned to Bin 2.

An additional 943 Btu are required to raise the water temperature to 4891F,

vaporize the liquid and superheat the steam to 500°F. This amount is added to

Bin 3. Finally, 137 Btu's are required to raise the 500°F steam to 100 1 F. This is

added to Bin 4. The hot water and other steam categories are treated in similar

fashion. The breakdown of energy from each category is given in Table V-21.

The breakdown for any remaining direct heat requirement is simply calculated by

assuming the specific heat of the hot gas to be constant. The breakdown is then

just 1-1 ratio of temperature differences. There can be a contribution to Bin 5

(T>700 0 P) depending upon the temperature required for the direct heat. There

will be no remaining available energy above 700°F, however, since that has all

been previously accounted for.

Figure V-20. Distribution of Required Energy — 700 0 Steam Category P i 600 prig

-66.
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TABLE V-21

REDISTRIBUTION OF REQUIRED THERMAL ENERGY

Fraction into Each Bin

Bin 1 Bin 2 Bin 3 Bin 4
Category T<140 140<T<300 300<T<500 500<T000

Hot Water 1.0 0.0 0.0 0.0
(140°F)

Low T Steam 0.0 1.0 0.0 0.0
(300°F, 50 psig)

Medium T Steam 0.0 0.15 0.85 0.0
(500°F, 600 psig)

High T Steam 0.0 0.13 0.76 0.11
700°F, 600 psig)

The distribution of available thermal energy into bins is essentially the same as the

distribution for required energy but with one basic difference. Tile thermal

output from a conversion system is described in terms of Btu of steam that has

been generated via heat exchange with a hot source. Of interest is the breakdown

of this thermal energy as a function of the actual temperature at which it is

available. Unfortunately, the temperature and characteristics of this source are

not always well known. A reasonable approximate breakdown can be obtained by

envisioning a counterflow heat exchanger with the hot source flowing opposite the

water. Consider the situation for 700°F steam as illustrated in Figure V-21. The

lines labeled I and II represent the range of possible variations of the hot-source

energy content with different exhaust weight flows. 	 The "low flow" line (1)

implies high temperature conversion system exhaust heat, 1350°F. Note that for

- virtually any curve one might use to describe the hot source, the energy of vapori-

zation for the steam (between specific enthalpy 367 and 1094 in Figure V-21)

actually came from energy above 519°F available in 500°F - 700°F temperature

range. Thus, it seems reasonable to include the heat of vaporization in the 500 -

700°F bin rather than the 300 - 500°F bin, as was done for the required energy.

The energy breakdown in the 140 and 300°F bins is calculated by using the

enthalpy changes associated with preheating water.
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When dealing with the 500°F and 300°F steam categories, the breakdowns are the

same as for the required energy. The heat of vaporization is assigned to the

300 - 500 and 140 - 300°F bins, respectively. This is illustrated in Figure V - 22.

The breakdown for all the categories of available energy is summarized in Table

V-22.
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TABLE V-22

REDISTRIBUTION OF AVAILABLE THERMAL ENERGY

Fraction into Each Bin
Bin 1	 Bin 2	 Bin 3	 Bin 4

Category	 T<140	 140<T<300	 300<T<500	 500<T<700

Hot Water	 1.0	 0.0	 0.0	 0.0
(140°F)

Low T Steam	 0.0	 1.0	 0.0	 0.0
(300°F, 50 psig)

Medium T Steam	 0.0	 0.15	 0.85	 0.0
(500°F, 600 psig)

High T Steam	 0.0	 0.13	 0.17	 0.70
700°F, 600 psig)

Once the available and required energies are distributed within their respective

bins, the application of the available energy to the industrial requirements can be

calculated.	 Starting with the highest bin (i.e., Bin 5), the required energy is

compared with the available energy. 	 If the available is smaller than required,

there is a net deficit, Aq, equal to the difference between them. Phis deficit is

met by auxiliary burning of fuel. The fuel burned is just OQ F = Aq/n F , where OF

is the burner efficiency which is a function of the specified fuel type (OF = 0.85

for coal and natural gas; n F = 0.88 for liquid fuels).

If the available energy in a given bin is greater than the required energy, there

is no deficit to be met by supplemental firing. Instead, the surplus can be

cascaded down to the next lower bin to meet needs in that temperature range.

This is effected by adding the surplus to the available energy in that bin.

The above procedure is followed for each bin in order, from highest to owest

temperature, until all bins have been considered.
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The total fuel requirement and its breakdown by application are then found. The

conversion system fuel requirement is simply the electrical output divided by the

electrical efficiency. The boiler fuel requirement is the sum of the requirements

calculated for Bins 1 through 4. The fuel used is boiler grade liquid, either oil

or coal-derived depending on the conversion system fuel. One exception to this is

a conversion system with a coal-fired heat source, in which case coal is used for

auxiliary heat by increasing the size of the heat source.

Finally, the fuel requirement for meeting direct heat needs is the sum of the

requirement from Bin 5 and/or fuel used to provide direct heat independent of the

conversion system.

Q DH ' OR /
F	 pH 17F

In the evaluation of direct heat requirements certain details have to be considered.

Normally, the direct heat requirement is stated in reference to ambient conditions,

60°F, and the conversion system energy available is based on the same reference

condition. If the conversion system exhaust is clean enough, the available hot gas

temperature is the exhaust temperature (TAvail	 exh= T	 ), and the energy available

is all the energy in the exhaust, QAvail = Q  - If the exhaust is not clean

enough, it must first go though a heat exchanger. Then the available temperature

is given by

TAvail ` TExh — TPinch

where the oinch temperature, AT pinch 
I 

is 50°F. The available energy must now

have stack los;.es subtracted from it. Thus,

nAvail = 0DH
a _ 

stack

where

Stack ` '7stack (E/'7e)

i
t	 -7a
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The available temperature, 'T Avail' is compared with the temperature needed for

direct heat, T DH . If T Avail > TDHI the available energy can be applied toward

the direct heat requirements over the entire temperature range. If TAvail '^ TDH'
only that portion of the direct heat requirement up to TAvail 

can be met by the

conversion system. In that case

Avell— TRaf 0 R

ON 	 ON — Ref ON

The inaccessible part of the requirement is just

Olnacc 

'^-TOH

TOH — TAvail	 OR

O — TRef

This part of the requirement must be met via auxiliary burning. The fuel

required is

ON	 Inacc
F	 DH /tiF

The accessible direct heat requirement is compared against the available energy.
Accers >

If Q DH	 QAvail ' all of the available energy is assumed to be used and the

remaining direct heat requirement becomes

a Rem = Q Amew _ Q
ON	 DH	 Avail

This remaining energy is treated with the steam and hot water requirements

because some preheating of the hot gases could be done with the steam or hot

water.

If the direct heat is not the highest temperature requirement, a different proce-

dure is used. The conversion system exhaust is first used to produce steam that

t'
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is used for high temperature needs and then cascaded down as required I'or lower

temperature needs. All the energy that would normally go up the stack is not

necessarily lost, however, if steam is made. If the exhaust meets the cleanliness

standard for use as direct heat, it can be diverted prior to entering the stack and

used as gas which is preheated to the stack temperature Tstack for the direct-heat

requirement. Then further heating would only be required from Tstack to the

required temperature T DH . The maximum amount of preheat that is allowable is

determined from

aP H. OOH TStW* - TR#f
TDH - TRd

Generally, T stack ° 280°F and

gases, Qstack' is the energy

water. The amount of energy

smaller of Q FH and Q	 TIDH	 stack'

Tref ° 60°F. The energy available in the stack

from the exhaust not converted to steam or hot

provided from the stack gases, Q OHv , is the

ie remaining direct heat requirement is then

	

Oft	 OR _ QPmv

	

ON
	

ON ON

This quantity of energy is included with the steam requirements since the energy

available as high temperature steam could be made available to preheat the hot

ga ges. tois approach provides a calculation technique insuring the maximum

utilization of the available energy. An actual cogeneration system might be set up

somewhat differently to accomplish the same results.

o	 Parasitic Requirements

In order to compute the energy consumption for any particular case, it is neces-

sary to know the parasitic electrical and thermal requirements. These are added

to the industrial requirements to get overall requirements. The parasitics for any

given case are evaluated by an iterative approach. Estimated values for the

electric and thermal parasitics are used for the first pass. These are added to

•72-
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the nominal process energy requirements. Calculations to evaluate the utilization

of the conversion system output are performed as described previously. The

results of these calculations are used to evaluate balance-of-plant needs that lead

to a calculation of the system parasitics. These parasitics are used for another

pass through the calculations. This process continues until the parasitics calcu-

lated on consecutive passes fall within a prescribed tolerance.

Sources of parasitic requirements are heat sources, furnaces, pollution control

equipment (scrubbers, hot-gas cleanup), waste handling and removal, limestone

handling and storage, fuel handling and storage, boiler feed water supply systems,

and heat-rejection equipment. These parasitics are generally calculated as the

product of a parasitic factor and the capacity of the system under consideration.

The factors used in this study for the parasitics were summarized previously in

Tables V-11 and 16. The calculation of parasitic requirements from these sources

is described below.

Parasitics related to heat sources and furnaces are computed first. The heat

source which is associated with each conversion system is listed in Table V-20. If

a conversion system has an internal heat source (e.g., diesel, gas turbine, etc.),

these calculations are not applicable. The fuel consumption is multiplied by the

heat-source efficiency (available from the heat-source data file) to find the heat-

source output. This output is multiplied by factors obtained from the heat-source

data file to give the heat-source contribution to the electrical and thermal parasitic

requirements. In addition, there are factors which, when multiplied by fuel require-

ment, indicate the heat-source output of solid and liquid waste and its requirement

for limestone and boiler feed water.

Auxiliary	 furnace parasitic	 requirements	 must	 also	 be calculated	 if	 applicable.

There are several possible furnaces that might be used. If the conversion system

has a heat source that burns coal, heat source is sized to accommodate the auxil-

iary	 furnace	 requirements	 as	 well. In that case,	 the parasitic,	 waste,	 limestone

and	 cost	 factors are the same as for the heat source. For all other conversion

systems, the auxiliary furnaces are separate units that burn boiler grade liquid

-73•
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fuel. Four furnaces were included in the study: (1) a 140 °F water heater, (2) a

300°F steam generator, (3) a 500 °F steam generator, and (4) a 700°F steam gen-

erator. The furnace picked is the one corresponding to the highest bin for which

there is a net energy deficit. The appropriate parasitic, waste, limestone, and

feedwater factors are selected from the heat-source data file. The furnace contri-

butions to the parasitics are calculated by multiplying the appropriate factors by

the furnace fuel requirements.

Certain heat sources require the use of a sulfur dioxide scrubber. This infor-

mation is stored in the heat-source data file (see Table V-20). If a scrubber is

required, factors for the electric and thermal parasitics, for solid wastes and for

required limestone are obtained from the balance-of-plant data file. These factors

are multiplied by the heat-source "uel consumption to give the scrubber contri-

bution to the parasitics, the solid waste output, and the limestone requirement.

In similar fashion some heat sources require the use of a hot-gas cleanup system.

This requirement is indicated in the heat-source data file. If hot gas cleanup is

required, factors for the electric and thermal parasitics are obtained from the

balance-of-plant data. These are multiplied by the weight flow of exhaust gases

from the heat source. A conversion factor from fuel consumption to exhaust gas

weight flow is available in the heat source data. This is used along with the

heat-source fuel requirement to calculate the hot-gas cleanup system contribution

to the parasitics.

The parasitics associated with limestone handling are calculated next. The lime-

stone consumption from all sources (heat source, furnace, scrubber) is summed up

to give a total limestone usage. Parasitic factors are available from the balance-of-

plant data file. Simple multiplication by the usage yields the electric and thermal

parasitics.

Similarly, the parasitics for the boiler feedwater system and for solid and liquid

waste handling and removal are calculated by summing all contributions for each

and multiplying by the appropriate factors obtained from the balance-of-plant data.
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To calculate fuel handling and storage parasitics it is necessary to know the break-

down of fuel usage by type--distillate, boiler grade, or coal. The fuel type is

determined from the conversion system data file. Auxiliary furnace fuel is boiler

grade unless there is a heat source which burns coal, in which case coal is used.

The fuel for direct heat is the same as for the furnaces unless otherwise specified.

Once the usage of each type of fuel is known, it is multiplied by the appropriate

parasitic factors from the balance-of-plant data. The total fuel handling parasitics

are the sums of the parasitics for each type of fuel.

Finally, the parasitics associated with heat rejection equipment are calculated. The

requirement for heat rejection varies according to the system. Whether heat

rejection is required and what type of heat must be rejected is described by a

parameter contained within the conversion system data file. The magnitude of the

heat rejection is multiplied by the heat rejection electrical parasitic factor,

available in the balance-of-plant data.

All contributions to the electrical and thermal parasitics are added together and

the results used for the next pass through the iterative procedure.

o Match Electric Strategy

For the Match-Electric strategy it is presumed that all the electrical requirements

of the plant are met tr; the ei;ergy conversion system which must be large enough

to accommodate the peak electrical demand of the plant which is given in the

industry data file, and also the parasitic electrical requirement, which is

dependent upon the particular conversion system industry combination. To

estimate the total peak demand, an industry sizing factor, r s , was defined as the

ratio of the peak process electrical demand to the average process electrical de-

mand. Then the average parasitic demand is added to the average process elec-

trical demand and the sum is multiplied by the industry sizing factor, r s :

tot	 /A.E peak n + opwm-tic) rs

n Ep^sk u	 rs <06ar"itic
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Implicit in the use of r s is the assumption that the temporal variation of the

parasitic demand is coincident with that of the process electrical demand.

The number and size of conversion units necessary to meet the peak demand are

determined according to the relationship

MAX^ 	 E^
Nt«

where NECS is the smallest integer greater than or equal to two that gives a value

for EMAX less than or equal to the maximum allowed conversion system output.

Then N ECS represents the number of units to be used. The rated size of each

unit should be

ERe%d a kE MAX

where k is the ratio of the rated to maximum steady state power for the specified

conversion system.

There generally is a restriction on the number of conversion units that may be

used. In this study a minimum number of 2 units and a maximum of 12 units was

selected. If more than 12 units are needed, the conversion system is not suited

for application to the given industry and no further calculations are performed.

If, on the other extreme, it is found that the rated size is smaller than the

allowed minimum size, even when only two units are used, the calculation is still

performed. However, a flag is set to indicate that the conversion system is

smaller than the minimum practical size indicated in the file.

Once the energy conversion system size and number of units has been selected,

the associated electrical and thermal efficiencies can be evaluated from the data

file. Then the standard calculations related to energy utilization and fuel con-

sumption are performed. The iterative procedure to find the appropriate parasitics

is employed and the conversion system size modified to reflect the latest value for

the electrical parasitics. On successive iterations when the newly calculated para-

sitics are within 2 percent of their previous value, the solution is deemed con-

verged.
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Calculations of this type are performed for each design option of the conversion

system being studied. The results for each option are compared and those for the

most conserving design option are saved for display and for subsequent cost and

emissions calculations. The selection criteria for the best design option used for

this study is the highest energy savings ratio.

o Heat Pump Strategy

The heat pump strategy involves sizing the energy conversion system such that

power produced meets the process electrical requirements and also provides elec-

tricity to operate a heat pump. The process thermal needs are met by heat

recovered from the enerS, conversion system supplemented by heat output from

the heat pump. A simple schematic diagram of this system is shown in Figure

V-23. In this study, the heat pump operates directly with the cogeneration

system utilizing it as a sole source of heat for the industrial process.

ELECTRICITY
ENERGY- _	 -T HEAT	 INOUSTRIAL
CONVERSION	 HI TEMP

SYSTEM LO TEMP	
rPROCESS

I

HEAT
PUMP

RETURN
37.904

Figure V-23. Heat Pump Strategy Schematic Diagram

After the match-electric calculation has been made for a given design option, the

results are used to see if a heat pump would be appropriate. If the match-electric

results are such that there is a surplus of energy in Bin Number 1 (140°F) and a

deficit in Bin Number 2 (300 0 F), or a surplus in Bin Number 2 and a deficit in

Bin Number 3 (500 1 F), then heat pump strategy is investigated.
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An initial heat pump size is selected based on the thermal deficit. A preliminary

calculation is made based on Fig4re V-9 using the temperature of the conversion

system available heat and the temperature to which the energy must be pumped.

The amount of heat to be pumped is divided by the coefficient of performance to

give the estimated electric requirement for the heat pump and iterative procedure

is then employed to select the heat pump size and performance. A new total

electric requirement is taken to be the sum of the process electric requirement

including parasitics and the estimated heat pump electrical requirements. The

conversion system size is modified based on the new total electric requirement. As

a result there is a reduced thermal deficit that must be pumped and the low tem-

perature available is increased. An iterative procedure is employed to bring the

heat being pumped from the conversion system to within 5 percent of the available

heat. If this match is not achieved, the strategy is abandoned.

The heat pump calculation incorporates a futher iteration procedure to establish

the parasitics. Each conversion system design option is analyzed and the data for

the most conserving are used in subsequent cost and emissions calculations.

o Matched Thermal Strategy

For the match thermal strategy, thermal requirements which can be met with the

heat recovered from the conversion system are met. For example, if a conversion

system can only provide heat up to 500°F, an auxiliary furnace will be used for

higher temperature requirements and the matched-thermal strategy is satisfied in

this study when all requirements from 500°F and lower are satisfied. The analysis

establishes the size of the energy conversion system to achieve this condition.

The calculation procedure involves selection of a conversion system size and

evaluation of the heat recovered in relation to the thermal requirements. If the

thermal situation does not match, electrical output is increased and the calculation

repeated. This procedure continues until a conversion system size is selected that

matches the thermal requirements within one percent. A limit to the size of the

cogeneration system of 10 times the size necessary to meet the process electrical

requirements was imposed in this study. If the thermal requirements were not met
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with such a large size power plant, the match thermal strategy was deemed not

practical. Also, if twelve energy conversion systems of the maximum allowed size

could not satisfy the thermal requirements, the strategy was considered impractical

and abandoned.

o Optimum Strategy

In the optimum strategy, the size cf the energy conversion system is selected to

provide the greatest fuel energy savings ratio. In the calculations for the match

thermal strategy, the performance of the full range of conversion systems sizes

was evaluated in finding the appropriate size to meet the thermal requirements.

Figure V-16 illustrates fuel consumption with varying conversion system size and

the match thermal point is identified. 	 In the optimum strategy, the fuel con-

' sumption data are reviewed and the most conserving size selected. The fuel

energy savings ratio with the match electric and the heat pump strategies are also

included in the review. Thus, all points of interest are covered and the highest

energy savings ratio is retained. As in the other strategies, all design options

are considered and the results for the most conserving one are saved for further-

calculations.

o Bottoming Configurations

The majority of cogeneration systems considered in this study are front-end of,

topping configurations. However, some back-end or bottoming configurations are

included. in these, by-product heat available from the industrial process is used

to generate electricity for the industrial process and/or for export to the electric

utility. Two of the industries in the study--glass containers and cement--have

ample high temperature by-product heat for use with bottoming configurations.

Certain procedures are followed when evaluating the performance of a bottoming

cycle. The industry data must be examined to insure that there is available heat

of sufficiently high temperature. The required temperature is found in the con-

version system data file. The conversion system fuel consumption is automatically
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set to zero. The size of the conversion system is limited by the amount of by-

product heat available. The calculation procedure is similar to the calculations for

the optimum strategy in that the performance of the system for various sizes up to

the limiting size is evaluated. Then the most conserving size is chosen. Note

that electricity may be imported or exported to the electric utility depending upon

industrial requirements.

o Fuel Consumption Evaluation

The primary reason for performing the energy consumption calculations described

previously is to evaluate the fuel consumption for cogeneration plants and compare

with the fuel that would be used in non-cogeneration plants in order to determine

which advanced systems promise the greatest potential national benefit.	 In	 addi-

tion	 to	 the basic	 calculation of the total fuel consumption the results are broken

down by fuel use and fuel type to aid evaluation.

The cogeneration fuel use is separated into four functional categories: the energy

conversion system, the utility (both credit and debit), the auxiliary furnace, and

specified special fuels for direct heat. With the fuel separated according to

function, a further breakdown by fuel type is possible in accordance with the

study groundrules. Conversion system fuel is specified as part of the data file.

The utility fuel is coal. In a cogeneration plant, the auxiliary furnace fuel is the

same fuel as used by the conversion system,. The study includes various boiler

grade liquid fueled furnaces for supplemental heating. These furnaces are also

capable of using distillate fuels. When the conversion system uses a coal-fired

heat source, that source is expanded in size to provide supplemental heat when

required. Thus, the conversion system and supplemental requirements are met

with a single fuel. The special fuel requirements for direct use are met with the

appropriate fuel.

The calculations are performed for a representative industrial facility typical of the

1985-2000 period. To evaluate potential national results, the fuel consumption for

the cogeneration system was scaled from the representative industrial plant to the

'a	•8a
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national level for the product or process based on the production level expected in

the 1985-2000 period. The type of fuel used by the cogeneration system was not

varied in the scale-up. Normally, an individual industrial plant would use one or

two fuels. However, with many plants in the nation a variety of fuels would be

used. Therefore, the noncogeneration fuel use by type was based on projections

of national fuel use by Gordian Associates ( Volume 11) for the particular product

or process. These data, at the national level, permit evaluation of the move from

light oil and natural gas towards heavy oil, coal and coal-derived fuels. As a

result of cogeneration with advanced energy conversion systems, savings of

natural gas, oil, and coal were calculated on a national basis.

When the cogeneration system consumed coal-derived fuels, the assumption was

made that the noncogeneration furnace would also use coal-derived fuels. Based

on the assumption that coal could be converted to coal-derived fuel with an effi-

ciency of 70 percent evaluations of coal consumption were made on a national basis

assuming either coal or coal-derived fuels were used in the cogeneration energy

conversion systems.

Costs

While the motivation for installing a cogeneration system in an industrial plant is to

save energy, such an installation should also appear to be economically practical.

Thus, calculations of capital, fuel, and operating costs associated with a cogener-

ation system and the comparable costs of an equivalent non-cogeneration plant are

necessary. For comparative purposes only the costs of items that are likely to be

different between cogeneration and non-cogeneration cases are included in the

calculations. Three sets of costs are calculated for each case: the capital costs,

the annual operating costs, and the levelized annual cost.

The equipment and facilities required at the industrial site to meet the process

energy needs without cogeneration include: fuel storage and handling equipment,

furnaces, feed-water system, electrical control equipment, and special buildings.
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The capital and installation costs for this equipment are included in the balance-of-

plant data file and the heat source data file. In order to use these data, the size

of the various elements must be selected.

To evaluate the size of the equipment, the total required capacity for the parti-

cular item is multiplied by the standard sizing factor, r s . This factor is the ratio

of the peak hourly electric requirment to the total average electric requirement.

There is an implicit assumption that the demand for any system varies roughly as

does the demand for electricity. The item size, X, is used with cost data file to

find the specific cost, C s , associated with that size. The total item capital cost,

Cc , is then Cc = XCs.

Both equipment cost and installation cost are determined and included in the total

capital cost.

The rest for the fuel handling and storage system is dependent on the rate of fuel

consumption.	 In this study,	 natural gas handling	 involves	 no capital costs. The

cost of handling of by-product fuels was assumed to be equivalent to the cost of

the system	 to	 handle the displaced fuel. Once the requirement and type of fuel

are known,	 the cost is determined from the fuel handling and storage data file.

A furnace type is chosen from the heat-source data file that can provide the

highest quality steam required by the process and the size of the furnace is

selected to provide all of the industrial process thermal requirements. Furnace

size is limited (specified in the data file). For a total furnace output, O F , then

the size per furnace, X, is X n OF/NF where N F , the number of furnaces, is the

smallest integer that that gives a size smaller than the maximum allowed. The cost

calculation is used based upon the unit size, X, and the total furnace capital costs

found by multiplying by NF.

The basis for the cost for the boiler feedwater system is similar. Sizing is based

on the total requirement for feedwater. This is calculated by multiplying the

furnace size by a feedwater factor for that furnace available in the heat-source

f
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data. The standard cost calculation is used and the total costs found by multiply-

ing by NF.

In the case of electrical conditioning and control, only the incremental cost for the

equipment to service the furnaces and balance-of-plant are included since the

electrical conditioning for the industrial process needs is the same for both the

non-cogeneration and cogeneration plants.

The special buildings in a non-cogeneration plant are those to house the furnaces.

To size the building, the area and volume of the furnaces are calculated accordin,

to the formulas.

AHS - C, + C2 X

VMS -C3 +C4 X

where X	 is	 the	 total	 furnace output capacity and C 1 ,	 C 2 ,	 C 3 and C4 are para-

meters stored in the heat source data file.	 These parameters may have different

values depending	 on	 the	 size	 range in	 which	 the	 furnace	 falls.	 The furnace

height is estimated by dividing the area, A HS , into the volume V HS .	 The cost of

the building is then evaluated from the formula

Cc - KHS AHS

where K HS is the unit cost factor given in Table V-19.

The site preparation cost is one percent of the total direct capital costs. The

engineering and contingency fees are 0.15 and 0.20 of the total capital cost,

respectively.

Summation of all the items is the total capital cost. The actual expense involved

will be somewhat higher due to interest charges during the time required for

construction. The construction time for the furnaces is calculated according to the

formula

t - A + (BX)0.2C
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where A, B, and C are parameters whose values are stored in the heat source

data file for the furnace of interest, and X is the size for one furnace. The total

expense is found by multiplying the capital costs by the factor e at where t is time

in years. The factor a accounts for interest cost during construction. For the

economic ground rules used in this study, a = 0.024.

The annual operating costs	 for a	 typical noncogeneration case are the costs for

fuel,	 electricity, and operation and maintenance expenses. 	 Fuel costs are based

upon	 actual	 fuel consumption.	 The cost for by-product fuel is considered to be

ZE:'O.	 The costs are then determined by multiplying the price of each fuel by the

fuel consumed that year.	 Electricity costs are calculated in a similar fashion.	 The

1985-2000 prices are in	 1978 dollars.	 These 'prices are assumed to escalate at a

specified	 annual rate above the	 inflation rate.	 Thus to find	 the price for the

particular year of interest the 1985 price is multiplied at e ot where 0 is the

escalation rate, and t is the difference in years between 1985 and the year of

interest. The fuel prices and escalation rates specified in the ground rules are

listed in Table V-23.

TABLE V-23

FUEL COSTS

(in 1978 Dollars)

Fuel 1985 Cost Escalation	 Rate,	 f

Natural Gas $2.40/MBtu 0.0362

Distillate $3.80/MBtu 0.0100

Residual $3.10/MBtu 0.01C2

Coal $1.80/MBtu 0.0100

Electricity 3.34/kWh 0.0100

I
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The operation and maintenance costs are directly related to the furnace and the

balance-of-plant. The specific costs are obtained from the heat source and balance

of plant data files. The operating and maintenance costs do not escalate; they

remain constant in terms of 1978 dollars.

Since capital costs and operating costs cannot be combined directly, all costs are

spread over, the economic life of the installation, considering the time value of

money, to produce a levelized annual cost. The levelized annual costs of different

systems can be compared directly.

The levelized fuel and electricity costs are found by multiplying the respective

annual costs by the appropriate levelizing factors determined from the economic

ground rules. For natural gas the levelizing factor is 1.470; for all other fuels

and electricity it is 1.123. The levelized fixed charge for capital expenses is the

product of the total capital cost and the fixed charge levelizing factor of 0.101

based upon the econc.nic groundrules.

o Cogeneration System Costs

The conversion system related items comprise gasifier systems, primary and

secondary energy converters, primary and secondary generators, heat recovery

equipment, condensers, and heat pumps. The cost data for these items for one

design option are in the data file. The design option was selected on the bases cf

greatest fuel conservation potential. Since the size of conversion system is known

from the energy consumption calculations, it is used to determine equipment costs,

(i.e., interpolation to find specific costs per unit size and multiplication to find

total costs) for each item. These costs are then multiplied by the number of

conversion systems, NECS' to find the overall capital costs.

In some cases, the cost of the heat recovery equipment is given as a function of

the heat recovered rather than the conversion system size.

Condenser cost data is stored in the computer program and condenser requirements

are defined in the conversion system data file. The total condenser cost is found

by multiplying by NECS'

.85.
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When heat pumps are used, the cost is based on the amount of heat pumped which

is known from the energy consumption calculations. Heat pump cost data are

stored in the computer program.

If a heat source is required in conjunction with the energy conversion system, the

thermal output is calculated in the course of the performance analysis. Assuming

that there is one heat source for each conversion system, the size of one heat

source is

XHS a0HS YNEM

where OHS is the heat source thermal output and N ECS is the number of con-

version systems. The heat source size is used to determine equipment costs based

on the data file. The resultant costs are multiplied by NECS to yield the overall

heat-source capital costs.

For	 all	 cogeneration	 5y!;tems using	 liquid fuels,	 the	 auxiliary	 furnace	 costs	 are

calculated	 in	 the	 same	 manner	 as	 non-cogeneration systems.	 If	 the conver E.'nn

system uses a heat source that burns coal, auxiliary furnace requirements are mei,

by expanding the size of the heat source. In	 this case,	 the costs calculated are

incremental costs in excess of the cost of the basic heat source.	 The incremc-itai

size is

Xinc ` OF 
r 
s /N.a

where O F is the required furnace output. A size equal to S HS + Sinc is used to
find the specific furnace costs which are multiplied by X Inc NECS to yield the

incremantal furnace costs.

The balance-of-plant capital cost items are fuel storage and distribution systems,

limestone storage and distribution systems, waste disposal systems, emission-control

systems, boiler feedwater systems, heat-rejection systems, electrical conditioning

and control systems, and buildings. The cost analysis for the balance-of-plant

items is the same as the analysis without cogeneration.
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The capital cost data for installation and equipment are all found in the balance-of-

plant data file. The appropriate system size for each item is the product of the

respective total capacity and the sizing factor, rs.

Buildings may be required to house the conversion system, the heat source, or

auxiliary furnace. The calculations are similar to the computation for the fur-

naces used in the non-cogeneration cases. There are some minor differences.

The area and volume of the conversion system are calculated according to the

formulas

AECS 0 NECS CA MWR (MWR/ MWc) MA

VECS nNECS Cv MWR t AWR/MW0, MV

where MW  is the rated unit output, MW  is a reference unit size, and C A , CV,

MA and m V are parameters stored in the conversion system data file. Another

parameter in the data file tells whether a building is required. If it is, the build-

ing height is

hECS a VECS/AECS

and the building cost calculated from the formula

cc n 1.2 KEGS AECS

where KECS' the unit cost given in Table V-19, is a function of the building

height. The factor 1.[ is used to account for the cost of a crane.

The area and volume occupied by the heat source are determined according to the

formulas

AHS • 'Cl + C2 X HS ) NECS

VHS • IC3 + C4 XHS)NECS
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where C 1 through C 4 are parameters presented in Volume IV which are appropriate

to the heat source in question; X HS is the tota! output of each heat source (includ-

ing output used for process thermal requirements); and N ESC is the number of

heat sources (which is equal to the number of conversion systems). The para-

meters C 1 through C4 are constants having different values over different size

ranges. The set of parameters corresponding to the converter size is used in the

calculation. The set of parameters is set up so that when XHS is zero, the area

and volume go to zero also. If auxiliary furnaces are required, they are treated

exactly the same fashion as other furnaces. The assumption was made that the

heat sources and furnaces are housed in the same building, where appropriate.

The building height is approximated as the maximum of the ratios VHS/AHS and

V F /A F . The area is just the sum A = A HS + A F . The building cost is then

Ca a KM$ A

where the values for K HS are the same as for non-cogeneration cases (see Table

V-19). Total building costs are the summation of the costs of the conversion

system building and the cost for heat source and furnace buildings.

Site preparation costs are assumed to be one percent of' the total direct system

capital cost.

As in the non-cogeneration case, engineering and contingency fees are assumed to

be 15 percent and 20 percent, respectively. The total expense is somewhat higher

depending on construction time which is the maximum installation time for the

conversion system, the heat source or the furnace. The total expense is then

t'ourd by multiplying the total capital cost by the factor e0.024t to eccount for the

interest expense during construction.

Operating costs for cogeneration systems consist of the annual cos '. ;_-, r ...;:sum-

ables, electricity (credit or debit) and operation and :maintenance.
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Fuel costs are based on actual annual fuel usage by type, which is determined

from the energy consumption calculations. The fuel prices are the same as non-

cogeneration fuel prices. The cost of limestone is $10 per ton and the cost of

dolomite is $12.50 per ton in 1978 dollars. The type of limestone required is

defined by the heat source data file. No escalation in the price of limestone was

assumed.

If electricity is purchased, the cost is determined in the same manner as non-

cogeneration case. If electricity is exported to the utility, the selling price or

credit is assumed to be 60 percent of the buying or import price.

The economic and physical groundrules for the study are defined in Volume 1,

pages 27 through 40.

The operating and maintenance costs have contributions from the conversion system

heat Source, furnace and balance-of-plant. The contribution from the conversion

system is determined by the annual electrical output and the operation and main-

tenance cost factor obtained from the data file. For the heat source and/or the

furnace, operation and maintenance costs are determined by the capacity of the

equipment and the specific operation and maintenance cost factor contained in the

data file. The similar costs for the balance of plant are determined from the data

file.

The levelized annual cost for the cogeneration cases is determined in the same

manner as in the noncogeneration case. The levelizing factors for fuels, electri-

city, capital and operation and maintenance are identical to these used in the

conventional system. The p;-ices of limestone and dolomite were assumed to be

stable in 1978 dollars and a levelizing factor of unity was used.

For one comparative evaluation, the levelized cost savings ratio is calculated. This

ratio is defined as

csa . 
LAC Noneoo^n — LAC E

LAC Noncopn
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Emissions and Wastes

Cogeneration systems can emit pollutants which could be a detriment to accept-

ability. Curtailment rules in some areas are concerned with emissions discharged

at the industrial plant. The nation, as a whole, is concerned with the total

amount of pollutants discharged to meet the energy requirements of the industrial

process. In this study, amounts of pollutants discharged to the atmosphere were

estimated both at the industrial site and including the electric utility. Specifically,

discharges of sulfur oxides, nitrogen oxides, hydrocarbons and particulates were

determined. Emission guidelines were established (Table 12, Volume I) based on

the type and amount of fuel consumed by the energy conversion system to serve

as a aesign objective and as an evaluation measure.

.Solid material wastes ( such as ash) were assumed to be trucked away and were not

considered pollutants. Waste water or other liquids (such as spent lubricants)

were assumed to be handled by the industrial plant waste system in an environ-

mentally acceptable manner. In computing total or national emissions, the electric

utilities were assumed to burn coal and operate within the emission guidelines.

Heat rejection from cogeneration energy conversion systems was handled by wet

cooling towers.

o NonLogeneration Emissions

In the conventional situation, the emissions from the industrial plant boilers and

the emissions from the electric utility comprised the y total emissiors. The cal-

culations are performed separately. The utility coal consumption is determined in

the oerforman.ce calculations. The factors for the amounts of pollutants emitted

Per unit fuel consumed for the utility are obtained from the heat source data file

Ter , beat source Number 10, a -:;:I-fired steam generator which includes the sulfur

scrubber equipment to meet the emission guidelines.

ht: industrial plant traditionally includes furnaces or boilers to provide the

_JCULLS^, ► • Cat. These are fueled with boiler-grade oil and the emission factors are
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determined from the heat source data file for heat sources one through four. If

the cogeneration conversion system used coal-derived fuel, the emission factors are

obtained from the data file for heat source Number 6. The difference in emissions

per unit of fuel consumed is small - principally, higher particulates due to the ash

content in the coal-derived fuel. Direct heat furnaces using liquid fuel are

assumed to emit pollutants consistent with the emission guidelines. Since none of

the conversion systems used natural gas, there is no difference in direct heat

emissions between the cogeneration and the non-cogeneration cases when natural

gas is the specified fuel.

o Cogeneration

Emissions in the cogeneration case can come from four sources--the utility, the

conversion system, furnaces, and direct heating. The utility emissions are calcu-

lated separately in the same fashion as in the non-cogeneration case.

The conversion	 systems emissions are calculated	 in one of two ways. If a heat

source is required, the emission factors appropriate to that heat source are multi-

plied	 by the	 heat-source fuel	 consumption.	 If the conversion	 system does not

require	 a separate heat	 source,	 the emission	 factors	 used are obtained	 directly
from the conversion	 system	 data file and multiplied by the appropriate fuel con-
sumption.

To find furnace related emissions for auxiliary furnaces, the fuel consumption is

multiplied by the emission factors for boiler grade oil or coal derived boiler grade

depending on conversion system fuel. Direct heat related emissions are the

product of the fuel consumed for direct heat and the emission factors appropriate

to that fuel.

The industrial plant emissions for each pollutant are the sum of the conversion

system, auxiliary furnace, and direct heat contributions. Total emissions are the

sum of the plant and utility emissions.

0
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o Emission Comparisons

To compare the environmental merits of cogeneration plants, the predicted

emissions can be compared by species or in total. These comparisons can be made

at the industrial plant site or they can include the electric utility emissions. To

assist in comparisons, the emissions savings ratio is us:ful.

Emissions Savings Ratio = Noncogeneration Emissions - Cogeneration Emissions

Noncogeneration Emissions

For this ratio the emissions are the arithmetic sum of the various species and

include both on-site and utility emissions. As with the fuel energy savings ratio,

%%hen the cogeneration system exports electricity to the utility, the non-cogener-

ation emissions include the additional utility emissions associat--u with the exported

electricity.

COGENERATION PERFORMANCE OUTPUT FORMATS

The performance and	 costs of the various	 cogeneration	 applications studied with

the computer program are presented in two different output formats: a summary

for each energy conversion system which gives the performance and cost savings

%then used	 with	 all	 twenty-six industries and a five page cogeneration printout for

each cogeneration system which presents detailed performance at the national	 level

and costing at the plant level.

t_ac i surnmar•y printout presents information for a selected conversion system

installed in the year 1990 in each of the 26 industries for one of the four matching

<trategies. These summaries are included in Volume VI.

^:,jch detailed five pa ge cogeneration printout present data for a specific combi-

+.tion ot' conversion system industrial process-cogeneration strategy. 	 A sample

Ckleneratian printout for a gas turbine - chlorine and match-electric strategy is

stntt :; in Figur e V-2 .3. The industry, the energy conversion system and Vie

rr.uk:!) -i.; ;trateg^ are indicated on the first page. The model industrial plant size

Ul" national annual production are listed in Table VI-II of Volume VI.
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Page I	 AVERAGE ENERGY REGUIREMENIS

NO.10 SIC 2812 CHLORIHEiCAUSTIC PRODUCTION

TIME fRAME = 1990.

STRATEGY : MATCH-E

SELECTED TECHNOLOGY	 = NO.13 ADVANCED TECHNOLOGY.GAS TURBINE.DIRECT FIRED.COAL OER.BLR GRO

SELECTED	 NON
TECIRIOL0GY COGENERATION

FUEL UTILIZATION ( 	 10**12 BTU)
NATURAL GAS 0.0 46.39
PETROLEUM DISTILLATE 0.0 0.0
PETROLEUM RESIDUAL 0.0 20.93
COAL GAS 0.0 0.0
COAL DERIVED DISTILLATE 0.0 0.0
COAL DERIVED RESIDUAL 432.36 0.0
COAL 0.0 601.53
OTHER 0.0 0.0

TOT FUEL CONSUHPTI0N(10**12 BTU)
SITE 432.36 669.36
SOURCE 617.84 668.86

IND BYPRODUCT FUEL (10**12 BTU) 48.72 12.18

TOTAL ELECTRIC CONSUMPTION
(10* % 9 	h111 N1 46.52 46.40
(10**12 BTU) FUEL ENERGY 432.36 499.13

ELECTRICITY PURCHASED
(10**9 h0i) 0.0 46.90
110**12 BTUI FUEL ENERGY 0.0 499.13

TOT FUEL ENERGY SAVE (10**12 BTU)
SITE 236.50 0.0
SOURCE 51.02 0.0

TOT OIL AND GAS SAVE(10**12 BTU) 67.33 0.0

NATURAL GAS SAVINGS
(10 1-+%12	 BTU) 46.39 0.0
(10**9 CU FT) 49.67 0.0

OIL SAVIN3S
(10 4 ► 12 BTU) 20.93 0.0
EQUIV. 88LS 3.61 0.0

COAL SAVI14GS (SOURCE)
(10.12	 BTU) -16.31 0.0
(IO+"o	 TONS) -0.76 0.0

Figure V•24. Cogeneration Printout for Gas Turbine - Chlorine Industry and Match E Strategy
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Pap 3	 SELECTED	 NON
TECIINOLOGY COGENERATION

FUEL ENERGY UTILIZATION RATIOS
FUEL ENERGY SAVL14GS RATIO

SITE 0.);P4 0.0
SOURCE 0.076 0.0

U/U(01 0.0 1.000

ECS FUEL/U(0) 0.866 0.0

F/U(0) 0.0 0.340

SPECIFIED FUEL/U(0) 0.0 0.0

ENERGY CONVERSION SYSTEM DATA
DESIGN OPTION 3.0 0.0

ECS SIZE (MW) 44.64 0.0

NO. OF UNITS 2.0 0.0

ECS ELECTRICAL EFF-ETAE 0.330 0.0

SENSIBLE WASTE HEAT RATIO--A 0.923 0.0

♦ "-L WASTE HEAT RATIO,R'--HG 1.000 0.0
(NON AOUATIVE)

AVBL WASTE HEAT RATIO.R'-700 0.539 0.0
AVBL WASTE HEAT RATIO.R'-500 0.136 0.0
AVBL WASTE HEAT RATIO.R'-300 0.101 0.0
AVBL WASTE HEAT RATIO,R'--HW 0.008 0.0
---------------------------------

TOTAL R
----------

0.784
----------

0.0

RECOV WASTE HEAT RATIO,R--HG 0.0 0.0
RECOV WASTE HEAT RATIO.R-700 0.0 0.0

RECOV,WASTE HEAT RATIO.R-500 0.353 0.0
RECOV WASTE HEAT RATIO,R-300 0.173 0.0
RECOV WASTE HEAT RATIO,R--HW

--
0.005 0.0

-------------------------------
TOTAL R

----------
0.531

----------
0.0

AUXILIARY POWER REQUIREO(KW) 184. 727.
AUX THERMAL REQ(10't*6 BTU) 6. 1.
COP OF HEAT PUMP

-----------------------------------------
0.0

-------------
0.0
-------

U = UTILITY FUEL	 IH O) = UTILITY FUEL (NON-COGENERATION)

F = AUXILIARY FUEL (INCLUDES SPECIFIED FUEL)

Figure V-24. Cogeneration Printout for Gas Turbine - Chlorine Industry and Match E Strategy (continued)
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Pape 4

COST CATEGORY

1. FUEL/WASTE HANDLING AND STORAGE

1.1 FUEL STORAGE AND RETRIEVAL
1.: LIMESTONE STORAGE AND RETRIEVAL
1.3 WASTE HANDLING SYSTEMS

SUB-TOTAL

Z. ECS HEAT SOURCE

2.1 HEAT SOURCE
2.2 SPECIAL EMISSIONS CONTROLS
2.3 FEED WATER SYSTEMS
2.4 GASIFIER(ECS1

SUB-TOTAL

3. ENERGY CONVERSIOM SYSTEM(ECS)

3.1 PRIMARY ENERGY CONVERTER
3.2 PRIttARY GENERATOR/INVERTER
3.3 SECONDARY ENERGY CONVERTER
3.4 SECONDARY GENERATOR
3.5 COTTONING CYCLE VAPOR GENERATOR
3.6 HEAT RECOVERY EQUIPMENT
3.7 CONDENSERS
3.6 HEAT PUMP

SUB-TOTAL

4. THERMAL STORAGE

S. SUPPLEMENTARY HEAT(FURNACE*80ILER)

6. HEAT REJECTION

7. OTHER BALANCE OF PLANT ITEMS

7.1 SITE PREPARATION
7.2 STRUCTURES
7.3 ELECTRICAL CONDITIONING t CONTROL

SUB-TOTAL

8. INDIRECT COSTS

8.1 C04TING,ENCY
8.2 E14GINEERING AND FEES

SUB-TOTAL

TOTAL CAPITAL COST ESTIMATE
CONSTRUCTION TIME(YEARS)
CAPITAL COST EXPENDITURE

CAPITOL COST ACCOUNTING FOR TYPICAL PLANT
(4 0001

rrrrr SELECTED TECHNOLOGY rrr	 NON-COGEN
EQUIPMENT INSTALLATION	 TOTAL TOTAL
---------- ---------- ---------- ----------

722. 94. 815. 353.
0. 0. 0. 0.
0. 0. 0. 0.

722. 94. 815. 353.

0. 0. 0. 0.
0. 0. 0. 0.
0. 0. 0. 263.
0. 0. G. 0.
0. 0. 0. 263.

4925. 2068. 6993. 0.
3102. 0. 3102. 0.

0. 0. 0. O.
0. 0. 0. 0.
0. 0. 0. 0.

1442. 460. 1902. 0.
0. 0. 0. 0.
0. 0. 0. 0.

9469. 2528. 11997. 0.

0. 0. 0. 0.

0. 0. 0. 1351.

0. 0. 0. 0.

0. 128. 12a. 22.
0. 0. 0. 211.
2. 3. 4. 16.
2. 131. 132. 249.

2039. 550. 2589. 443.
x_29. 413. 1942. 332.
3567. 963. 4531. 776.

13760. 3716. 17476. 2992.
0. 1. 1. 0.

14094. 3806. 17900. 3004.

Figure V•24. Cogeneration Printout for Gas Turbine - Chlorine Industry and Match E Strategy (continued)
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Page 5 SELECTED NON
TECHNOLOGY COGENERATION

k,'NUAL COSTS
---------- ---- ------

OPERATING COSTS	 1990. (K!/YR)
NATURAL GAS 0. 0.
PETROLEUM DISTILLATE 0. 0.
PETROLEUM RESIDUAL 0. 0.
COAL GAS 0. 0.
COAL DERIVED DISTILLATE 0. 0.
COAL DERIVED RESIDUAL 22505. 8571.
COAL 0. 0.
OT1lER 0. 0.
LIMESTONE/DOLOMITE 0. 0.

TOTAL FUEL COST 22505. 8571.

ELECTRICITY 0. 25933.
STAND-BY CHARGE 0. 0.
0 i M COST 2060. 87.	 j

TOTAL OPERATING COSTS 24586. 34591.

LEVELIZED OPERATING COSTS 27354. 38835.
LEVELIZED FIXED CHARGES 1808. 303.
LEVELIZED ANNUAL COST 29162. 39138.
COST SAVINGS 9976. 0.
COST SAVINGS RATIO 0.255 0.0

ENVIRONMENTAL IMPACT

PLANT EHISSIONSITON/YR1
SULFUR DIOXIDE 2831.357 1083.537	 i
NITROGEN OXIDES 1726.437 657.486
HYDROCARBONS 69.057 26.299
PARTICULATES 345.298 131.497

SUBTOTAL 4972.133 1898.820

UTILITY EMISSIONS(TON/YR)
SULFUR DIOXIDE 0.0 4793.328	 3

NITROGEN OXIDES 0.0 2790.276
HYDROCARBONS 0.0 556.055
PARTICULATES 0.0 399.611

SUBTOTAL 0.0 6530.266

TOTAL 4972.133 10429.082
r

ENISSTON5 SAVINGS RATIO
SUL F UR DIOXIDE 0.517 0.0	 {
NITROGEN OXIDES 0.499 0.0	 i
HYDROCARBON'S 0.882 0.0
PARTICULATES 0.349 0.0

TOTAL 0.523 0.0

SOLID WASTES 0.0 0.0

Figure V•24. Cogeneration Printout for Gas Turbine - Chlorine Industry and Match E Strategy (continued)

a

M
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Page two presents the energy consumption at the national level for the cogener-
ation and non-cogeneration cases. Fuel consumption at the site by type is given
for both the cogeneration and conventional cases.

The total fuel consumption is given at the site (plant and utility) and source (coal
mine). The differences in consumption are due to processing energy losses in
converting the coal to a useable liquid. If a specific industry produces a by-
product fuel which can be utilized, the extent of utilization will be irdii-aced in the
by-product fuel column. The total electric consumption for the national level is
presented in kWh and equivalent Btu of fuel converted at the electrical generation
efficiency of the conversion system electricity and 32 percent efficiency for the
purchased electricity. The total fuel energy saved at the site (or source) w;!'
equal the difference between the fuel energy used in the non-cogeneration case
and the fuel used in the cogeneration case. The total natural gas and oil saved is
defined in the same manner as total fuel saved. Additionally, natural gas savings
is given in Btu and cubic feet (converted at 930 Btu/ft 3 ), oil savings is given in
Btu and equivalent barrels (converted at 5.80 million Btu/bbl) and coal savings is
given in Btu and equivalent to r.; (converted at 21.5 million Btu/ton of coal).

Page three presents energy utilization ratios and plant level energy data. The
fuel energy savings ratio is given for site and source. Strategies which do not
produce an answer are indicated by a -1000.0. The cogeneration fuel use is listed
by function: the utility consumptio nI (debit or credit), the conversion system fuel
use, the sum of the auxiliary furnace fuel and specified fuel, and the specified
fuel separately. Each of the fuel consumptions is stated as a ratio of the fuel
energy used to the energy used at the utility to supply the industrial process
without cogeneration.

The next section of page 3 presents the conversion system related data: the
design option, the size in MWe, the number of units installed, and the electrical
efficiency. The electrical efficiency is the electrical output divided by the higher
heating value of the input. The following parameter, the sensible waste heat
ratio, (A), is defined as the sensible heat available divided by the total heat
rejected by the conversion system.	 i

1'
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1 —no	 t-.%

where Q  = irrecoverable losses,

le = electrical efficiency

The next group of parameters is the available waste heat ratio (l,") by thermal

category.

The waste heat ratio for a given thermal category R  is defined as

pal ^1

The available waste heat ratios (R') in this printout reflect the redistribution of

the conversion system available thermal energies into the various thermal bins.

The waste heat ratio for hot gases (HG), represents the fraction of the sensible

heat (t) which is available for direct-process heating. The total R' is the

summation of the individual available waste-heat ratios R i ', excluding hot gas, and

represents the maximum available thermal energy as steam and hot water.

The	 next	 section presents	 the recovered	 waste heat ratios (R) relative to	 the

specific	 industrial application. This	 section	 indicates	 how	 much and	 in	 which

thermai	 categories the	 available waste heat was	 utilized.	 At the bottom of the

page,	 the parasitic requirements (electrical and thermal) are given along with the

coe ficient-of-performance of the heat pump, if utilized.

Page four presents the capital cost accounts in 1978 dollars. Cogeneration system

costs are broken into equipment and installation costs.

The summation of the individual components of the system gives the total capital

cost estimate shown at the bottom of the page. The cost of borrowing money

during the construction period adds to the total indebtedness and is reflected in

the capital cost expenditure.

s
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Page five gives the annual operating costs (in 1978 dollars) and environmental

impact of the installation for the typical plant. The operating fuel costs are listed

by fuel type for the year 1990. Any purchased electricity and system operation

and maintenance cost is presented in this section. For this study, no stand-by

charge was assessed. If the cogeneration matching strategy results in the sale of

electricity to the utility grid, the cost credit to the industry will appear as a

negative number. The credit for selling electricity to the utility would be 60

percent of the purchase price of electricity. The levelized costs over the economic

life of the system consists of the levelized fixed charges and the levelized

operating cost.

The environmental impact data are presented for the plant and utility. The

pollutant species are given in tons emitted per year for the typical plant. The

emissions savings ratio is based on the summation of emissions at the plant and

utility for the cogeneration and non-cogeneration case. The tons per year of solid

wastes produced by the operation of the non-cogeneration and cogeneration plants

are listed. This value reflects solid wastes from the operation of coal-fired heat

sources and waste disposal systems.

COGENERATION ECONOMIC ANALYSIS

The purpose of the economic analysis is to provide a format to evaluate the cost

effectiveness of alternative energy systems. To this end, the methodology must be

not only appropriate, but it must be based on accepted practices. In addition,

the methodology should be as comprehensive as is practical in order that any

differences in the results can be traced to the data rather than to peculiarities in

the method of approach.

The performance and cost data provided for the advanced energy conversion

systems were estimates based on the experience of experts in each technical area.

Consequently, the results produced in the economic analysis are dependent upon

the implied accuracy of these input data. Regardless, an economic model was

developed which is comprehensive in nature and is able to provide detailed results.

-99-
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Since all input data are based on the same set of economic ground rules, the

relative differences in results should be reliable. When a system characteristic,
such as discounted-cash-flow rate-of-return which is calculated in this economic
model, is significantly above or below a target industry rate, the attractiveness or

unattractiveness of the venture is apparent. When the calculated rate-of-return

falls near an assumed industry or company target, other factors, such as cash

flow profiles, investment magnitude, and degree of financial uncertainty, (which
are not included in this study) must be considered in judging a system in addition
to the results produced by this analysis.

The results calculated in the economic rate-of-return analysis are based on a

discounted factor which takes into account the time value of cash flows into and

out of a selected venture. The levelized annual costs and life-cycle costs follow
typical public utility analysis practices except for the fact that this basic approach

has been modified to eliminate the effect of inflation (where appropriate) on the

forecast levels of future cash flows. The practice followed in this analysis follows
directly the methodology outlined in a 1976 Jet Propulsion Laboratory study for the

Electric Power Research Institute. (Reference 1).

The overall objective of this task was to estimate the economic characteristics of

cogeneration and non-cogeneration systems. All of the input data required in this
economic task were obtained from the cogeneration performance analysis described
previously in this report. The following sections of the economic analysis present
descriptions of the relevant industry (internal) and national (external) factors

affecting each of the cogenerations systems, the economic parameters calculated,
samples of typical program results, and sensitivities to change in input data for

selected case studies.

Internal and External Factors

Industrial organizations within the private business sector establish criteria, herein
called internal factors, which are used to guide and monitor the performance of
their businesses. At the same time, there are generally a set of external factors

which represent conditions of the business environment outside the confines of the
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firm which also affect the manner by which these firms conduct their busino
Internal factors are defined as those industry-related criteria involving policies,

practices, constraints, and other conditions specific within each industry or to the

individual firms within that industry which influence industry capital investment

decisions. The specific internal factors used in this study are the cost-of-capital
to the firm and the rate-of-return (which is intended to be compared with an
established "target"). External factors are defined as those conditions prevalent
throughout the business., community which are imposed on all industrial firms but

also which influence the capital investment decisions of individual firms. The
external factors, which generally are beyond the control of any firm or group of

industrial firms, cover political, environmental, regulatory, and economic areas,

some of which are under partial or direct control of the government. Examples of
external factors are the federal income tax rate, investment tax credit, cost of
purchased fuels and electricity, and relevant institutional and environment regu-
lations. These conditions are specified by the economic ground rules.

Of the internal and external factors affecting busine c-s investment decisions in this
study, the cost of capital, the rate-of-return, depreciation method, effective

federal tax rate, investment tax credit, and costs of purchased fuels and electri-
city can be! quantified explicity. Political, regulatory, and environmental factors

must be considered in qualitative terms, and as such, were only considered impli-
citly in thle economic analysis. These latter factors were assumed to be satisfied
by the cogeneration systems and sufficient capital allowances were assumed to have

been made in each of the subject conversion systems to assure their compliance
with the regulations as foreseen for the 1985-2000 period.

o Cost-of-Capital

A series of economic ground rules and assumptions were made to provide a frame-
work for the study. To assist in establishing these ground rules, historical data

were analyzed and reviewed for firms with twenty-two industrial classifications in
this study. These results, calculated for a large number of firms in each industry
were based on 1978 economic data from Reference 2.
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The after-tax coat-of-capital is an important internal factor for the industrial and
utility-oriented firms which would consider the installation of cogeneration energy
systems in the future. It is expressed as:

Cost of Capital a (1-Tr) (CD) D + (CC) CS + (CP) -
TC	 TC	 V

where:	 TC a D + CE + PE

In this relationship, Tr is the effective tax rate; CD is the cost of debt to the
firm; CC is the effective cost of common equity to the firm (here expressed as the
earnings-to-price-ratio); and CP, the cost of preferred equity. The total firm
capitalization, TC, and the individtial components, (the debt portion of total
capital, Di the common stockholders equity, CE; and the preferred stock-holders
equity, PE) are used to weight the various costs components of the overall cost-of-
capital.

As shown in Table V-24, the average value of the cost-of-capital calculated across

all firms is slightly in excess of 10 percent, and the range of values within each
of the industrial categories is small as indicated by the standard deviations.
These historical values include an average inflation rate of 5 percent. If inflation
for the noted pe-•iod were removed from the results, the cost of capital on a non-
inflated basis would be approximately 5 percent.

In setting the economic ground rules, a cost of capital (after taxes) of 5.35 per-

cent was established for this study.

o Achieved Rate-of-Return

In assessing the merits of a cogeneration system, some decision makers would

consider the estimated rate-of-return as an important parameter. Therefore,

historical business data were analyzed to provide background and perspective on
achieved rate of return.

za
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Different methods of cai.-ulating the achieved rate-of-return on prior capital invest-

ment have been proposed over the years, but none of the methods investigated

were considered to provide results consistent with the rates -of -r 4qturn calculated

by the discounted cash flow model used in this study. Therefore, a derivation

was undertaken in order to provide insight into historical results which c*)uld be

compared directly with the results forecast for the cogeneration systems considered

in this study.

TABLE V-24

HISTORICAL DATA ON INDUSTRIAL AFTER' TAX COST-OF-CAPITAL

Cost of Standard

SIC a-te-mix Capital Deviation

2011 Meat Packing 11.0 4.1

2051 Bread and Other Bakery Products 9.0 2.1

2082 Malt Beverages 8.5 ---

2221 Broad Woven Fabric Mills --- ---

2621 Paper Mills Except Building Paper Mills --- ---

2631 Paperboard Mille 11.5 2.1

2812 Alkalies and Chlorines 10.0 2.0

2819 Ind. Inorganic Chemicals Not Elsewhere 10.1 2.1

Classified

2821 Plastic Materials, Synthetic Resins, --- ---

and Non-Vulc. Elastomers

2822 Butadiene Rubber 9.6 2.1

2824 synthetic Organic Fibers Except 9.0 1.9

Cellulosic (Nylon)

2865 Cyclic Crudes, Cyclic Intermediates, and 9.2 1.5

Organic Pigments (Styrene)

X869 Ind. Organic Chemicals Not Elsewhere 9.3 2.3

Classified (Ethylene)

2911 Petrolelem Refining 10.F 1.6

3011 Tires and Inner Tubes 10.c 2.7

3221 Glass Containers 1:.7 1.5

3241 Cements, Hydraulic 11.5 319

3312 Blast Furnace (Including Coke Ovens), 8.9 1.8

Steel Works and Rolling Mills

3321 Gray Iron Foundries 11.3 3.3
3331 Primary Smelting and Refining of Copper 9.7 6.2
3711 Motor Vehicles and Passenger Car Bodies 12.3 3.9
3714 Motor Vehicle Parts and Acessories 11.6 2.4
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If, over a short period of industrial experience (2-S years), incremental profit can

be related to incremental sales, then

OProfit = (Margin) X (ASales Volume)

If capital investment is proportional to sales in the same period (that is, there is a

representative capital-output ratio, CO, for the firm) then sales and investment,

INV, can be related by:

(ASales) X (CO) _ (AINV)

Therefore, in the short-run, profit is proportional to investment:

(AProfit) _ (Margin) X (AINV)/(CO)

(OProfit) _ (K) X (AINV)

In other words, profit is a fixed return on investment where

K = (Margin)/(CO)

AINV is the incremental gross investment before depreciation since production

output does not decrease with the book value of an investment. Further, in order
to support a given level of sales, another investment in nondepreciable assets must

be made. This additional investment is generally defined as working capital, WC,

and is assumed to be related to investment, ANV, by:

WC = (J) X (INV)

Therefore, total assets may be defined as:

Total Assets = (WC) + (INV) _ (1+J) X (INV)       
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The net present value, NPV,, of a series of annual investments may be written as:

NVPI - (1 +A[INVI + INV2M + d + INV31(1 + r)2 .......... + INV./ 0 +On"]

-J/ ( 1 +r)°[!NVI +INV2/ 0 +0 ......... +INV /(1+r)n-11

The assumption is made that the firm will operate over a long period, in years,

but that the capital equipment has a finite life, N. Since-working capital is not

needed when capital equipment is retired, the second major term represents the

return of that working capital. Any new equipment purchased to replace returned

equipment and the working capital associated with such purchases are already

taken into account in the first major bracketed term. In a similar manner, the net

present value of the earnings cash flow NPVECF' comprised of the net present

value of the after-tax profit (net income) plus the net present value of the

depreciation cash flow (based on the straightline approach) becomes:

NPVECF ' NPVATP + NPVOEP

where

NPV	 K ^N` INVL	 N+1 INV_,	 N+2 INV,	 N-rr1 INVn
ATP '	 `	 -	 +	 -	 +	 ...............+

	

f (1+m)	 2 (t+m)	 3 11+m)i	 WWI
NPV	 . N
	

N̂-. INVJ	 INV •	 N+2 INV	 M.,*1	 INV

	

11 ml	 11 m!	 + 	 +	 +1	 +	 2	 +	 3	 I1 m)^	 1?(1 m)^

which can be transformed to:

1	 N	 1
NPVECF ' K+_	 F

INV,
INV,	 +	 .

INV
..........+

N	 1	 (1+M) i (1+m) ( 1 +m) fi 1

1	 where m is the rate-of-return and N	 is the tax life of the capital investment.	 In

the	 long run,	 using	 the approach that	 the discount factor for	 investments,	 r,

equals	 the	 internal	 rate-of-return, m,	 and the investment criterion that the net

present value of	 future investments is	 equal	 to the net present value of future

earnings

Id	 I	 'i



Power Systems Division
	

FCR-1333

NPV I " NPVECF

However, the summation terms inside the brackets on both sides of expanded

verion are equal. Therefore;

N	 1

OMN ^( N) (
1:

 1 (1+d

However, the term:

N 1	 (1+r)N_I I
i1 (1+r)	 (r) (1+r) N	 r

as N becomes large.

Therefore, the rate-of-return can be transformed into

r- KN+1
N(1 +J)

The terms of the right hand side of this relationship can be obtained directly from

a firm's balance sheets over a selected time period, and for that period, the

internal rate-of-return, achieved by that firm can be estimated. Of course, the

accuracy of the approximation increases as N, the depreciation period, increases;

this accuracy also depends on the relative values of the working capital ratio, J,

and the (margin-to-capital output ratio) term, K. For most values of J and K

used in this study, the rate-of-return calculated by using this simplified approach

tended to overestimate by less than 10 percent the value which would have been

calculated directly.

Based on this approach, the calculated rates-of-return identified by four digit

standard industrial classification numbers are shown in Table V-25. The values

include the effects of inflation. With a few exceptions, the rates-of-return exceed

the cost-of-capital for the respective categories. The overall (unweighted)

average aftertax rate-of-return calculated for these twenty-two industrial groupings
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is slightly less than 13 percent compared to an average cost-of-capital of 10 percent.

This indicates that for the subject firms (industrial groupings), the rates-of-return

historically have exceeded the costs of capital by approximately three percentage

points.

Since most firms cannot plan for all events affecting their future sales, target

rates-of-return may be established in excess of their historically-achieved rates-of-

return. In fact, information presented in Reference 3 indicates that target rates-

of-return in excess of 15 percent, aftertax, are not uncommon in industry.

TABLE V-25

INDUSTRIAL COMPOSITE RETURN RATES

Average Rate Standard
SIC Industry of Return Deviation

2011 Neat Packing 7.7 11.0
2051 Bread and Other Bakery Products 17.3 10.0
2082 Malt Beverages 7.5 8.8

2221 Broad Woven Fabric Mills 18.7 13.7

2621 Paper Mille Except Building Paper 14.4 6.0

Mills

2631 Paperboard Mills 12.5 5.0
2812 Alkalies and Chlorines 14.7 2.6

2819 Ind. Inorganic Chemicals Not 14.1 3.1

Elsewhere Classified

2821 Plastic Materials, Synthetic Resins, 11.0 4.5

and Non-Yule. Elastomers

2822 Butadiene Rubber 7.7 2.6

2824 Synthetic Organic Fibers Except 9.4 3.5
Cellulosic (Nylon)

2865 Cyclic Crudes, Cyclic Intermediates, and 13.3 4.3

Organic Pigments (Styrene

2869 Ind. Organic Chemicals Not Elsewhere 13.1 4.1

Classified (Ethylene)

2911 Petroleum Refining 12.5 1.9

3011 Tires and Inner Tubes 9.0 3.45
3221 Glass Containers 10.0 4.0

'	 3241 Cements, Hydraulic 19.9 19.8
3312 Blast Furnace (Including Coke Ovens), 10.4 3.2

Steel Works and Rolling Mills
3321 Gray Iron Foundries 13.9 5.0
3331 Primary Smelting and Refining of Copper 10.8 11.0
3711 Motor Vehicles and Passenger Car Bodies 14.3 8.8
3/14 Motor Vehicle Parts and Acessories 16.5 4.7
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In a business climate facing a 6 percent to 7 percent inflation rate (which was

typical of firms in the mid-1970's), a target rate of return of 15 percent (including

the effect of inflation) would be reasonable. When the inflation factor is removed

from this estimate, a target, constant-dollar rate-of-return of 8 to 9 percent

(above the inflation rate) should be considered typical of most industrial firms

which consider a low-risk venture. It was thought that in as much as this value

exceeds the estimated average industrial firm cost of capital by approximately 3 to

4 percentage points, it is in line with historical data and therefore could be used.

Consequently, when estimating the attractiveness of a cogeneration system from the

viewpoint of an industrial firm, target rate-of-return of 8 percent above the

inflation rate was considered to be the minimum value which would be acceptable.

Assumptions and Ground Rules

For consistency in the overall study, a set of economic ground rules, assumptions,

and methods were established. These ground rules affect the industrial- and

utility-related capitalization and capital equipment depreciation life, the economic

life, the escalation rates of the fuels, the tax rates, the date on which the costing

is based, and the date of introduction for a given technology. In addition, all

costs and investments were expressed in 1978 dollar values, an assumption equi-

valent to assuming an inflation rate of zero.

Because all '.)ase-case economic analyses were calculated in the absence of

inflationary effects, this effect was also removed from the cost of capital. For the

average industrial firm, the before-tax coat of debt was assumed at 3 percent,

while the cost of equity was assumed to be 7 percent. Of the total capitalization,

that portion from debt funding was assumed to be 30 percent and that from equity

funding was assumed to be 70 percent. No preferred equity financing was con-

sidered. The after-tax cost-of-capital was 5.35 percent. In those cases where

utility type financing was considered, the ";,flacion-free cost of debt was assumed

_ r to be 2 percent (before-tax), and that for equity funding was 6 percent. With a

50 percent capitalization ratio for debt and equity financing, the after-tax cost-of-

capital for utility-type cogeneration system operators became 3.5 percent (at a zero

inflation rate).
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Although capital and operating costs for both the cogeneration and non-cogener-

ation systems were expressed in 1975 dollars and there was no effect of inflation,

there were escalation factors which were assumed to affect the costs of fuels and

electricity because of their increasing scarcity. For all fuels and electricity except

for natural gas, it was assumed that the real cost (in constant 1978 dollars)

increased at an escalation rate of 1 percent per year throughout the term of the

analysis. During this same period, natural gas was assumed to escalate in price

(also expressed in constant 1978 dollars) at an average rate of 4.6 percent per

year until 2000 when the escalation rate would reduce to 1 percent. All other

charges (e.g., operating and maintenance, capital, taxes, insurance, etc., affect-

ing the base cases) were assumed to include neither an inflation factor nor an

escalation factor.

For industrial firms, the rapid return of capital through depreciation cash flow is

beneficial to both their cash positions and their rates-of-return. Therefore, to

match as closely as possible the economic policies of such firms, the sum-of-the-

years digits, accelerated depreciation method was used, and all capital investments

were assumed to have a depreciation life of 15 years. For those firms where

utility-type financing was considered, it was believed that regulations by public

utility commissions would be applicable. Although the accelerated, sum-of-the-

years-digits depreciation method was still assumed in these latter cases, the

depreciation lifetime for these capital investments was extended to 30 years. In

every case considered, the effective economic lifetimes of the systems considered

were assumed to be 30 years. Calculations were performed to obtain cash flows

from both the noncogeneration and cogeneration systems for each year throughout

their entire economic lifetimes.

For purposes of this analysis, the federal income tax and the state income tax

were combined (recognizing that state taxes are deductible expenses on federal tax

returns). The effective income tax rate is approximately 50 percent and this value

was used. Tax concessions in the form of an investment tax credit from the

federal government have long been an incentive device to stimulate capital invest-

ment on the part of industrial firms. Although several government plans consider-

ing this incentive have been discussed for cogeneration, none were in effect at the

0i
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time of the study. As a result, both the cogeneration and noncogeneration

systems were considered to be eligible for only a 10 percent investment tax credit.

However, the effect of varying this highly visible incenti •„ii was considered in the

sensitivity analysis. Finally, although not strictly a tax factor, an allowance for

insurance premium on the capital equipment, ad valorum taxes, and other

miscellaneous state and municipal taxes was estimated to be 3 percent of the capital

equipment cost for firms where industrialtype financing was assumed.

For all cases, the initial year of operation of the cogeneration systems was selected

to be 1990; and the economic lifetimes extended 30 years to the end of the year

2019. This start-date is important in that it establishes the target year for which

the escalated fuel and electricity charges must be established (albeit in terms of

1978 dollar values). Although it could be argued that several of the technologies

could be made available before that time, some of the developing technologies may

not be available until a later time. By establishing a single base year for system

start-up, and by using a 1978-cost base for capital and expense charges, all

systems become comparable on a common basis, unaffected by the time value of

money which would otherwise accompany differing technology availability dates.

Calculation of Major Economic Parameters

There are several economic parameters which are gengrally of significance to the

management of a firm considering a new venture. Among the more important of

these are the discounted-cash-flow rate-of-return, the payback period, the net

present value of the venture, its levelized annual cost, and its life-cycle cost.

The definitions of each of these parameters, along with the methodology exercised

in the analysis to calculate the values of these parameters are presented in the

following section. However, before these individual factors are discussed, back-

ground on some of the major underlying components affecting the cash flows of a

typical venture should be introduced.

Specifically, the cash flow from operations is the summation of after-tax profit plus

the depreciation expense. This is illustrated in Table V-26 where operating

expenses, allowable depreciation, and federal and state income taxes are subtracted
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from sales to product net income from operations. However, as noted, since

depreciation is a non-cash operating expense, its value must be added to the net

income to produce earnings cash flow for the suliject period of examination.

Table V-26

SAMPLE COMPONENTS OF EARNINGS CASH FLOW

Sales Receipts

(minus)

Operating Expenses

(minus)

Depreciation

equals

Taxable Profit

(minus)

Federal, etc. Income Taxes

equals

Net Income

plus

Depreciation

equals

Earnings Cash Flow

In an effort to further assist in visualizing the manner by which the major

economic parameters of the analysis were calculated, Figure V-25 shows the initial

capital investment and the annual earnings cash flow values in each subsequent

year of a venture. The investment is shown below the base line to indicate a cash

outflow, whereas, the earnings cash flows are shown above the base line indicating

inflows of cash. The total heights of each _earnings cash flow column are meant to

represent the actual values of the cash flows. The cross-hatched values in each

column represent the discounted values of each annual cash flow.
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IJ

Figure 7-25. Schematic Diagram of Investment and Earnings Cash Flows for a Typical Venture

o Rate-of-Return

The rate-of-return is a measure of the interest returned on the invested capital

through a series of future cash flows resulting from the operation of a venture

requiring that capital. The rate-c,f-return is a unique characteristic of a business

venture and in financial terms is analogous to the interest rate paid on an

annuity.

In the study, the method used. to calculate rate-of-return was as follows: The

annual costs for fuel, electricity, operation and maintenance, depreciation, taxes,

insurance, and other related items were estimated separately for the cogeneration

and noncogeneration systems. Since it was rate-of-return on the incremental

capital investment (cogeneration minus noncogeneration) which was of importance,

the incremental earnings cash flows between systems were then determined. Nhen

this difference was calculated for each year, the implicit estimates for sales

disappear and all that remained were differences in system costs. The future

annual after-tax earnings cash flow differences were then discounted on a

trial-and-error basis until the sum of their present values matched the value of
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the incremental capital investment.	 Referring to Figure V-25, each future annual

cash flow has a discounted present value proportional to the crosshatched area at

its base,	 and there is only one interest rate (discount factor) which, when applied

to these actual cash flows produces a series of (discounted) flows whose summed

value	 equals	 that	 of the investment.	 This	 discount	 factor	 is	 defined as	 the

discounted-cash-flow rate-of-return	 for	 the	 capital	 investment	 undertaken.

Expressed in equation form:

30
ECF

INV .	 i

i,l ( 1+r)1

where r is the rate-of-return

INV is the incremental capital investment

ECF i is the annual, incremental, after-tax earnings cash flow in year "i".

o Simple Payback Period

Payback period is that amount of time until the summation of annual (incremental)

after tax earnings cash flows are sufficient to return the capital required in the

investment. Referring to Figure V-25, when the sum of the annual earnings cash

flows starting with year 1, equals the initial investment, the payback period has

been reached. The methodology used to calculate payback period does not consider

the time value of money nor the earnings cash flow profile beyond the payback

period. Nevertheless, payback period does serve as a simple and convenient

figure of merit of how rapidly a program returns its initial investment.

o Net Present Value

The term "net present value" refers to the sum of discounted incremental annual

earnings cash flows (between cogeneration and non-cogeneration systems), using

t.ie cost-of-capital as the discount factor, minus the incremental capital investment.

Net present value is calculated using a method analogous to that used for the rate-
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of-return. The cross-hatched areas in Figure V-25 are the present values of the

annual earnings cash flows using the coat-of-capital as the discount factor. Their

(positive) sum, when added to the (negative) value of the investment produces the

net present value of the venture. Stated differently, the net present value is the	 > '

difference between the present value of a future stream of earnings and the net

investment required. A venture is generally considered attractive for investment

if its net present value is positive, and when choices among ventures must be

made, those with the highest net present value are the most attractive. Because

the same discounting method is used to calculate the rate-of-return and the net

present value, any cogeneration system whose incremental capital investment

produced a rate-of-return greater than the cost-of-capital also produced a positive

net present value.

Expressed in equation form:

n

ECF

NPV	 1 - CI
1	 ( ].+COO

where:	 NPV is the net present value;

ECF is the annual, after-tax earnings cash flow;

COC is the after-tax cost-ofcapital;

Cl is the capital investment

o Levelized Annual Cost

The levelized annual cost is that cost which when distributed annually over the

lifetime of a system would have the same present value as the actual stream of

costs when both are discounted at the cost-of-capital. The levelized cost is com-

prised of numerous component factors including those related to the invested

capital, operating and maintenance charges, feel costs, electricity costs, and

miscellaneous other system charges. Since this sum comprises system costs, the

levelized value which is the lowest among systems being compared represents the

most attractive system on a relative basis. Expressed in closed form, the levelized

annual cust., LAC is:
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LAC = (FCR) (CI) + (CRF) (OCpy)

l ,'

when:	 FCR is the fixed charge rate;

Cl is the capital investment;
CRF is the capital recovery factor;

0C PV is the present value of the system operating costs.

The methodology used to calculate the FCR and CRF factors of the levelized costs

for the cogeneration and non-cogeneration systems are based on Reference 1.

o Life-Cycle Cost

The life-cycle cost of a system is defined as the net present value (discounted at

the cost-of-capital) of the sum of the system related costs, and where there is no

net investment outside of a given project, it represents the present value of the

reveneu stream (which includes appropriate returns to the bondholders and stock-

holders) associated with that program. The ratio of the levelized annual cost to

the life-cycle cost is directly proportional to the capital recovery factor, a term

used to spread a given present value equally over each of a future set of years.
As was the case for levelized annual costs where the analyses of both the co-

generation and noncogeneration systems are concerned only with system costs, that

system with the lowest life-cycle cost would be the most attractive in a relative

sense. The methodology and equations for the life-cycle cost used in the CTAS

economic; analyses were taken from Reference 1. The equation for life-cycle cosy,

LCC is: LCC = LAC/CRF

where:	 LAC is the levelized annual cost

CRF is the capital recovery factor

Economic Output Format

An example of the output results for a typical CTAS economic analysis is shown in
Figure V-26. This is the case for the chlorine industry with advanced-technology
gas turbines for the optimum cogeneration strategy. The start up year (1990) and
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base year of cost estimates appear first in the results followed by an indication of
the depreciation methodology, the after-tax cost-of-capital, annual fixed charge

rate (on invested capital), and the general inflation rate assumed. The subsequent
columnar data present specific information about the cogeneration and non-
cogeneration systems with respect to their capital costs, life-cycle costs, and
annularized (levelized) costs. The levelized annual cost savings ratio represents
*+-Y difference in annularized costs divided by the non-cogeneration system costs
and is expressed as a decimal value. For the annual output level of 268,333 tons
shown, the annual cost per ton is simply the annularized cost divided by this
annual output capacity. For this installation, the cogeneration system has a pay-

back period of 2.3 years as noted and a discounted-cash-flow raUk-of-return of

41.2 percent ( after taxes) . Since this rate of return for exceeds 'the cost-of-

capital, the net present value based on the incremental cash flow differences

between the non-cogeneration and cogeneration systems is positive. Finally, the
major economic input data for this case is noted at the bottom of this figure for

reaiy reference or for use when making comparisions among system results.

Economic analyses were conducted for '20 cogeneration systems using the baseline
economic ground rules described previously.

Sensitivity Analyses

In order to investigate the effect of changes in the values of several of the major

economic variables affecting the results of the study, sensitivity analyses were

conducted wherein the select variables are varied individually within prescribed

ranges. The primary objective of this activity was to determine the level of these
individual variables at which the minimum acceptable corporate rate-of-return

(previously selected to by v percent above the general inflation rate) would be

achieved. A further purpo_ ' of this activity was to determine the trend relation-
siiips between the rate-of-return and the variable selected. Such calculations not

only define the trends but also help to identify those variables which have the
greatest effect on the overall results. Different cases were selected for detailed

sensitivity studies. These cases covered a representative set of industries,

including firms producing newsprint paper, corregated paper, chlorine, and
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textiles; and examinations were made of the effect created by variations in capital
costs, investment tax credit, tax life, electric utility rate, fuel (coal and n;l)

prices, fuel escalation rate, and general inflation rate. The computer model which
generated the results represented by the sample shown in Figure 26 was made
versatile in order to accept the changes in the industrial variables as noted. The

output format for the results of the sensitivity case examinations is identical to

that presented in Figure V-26, and for all cases studied the input data format at

the page bottom was generally sufficient, in addition to the title, to identify the

specific cases and variables considered in these analyses.
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RESULTS

T he energy conversion system characteristics, heat source data, and balance-of-

piant information were combined to define cogeneration systems which were applied,

consistent with the assumptions and groundrules, to satisfy the requirements of
the various industrial processes. For each strategy-conversion technology-fuel-
industry combination, fuel consumption, cost, and emission data were compiled for

the most energy conserving conversion system design option. Summary data

including fuel savings, fuel energy savings ratio, cost savings, cost savings ratio,

capital costs, emissions savings ratio, and emission savings (on-site and total) for

each of these 3,364 cases are presented in Volume VI of this report.

In the following sections the results for these cases are summarized in three ways:

First, a series of matrix charts are presented indicating the results for each
energy conversion system - fuel- industry combination. Second, the energy and

cost savings ratio for each energy conversion system are summarized statistially

for the various industrial applications. Third, an extrapolation to national con-

sumption levels is introduced to aid in evaluating and comparing energy conversion

systems. Extending the results to the national level is not intended as a predic-

tion of future events; rather it is a simplified means examining the relative merits

and advantag^.s of the various advanced energy cc eversion technologies.

DETAIL RESULTS

Figure V-27 indicates that the energy costs and emission savings were computed

for each intersection of the matrix of industrial applications and energy conversion

systems. One method of presenting the results of the analysis is to indicate the

savings in each industry - conversion system box in the matrix. A series of
charts have been prepared for that purpose. Figure V-28 is one such matrix 	 .
chart. In this figure each of the 26 industrial processes occupies a vertical

column. The energy conversion systems both current and advanced are included
as horizontal rows.
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Figure V-27. Technology Data Bata for Each Cogeneration Strategy

The fuel energy savings ratios for  match electric strategy are presented in

Figure V-28. Fuel energy saving ratios greater than 30 percent are represented

by the darker shading while savings less than 10 percent are not shaded. A

review of the chart will indicate some of the more conserving energv conversion

systems: the gas turbine with coal derived boiler fuel; the combined cycle with

coal derived boiler fuel, and the high temperature fuel cell with coal derived

distillate fuel. In certain cases, the results include energy conversion systems

designs which were outside the range considered practical. For example, the

results shown for the advanced technology high speed diesel engine are not limited

by powerplant size considerations. As a result, this conversion technology

appears attractive in certain large industries where a sizeable number of units

would be required. In practice, the high speed diesel engine is limited to about

I^ megawatts electric output. its application in a paper mill requiring 90

megawatts might be considered too complex. However, the results are included

here for completeness but were not carried forward to the detail economic analysis.

The matrix chart, Figure V-28, also indicates industrial processes which are good

cogeneration candidates with the advanced energy conversion systems.
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Some industries which are significant energy consumers do not indicate fuel energy

saving ratios above 10 percent; for example, petroleum refining. 	 However, sub-

stantial fuel savings are possible. In the second matrix chart, Figure V-29, the

absolute magnitude of the fuel savings is indicated for each industrial process -

conversion system combination. In this figure the fuel savings for the representa-

tive industrial plant have been extended to the national level for the particular

product produced assuming that similar percentage savings could be obtained in all

other plants producing the same product. Petroleum refining is an interesting

prospect for cogeneration because it offers high fuel savings even though the

percentage savings may be less than 10 percent. For the match electric strategy,

national fuel savings are not as strong a discriminator between advanced energy

conversion systems as the fuel energy savings ratio.

Economics is an important element in the acceptability of cogeneration. 	 Figure

V-30 presents the matrix of the cost savings ratios based upon levelized annual

costs.	 Conversion systems which exhibited high fuel savings generally provide

economically attractive situations. 	 Again, in this chart the highest savings

(greater than 20 percent) are achieved with the darker shading. 	 A second

influence can be seen in Figure V-30: 	 The type of fuel is a factor. in the cost

savings ratio. For example, the gas turbine energy conversion systems using coal

(on-site gasified coal, atmospheric fluid bed coal combustion, or pressurized fluid

bed coal combustion) present a number of economically attractive circumstances

compared to the conventional gas turbine.

While the high temperature fuel cell with coal derived liquid fuel presents a

number of attractive fuel energy savings ratio cases, the high temperature fuel

cell operating with an on-site coal gasification plant appears to provide the more

dramatic cost savings.
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ly

The pollutants emitted by cogeneration plants can be an important factor in their

acceptability. Figure V-31 presents the emission savings ratios for the match

electric strategy. Again, the darkest squares are the most attractive. The most

significant conclusion of this chart is that the diesel powerplants offer the least

attractive emission characteristics. The emissions savings ratios presented in

Figure V-31 represent the total emissions including the emissions from electric

utilities.

These matrix charts, taken simply, do not indicate strong discriminating factors

which would recommend one energy conversion system over another. Two factors

are combined in Figure V-32. This chart presents the energy savings ratio for

only those cases wh i ch are economically attractive, that is, have positive cost

savings ratios. The gas turbine is most commonly represented in Figure V-32.

The high speed diesel, gas turbine combined cycle and high temperature fuel cell

also appear to have many attractive cases for the match electric strategy.

The cogeneration strategy can affect the results and conclusions. A second set of

matrix charts are included for the strategy which maximizes the energy savings

ratio.	 In some cases this strategy will match the electrical requirements. 	 In

others the thermal requirements will be satisfied without an auxiliary furnace. In

most cases the maximum fuel energy savings ratio occurs at a power level between

the match electric and the match thermal situation.

Figure V-33 presents the energy saving ratio for the maximum savings strategy.

The darkest cases are the most conserving. With this strategy there are more

attractive energy conversion systems than appeared with the match electric

situation. In addition to the high speed diesel, gas turbine, combined cycle, and

hiqh temperature fuel cell; the low speed diesel, closed cycle gas turbine and

steam injF-cted gas turbine also appear promisir-,J `or this strategy. In addition,

some industries, which produced low percentage savings with the match electric

situation, produce significantly higher fuel energy savings ratios with this most

conserving strategy.
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The	 fuel savings	 scaled	 to	 a	 national	 level	 are	 presented	 in Figure V-34.	 The

patterns are	 similar	 to	 those	 with	 the	 match	 electric	 strategy. The cost	 savings

ratio	 is presented	 in	 Figure	 V-35	 and the emission savings are indicated in	 Figure

V-36.	 The last chart with this maximum energy savings ratio strategy Figure V-37

inrl 'cates the	 energy	 savings	 ratio	 for	 only	 those cases	 which have positive	 cost

savings ratios.	 Again,	 the	 gas	 turhine,	 combined	 cycle,	 and high temperature

fuel	 cell are the dominant technologies.

3 128-



Power Systems Division
	

FCR-1333

COWIMIO CTCLI
COAL IpVII
COW 410 CVCLI
COAL IAp01

pull CI L • -LOA Tor

NIL CILL-LOA TOW

fV1L CILL- NI TOW

pull CILL-NI ryr

1A CILL-NI ryr
COAL Q".114I
m IILIYO INOINI
m ALMO IMOINI
COAL IAp1'

TM AYIONIC
C'lllV1AIION

TMIAYIOMIC
0(00-0 .0

I MPIT so-C-0
M— NAMNI

'AMID 00-:IIIO
AMOMDK A W —I

AI 1M0L1 ,J a/7I1LATl
•• p1 T101/uA IOILIAOAAO/

^OAI DIMI VIO A W U ^Nl1Y NO'I D O TYI MAIIf

Figure V-34

WAAI	 q 	 n +r,Mr•7	 ..p	 •	 ^	 II

Fuel Energy Savings, Maximum Fuel Savings Strategy

-129-	 rttl('',[h AI.	 ;,I;FI L`^

typ y^
	 QUTA1 r"Y

c^Mlllrr
Tr NAM IM ••

t*I.r NMIMII
COAL IpODI

auL-MI NID

01/ML-LOA WOO ••

OY TUMMMI -

COIIMNtO -

AOVAAK10
RI" NMMNI

M" TVMMMI
COAL IApM
0.13IL-MI /IIO

001ML-LOA tt1O

aIML-LOA IMID

DY n AIIN/ •A

WA NAMYI

OY rup"s
COAL GAMMA
a" TVAMNI
COAL IMII
OY NAMM/
ccA IAps,

CLOUD IAAVTOM CVCL

CLOUD IAATrOA CVCL
COAL All'
rrt I,I	 CT ••
LAS NAMNI

ITIAr TALK*
"A TURMNI

Isar IrLICT
COAL IMM
MAA1 IIIYICT
COAL AP1l

COEAN"OC TCLA ••

CO"N(O CVCLI

L



Power Systems Di

IV.'
r1W'U.\w1 ••

V11— 1..O.6	 1
Co., IOD'

^IIN. ..^ I110

1

1

COI+Iw10

•JY.wClO	 I

1'l.r •u.\w1

/'1 W .U•llwl
COAL •Ili

DIINL-..1110
I

0^1/IL-LO\MIO

>r/N. -.Ow IIID

it

OY • .•. M r1
11

Y!..\r1

00.. 3./il11.
11

YY •u.11r1
CO•. I•li	

11
3./'ll.\h1
:O.L .Il,	

11

CLOUD /•.r •0. CICLI
II

C. J/1D /.. • n]w CrCLI
COAL un	 q
r"— .r.IC • ••
L/ 'U . ur@	 11

w '4 .\hl	 tl

rl•n..Acl	
JI

co., o

I'll— . r Ac•
'o...I\	 Ji

:or\rloc•cu ••	 11

=o1.\rr. crcu	 t1

CCO. L
DC.Cl1	

71co.. In

OI\rwID C . CLI	 CI
CDx •rIl

IDII cc.... a. • Ir . n

tip u.. -.ow •I- 11

rU1L CI.. -rl 'lr •	 11

IUI. CII L-wl .fir	 N

lu/, cc"	 nlr	 II
:oM G.\/•I•,

1 •I •l irGl p ^r1	 77	 I ^ ' I I

—r ^_^rip 4C 140141	 11^ \\^7	 ^	 i	 :.-^

• wI •r^or.a	 11	 1  3^^T.	 F^VOft

CDIIO — 	I 	 Ire_. I.*	 1 ^^.^
,••Ir .r .	 M.4	 Il

rl	 ' -•l^rl

. n ••rn1w a1•^..• • I r'"^ 1
.. w••ol1,Illolwu n •oI IL_ E.

CO.. CI •^_10 1 UI.l . rLIY rO . 1'.	 • -I .w 41
AY/
.1.,.

Figure V-35. Cost Savings Rati Results, Maximum Energy Savings Strstegy

1 

;7

F7+

4

n

130-

^	 r•



Power Systems Division
	

F[R-l333

Oulu W.1
COAL QAB.111.	 14

COAL 'AP6	 is

III—	 ACl

COAL 11181

COAL -01

NIL cILL ­00 1-	
71

 °~vw^~^"^" —
'^^^"~~M°"IN°° L

COA L DIOL ID PUILI	 ^LIU 10-11t) 3-1-61

Figure V-36. Emn.sions Savings Ratio Results, Maximum Energy Svvi.igs Strategy

I

0



Power Systems Division 	 FCR-1333

/i1 W TU.YM
M AL F001

OTI4L- 11 W •

D 4l-LOx tIt/' ••

!•c .r.1D

7NAAICIU

lTt A. N.11.1
COAa .111

Plot- •. 1 IIID

71t4L-.OW Otto

01111E-L3W MIO

OY nJ .V.I ••

am

3AA N.1.1
COAL GAtllit n

0Y N.1.1
Co. 1 FF11

3Y NA V.1
CDAL .111

CLOEtO "ArrM CVCL

CLOUD MATrO. CT'CL
COAL IAF111

3" N.V11

E 1 1A. FLACT
3" N.YM

IT1A. 11LACT
COAL vq1
M 1.RCT
Co., Art

a.u.lD C.al •.

_LYIVNEO C'TCL9

:0.1.10 CrCLt
COAL FF11

co" 410 "CLt
COA. A11

0u9l:ILL-LOW Ttr

F UEL LOLL-1011W n1W

FWL CELL-+1 rlr

1•..IL CILL-01 rtr

^JIL CELL -N1 r2W
_OAL GAMMA,

fr1 .L^.G 140149

S-1F:1.G I.OW!
COAL AF11

-..f..^a.^c
CO..t.MON

­11-0-c
Co.ML NO

; . .INt 10--0.140
Tl.. rV•1.t

-1—CIC10-rOWNG

• !t •.OL U.
• FI-.OLIU.

^OA. ]1.1'•1

7t17Mw11	

u 1:1 l_JID1u. coot
D FUEL$ -LESS NOM OTT•t.va31 f ..	 nr	 .y	 o	 n.

Figure V-37. Fuel Energy Savings Ratio Results for Cases with Positive Cost Savings Ratio,

Maximum Energy Savings Ratio St-tegy

132-
s

_Y

y



Power Systems Division	 FCR-1333

STATISTICAL RESULTS

There is a significant variability from one cogeneration app!icatioll to another'.

Figure V-38 indicates the statistical distribution of the f0el energy savings ratio

for the advanced gas turbi ie with coal-derived boiler- fuel in the various industrial

applications. These data can be represented by 2 normal distribution shown as a

straight line in Figure V-38. The average value of the fuel energy savings ratio

is a general figure-of-merit for each energy conversion system.
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Figure V-38. Distribution of Fuel Energy Savings Ratio for Advanced Gas Turbine —

Match Electric Strategy

Figure V-39 presents the average fuel energy savings ratio tor the liquid fueled

advanced technologies. 	 In developing the data for Figure V-39, applications ^% th

negative fuel ener •g^ savings ratios were eliminated. 	 While some technologies

provide higher average savings ratios than others, all t echnologies had some

applications of high potential savings.	 The best application is shown for• each

technology and marked "highest" in Figure V-39. 	 The spread of one standard

deviation above and belo^% the average is included as an indication of the

3
f
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variability for each technology (16 percent of the data would fall above and 16

percent would be expected to fall below this range). large standard deviation

for the high-speed diesel systems is in part due to the fact that these systems are

limited in applicability to about half the industrial processes because of size

restrictions.

Figure V-39 represents the data for liquid fueled cases. All of these advancEd

technology conversion systems used coal-derived boiler fuels except the fuel cells

and the high speed diesel which used coal-derived distillate.
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Figure V-39. Summary of Advanced Technology Conservation Potential — Liquid Fuels

Since	 comparisons	 of	 liquid	 fueled	 and	 coal-fired	 systems	 lead	 to difficulties,	 the

fuel	 energy savings	 ratio	 data for	 coal-fired	 systems are included in	 Figure	 V-40.
For	 summar\. purposes,	 not	 all of	 the	 coal-fired	 cases	 are	 included.	 For	 those

technolo g ies where	 there	 was more	 than	 one	 type	 of	 coal-fired technology,	 the
system	 with the	 largest	 overall fuel	 savings	 potential	 has	 been presented.	 For,
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example, the gas turbine with a pressurized fluidized bed is presented in

Figure V-40 and the other two coal-fired gas turbines (atmospheric fluidized bed

and coal gasifier) are not plotted. The gas turbine with the coal gasifier

produced practically the same average fuel energy savings ratio and standard

deviation as the pressurized fluidized bed gas turbine, although the number of

industrial applications was smaller with the gasifier. T he atmospheric fluidized bed

gas turbine applied in a papermill provided the highest fuel energy savings ratio

of any coal-fired system sized to match the electric requirements. However, this

conversion system was fuel energy conserving in only nine industrial applications

compared to 22 process possibilities with the pressurized fluidized bed system.
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Figure V•40. Summary of Advanced Technology Conservation Potential — Coal

For the atmospheric	 fluidized	 bed	 the	 spread	 in	 the data	 is very large; the stan-

dard	 deviation	 is	 about	 three	 times	 the	 standard	 deviation of the other systems.

If	 a	 line indicating	 the	 range of data	 was	 presented for	 the	 atmospheric fluidized

bed	 gas turbine,	 it	 would	 extend	 beyond	 the	 scale in	 both	 directions in	 Figure

`v -40. 

If

135-



Power Systems Division	 FCR-1333

With steam-injected gas turbines and combined cycles, the pressurized bed con-

figurations had higher fuel energy savings ratios and greater overall savings

potential than the corresponding atmospheric fluidized bed cases.

The results presented in Figures V-39 and 40 were developed for conversion sys-

tems sized to match the electrical energy requirements with auxiliary furnaces for

any additional thermal needs. If a thermal matching strategy were adopted, the

data are summarized in Figures V-41 and V-42. The liquid fuel high speed diesel

engine applied to only three industrial processes of the 24 topping possibilities

because of size limitations.	 Those three applications are all very favorable so the

average fuel energy savings ratio is high. 	 The indicated range of data for the

steam turbine is very wide due to two industrial applications:	 corrugated parer

and boxboard, which had very `sigh fuel energy savings ratios. in all of the

steam turbine cases with positive fuel energy savings ratios, 76 percent fell below

0.1 fuel energy savings ratio.

in the coal-fired cases, Figure V-42, the gas turbine and combined cycle cases

include the pressurized fluidized bed coal combustion system. In e,1ch case the

average and maximum fuel energy savings ratio s superior with the pressurized

fluidized bed compared to the atmospheric fluidized bed.
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Figure V-41.	 Advanced Technology Conservation Potential — Match Thermal Strategy —

Liquid Fuels
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Figure V-42.

Advanced Technology Potential —

Match Thermal Strategy -- Coal

To summarize the emissions savings possibilities, similar simple averages were

developed and presented in Figures V-43 and V-44 for the match electric strategy.

Fuel cells offer the greatest environmental benefits. In fact, in some cases the

on-site emissions are reduced compared to the on-site emissions from the conven-

tional furnaces.

The diesel engines produce nitrogen oxides in excess of the guidelines and, on the

average, do not reduce pollutants compared to the non-cogeneration configuration.
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Figure V-43. Advanced Technology Emissions Savings — Liquid Fuel
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Figure V-44. Advanced Technology Emissions Savings — Coal

The	 potential	 cost	 savings	 based	 on levelized	 annual	 costs	 to the industrialist	 are

presented	 in	 Figures	 V-45	 and	 V-46.	 In	 summarizing	 the fuel ener:ly	 savings

ratios,	 only	 the	 positive	 savings	 were considered.	 The er,-fissions savings summary

in	 Figures	 V -43	 and	 V-44	 included chose	 applications	 with positive fuel	 energy

savings	 ratios.	 This	 same	 approach was	 used	 in	 summarizing the data	 in	 Figures

V - 45	 and	 V -46,	 which	 indicate	 the cost	 savings	 ratio	 data for those	 situations

which conserve fuel.
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Figure V-45. Advanced Technology Cost Savings Ratio — Liquid Fuels
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Figure V-48. Advanced Technology Cost Savings Ratio — Coal

With the economic assumptions adopted for this study, coal-fired systems generally

offer higher average savings. In fact, in many cases the liquid fuel systems do

not provide economic savings. Of particular interest are those cases which con-

serve fuel and indicate levelized annual cost savings to a potential industrial plant

owner.	 Therefore, the data were analyzed to determine the relative number of

cases with indicated annual cost savings and the results are presented in Figure

V-47 for trio liquid fueled conversion systems. 	 The various gas turbines and the

high temperature fuel cells have the highest proportion of cost saving cases.
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Figure V-47. Fraction of Industrial Processes with Positive Annual Cost Savings — Liquid Fuels
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If	 only the cost	 savings	 and	 fuel savings cases are considered for an energy con-

version system,	 the	 average	 cost	 savings	 ratio is	 positive.	 The average	 cost

savings ratio data for	 the	 liquid-fueled	 cases	 for the match electric	 strategy	 limited

to	 the conserving	 and	 cost	 savings	 cases	 are presented	 in	 Figure V-48.	 This

result can	 be compared with Figure V- 45 where the cost savings ratio for	 all	 cases

is	 presented. A	 similar	 improvement	 in	 the	 average	 cost	 savings	 ratio situation

occurs with the coal	 fired conversion	 systems.
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Figure V•48. Advanced Technology Cost Savings Ratio — Cost Savings Cases Only —

Liquid Fuels

INTEGRATED RESULTS

The data discussed thus far have been simple arithmetic averages of fuel, emis-

sion, and cost ratios. The variation in the data is substantial indicating that

there are good cogeneration prospects for each of the conversion technologies in

certain specific industrial process applications. In calculating the averages, the

savings ratios for industrial processes with small fuel savings were given the same

weight as the ratios for processes with large overall savings.
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A system is needed to summarize the fuel, cost, and emissions savings whereby

the size of the potential savings as well as the savings ratios are considered. For

example, the fuel energy savings ratios for the petroleum refining industry are

typically less than 10 percent, Figure V -28.	 However, cogeneration with most of

the advanced energy conversion systems could produce significant savings in

absolute terms, Figure V -29. In order to develop a relative comparison and

evaluation of the advanced energy conversion systems, a projection of the potential

savings to the national level is needed.

The basic analyses were conducted for typical industrial plants. 	 In order to

develop projections to the national level, major assumptions are required. 	 The

first is that all industrial plants are candidates for cogeneration, both new and

old.	 Second, the assumption is made that all plants fitting the appropriate criteria

install cogeneration equipment.	 For example, if positive fuel energy savings were

the criteria, all plants with predicted fuel energy savings would be included.

Assuming that the typical plants are representative of the manufacture of the

product in the 1985-2000 period, the fuel consumption can be scaled based on the

production level ea -)ected in 1985-2000 and the energy consumption per unit of

product produced, as indicated in Figure V-49. In order to assess the potential

of each c , n./ersion technology for savings at the national level, the assumption was

made th.3t th 2 data for the process or product are representative of the potential

savings in the four-digit industrial classification. Some four-digit classifications

contain more than one of the study processes. Double accounting was avoided by

summing the savings and then scaling to the four-digit level using the projected

industry data presented in Volume II of this report. Bureau of Census data were

used to scale from the four-di g it level to the national level again assuming that the

savings estimated in the study industries are representative of the possible

savings in other industries not studied. 	 The whole analysis is depicted in Figure

V-49. The data presented in Volume VI includes L.ie total fuel savings, the utility

fuel savings, and the fuel use by type--oil, gas or coal for each technology based

on the assumptions outlined.

141-



Power Systems Division
	

FCR-1333

PLANT
LEVEL

GORDIAN	 GORDIAN

DETAILED	 PRODUCTION DATA
'LA MY DATA

ITU TONS	 Tom YEAR

26
PLANTS

PROCESS	 4-DIGIT	 NATIONAL
LEVEL	 SIC LEVEL	 LEVEL

IUREAU	 NATIONAL
GORDIAN	 4.01GIT SIC	

OF CLNSUS	 INDUSTRIAL

►AOCESS	 A•DIGIT	
ENERGY USE	

DATA	 ENERGY us[
ENERGY USE	 INDUSTRIAL

DATA

ITU YEAR	 ENERGY AND	 ITU YEAR	 FUEL USE	 ITU YEAR

FUEL USE

26	 22	 TOTAL
PROCESSES	 4-DIGIT SIC's	 INDUSTRY

Figure V-49. National Impact Evaluation

The same assumptions for extention of the data to the national level were applied

to all of the technologies to provide a basis for comparison. The fuel savings

were summarized for all cases with positive fuel savings, for Cases with economic

savings, cases with emissions savings, the combination of cost and fuel savings

cases and the combination of fuel, cost, and emissions savings.	 These data are

presented in tabular form in Volume VI. A summary is presented here in graphic

form. Figure V-50 presents the potential fuel energy sa 3 ings, including the effect

of utility fuel consumption, scaled to the national level assuming cogeneration with

each current energy conversion technology.

4

FUEL SAVINGS 3

QUADSIYEAR
2

0
GAS	 LOW	 COMBINED	 STEAM	 HIGH	 STEAM

TURBINE	 SPEED	 CYCLE	 TURBINE	 SPEED	 TURBINE

DIESEL	 DIESEL

LIQUID FUEL	 CUAL
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Also included are the fuel savin g s for those situations where both fuel and levei-

ized cost savings estimates are positive.

Figure V-51 presents the advanced liquid fueled conversion systems and Figure

V-52 presents the estimated national data for coal-fired systems. This analysis

indicates that cogeneration offers the possibility of substantial fuel energy savings

and that the advanced technologies are estimated to provide greater fuel savings

and superior economics.
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Figure V-51. Liquid Fueled Advanced Technology Potential Fuel Savings
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Figure V-52. Coal Fired Advanced Technology Potential Fuel Savings
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The potential emissions at the national le,/el are presented in Figures V-53 and

V-54.	 These data include the emissions from the conversion system and any

auxiliary furnaces required.	 These data were developed for a match electric

strategy and, as a result, there were no utility emissions.
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Figure V-53. Advanced Technology Emissions — Liquid Fuels
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Figure V-54. Advanced Technologies Emissions — Coal
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The estimated nitrogen oxide emissions by the diesel engines excer,ded the guide-

lines. Methods of reducing NO  emissions from diesel engines need to be

developed.

The fuel cell is an electro-chemical conversion device and the pollutants associated

with combustion are minimized. The sulphur in the fuel is removed in fuel cell

powerplants. Various methods of sulphur removal are employed and some are re-

generative.	 !n these cases, the sulphur is absorbed on a material and then dis-

charged as sulphur dio :ide or elemental sulphur when the material is restored to

its original condition. The data presented in Figures V -53 and V -54 are based on

the assumption tha t regenerative type absorbtion is used and sulphur is

ulscharged in the oxide form Ft the plant site.

In order to evaluate the environmental impact of cogeneration systems nationally,

the emissions data are presented in Figures V -55 and V-56 in relation to the

emissions from conventional furnaces traditionally located at the industrial plant

and the total emissions including the electric utility. The assumptions were male

that the conventional furnaces met the pollution guidelines for liquid fueled

systems and that the utilities consumed coal and met the pollution guidelines fur

coal-fired systems.	 All cogeneration systems with the exception oT diesels are

estimated to reduce the total pollutants emitted nationally.
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Figure V-55. Emissions Impact — Liquid Fuels
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Figure V-56. Emiss ons Impact — Coal

A potential constraint on the application of cogeneration at industrial locations is

the environmental rules which could be applied lo,-ally. In comparing to the non-

cogeneration emissions at the industrial plant, the fuel cell systems offer the most

promising situation.

The summation and scale-up of the data to a potential national level have been

based on fuel energy saving cases. 	 An alternate economic criteria could be

applied. In Figure V-57, the potential annual cost savings (levelized) are

presented regardless of fuel energy savings for liquid fueled conversion systems.

The corresponding data for coal-fired systems is included in Figure V-58.
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Figure V-57. Estimated Potential Annual Cost Savings — Liquid Fuels
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Figure V-58. Estimated Potential Annual Cost Savings — Coal

Of	 particular interest	 are	 situations	 %%hich indicate both	 economic and	 fuel energy

Sj\,MLIs.	 For the	 cases	 with	 liquid	 fuel, the	 data presented	 in Figure	 V-5i	 are

also	 all	 fuel	 savings cases.	 With	 coal-fired s\ stems there are conversion	 s\ stem-

industrlal	 process	 ^-.:Jmbinations	 Miere	 there are	 levelized	 annual	 cost	 savings,	 but

fuel	 energN	 Is 1101	 cL)nser • ^,ed.	 Figure	 %-39 presents the estimated potential	 n,-Jtlonal	 t
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annual cost savings for' the coal - fired con\:, rsion technologies which ha\e both fuel

energy conservation arid levelized annual cost sa\ ings.
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Figure V-59. Estimated Potential Annual Cost Savings with Fuel Energy Savings — Coal

The onl\ cases ^%ith industr-ial plant site emission savings, fnnual _ost savings.

and fuel ener •g\ sa\ incls Invol\ ed fuel cells. At the estimated national le\el for-

these cases fuel energy sa\.ings \ere in the range of _' - 3 quadrillion gill.

Le\el zed annuai cost savings had a potential of over'	 bill.on with liquid fuel and

a potential of over* $7 million %%ith coal fuel.

The national scale-up has been sumnlaf • i_-ed for- cogeneration s\ stefii`, nleetwo the

industrial electrical requirements. The data in \/olurlle VI Include national sunl-

nlar• ie< using the same scale-uh technique; and coefficients for , the other s1r • ate-

^ 1 es.	 Howe\er. the scaleup s\stems %%hich imported or- exported electriclt\ ►\ith

;he utrllt\ present difficulties in e\pandinq the possibilities to the national le\el.

tuatior_ in Much signif;Cant quantities of electr • icit\ are e\por • ted to the electl'ic

unlit\ ma\ be questionable Mien expanded nationall\ . Exported electrical ener•gN

In sortie com ersion ti\ stern- IndLlStrlal process combil"IMI `nS A0LJld a111ou11t tJ eIQ11t

limes 'he eiectr'lcit\ tr • .1d1ti0n3ll\ pr'o\-ided to the uldustr-Ial plant. 	 For the ad-

\anced ,135 tur'tl 11e technolog\ %%ith a matched ther• riml r • equlr-ements ;tr • ateg\	 19
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industries produced positive conservation results. 	 Of these, 12 would export

electricity to the utilities. 	 Scaling to the national level by the techniques used in

the study, without cogeneration the utilities would have supplied 820 billion kilo-

watt-hours of electricity to industry in 1990. If the advanced gas turbine were

used throughout industry and the assumptions, techniques and coefficients for

scale-up were applied overall, industry would export 470 billion kilowatt-hours.

Since the utilities would not be required to provide industry and would accept this

exported energy, the net ei —ICct would be a reduction of 1290 billion kilowatt-nours

generated	 by the utilities.	 For individual applications, the matched thermal

strategy can provioo conservation benefits to society and economic benefits to the

industrialist.	 Therefore, such aprlications a-e an important element .)f the study,

and the data are included in Volume VI. However, the national benefits with the

matched thermal or optimum strategies printed in Volume V; can only be considered

broad indications of the possibilities.

The fourth strategy addressed in the study involved a limited analysis utilizing a

heat pump to improve the quality of the heat recovered to provide better matching

between the conversion system and the industrial process. The results are includ-

ed in Volume VI, In general, this strategy is of interest with conversion systems

with low temperature recovered heat (some diesels, fuel cells and Stirling engines)

and with industries with high electrical usage in relation to the thermal require-

ments (textiles, neti%sprint, chlorine, low density polyethylene, nylon). As an

example, the low-speed diesel engine applied in the chlorine plant would improve

fuel energy savings with the heat pump compared to the matched electric strategy.

However, the economic comparison would not be quite as favorable.

In addition to the topping cogeneration applications, steam and advanced organic

Rankine cycle bottoming systems were evaluated in cement plants and glass mak-

ing.	 The fuel savings results are summarized in Figure V-60 and the estimated

levelized annual cost savings are included in Figure V-61. These results are

scaled from the representative plants to the four digit industrial classificatir)n

levels to indicate potential national benefits.
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Figure V-61. Bottoming Applications Estimated Annual Cost Savings

The e%.aluat on of advanced energ y conversion techniques to determine the potential

1,N r transition from the Use of oil and natural gas to coal or- coal-derived or alter . -	 .,

nate fuels in the 1 1 85-2000 time period is complicated.	 Qualitatively all of the

advanced ener-g\ technologies are able to use coal or- coal-derived iiauid tuels.
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The diesel engines exceed the NO S emissions guidelines primarily due to the nature

of the combustion process. The additional nitrogen in the coal-derived fuel is a

secondary factor in this case.

Quantitatively . the fuel consumption for the non-cogeneration situation was pro-

jected by Gordian Associates to the time period of interest. While a representative

plant would normall y consume only one or- two fuels, the consumption of all fuels

was determined at the process level and scaled up to the national level. The

advanced conversion technology used one fuel and the au, Mary furnace used the

same fuel or another. The consumption of fuels by t^ pe was determined for the

conversion sy stem and scaled-up to the national level.	 The resulting fuel sa\' ings

are tabulated in Volume VI.

If coal-derived fuels are available for cogeneration, then a reasonable assumption

"ould be to e\pect such fuels to be available for non-cogeneration industrial

furnaces. For- the purposes of this study, if coal-derived fuels are available, the

assumption is made that all systems, cogeneration and non-cogeneration, use the

coal-der i ved fuels. assuming a conversion efficiency from coal to coal-deri\.ed fuel

of 70`;,, and assuming the coal conversion plant did riot introduce pollutants. the

relati\,e merits of the various conversion system cogeneration applications .-.n be

estimated based on a single fuel--coal. Figure V-62 indicates the estimated coal

consumption on a national basis, assuming either coal or a coal-derived liquid is

used In cogeneration energy conversion sl stems installed in ail appropriate indus-

trial plants.	 This e\tention to the national le,.el is based on the same set of

assumptions outlined on pages and in Figure V-sy.

..,
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Figure V-62. Coal Requirements Including Coal for Conversion to Coal - Derived Fuels

SPECIAL COMPARISONS

In addition to the representative industrial plants which served as the basis for

the study, two additional fictitious plants were defined to permit comparison of

capital costs of the energ y conversion cogeneration plants.	 The electrical derTands

v,ere 10 and 30 megawatts for these industries. 	 The thermal requirements were

four times tri p electrical requirements and the plants operated continuously. The

results of these :alculations are presented in Figures V-63, V-64, and V-65. The

installed costs include the balance-of-plant and the auxiliary furnaces as well as

the energy conversion s\ stems. 	 Generall` the coal-fired sy stems are significantly

more capital intensive than the liquid fueled technologies.
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Figure V-63. Current Technology Estimated System Installed Cost for Special Industries
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Figure V-64. Advanced Technology Estimated System Installed Costs for Special Industries — Liquid Fuels
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Figure V•66. Advanced Technology Estimated System Installed Cost for Spacial Industries — Coal

ECONOMICS

Economic Results

Based on the results of the analysis of the 3,364 strategy-conversion system - 	 I
fuel-industry cases, 120 were selected for more detailed economic analysis.	 In

order to conduct this evaluation both internal and external factors which could 	 l

influence an industrialist's decision concerning cogeneration were identified.

Irternal factors are defined as those industry-related criteria involving policies,

practices, and constraints specific to a particular industry or- individual firm which

influence capital investment decisions. 	 In this study, significant internal factors

were selected for evaluation including: discounted cash flow rate-of - return,

patiback period, net present value, levelized annual cost, and life cycle cost. One

or more of these factors could be the critical measure of a capital investment

attractiveness to the industrialist. 	 The estimated rate-of-return in relation to the

perceived risk may be the most important or most commonly used criteria in Indus-

tr• \ .	 Of course, the magnitude of the investment, the e\posur ,? and competing

investment opportunities are also significant factors. 	 Utilities often use levelized

annual cost or life cycle cost as an investment criteria. 	 If generalization were
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possible, the levelized annual cost factor tends to be affected more by Operating

costs and the rate-of-return factor tends to be influenced more by the capital

requirements.

External factors are those conditions prevalent throughout the business community

which are imposed on all industrial firms which influence the capital investment

decisions of the industrialist. External factors which are generally beyond the

control of any firm or group of industrial firms include political; environmental,

regulatory and economic areas some of which are under partial or direct control of

the government.	 Examples of external factors are the general Federal income tax

rate, investment tax credit, cost of purchased fuels and electricity and relevant

institutional and environmental regulations. These factors have been addressed

and included in the Principal assumptions and Ground Rules section of Volume I.

To summarize, the economic evaluations are based on the ground rules presented

in Table V-27.

TABLE v-27

SUMMARY OF ECONOMIC GROUND RULES

Cogeneration Plant Startup Date

Base Year For Dollar
Inflation F ree Analysis

Cost of Debt

Cost of Equity
Debt Capitalization
Equity Capitalization

Effective T ax Rate (Federal & date)
Insurance and Otl-cr Taxes

Economic Life

Tax Life
Depreciation

Investment Tax Credit

Fuel Escalation Rate ( 1985 Base)

Electricity Escalation Rate ( 1985 Base)

1985 Distillate Fuel Price

1985 Liquid Boiler Fuel Pace

1985 Coal Pace

1985 E l ectricity Pri .P
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1980

1978

3% above inflation
7% above inflation

30%

70%

50%

3%

30 , ears

15 Years
sum-of-Years Digits

10%
1%

1%

$3.80/million BTU

53.10/mill on BTU

51.80/million BTU

3.3t/kWh

11
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A summary of the inflation-free return on investment results for the ):quid fueled

conversion systems of the 120 cases evaluated are presented in Figure V-66. While

there is significant variability for a conversion system from one application to

another, on the average, the systems with the relatively low capital investment

offer the highest rate-of-return prospects.

ENERGY

CONVERSION

SYSTEM AVERAGE

GAS TURBINE IT/ CASES)r- - - - - - - - ♦ - - - - - - - -

GAS TUBINE STEAM IN) - - - -	 - - - - - - +(5 CASES

STEAM T URBINE -113 CASES)

COMBINED CYCLE r- - - - - ♦ -	 (5 CASES)

41GH 1EMP FUEL CELL - • - -	 (8 CASES)

GAS TURBINE CLOSED CYCLE  r t - -. II CASES)

TNERMIONICS	 I ►- ^- X13 CASES)

DIESEL -•	 I) CASES)

LOW TEMP FUEL CELL ^411104 IS CASES)

TRERMIONICS	 COMP .N Q CASFI`

STIRLING ENGINE	 I ^•- (2 CASES)

0 10	 10	 30	 10	 50

INFLATION FREE RETURN ON INVESTMENT - KRCENT

Figure V 66. Advanced Technology Return-on-Investment — Liquid Fuels

The corresponding coal-fired cases are included in Figure V-67. The coal-fired

systems with large capital requirements and lower operating (fuel) costs generally

do not provide as high returns as the liquid fueled systems. For example, on the

average, the simple gas turbine provides the highest rate of return and the lowest

installed equipment costs. The closed cycle gas turbine, with expensive heat

exchangers, has aoout three times the equipment cost of the gas turbine and the

rate-of-return is depressed accordingly. The data presented in Figures V-66 and

V -6; are developed without inflation and should be examined in that light. With

the ground rules used in this study, the inflation-free cost of capital is 5.4

percent so an inflation-free rate-of-return above 8 percent might be considered

favorably.
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ENERGY

CONVERSION
evereu

STEAM TURBINE

STIRLING ENGINE

GAS TURBINE CLOSED CYCLE

GAS TURBINE STEAM INIECT

riAS TURBINE

- - - - - - - - - • - - - - - - - - -12CASES)

.- - - - ♦ - - - - - - - IOCASES)

W - -IO CASES)

011 CASE)

• -15 CASES)

COMBINED CYCLE	 H-+(2 CASES)

DIESEL	 ►- - - - • - - — ID CASESI

NIGH TEMP F UEL CELL	 4 1 CASE)

0	 5	 10	 15	 20	 25

INFLATION FREE RETURN ON INVESTMENT - PERCENT

Figure V-67. Advanced Technology Return-on-Investment — Coal

Sensitivity

In order to investigate the effect of changes in the values of several of the major

economic variables affecting the results of the study, sensitivity analysis were

conduced where selected variables are varied individually within prescribed

ranges. T he objective of this activity was to determine the trend relationships

between the rate-of-re t urn and the variable selected and identify those variables

which have the greatest effect on the overall results. Sixty different cases were

selected for detailed sensitivity studies. These cases covered a representative set

of industries, including firms producing newsprint, corrugated paper-, chlorine ,

and textiles; and examinations were made of the effect created by variations in

capital costs, investment tax credit, tax life, electric utility rates, fuel (coal and

oil) prices, fuel escalation rates, and general inflation rate.	 The results are

summarized in Table V-28 which indicates the consequences of a 1 percent

variation in the factor on the rate of return.	 For example, a 1 percent InL,-ease

in the electric rate (from 3.30 to 3.33 cents per kilowatt hour in 1985) would

increase the rate-of-return by 0.53 percent.	 Also a one percent increase in

capital cost ^%culd cause the rate of return to be reduced by 0.21 percent. The

results of this analysis indicate that projected escalation rates for fuels and utility

electricity have the strongest influence on the overall results of the study.
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Assumed fuel prices and electric rates in 1990 have important bearing on these

results. Capital equipment cost and investment tax credits appear to have modest

influence.

TABLE V-28

ECONOMIC SENSITIVITY

Average Rate of Return Slope

Factor	 Negative	 Posi ,ive

Fuel Escalation
	

1.25

Fuel and Electric Rate Escalation
	

1.09

Inflation
	

0.90

Coal Escalation
	

0.85

Electric Rate
	

0.53

Fuel "rice
	

0.30

Non-Cogeneration Fuel Price
	

0.25

Capital Cost
	

0.21

Investment Tat Credit
	

0.20

Coal Price
	

0.15

Tat Life
	

0.04

TIN1E-OF-DAY VARIATIONS

A broad analysis of the type conducted for this study of necessity involves

assumptions or approximations. To better evaluate the degree of approtimation,

toe consequences of energy variations in the course of the day were evaluated.
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Many of the industrial processes are operateo continuously with annual Shutdowns

for maintenance.	 In several cases, however, the energy requirements vary in the

tour: :-- of the day, week, or season.	 The industrial process selectecl to illustrate

these variations was meat packing. The representative plant, defined by Gordian

Associates and described in detail in Volume II of this report, is an integrated

plant engaged in slaughter for meat as a product and the production of meat

products.	 The principal uses of energy in the meat packing plant include

electricity for refrigeration, lighting, and cutting; 	 hot water For clean up and

processing, and steam for processing, cleaning, and cooling.

Typical daily variations in steam demand are presented in Figure "-68, and

electrico; demand in Figure V-69. Refrigeration is the dominant electric load, so

even on weekends the electrical needs do not fall below half the peak electrical

load in the middle of the work day. 	 The needs for hot water and steam vary

since most killing occurs in the morning and the following evisceration generally

occurs in the middle of the day.	 With a five day work week, need for thermal

energy is reduced during the weekends.

70 000

60.000

50,000

O

N 40,000
0
2'_
DO 30,000

20,000

10.000

0 1 _ 	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1	 1

12M	 2	 4	 6	 8	 10	 12N	 2	 4	 6	 8	 10	 12M

TIME - HOURS	 37-206

Figure V•68. Steam Demand Profiles for Representative Meat Packing Plant
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Figure V-09. Electric Deiruend Profile for Reprrentative Meet Packing Pient

In addition to the hourly and daily energy use variations, there are seasonal

variations. For example, many cattle are brought to slaughter in the late summer

and fall when they are heavier and when the expense of winter feeding can be

avoided .

The energy consumption of the meat packing plant was analyzed accounting for the

hourly and seasonal variations. 	 For this analysis, the daily electrical and thermal

energy requirement profiles were simplified. 	 The low temperature fuel cell con-

version system described in Volume III, was: selected for this analysis.	 The off-

design p erformance of this system is presented in Figure V-70.

The refrigeration electric load must be satisfied at night and during the weekends

while the thermal load primarily occurs during the working day. Therefore, an

alternate cogeneration configuration, --luding a hot water thermal storage system,

^%as introduced based upon the da:, developed by Rocket Research Company and

presented in Volume IV. The round trip efficiency of this thermal storage system

is 98 percent. -T-)e  size of the storage system was chosen to recover the maximum

amount of heat from the energy conversion system during nights and weekends .
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Figure V-70. Off- Design Performence of Low Temperature Fuel GII Power Plant

The fuel energy savings, cost savings, and emission savings were estimated

recognizing the daily and seasonal variations. The results are presented in Table

V- 2 9.

TABLE V-29

ESTIMATED COGENERATION RESULTS IN MEAT PACKING
PLANT WITH FUEL CELL

Time-of-Day
_)toady-State	 Analy si s

	

Analysis	 Storage	 No Storage

Fuel Energy Savings	 0.3130	 0.3234	 0.2934
Ratio

Cos' Savings Ratio	 0.0180	 0.0271	 -0.030_;

Emissions Savings Ratio	 0.651C	 0.6726	 0.6102
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Using the time-of-day variation analysis, the fuel energy savings ; •atio was

reduced oy 0.02 compared with the steady-state analysis. The levelized aflrlllal

cost savings were reduced by 0.05 and the estimated economic advantage with the

steady-state analysis became negative with the time-of-day analysis.

With thermal storage the detailed analysis indicated improvements over the resuits

of the steady-state analysis from a conservation, cost, and environmental stand-

point. The steady-state analysis appeared to be a reasonable initial evaluation for

general purposes.
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ADDENDUM

LIST OF SYMBOLS

A ECS Energy conversion systern area requirement

A F Auxiliary	 furnace area	 requirement

AHS
Heat source area requirement

C Specific area,	 volume,	 or weight

C c General	 capital	 cost	 term

C s Specific cost	 per unit	 size

CC Cost of common equity

CCRAT Capital	 cost	 ratio

CD Cost of debt

CE Cost of common equity

Cl Capital	 investment

CO Capital-output	 ratio

COC Cost of capital

CLIP Heat pump coefficient of performance

CID Cost of preferred equity

CRF Capital	 recovery	 factory

CSR Cost savings	 ratio

C.
i

General sizing parameters

D Debt

E Energy conversion system electrical output

ECF Earnings	 cash floe

Limiting size on	 ECS output for bottoming cycle
c L IM

E I'd AN
Maximum ECS output

164-

I N.



Power Systems Division	 FCR-1333

LIST OF SYMBOLS (Continued)

E P	 Process electric requirement

Epeak	 Peak hourly electric requirement

Epeocess
	 Peak hourly electric requirement for process alone without

parasites

`Elparasitic	 Avg. parasitic electric requirement

<E> process	 Avg. process electric requirement

ERated Rated	 ECS electric output

FCR Fixed charge rate

I NV Investment

J Ratio of working capital to investment

k Ratio of E Rated Emax

K Ratio of profit to investment

KECS ECS building cost factor

K HS Heat source building cost factor

kWH ',^ilowatt	 hours

LAC Levelized annual cost

LFC Levelized fixed charge

M Rate-of-return

N1Btu Millions	 of	 Btu's

MWe Plegawatts of electrical 	 power

m Exponent for specific area, 	 volume,	 or weight

N ECS Number of ECS's

N F Number of furnaces

NPV Net present value

165-1 1
It	 a



Power Systems Division
	

FCR-1333

LIST OF SYMBOLS (Continued)

Present value of operating costsOC pv

OF Furnace output

OHS Heat source output

PE Preferred stockholders equity

P I; R Pollution	 savings	 ratio

QAvail Available thermal energy

QDisplaced Fuel energy	 for fuel	 displaced	 at the	 utility

Qaccess
DH The portion of the direct heat requirement at temperatures

less than the available temperature from the ECS

Qlnacc The portion of the direct heat requirement at temperatureDH higher than available from the	 ECS

QRem
DH The remaining direct heat requirement after ECS exhaust gas

has been used

QECS ECS fuel consumption

QBP
F By-product fuel energy content

Qtot	 Total fuel consumptionF

Q N	Nominal thermal requirement

Q P	Parasitic thermal requirement

Qstack	 Stack losses

Q u	 Utility fuel consumption

Qnoncogen

Qtl	 Available thermal energies for hot water, low temperature
steam, medium temperature steam, high temperature steam,
and direct heat when all hot ECS exhaust is used for direct
heat

-166-
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LIST OF SYMBOLS (Continued)

Qstack	 Stack losses

QA Maximum available thermal energies for hot water, 	 low temper-
atire steam,	 medium temperature steam, and high temperature
steam when no energy is used for direct heat

Q 
i

Required thermal energies for hot water, 	 low temperature
steam,	 medium temperature steam, 	 high temperature steam,
and direct heat

r • Discount factor

r Standard	 industry sizing factors

t Time required for buildingbuilding	 construction

T Temperature

TAvail available temperature of ECS exhaust

T ECS exhaust temperatureexh

T out Heat pump outlet temperature

Tpinch Heat exchanger pinch temperature

T Tax	 ratior

Tref Reference temperature

T Reservoir temperature for heat pumpres

T o !nitial	 reservoir temperature for heat pump

TC Total	 capitalization	 of	 the	 firm

AT Heat pump tem p erature rise

ECS Required volume for ECS

V F Required volume tor furnace

HS Required volume for- heat source

C Working	 capital
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LIST OF SYMBOLS (Continued)

x,X General	 sizes	 used	 in cost calculations

^. Incremental	 size
inc

ty Factor to account for the cost of interest on borrowed money

Fuel	 handling thermal	 parasitic factor`yFH

Furnace thermal	 parasitic factor
`yFurn

Price escalation	 factor

^E HP Heat pump electrical	 requirement

_^QAvail
Reservoir heat availaule for pumping

_^QHP
Quantity of heat to be pumped by heat pump

AQpumped
Actual quantity of heat pumped

Agtot
Difference between	 required and availabie heat

(I BP Efficiency at which	 by-product fuel	 is burned

11 DH Fraction of ECS	 fuel	 energy	 that	 is	 available for direct heat

ry e ECS electrical	 efficiency

r1 F Furnace efficiency

r1L Fraction of ECS fuel energy	 chat becomes irrecoverable losses

11 stack Fraction of ECS fuel energy that becomes stack losses

r1 Fraction of ECS fuel energy available as sensibie heatSens
r^. Fraction of	 ECS	 fuel	 energy available as hot water,	 low

temperature steam,	 medium temperature steam, 	 and high
temperature steam,	 respectively

d General	 ECS thermal energy	 available

0 P Process thermal	 requirement

0 Process high-temperature requirement

I 
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LIST OF SYMBOLS (Continued)

a 	
Process low-temperature requirement

N	 General ECS thermal to electric ratio

NH	
ECS high-temperature thermal to electric ratio

P L
	ECS low-temperature thermal to electric ratio

Fraction of sensible heat available as direct heat
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