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BACKWARD DELETION TO MINIMIZE PREDICTION ERRORS IN MODELS FROM FACTORIAL
EXPERIMENTS WITH ZERO TO SIX CENTER POINTS
by Arthur G. Holms

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

SUMMARY

Population model coefficients were chosen to simulate a saturated 24 fixed-
effects experiment having an unfavorable distribution of relative values. Using
random number studies, deletion stratepies were compared that were based on the
F-distribution, on an order statistics distribution of Cochran's, and on a com=~
bination of the two. The strategies were compared under the criterion of minim-
izing the maximum prediction error, wherever it occurred, among the two-level
factorial points. The strategies were evaluated for each of the conditions of
0, 1, 2, 3, 4, 5, or 6 center points.

Three classes of strategies were identified as being appropriate, depending
on the extent of the experimenter's prior knowledge. In almost every case the
best strategy was found to be unique according to the number of center points.
Among the three classes of strategies, a security regre!l class of strategy was
demonstrated as being widely useful in that over a range of coefficients of vari-
ation from 4 to 65 percent, the maximum predictive error was never increased by
more than 12 percent over what it would have been, if the best strategy had been
used for the particular coefficient of variation.

The relative efficiency of the experiment, when using the security regret
strategy, was examined as a function of the number of center points, and was found
to be best when the design used one center point.

INTRODUCTTON

The two-level, fixed effects, full or fractional-factorial designs of exper-
iment, without replication, are often appropriate for those situations where the
exper iment is very expensive or time consuming. An example of costly experiment-
ing is provided by the destructive testing of simulated aircraft turbine engine
components, as in the rotor burst protection testing described by Mangano (1977).
A rotor burst protection investigation was planned as a two-level fractional
factorial experiment to measure the containment efficiencies of composite struc-
tures. The description (Holms 1977a) of that experiment is illustrative of one
area of applicability of the results of the present investigation.

If a two-level full- or fractional-factorial experiment is performed and
n. observations are obtained from n. orthoponal experimental conditions, the
appropriate empirical equation for representing the results can have as many as
ne. terms, each with a coefficient that has been fitted to the data. When this




is done, a question that should be asked is: "Can the predictive accuracy be
improved if some of the terms are deleted?" The fact that some of the terms
might degrade the predictive accuracy of a fitted equation was recognized by
Walls and Weeks (1969) but they gave no procedure for identifying such terms,

A method for the sequential deletion of terms that was intended to reduce
the prediction error was given by Kennedy and Bancroft (1971). Their method
assumed that the experimenter has a prior established order for subjecting the
terms to a sequence of significance tests. I!nfortunately, in many experimental
situations, there is no subject matter basis for establishing a prior order,
and in such cases an order statistics procedure is appropriate. An order sta-
tistics approach for significance testing was used in a pair of related papers
by Daniel (1959) and by Birnbaum (1959). They were not then seeking to minimize
prediction errors.

For model selection procedures used with small saturated experiments (exper-
iments designed to have only as many experimental conditions as there are model
parameters to be fittoed), the analysis should begin with a minimum number of
estimable terms being sacrificed to form a denominator for the test statistic.

A procedure using m-terms sacrificed, where m can be as small as one, was
investigated by Holms and Berrettoni (1969). The object wus to deleto terms
in a manner where some control was maintained over the probabilities of Type 1
or Type 2 decision errors.

The minimizing of prediction error was the object of an investigation of a
chain pooling strategy as described by Holms (1974). Whereas that investigation
had assumed that only one cycle of analysis would be used, a suggestion given by
Holms and Berrettoni (1969) was that more than one cvcle should be used. The
purpose of a further chain pooling investigation (Holms (1977b)) was to optimize
a combined procedure that might contain more than one analysis cycle, where the
procedure is to be optimized for minimum prediction error. An important applica-
tion of chain poecling occurs in empirical optimum seeking.

A widely accepted methodology for the design and analysis of experiments
that are efficient for the empirical attainment of optimum conditions was intro-
duced by Box and Wilson (1951) and refined by Box and Hunter (1957). These
methods are now known as response surfiace methodology. Designs that are optimal
for fitting second deuree equations were studied by Lucas (1974 and 1976), who
was concernced with the optimality of single block designs, but multi-block
designs are often appropriate in the applications of response surface methods,

A catalog of multi-block desipgns, limited to those particularly applicable to
response surface methods, was given by Holms (1967). Response surface method-
ology assumes that hypercube and star blocks will contain "center points.,"”
Criteria for the numbers of such points to use, together with tables of recom=-
mended numbers, were given by Box and Hunter (1957), Criteria leading to much
smaller numbers of center points for single block experiments were given by
Lucas (1976). The purpose of Holms (1979) was to characterize the experiment
designer's options for numbers of center points in a range from very small to
moderately large for multiblock sequential designs, The multiblock sequential
designs were those for which treatment tables had been given by Holms (1967).
The numbers of center points used in cach of the hypercube blocks ranged from
zero to six.
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The purpose of the present investigation i{s to identify chain pooling
type sequential deletion procedures that will minimize the prediction errors
in models fitted to the results of experiment designs having 16 hypercube
points and any of zero to six center points. The investigation used Monte
Carlo studies, and the results are exhibited as tables giving some of the
operating characteristics of admissible strategies for each of the center
point options. A security regret strategy is identified within each set of
admissible strategies, and it is shown to be useful for a wide range of coef-
ficients of variation.

MULTISTAGE DECISION PROCEDURE

Population Model

The single observation value of the response is assumed to occur accord=-
ing to the model

y = E(Y) + e (1)
where e is independently normally distributed with mean zero and variance

02, (Some robustness against nonnormality for a chain pooling procedure was
demonstrated by Holms and Berrettoni (1967).)

For relatively saturated experiments that are smaller than 16 observations,

the opinion is offered that such experiments are too small to provide both

(1) good estimates of model coefficients and (2) a good test statistic, in
cases where random errors are large enough to call for a statistical decision
procedure., The simulations of the present investigation were all performed
with experiments containing 16 hypercube points plus zero to six center points
in the belief that such experiments are large enough to justify the use of a
statistical decision procedure, but small enough so that the precise optimiza-
tion of the procedure would be quite beneficial. Where g 1s the number of
independent variables, and the experiment is assumed to be a 2-h fractional
replicate of the full factorial experiment, the factorial observations are
assumed to result one-for-one from the hypercube points and their numer is

n. = a8-h o 1

An example of an appropriate model equation for the population mean value
of the response in the case of four independent variables is

E(Y) = Bl + ngl + 83)(2 + Haxlxz + Bsx:; + Bbx1x3 + 87)(2)(3

T oRgXpXaxy b Boxg ¥ RygXyXg * BppXoXg T B1pXyXpX,

.

+ R X, + 3 x.x.x, + ¢ xx.X X X X X (2)

X > + b
13537 165155 T P53 e T Pl M8

The model is assumed linear with orthogonality of parameter estimates provided
by the design of the experiment or by an orthogonalizing transformation (Holms
(1974)). The subsequent discussion assumes that an equation such as (2) will
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be fitted to the results of a two-level experiment where the x's are "design
values," namely, the high level of x, 1is represented by xg = +1 and the
low level of xi 1s represented by xi = -1. (If center points are used,
they have coordinates with all xp = 0).

The initial model fitting is assumed to give least squares estimates of
the model parameters that are minimum variance unbiassed linear estimates and
for parameters beyond B; have the form

Ne
1
by = — agLy (3)
i n. ik’k
k=1
where { =2, ..., n, and the aj, are appropriate values of plus or minus

one. Such estimates have expectations

Combination Estimate For Zero Degree Coefficient

A weighted estimrte of the B; of equation (2) is to be formed from the
ne hypercube observations and the ng center point observations where all
observations are assumed to have variance 02, Model coefficients estimated
from the hypercube observations each have variance

V(by) = 02/n,

Thus, the variance of the function estimate for a model such as equation (2)
with coefficients all estimated, for example, by Yates' method from such
observations is (at the design center)

V({’o) = V(b]_) = oz/nc

Let Yy be estimated from a combination of the n. hypercube points and the
ng center points. Let ?O be the arithmetic mean of the ng center point
observations. Then the estimate of Y; weighted inversely as the variances
of by and Yy, is

Vo = (ncby + ng¥o)/(ne + ng)

Because the coefficient estimates are uncorrelated, the weighted estimate Yj
is also the least squares estimate of 8y. Thus, if by 1is the estimate of
the zero degree coefficient from the Yates analysis, the least squares estimate
from the combined observations is

* _
b1 = (ncb1 + noyo)/(nC + no) (5)

i




Mean Squares and Sums of Squares

The squares of the estimates multiplied by ng, provide the numerator mean
squares used in the hypothesis testing.

2
zy = n.by (6)

These mean squares have expectations

E(Zg) = o2 + n 8 Q)
where
2
V(v,) = o (8)
for
1‘2, eey Np
and for

Thus, from equation (7) if any 81 is zero, the associated 2Z; 1is an estim-
ator of 02,

The denominator for the hypothesis testing is based on the construction
of sums of squares. Six cases are identified according to combinations of the
values of np and mp, where ng 1is determined by the design of the experi-
ment and m is chosen according to a strategy of hypothesis testing. The
cases are identified by the first three columns of table 1. Equations for the
initial sum of squares, SSp, to be used in the starting denominator of the test
statistic are derived in appendix B and given in the fifth column of table 1.

Sequential Deletion
Because case a provides no denominator sum of squares, there can be no

deletion procedure. All the model cocfficients are estimated and all the terms
are retained.

Case d uses nn =0 and m, > 0. This is the case investigated by Holms
(1969). The deletion method of that investigation was as follows:

The mear ‘uares, Zj, from the usual Yates'analysis (aside from the zero
degree coefficient) are ordered in nondecreasing magnitude and renamed Z(j):

2y = 70> Z(n)

where j =1, ..., n and n =n, - 1. As stated by Birnbaum (1959) the
optimal decision procedure when all except possibly one of the coefficients of
an equation such as (2) are zero uses a test developed by Cochran (1941). The
statistic is:

Cn = 2(n)/(Z(1) *+ **** + Z(n))

L




Chain-pooling assumes that m, of the smallest 7 } have been generated
with zero population coefficients. Their sum is cai ed Rj-l where initially

J-1-= mp

Multiplication of the critical points of Cochran's distribution by 3j gives
the critical points of the Uy distribution tabulated by Holms and Berrettoni
(1967). The mean square Z(j) is tested for significance at nominal prelim-
inary level ap using the statistic

Ui = 32(3)/(Ry-1 + Z2(3)) 9)

If Z(y) is not significant, jJ 1is indexed upward by one and the next mean
square is tested. If any mean square so tested is significant, (e.g., the
j-th) then each subsequent larger mean square is tested at a nominal final
level af, where af X ap. For example, the k-th mcan square is tested using
the statistic

Uj - jzk/(Rj-l + Zk) (10)

If the k-th ordered mean square is the smallest mean square to test signifi-
cant at level ag then all terms associated with smaller mean squares are
deleted from the model. Because the assumptions of Cochran's distribution are
thereby repeatedly violated, the useful values of the strategy parameters

(mp, ap, af) were determined from simulation studies.

The generalization of the strategy (mp, ap, af) investigated by Holms
(1977b) included a sequence of analysis cycles, but showed that merely one
cycle was sufficient. The cases with np > 0 are cases b, ¢, e, and f.

A hypothesis testing procedure more general than Holms (1977b) is appropriate
for these cases.

Consider cases b and c where ng >0 and my = 0. The first mean
square to be tested is Z(1) and the null hypothesis is

HO: B(l) =
where for any Jj, B ) is the parameter associated with the ordered mean square
Z(j). The alternatgve hypothesis is

Hy: B(1) > 0

Because the Uy 1is not defined for j < 2, Z(1) cannot be tested against
the Uj distribution. If the test is performed against the F-distribution,
the fact that Z(;) is an ordered statistic implies that a test of nominal size
a will not have true size a. With this proviso, a nominal size a-test is
performed.

For case b the test statistie is

Nt
- —dfb7() (11)

t fb )
1,nd bgl




with nygy defined by equation (B3) and with 88, computed by equation (B4).

For case ¢ the equivalent test statistlc is

2
Ndfeb(1) (12)

Fl,ndfc = SSg
where ngfc 1is given by equation (B6) and SS; is given by equation (BS).

If Z(1) is reported significant then no further testing is done and
there is no conditional deletion of terms.

For either of cases b or c let SS;3 be the initial sum of squares and
let ngfg be the initial degrees of freedom. If Z(l) was reported as insig-
nificant, then it is pooled with SS5 for a test of 2(2). The test statistic
is then

(n + 1)2
dfo (2)
F = (13)
1,ndf0+1
nd SSp + 2(1)

Testing and pooling continue in this manner, provided insignificance is the
result of the prior test.

The test statistic for any Z(j41) is thus

+ j)z
(450 (3+1) (14)

SSO + Z(l) + vt 4 Z(j)

Pl tro+g

For j > 1 the option exists of testing Z(j) against the F-distribution
or against the Uj-distribution. These options are also both available for the
first test of o Z(j) in cases (d), (e), and (f), however, testing against the
F-distribution might not be good for case (d), because in case (d), there is
neither a pure error nor a residual sum of squares, and the testing is per formed
entirely with ordered mean squares.

Suppose the situation is that of ng > 0 and j > 1. A criterion is
needed for choosing between testing against the F-distribution or against the
U;- distribution. If J {is relatively small and ng 1is relatively large, the
F-distribution might he more appropriate, whereas if §j {is relatively large
and ng 1is relatively small, the Uj-dlstribution might be more appropriate.
One approach could be, for j > 1, to compute j/ng and use the F-distribution
for j/ng £ ry and use the Uj-distribution for j/ng > rp where 0 Lrp < *®
and where rg has been optimized {rom Monte Carlo studies. Table 2 shows how
the choice of the value of rp affects the vaiues of np and j at vwhicha
transfer occurs from the use of the F-distribution to the use of the Uj-distri-
bution.

Consider the case
g > rp (15)

The Uj statistic is defined by equation (9). Suppose the criterion § > rpng




has been met and the information in ygj, ***s yono 18 to be combined with
that in Z¢qy, ***y 2 ) for a test of ? against a critical point of the
Uj-diatribut}on. An approximation to equailoﬂ (9) is

(nggo + 1)
¢ - dfo ) (16)
SSo+Z(l)+ L 3 Z(j)

The distribution of t; of equation (16) is merely an approximation to
the distribution of U; ol equation (9) because the denominator of equa-
tion (16) has been stagilized by the nyro mean squarcs in SSO.

Under the null hypothesis, z(j) is the largest of an ordered sample of j
estimators of o02. Although the quantity (SSg + z(1) + *** + z(3))/ (nggo + 3)
is an estimator of 02 as is the quantity (rj-l + z(j))/j of equation (9)
the quantity J of equation (16) rather than the quantity (ngfg + 3) was used
as the entry point of the Uy-tables, because the tables are based in part on
the numerator z¢4) being t&e j th extreme value of a sample of mean squares
together having mean value o2,

For case d, use of the Uj-distribution implies that the first test using
equation (9) takes place with

l'j_l = SSd

where 8S4 18 defined by equation (B7) and j = my + 1. Subsequent testing
is done with

124y
(my+1) etz

tj"'
SSd + 2z ()

For either of cases e or f, with J < rpng, the test statistic is provided
by equation (14) with SS9 and nygro being given by equations (B9) and (B10)
for case e and by (B11) and (B12) for case f. If Z(4) tests as insignifi-
cant, then it is pooled with (added to) the denominator of the test statistic
and J {s indexed upward one unit. When some Z(j) tests as significant,
the testing is stopped and n terms are deleted from the model where n s
the integer value of r (j - 1) where r, has been empirically optimized.

The terms deleted are thObé corresponding to the n smallest mean squares,
If Z( ) tests as insignificant at J = n. - 1, then n 18 the integer value
of rn'lnc - 1).

Definiticn of Strategy

In summary, the expreusions for deprees of freedom and sums of squares are
given in table 1, and the entire sequential deletion stratepy is specifled by
the parameters (mp, rf, af, ay., ry). Where my, has range 0 < mp < nc, is
the number of mean squares initiallv pooled. f Z is _he j-t ordered mean
square being tested, then Z( is tested against the U,- distribution at nom-
inal level oy {f § -1 3 J > ryng. The mean squire Z(y) is otherwise
tested against the F-distrlbution at nominal level af. The convention

ap = 1.0 is used to signify that no testing is done against the F-dist:ibution,
and the convention ap = 1.0 {s used to signify that no testing is done agailnst
the Uj-distribution. The number of terms found to be insignificant is

i




multiplied by ry, and the integer value of the product, namely, 5, is the

number of smallest absolute value coefficicents whose terms will be deleted

from the model. (The coefficient, b7, of the zero degree term is excluded
from the deletion procedure.) In the notation for the strategy parameter
set (mp, TF, aF, Gy, rn). a long dash will be used to represent a parameter
if 1¢c ﬁas been made inoperative by a value assigned to some other parameter.

SIMULATION PROCEDURE
Unfavorable Population Model

The basic chain pooling concept was investigated for the purpose of min-
imizing prediction error as described by Holms (1974). That investigation
was concerned with the fitting of models to fractional factorial experiments
under the condition of population functions of irregular shape. The present
emphasis is on the condition where the relative values of the population
coefficients are all unfavorable to the deletion procedure. For reasons
given by Holms and Berrettoni (1969) this condition is achieved by proportion-
ing the squares of the £y values to the expected values of the order statis-
tics of a single x%l) distribution.

To accomplish such proportioning, let Zx be the expectation of the k-th
order statistic among p independent x(l) statistics. Let

5i = Lo ktl for k= 1,00, 0

Expectations of order statistics from a gamma distribution with scale
parameter one, shape parameter 1/2 and many sample sizes have becen tabulated
(Harter, H. L. (1964)). Multiplying such values by 2 gives the expectations
of the order statistics of the central x%l) distribution. Such expectations,

for a sample of size p, provide the values called for by the definition of

Equation (13) of Holms and Berrettoni (1969) now gives for the coeffi-
cients:
1/2
20?2
By | ——- é (17)

where k=1, 2, 3, -, p; i=1, 2, ***, n, and i =k+1 for k=1, ",
p; and 81 = 0 otherwise.

The statistician's strategy consists of the components (mp. TF, QF, Q[
rn). Nature's strategy consists of the number, p, of non-null population
parameters, and the mean noncentrality narameter, A. Let

28-h
From equations (17) and (18)
By = 606y (19)
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Because of the greedom to choose the value A and because A 1is a scale
parameter on o (eq. (17)) an investigation of the effuct of variatifons in o
i3 superfluous, and o¢ will be set equal to one,

In general, the smaller the number of null mean squares, n, the greater
will be the probability of decision errors. This was {llustrated in figure 4
of the paper by Holms and Berrettoni (1969). Thus, the moet difficult sftua-
tion arises for n= 0, For the 2&-h experiment with g = h = 4, and vhere
the B; term (zero degree term) is not subjected to testing, the condition
equivalent to n= 0 {8 the condition p = 15,

As developed by Holms (1977b), a nature's strategy with p = 15 and a
normal distribution of model parameters would seem to be a 1| ghly likely
strategy, and correspondingly, a statistician's strategy optimized against
such a nature's strategy should be thought of as a Bayes strategy. As devel-
oped by Holms and Berrettoni (1969), such a normal distribution of model
parameters is represented by the parameter d!stributions of table 3 and these
distributinns are highly unfavorable to the statisticul decision procedure., A
procedure optimized against p = 15 and the distribution of &8¢ of table 3
may therefore also be regarded as a security strategy. Such a nature's stra-
tegy (table 3) will therefore be chosen as the strategy against which the
statistician's strategy will be optimized, and such optimization wiil there-
fore combine the Bayes and security attributces.

Steps of Simulations
Ordinarily, in the analysis of a real experiment, Yates' method would be
applied to the observations to give estimates of the model coefficients. 'The
population mean values and the errors of the observations would be unknown,
but in this investigation, the values of the population mean values are re-
quired to be known. The steps in a simulated experiment were as follows:

1. An unfavorable set of §§ were constructed as indicated by
equation (19).

2. Population mean values, uy, for the simulated observations were
computed from the By wusing the reversed Yates' method of Duckworth (1965).

3. Pseudo normal random errors, eq, were generated as described by
Holms (1977b).

4. The simulated observations, y;, were generated by
yi = by + ey (20)

5; he bi were estimated from the vy using Yates' method, except
for bl' which weighted in the Yok % in the preceding section (eq. (5)).

6. Some of the by were set equal to zero using the strategy

(mpo Tpe e e f])
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7. The reversed Yates' method of Duckworth (1965) was used to compute
predicted values, yi, using the reduced set of bj.

8. The prediction errors were computed from

€y = §i = ¥y
P (21)
i=1,2,+++,16

Additional details of these steps are given in appendices C and D.

Magnitude of Scale (Noncentrality) Parameter

Any particular strategy (mp, rF, GF, Gy, ) was evaluated for an array
of populations having five unique values of the mean noncentrality parameter,
A, namelz, 0.25, 1.00, 4.00, 16.00, and 64.00. From equation (18) with
n. = 2870 = 16 the corresponding values of 6 are 0.125, 0.25, 0.5, 1.0,
and 2.0.

As developed by Holms (1977b), the reduction of V(?i) achievable by
deleting terms is ozlnc for each term deleted. On the other hand, if equa-
tion (2) is the population model, and if the x-values are all +1, the bias
in Y is increased by the amount of Bj for each B4 value that is deleted.
Thus, an optimal strategy to minimize the squared error of ¢ should not only
delete all terms for which the population B4 is zero, it should also delete
at least all terms for which the bias contribution to mean square error is
less than the variance contribution.

Because in the simulations all B4 2 0 and as indicated by equation (2),
for that point of the experiment where all of the x-values have the value +1,
the ~vnected value of Yj takes on its greatest absolute value, which is

(eq. (19))

p
max :E:
Hmax = 1 [E@y)] = 664

j=1
o
The values of z: 66. for p = 15 have been listed in table 3. Because
=13

o = 1, these values are also the vajues of ”max/O'

Reciprocals of Upax/0 are here defined as coefficients of variation
for the maximum population mean values. From table 3 such coefficients vary
from a high of 64.3 percent (at © = 0.125) to a low of 4.0 percent (at 6 =
2.000). This range of such a coefficient of variation suggests that the range
of 0.125 £ 6 £ 2.000 is an adequately wide range of © to represent the situ-
ations that an experimenter might encounter.

o e s T s e S o = 2
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EVALUATION CRITERIA

Where epj, are the "observation" errors, namely, the pseudo normal
random numbers generated in the nth simulation, the "observations" are given
consistently with equation (20) by

Yoirn = Mie¢ t %0in (22)

i =1,2,.. i= 1,2,...,nC

.,Fe;
Following the selection of terms (wherc some of the coefficient esti-
mates are set equal to zero), the predicted values of the dependent variable
are computed for all the hypercube combinations of the independent variables,
by the reversed Yates' method of Duckworth (1965). The difference between
tredicted values, yui¢mn» ©f the dependent variable for the nth simulation
and the population mean will be called the prediction error, and thus it
is (consistent with eq. (21)):

€pitmn * Ypitmn T Mig (23)

g‘ = 1‘2"-u.£e; m = 1,2;-:0"1“0: i - 1,2..-..[‘\(:

Over the n, simulations, the sample mean square error of prediction for
a given treatment is

Ne

O U D (26)
Cpitm T 7 €pitmn -

=

The maximum of such errors over the treatments is
. max (*2 ) (25)
Cnax “ptmemax 1 = 1,...,n “pitm

The mean of the squared error over the simulations and over the points of
the space of the experiment is

ne
2 L2
—6- 0 L (&4 (26)
£ — it
pim Ne (=1 pitm

Equations (25) and (26) provide two criteria for measuring the effective-
ness of a stpategy. The particular set of values of strategy parameters that
minimizes @ en max (38 Riven by eq. (25)) can be called a security strategy,
and if the points of the space of the experiment are assumed to bg equally
likely of being of interest, the particular set that minimizes Epgm can be
called an approximate Bayes strategy. For either criterion, the values of
squared errors would have been the prime consideration.

i1 R 0 o b M
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The criteria of equations (25) and (26) were evaluated using computer
simulations using 1000 experiments. Thus, the long run mean squared error
of the decision procedures was evaluated. This leaves open the question cf
how badly a decision procedure might perform in individual cases. One
approach to this question is to evaluate the stability of the mear squared
errors observed in the simulations. Thus, in addition to the criteria of
« uations (25) and (26) two other criteria for the effectiveness of a strategy
\ ‘e investigated. They are concerned with the stability of the quantities
defined by equations (25) and (26). The instability of these criteria can be
measured by the variance of the square of the prediction error. The estimate
of the variance of e%igmn is

2
n n
1 € 2 1 e
Ula2 T S 2 . 1 :E: 2
V(epiﬁm) ng - 1 Z (epiﬁmn) ng epilmn (27)
n=1 n=1

Equation (27) gives an unbiased estimate of the variance of the squared error
over n, simulations. The maximum of this quantity over the space of the
simulated experiments is defined by

V( Z)max = G(E%m)max - nax nc[ﬁ(égilm)] (28)

i‘l'---,

The arithmetic mean of the variance of the squared error over the space
of the experiments is defined by
n

c
af=2 1 of .2
V(egm> = ;‘_C Z v(epiﬁm) (29)

i=1

The average number of terms, E}m, selected by the strategy, is computed
for each of the values of 8y, ¢ =1, «+osfy and for ecach of the values of
ng, M = 1,...,nq0. The program also computes the ratio of the maximum predic-
tion error to the scale parameter 0. The ratio is computed from 85 and

from the ‘ep,, of equation (25):

[
C (0) = ,B&%:msﬁ (30)

ve,mx

The value of Cee,mx(e) of the preceding equation was adjusted to penalize
it for the increased experimentation needed for the reduction in variance that
might be expected from the additional center point observations. Thus, with

N, = ng, + ng

Cae,mx(®) = “%/2Cee,mx(0) (31)
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Although the experiments were simulated, the model fitting and selec-
tion was performed, and predicted values were computed as if the experiments
were full factorial experiments, the conclusions ot the investigatior are
not necessarily limited to full factorial experiments. The errors of the
predicted values were always evaluated at points of the space of the experi-
ment for which "observations'" were available. Thus, the conclusions of the
experiment are equally applicable to regular fractional factorial experiments
with 16 treatments, provided that the only concern is with prediction errors
at the points of the experiment where observations were actually acquired.
Thus, for example, if the experiment were a one quarter replicate on 6 inde-
pendent variables, the strategy recommendations apply to predictions for the
16 hypercube conditions actually performed. The errors might be much larger,
and a different sequential deletion strategy might be preferred, if predic-
tions were to be made for some of the 48 treatments that had not been per-
formed. As shown by Holms (1974), such predictions should be based on a far
more stringent deletion strategy than for the case of predictions limited to
points of actual observations.

COMPUTER PROGRAM

Computations were performed using the computer program, POOL9U, Details
of the program are given in appendices C, D, and E. The manner of repeated
use of arrays for the simulated observations and estimated model parameters is
shown by figure 1. The major program logic is exhibited by figure 2, The
branch points for the computation of sums of squares according to the six cases
of table 1 are exhibited by figure 2(a). The procedure for the significance
tests is exhibited by figure 2(b), and the final deletion procedure is exhib-
ited by figure 2(c).

SIMULATION RESULTS

Results of an investigation of the effect of Monte Carlo sample size on
the stability of the empirical results for a similar chain pooling strategy
were given by Holms (1277b). In general, the results converged to a constant
when the number of sampled exper iments was 1000 or more. Variability of re-
sults occurred as the number of sampled experiments was reduced below 1000.
All of the strategy comparisons of the present investigation were performed
for 1000 sampled experiments. All simulations were performed for p = 15.
The strategies were compared in terms of the maximum coefficient of error,
Cie,mx+ adjusted for ng, as defined at equation (31).

Lt

Large Coefficient of Variation

The investigation of Holms (1977b) concerned the case of ng = 0. One of
the conclusions was that if the investigator has prior knowledge that the rela-
tive error is quite large (coefficients of variation in the neighborhood of
65 percent), the stratepy should immediately delete the five smallest absolute
value terms and then test with continued pooling at a nominal test level of 0.05
against the Uj-distributinn, to estimate a number n of insignificant terms.
The optimum number of terms deleted from the model was shown to be the integer
value of 1 + 0.675 n.
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The strategy parameters of the present investigation are (mp, rpy OF,
ay, and rn). With ng = 0, no testing or deletion can be accomplished unless
m, > 0, As exhibited by figure 2(b), the initial value of J 1is ny + 1.
Tgus, even if ap < 1.0, figure 2(b) shows that with my, > 0, jJ is > 1, and
with ng =0, j is > rgng for any finite rp, and thus control is transfer-
red to statement 418, and testing against the F-distribution is excluded.
Thus, any testing with ng = 0 is done against the Uj-distribution.

In the present investigation, the number of terms deleted from the model
is r,yn. In Holms (1977b) the nunber was 1 + ryn. Thus, for an equal number
of terms to be deleted in the two investigatiomns,

ryn = (1 + rodn
from which

rn = r2 + l/ﬁ
Thus, whereas rp = 0.675 was found to be optimum for large coefficients of

variation (0 = 0.125) in Holms (1977b), a value of r somewhat larger than

0.675 should be anticipated to be optimum for ng =0 and 6 = 0.125 1in the
present investigation.

From the preceding discussion, an optimum strategy for ng = 0 and
0 = 0.125 should be anticipated to occur in the domain extending to larger
values of r, beginning with the strategy (m,, Tp, ap, oy» ry) = (5, ,
1.00, 0.05, 0.675). (ap = 1.00 makes rp inoperative in the preceding
discussion.) This anticipation was confirmed in that the best strategy for
ng =0 and @ = 0.125 was (5, , 1.0, 0.05, 0.75).

The best strategies for 0 = 0.125 and for each of ng =0, 1, 2, 3, 4,
5, and 6 are listed in the last row of table 4 for each value of ng.

Small Coefficient of Variation

If the statistician's loss function is the maximum adjusted relative error
over the space of the experiment, Cae,mx’ then the strategy that is optimal for
8 = 0,125 1is a security strategy because within the present investigation
Cae,mx 1is larger for © = 0.125 than for any other value of © investigated.
On the other hand, if the statistician's loss function is simply the absolute
value of the maximum squared error over the space of the experiment, namely,
Eﬁax as defined by equation (25) then (with any sequential deletion) that quan-
tity is a maximum within the present investigation at 8 = 2,000 and thus the
sccurity strategy for such a loss function would be the strategy that minimizes
Cae,max (2.000).

The strategy anticipated to minimize Czo mx (2.0) is the strategy with
no deletion, which is syﬁbolized as (my, rp, ap, agey T ) = (0, -, 1.0, 1.0,
0.0), which results In = 15. This anticipation was realized_for ng = 0,
but for the larger values of ng, some deletion (resulting in » < 15,0)
actually gave the best strategies for 0 = 2.0. (Results and operating char-
acteristics of the strategies that gave the smallest observed values of C
(2.0) are listed in the first row of table 4, for each value of ng.)

ae,mx
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Admissible Strategies

For the purposes of the present investigation, a strategy will be classed
cither as admissible or as dominated according to its values of cae,mx(e) at
both 8 = 0.125 and 0 = 2,000. A strategy will be said to be dominated if
for 0 = 0.125 there is another strategy with the same or lesser Cgq mx
(0.125) and with a lesser Cae,mx (2.000). A strategy will also be said to be
dominated if there is another strategy with the same or lesser Cae,mx (2.000)
and with a lesser Cza mx (0.125).

Any strategy that is not dominated is defined as being admissible. The
strategies found to be admissible are listed in table 4, together with some of
their operating characteristics.

Security Regret Strategies

The strategies of table 4 have been listed for each value of ng in the
nondecreasing order of Cye,mx (2.0). Thus, the first strategy listed for
each ng 1is the strategy giving the smallest value of Cge,mx (2.0) for the
given ng. The last strategy listed in table 4 for any given ng 1is a strat-
egy giving the smallest value of Cae,mx (0.125).

The regret function of a statistical decision procedure, as a function of
a parameter 0, 1s here defined as the excess loss occurring with the procedure
at a particular value of 6 as compared with the loss that would have occurred
had the best statistical decision procedure been used for that particular value
of 6. For the purposes of the present investigation a regret function R(6)
is defined for 6 = 0.125 as being the Cze mx (0.125) for any strategy
divided by the value of Cae,mx for the best strategy for that value of 6,
and R(8) is defined for @ = 2.000 as being the Cge,mx (2.000) for any
strategy divided by the value of cae,mx for the best strategy for that
value of 8.

Thus, for the successive values of ng, the regret functions R(ng, 9)
are

R(ng, 0.125) = Caa my(ngs 0.125)/min[Cae my(ngs 0.125)]
and
R(ngs 2.0) = Cyo mx(np+ 2:0) /min|Cye my(ng. 2.0{]

From table 4, the values of

min[Coo mx(ngs 0.125)]  and  min[Che, me(nos 2.07]

are as follows,
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ngy mi“E:ae.mx(nO' 0.125)] mi“E:ae.mx(“O' 2.0)]

0 29.46 2,065
1 30.39 2,118
2 31.11 2,187
3 31.95 2.244
4 32.63 2.300
5 33.51 2.352
6 34.25 2.401

The single strategy that has the smallest regret function over botl
B =0.125 and 0 = 2,0 is defined as the security regret strategy. The
security regret strategy is thus the sequential deletion procedure, which
for a given n,, produces the least increase in prediction error for p = 15
and an unfavorable distribution of parameters over that prediction error which
could have been achieved if the best strategy had been chosen for the given
(unknown) value of error variance, o2.

In examining the R(8) values of table 4 for a given value of ng» the
parameters that give the security regret strategies are those that give the
joint minimums on R(0.125) and R(2.0), and these joint minimums have been
identified by asterisks. Thus, for the given values of ng, the security
regret strategies and the associated values of cae,mx(e) are as follows,

ng mp TF ap ay r Cae,mx (0.125)  Cge mx (2.0)
0 1 --- 1.0 0.50 0.25 32.95 2.240
1 0 3.0 .50 .10 .80 31.78 2.180
2 0 3.0 .25 .50 .85 33.14 2.252
3 0 0.0 .75 .50 .80 33.29 2.301
4 0 0.5 .50 .50 .80 33.89 2.309
5 0 1.0 .25 .10 .80 33.97 2.394
6 0 0.5 .50 .05 .80 34.72 2.408

The question can be asked as to what choice of n, will result in the
most efficient experiment. If the object of a choice of ng 1is to use the
most efficient choice together with a security regret strategy for deleting
terms, then the preceding table shows that the most efficient choice (the
choice that minimizes each of Cue mx (0.125) and Cuo ny (2.0)) is the choice

of ng = 1. This choice applies to the condition of n, = 16.

Selection of a Strategy

In summary, if the experimenter wishes to minimize the maximum prediction
error over the 16 hypercube points of an experiment with ng center points when
the variance error is relatively large (coefficient of variation in the range of
65 percent), the strategy for a given ny should be the last listed strategy
(for the given ng) of table 4. If the experimenter wishes to minimize the
maximum prediction error over the points of the experiment when the variance
error is relatively small (coefficient of variation in the range of 4 percent)
the strategy for a given ng should be the first listed strategy (for the
given “O) of table 4.
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If the experimenter has no basis for a choice of one of the two preceding
extreme choices, the choice should be a security regret strategy as indicated
by the asterisked results in table 4, in which case (for all of the ng
values) the largest value of the regret function will be R(0.125) = 1,1185
as listed in table 4(a). This value of the regret function shows that for the
worst value of np(ng = 0), the relative prediction standard error is increased
by at most about 12 percent over what it would have been if the worst value of
8 had occurred and the best strategy against it had been used. Thus, the
security regret strategies (for each of the values of ng) must be concluded
to be widely useful strategies.

Variance of Predicted Squared Error

The strategy selections described in the preceding section are based on a
Monte Carlo investigation that reported mean values of prediction errors over
1000 simulations. The quoted results thus tell what the mean long run results
will be as a function of strategy selection. The subject of short run results
was not discussed. Some insight into the short run performance can be gained
by examining the observed values of V(ez)mx' This quantity gives the observed
variance, for samples of size 1000, of the maximum squared prediction errors
over the simulations, as defined by equation (28). 1If this variance is rela-
tively small, then operating characteristics such as Cae mx(0) are relatively
constant from simulation to simulation. But, if V(e )mx is relatively large,
then the short run performance of a strategy could be erratic.

In the case of large coefficients of variation (small values of @) the
strategy performance was not erratic - the values of V(ez)mx were small for
all of the strategies of table 4 for 06 = 0.125. The strategy performance can
be erratic for small coefficients of variation (large values of 6). Thus,
the values of V(e2)mx were large or small for 6 = 2.000, depending on the
strategy (table 4). This response to 6 shows that the bias component is the
component of the prediction error that can be erratic. In particular, the
values of V(el)p, were large for = 2,0 when strategies were used
(table 4) that would result in the smaller values of C, (0.125). Thus,

a strategy favorable to large coefficients of varia .ion sﬁould never be used

if the possibility exists that the coefficient of variation might be small.

In such a state of prior knowledge, the security regret strategy for the given
ng should be used because the V(e2)mx for it (table 4) was never very large.

Expected Number of Terms Retained

Some insight into the operation of the proposed strategies can be gained
from an examination of the mean number, p, of terms retained as a function of
ng» 0, and the choice of strategy. The results for the admissible strategies
were given in table 4 and are summarized in table 5. Briefly, the strategies
that minimize C,, px(8) for 6 = 2.0 simply retain many terms for both
0 =2.0 and 6 = 0.125 wunless np 1is relatively large (nj > 3). In a some-
what similar manner, the strategies that minimize Cae,m (6) for 8 = 0.125
are also insensitive to 6 (the value of § remains small for both 8 = 0.125
and 8 = 2.0 wunless ng 1is relatively large (no > 3).
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By way of contrast, the security regret strategy results in P being
responsive to 6 merely provided ng > 0. Thus, the results in table 5
tend to confirm the previously described results, namely, that n, = 1 1is
an efficient value of ng, and that the security regret strategy gs a widely
useful strategy.

CONCLUSIONS

An investigation was conducted to determine what statistical techniques
should be used for model fitting to the results of a two-level, fixed-effects,
full or fractional-factorial, orthogonal experiment with 16 hypercube treat-
ments and zero to six center points when the population model coefficients have
an unfavorable distribution of relative values. Sequential deletion strategies
using both the F- and a Uj-distribution and combinations of them were evalu-
ated, using Monte Carlo techniques, under the criterion of minimizing the
maximum prediction error, wherever it occurred, among th_ hypercube points.

Three classes of strategies were identified as being appropriate, depend-
ing on the extent of the experimenter's prior knowledge. In almost every case,
the choice of the strategy was found to be unique, according to the number of
center points. Among the three classes of strategies, a security regret class
of strategy was demonstrated as being widely useful, in that over a range of
coefficients of variation from 4 to 65 percent, the maximum prediction error
was never increased by more than 12 percent over what it would have been if
the best strategy had been used for the particular coefficient of variation.

Relative efficiency, when using the security regret strategy, was examined
as a function of the number of center points, over the range from zero to six,
and was found to be best when the design of the experiment added only one center
point to the 16 factorial points.
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APPENDIX A

SYMBOLS
Description

estimate of 8
adjusted coefficient of error, eq. (31)

ratio of maximum prediction error to scale
parameter, eq. (30)

expectation of . . .
single observation random error

maximum over hypercube of mean square pre-
diction error over simulations

number of independent variables

experiment contains 287N treatments

experiment contains (1/2)"®  times number of
treatments in full factorial experiment

subscripts

amount of NAMELIST output desired
index number for af
index number for ay

number of 6 values investigated in any
computer run

number of mean squares pooled before test-
ing begins

number of center points
number of hypercube points

total number of observations in one
exper iment

number of simulated experiments in any
strategy evaluation




g

V(. . )

v(ez)max

Xk

>

R¥

RETA

VESQMX

YOBS(I)

Z(1)

B(TI)

DELTA(K)

ETA

THETA(L)

YMU(I,L)

RHO
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distribution transfer parameter, eq. (15)

number of terms deleted is integer value
of r times number insignificant

n
variance of . . .
maximum over hypercube of sample variance
of mean square prediction error over
simulations, eq. (28)
kt"  independent variable

conceptual value of dependent variable

estimate of response function from fitted
model

observed value of dependent variable

mean squares in Yates' order

nominal significance level of F test

nominal significance level of Uj test

regression coefficients in Yates' order

parameter determining relative magnitudes
of coefficients in population model,

eq., (17)

expectation of jth order statistic of
a le) variable

number of mean squares having noncentrality
parameter of zero

number of mean squares concluded to be null
during any analysis

scale parameter

mean over experiment of nontentrality param-
eters, eq. (17)

noncentrality parameter

population mean value of Y; for gth

treatment

number of coefficients concluded to be non-
null in any simulation
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AVRHO mean number of coefficients concluded to
be non-null in a strategy investigation

standard deviation of e
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APPENDIX B
DERIVATION OF EQUATIONS FOR SUMS OF SQUARES

Case a (ng = 0, mp = 0), - This case provides no information for a sum of
squares for a test statistic.

Case b (np = 1, my = 0). - Let Ygx be the value observed at the k-th
center point (origin) observation. Then by the definjtion of oz.

V(YoK) = o (81)

Also, from the definition of az, where Y; is the i-th hypercube observation,
V(Yy) = o2 (B2)

The object is to estimate 62 fiom the information in the Yi» i=1, ...., ngy
and a single center point observation, ygj. Because the model coefficient
estimates in the two-level fractional factorial experiment are orthogonal, the
least squares estimates of the regression! coefficients from the combined data
are all the same as the Yates estimates, except for the coefficient of the zero
degree term, bj. 1Its least squares estimate is from equation (5):

Ne
bt = lyy, + :E: y (1+n)
1 01 i c
i=1

For any of the treatment points, let A; be the difference between the
observed value and the predicted value of Y where Ap 1is the center point
difference and 1= 0, 1, *++, n.. The Yates' estimate of 8; is

f=1

The predicted values under least squares estimation are therefore all augmented
by b{ - b; over their Yates'method predictions.

The differences between the Yates'method predictions and the observations
are all zero at the hypercube priu%s, thercfore over the n, + 1 treatment
points,

*
8g = yo1 - b

*
1

The estimate of o2 from the residual of the least squares regression is

Ai-bl-b 1'1.....nc
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n
C Az
! 2
S e F1-m, - Gorm b)) by = by)
where
ﬂc Ne
yor* ) ¥i TteYor - Y vy
- b* - - i-l = 1-1
Yo1 1" Y01 T+ ng 1+ ng
and
Ne Ne Q¢
YY1 vyt o B Y1 = fcYo1
L O i=1 _ _ 1= _
1 1 nc 1 + nc hc(l + nc)
Thus,

* 2 w2 2
s? = (yg1 = b)) * ne(by = bY)" = 3 :‘nc (o1 = ®1)

For n. = 16,
2 2
$¢ = 0.961176(y01 - bl)
For this case, the number of degrees of freedom is
ndfb = ] (53)

and the sum of squares is
2 2
SSb = Slndfb - 0.961176(y01 - bl) (B4)

12 this case, the error sum of squares was obtained from a residual involving
by. This usage of bl has the disadvantage that it will introduce a bias or
"Jack of fit" component into the sum of squares if the fitted model is biassed
at the center point. Because of this bias risk, a "pure error’ sum of squares
will be computed if ng > 1.

Case ¢ (ng > 1, my = 0). - This case is treated as follows. Let the center

point observations be ybk; k=1, ...., ng. Their sample mean is

n,

1
Yo 7, Yok
k=1
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and the sum of squares, SS. for case ¢ 13 now:

f?i ng ng >
_ 2 2
sS¢ = Ly ok = Yo) ~ EE: Yok - ﬁ}' :E: Yok| (85)
k=l k=1 0\ k=1

vhere the number of degrees of freedom, mn;c. is

ndfc = no - 1 (36)

Case d (ng = 0, mp 0). - Let

o _
§54 = ;g; Z (1) (B7)

The number of degrees of freedom, n4gq is

f4g4 = Tp (8)

Case e (ng = 1, my > 0). - This is the additive situation of cases b and d:

88y = 58y, + 584 (B9)

Ngee = Dafb + ndfd =] + mp (B10)

Case f (ng > 1, my > 0). - This case 1is additive with respect to cases C
and d:

$S¢ = SS. + S84 (B11)

ngee = Mgfe T Rafga " M0 T 1Y T | (B12)
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APPENDIX C
DESCRIPTION OF COMPUTER PROGRAM

Computations were performed using the FORTRAN-4 program, POOLIU listed in
appendix D. The antecedents of the program were POOL3U (Holms (1966)), POOLMS
(Amling and Holms (1973)), POOLES (Holms (1974)) and POOL6U (Holms (1977b)).
The program POOL9U is outl 1 d and the parts that are essentially the same as
the earlier programs are i« :n.ified by the section numbers and titles of
appendix D in the table that follows. The table is followed by a description
of POOLY9U. 1Illustrative output is given in appendix E.

Section Section Reference
number title program
1A DECLARATIONS AND TABLES POOLMS
1B INPUTS AND CONSTANTS POOL6U
1C POPULATION MEANS POOL6U
1D STRATEGY (new)

2 SIMULATIONS AND MODEL FITTING POOLES
3 CONSTRUCTION AND ORDERING OF MEAN SQUARES POOLMS
4 DELETION OF TERMS (new)

5 PREDICTIONS POOLES
6 ACCUMULATION OF ERRORS POOLES
7 DETERMINATION OF MAXIMUM AND MEAN SQUARED ERRORS POOLES
8 OUTPUT (new)

9 YATES METHOD SUBROUTINE POOLMS

Section 1A. - Declarations and tables. - The values of the nominal test

size a are stored as (ALPHA(I), I = 1,11) and later used as output labels.
These values range from 0.001 to 1.0, however, the value of 1,0 obtained by
setting the index to 11 is merely a code implying that no significance testing
is performed.

The sequential deletion requires critical values gainst which the test
statistics are compared. The critical values of F are stored internally as
((FTB(I,J), J = 1,10), I = 1,20) where I indexes on the degrees of freedom
and J indexes on the value assigned to a. The critical values of Uy are
stored internally as ((TB(I1,J), J = 1,10), I = 1,16) where I is the order
number in nondecreasing order, and J 1indexes on the value assigned to a.
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Section 1B. - Inputs and constants. - The constants defining the popula-
tions, the experiments, and the sequential deletion strategy are read from
data cards in the following order, with the order of the fields being the
same as the order of the symbols in the following description.

Format Description

(13A6,A2) REMARK (I), arbitrary literal information such as particular
use of program, date of last change, and so forth.

(315) LGMH, NE, KODE

(18,5F8.3) LTH, (THETA(L), L = 1, LTH)

(14/(10F8.5) NDELTA, (DELTA(K), K = 1, NDELTA). There are as many (10F8.5)
cards as are necessary to read (DELTA(K), K = 1, NDELTA.

(812) NNO, (NO(M), M = 1, NNO)

(315,2F5.3) MP, KPF, KPU, RF, RETA (The associated READ statement is

actually in section 1D.)

Section 1C. - Population means. - After the initial constants have been
read, the next major operation is the formation of the population mean values.
The number of population regression coefficient sets to be examined during the
investigation of a strategy is the number, Lgs of 68-values.

With respect to equation (2) all the population model parameters are first
set equal to zero with the DO-loop ending at statement 10. The non-zero values
of Bi41 are initially set equal to §&§ using the DO-loop ending at statement
20. The DO-loop ending at statement 20 serves the purpose of equation (19) with
o=1 and 6 = 1. The value of o0 = 1 1is retained, but the adjustment for 6
is made after the population mean values have been computed.

With the population B-values (aside from 6) established at statement 20,
the object is to compute the population mean values from the g-values by the
reversed Yates' method (Duckworth (1965)). The first step is to reverse the
order of the R-values, which is completed at statement 22, The use of the
reversed Yates' method then yields the array YOBS(I) as completed at statement
30. The array YOBS(I) is therefore an array of population means ujy. This
array of population means is to be expanded over the mean noncentrality param-
eters, Ay, to give the effect of equation (17). This effect is produced on the
population mean values by the multiplication

Hy,p = Hify

and this operation is completed with the creation of the array YMU(I,L) at
statement number 48. The values of uj; are thus indexed over treatments
i, i=1, ..., n., and over arbitrary values of Bgs L = 1, ...,26.

The index, 1, runs over the mean squares to be analyzed within a single
experiment and thus unequal values, 8§ contribute to non-uniform noncentrality
parameters within the experiment. The index, ¢ serves to change the scale of
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the noncentrality parameter and, therefore, each successive value of 2% gen-
erates a new family of experiments. Changing 6¢ thus provides the conditions
necessary to investigate the deletion procedures for differing coefficients of
variation.

Section 1D. - Strategy. - In terms of mathematical symbols previously de-
fined, the strategy parameters are functions of numbers that are read at state-
ment 50 as follows:

Ar gument Function

FORTRAN symbol Mathematical Symbol

MP mp
RF re
KPF ap
KPU oy
RETA Iy

More than one model deletion strategy cam be evaluated during any computer
run. On completion of the evaluation of a particular strategy, control is
transferred back to statement 50 for the reading of an additional strategy data
card. The operation of the program ends when such cards are exhausted.

The error simulations are generated so that all strategies are compared
for the same set of random numbers. This is achieved by reinitializing the
random number generator for each new strategy with the statement "CALL SAND(XS)."

The prediction errors and their squares are stored in the arrays ERSQ
(I,L,M) and ERSQSQ(I,L,M). These arrays are initially cleared by the loops
terminating at statements 97, 98, and 99.

Section 2. - Simulations and model fitting. - The number of experiments
simulated is NE. The performance of these experiments and their analysis is
controlled by the loop: DO 699 N = 1, NE." Within each experiment, the
random numbers for the (n, + np) "observations" are generated as follows.

The procedure generates a sequence of pseudo random numbers with a rectan-
gular distribution by taking the low order single precision bits of the product
r -1*K where r,.; = previous random number and rg =1 and K = 513, This
fixed point number is then floated and returned to the calling program as a
floating point number between O and 1 (Tausky and Todd (1956)).

The rectangular variates are transformed to pseudo-normal variates using
a procedure described by Box and Muller (1958). The procedure begins with Dj
and Dy assumed independent and rectangular on the interval (0,1). In the
notation of Box and Muller (1958), the transformations are:

pe sy

e
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1/2
X, = (=2 n Dl) cos(2mDy)

1/2

Xy = (=2 fn Dl) sin(Ztz)

The operations are completed at statement number 215.

Each set of random numbers for an experiment is used with all values of
the population and design parameters 6 and n, through the statements
"DO 690 L = 1, LTH." For all of these cases, tge simulated observation errors,
as stored in RN(I), are added to the population mean values (stored in YMU(I,L))
for the particular treatments (I = 1, ...,NC), at statement 224 as required by
equation (22). (Beyond n. an additional ng values of RN(I) are used as
"center point" observations.)

After synthesizing the "observed" values of YOBS(I) the "SUBROUTINE YATES"
(section 9) ending with statement 909 is used to compute the array (B(I) which :
contains (except for division by the number of treatments) the Yates estimates .
of the parameters in the manner of equation (3) and in the order of equation (2). 3

Section 3. - Construction and ordering of mean squares. - The mean squares
are formed from the parameter estimates (for those terms bevond 8;) and a
pointer function is created within the loop "DO 309, I = 1, NC." As exhibited
by figure 1, the array BFM(I) remains intact for m = 1, ...,n;0, but changes
as =1, ...,%. (In section 4 the array B(I) will be overwritten for all
m=1, “"nnO)'

The array of pointers to the B(I) array is created by the statement
IND(I) = I. This array will serve to identify the coefficients in the B(I)
array after the process of ordering mean squares according to rank. The order-
ing is done in the sequence of statements ending with 313,

Operations thus far created a column of mean squares Z(J) with mean squares
indexed on J in the order uf increasing rank, together with a column of integers
IND(J) indexed on J. Thus, any address J will lead to a mean square Z(J) and
also to the integer IND(J). This integer is the index I that the associated
regression coefficient has in the original Yates' order.

The computation of the sums of squares is done for each value of ng within
the loop: "DO 680 M = 1, NNO." The construction begins following statement 313
and ends with statement 365. The operations are outlined by figure 2(a).

The computation of the sums of squares depends on the values of ny and
m, according to cases b, ¢, d, e, and f of table 1, Three combinations of
tgese cases are identified in the statement immediately preceding statement 320.
If ng = 0, the situation is that of case a or d, and control is transferred to
statement 330, following which the SSd of equation (B7) is evaluated at
statement 365,

1f ng = 1, the situation can be that of case b (n, = 1, m_ = 0) or case
e (no = 1, mp > 0) and the SS, of equation (B4) is computed ag the statement
following 32?.

M 1.
i it o . I )
L e o i
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If ng > 1, the situation can be that of case c¢ or case f. The quan-
tity SS. of equation (B5) is computed at the statement for TEM that follows
statement 322.

If mp and ng are each zerc, there can be no sequential deletion, and
control is transferred to statement 432, and all terms are retained. Setting
both ap and ay equal to 1.00 (by setting KPF = KPU = 11) is used as a
code signifying that no conditional pooling is to be done but that arbitrary
deletion is to be accomplished according to values assigned to w, and e
This is done by transferring control to statement 421,

Section 4. - Deletion of terms. - The flow chart for the tests of signif-
icance is shown by figure 2(b). The procedure begins at statement 417 and ends
at statement 419 (appendix D). The significance tests will have been avoided
by earlier statements in section 3 if either ng + mj; = 0 or both ag = 1.0
and ay = 1.0. Thus, entry at statement 417 requires both ng + my > 0 and
at least one of ap or apy < 1.0. If ap = 1.0, control is transferred to
the Uj test which begins at statement 418. If ap < 1.0, control is determ-
ined (fig. 2(b)) by the questions: "Is j > rpng? and is j > 1?" If both
are "yes," control is transferred to statement 418, which initiates the Ujy-
testing.

Irrespective of whether significance testing is against the F-distribution
or the Uj-distribution. insignificance pools Z(3) into the denominator of the
test statistic and then transfers control to statement 419 which increases }
by one unit. Significance at any j transfers control to statement 420.

The third statement following 417, namely the statement "IF (KPF.GT.10)
GO to 418" transfers control to the U,-test merely provided ap = 1.0, even if
J < 2. But, the rationale of the U distribution leaves U, undefined for
J < 2. The possibility of a transfer of control to the U;- distribution with
J = 1 was provided for by setting the critical values of U; equal to 2.0
for j =1 and all values of ay < 1.0. Thus, if j =1 then obviously
m, = 0 and the test statistic is (from table 1)

2-0 2(;) 2.0

ul - SSb + Z(l) 1+ SSB7¢(1)

for case b(no =1, mp = 0) or

Il ¢ I
ul SSC + Z(l)

for case ¢ (no >1, mp = 0). Thus, for case b, u(1) £ 2.0 for SSp 2 0.0
and z(}) would not test as significant. For case ¢ (ng> 1, m, = 0),
u(y) > 2.0 only if

——-——30-—2—,(;.)._- hl 2'0

SSC + Z(l)
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hence only {f
2.0 s8¢
zl)>_._.__.__.__
( (ng - 2.0)

Let o2 be estimated by SS¢/(ng - 1). Then wu(1)> 2.0 only if

2.0(ng - 1) S,
D) G- 2.0 (g - D

> C(no) 82

The following table shows C(no) as a function of n, for the values of ng
appropriate to case c.

no C(no)

oV s W
oW g
.

wo oo

Thus, z(l)(which is _the smallest of the ordered mean squares) would have to be
much larger than o2 before z(1) would be declared significant.

The flow chart for the model deletion and for the estimate, 5, is shown
by figure 2(c¢). Transfer of control to statement 420, 421, or 422 leads to
the estimate, respectively:

ﬁ = integer 5_rn(j -1)

or

>

n = integer < Tnmp

or

ry

n

integer < rn(nC -1

With ﬁ so estimated, the ﬁ smallest absolute value coefficients
(beyond bj) are set equal to zero with the statements ending at 425.

Section 5. - Predictions. - Predicted values of the dependent variable
for all the treatments of the fractional factorial experiment are computed in
this section using SUBROUTINE YATES' and the reversed Yates' method as proposed
by Duckworth (1965).

The operation of Yates' method followed by the "reversed Yates' methed"
is illustrated by the following table for a 22 experimert:
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YATES METHOD
YOBS B B/FNC
Yl Yl + Y2 Yl + Y2 + Y3 + Y4 (Yl + Yz + Y3 + Ya)/ﬁ
Y3 Yp-Yp Y3t Y -Yy oYy (Y- -Yy)/é
Ya Y"-Y3 Yl‘ -Y3 - Y2+Y1 (Y4 -Y3 -Y2+Y1)/4

REVERSED YATES METHOD

YOBS B YPRED
(Y, = Yq = Yy + ¥;)/4 (Y, = Yp)/2 Y, Y,
(Y3 + Y, =Y, - Yy)/4 (Yy +Y,)/2 Y, Y,
Iy = Y; + Y, - Yq)/4 (Y3 - ¥))/2 Y, Y,
(Y + Yy + Y3 +Y,)/4 (Yq + Yq)/2 Yy Y,

In the case of the computer program, there are n_, parameters estimated from a

fractional factorial experiment. ¢

Section 6. - Accumulation of errors. - The squared error for each predic-
tion is accumulated (as required by eq. (24)) in the array ERSQ(I,L,M) as
computed with the loop "DO 609 I = 1, NC." These accumulations are stored for
each combination of L and M as indicated by the loops terminating at state-
ments 680 and 690, and this process is repeated for each of the n_, sets of
random numbers as indicated by the loop terminating at statement 689. For the
purpose of computing the variance of the squared error of prediction, the
quantity

ne 2
(ezilmn)
B 7

of equation (27) is computed within the loop ending at statement 609 and stored
as ERSQSQ(I,L,M).

Section 7. - Determination of maximum and mean squared errors and their

variances. - The purpose of this section is to determine maximums and means of

the prediction errors over the space of the experiment after the errors have
been evaluated over that space by accumulating over the simulations. The
accumulation over the number, n,, of simulations had been stored in the array
ERSQ(I,L,M). For particular L, and M, the determination of the largest pre-
diction error over the space of the experiment as defined by equation (25) is
done through repeated use of the library subroutine AMAX1l, which determines a
real number as a function of two real arguments. This is done within the loop




"DO 750 T = 1, NC." The summatlon for the mean squared prediction error over
the space of the experiment as required by equation (26) is also done within
the same loop terminating at statement 750, After division by the appropriate
divisors, these two evaluations of error are stored in the arrays (ERSQMX(L,M)
and AVERSQ(L,M). The quantity

Na Na 2
2 2 _ 1 2

Z (epigmn)” = o= Z ®pitmn

n=1 n=1

1s computed and stored as TEM within the loop ending at statement number 750.
The quantity V(e%m) A defined by equation (28) is determined to be the max-
imum of the values o? EM as determined by

E = AMAX1(E,TEM)
and from this maximum, Q(eim)max is computed and stored with the statement
VESQMX(L,M) = E/FNEM1
The sum of the values of TEM as given by
F=F+ TEM

is then used to compute O(E%m) according to equation (29) using the statement

AVVESQ(L,M) = F/FEMINC

The computation ends if the data for MP, KPF, KPU, RF, and RETA, are
exhausted; otherwise a new strategy is investigated by returning control to
statement 50.

Section 8. - Output. - The output is illustrated in appendix E. The
NAMELIST output was incorporated only for program checking.

Section 9. - Yates' method subroutine. - This subroutine is essentially
that of part of the main program of POOLMS (Amling and Holms (1973)) except
with the last few statements modified so that the subroutine can be used for
the direct Yates' method and also for the reversed Yates' method; as was also
done in POOLES (Holms (1974)).

The algorithm for Yates' method is described as follows: The "observa-
tions" yy may be visualized as a column (j = 1) with row index 1 = 1,...,2£.
The column”is then operated on according to Yates' method to produce a succes-
sion of columns j = 2,...,2. The successive columns for any kth row are
computed as follows:

i= 1, 3’ 5,0.0’21 - 1
Yi, g = Yiel,3-1 ¥ Vi, 51

*x
I

i+ 1)/2
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f =1, 3, 5.0.,2v =1

Yk, 3 © Yi+1,3-1 T Vi,3-1 el i1y
= + 1+

New columns are computed according to the two preceding equations for
= 2,..42(to create £ columns).

.
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APPENDIX D

LISTING OF COMPUTER PROGRAM POOL9U

o= DICLARATIONS ANU TABLES

DIVMENSION RIMARK(ludy ALPHALLYI)y T3CA6010Dy RNL2UI, INDULS)2(16),
ITHETA(S), NOUT), DELTAC1S), YMJUL6,5)y AVRHOU5,T), ERSQU16,547),
CERSCSQAUL1G9 59 T) o ZRSLMXI5,T),y COEIMX(S,7), AVERSQIS,7),
JVESQMX(SyT)y AVVESQUS,7),y ADCOEZR(S5,7)y BFM(16),FT3(20y1M

COUMON KKy YO8S(16), B(16)

OATA (ALPAHACID)¢IZ21,110/706430140420297603359060195002590635¢J010
1Ce2593e509CaTSy14C/

DATACCETI (I 0d) U100 0121922070052 %0e0910132343,10621162,405242404
R7eB8y16)ay 30809508209 1000309701T7161998e5 ) 45Be5917865995¢5%978651,1
Boe5198e52692e57 190066679013 33,167009100e3955e55934012917040,13,13
CoS5e53892e 09N 851 9Uell20¢THell 5104593 103%,21e20912622474709,8,5
D4S91e80790e54RBb)0e116534T7e1893407342ce?8910625910a01,54509,4,0860,1
FebP29Le528 900l 30,35e5)92T701209108e5%9)130aT74,8¢313,56%879%e776,14621
FoOeSlUTy00dll39029ec4992ce9)12602U490cecd59%3e07 1505914365873 165734045
GOSTyUel099925e429200cbollabF911e25)Ta57195e318,344558,14538,2,4590,
HLUolOEB 9220 b6y 1304691306191 00e5697e¢2u95¢137 9 3e30091e5129264938493010
18002100403 7017112839106 04,60937980755,36285,16492,2.4397,0.,107%,1
JPe659115e20112e23 990646900724 380844,47022591047590808589501768,18404
Ko l5 ol g Ll e TS993 30 16aF 0ot oTlTo30)7%,3e406240e4337,0e3053,17e82,14,
L8"011037'900?“'60“1“|“0567'30135010“50990”b1“vdol°5"1701“'!“03“|l
Mled69S o852 15278 ) lobul 301029 08039004790 ,M310560156590136%4,170,8
NO9pSeb6396ecT0pweSU3 930 T3y lelT¢sUebT778,001053906e16913659,17:453,8.
0531 060d )0 gl 3o 08,108 2590476390e1053915e72913629910e3B0060470,
PboJ“iv“o“SlB;BoUZﬁp10“190305755v30l3Q9915033|!300301b022|5.?35.5-’
CT8,4ellly 3ol To1e8]l3ue0elT3890e1047¢905e05¢42e81910037980185950v22,
RUe3ELy2ePFUs oliNBUelTBe el IS0 Ua82912e5205e?244,84095,5e872,4635%
S192e97551e404yU0739,0,1004/

UATA (T30 T0J)eJd=1010) 411016072009 2e09020092e¢7120¢0026092605324049200
19202920 0U00Ce1e99997 41059997 9149998b91 79937 91ev?68791e7877,16923,1
20706010382'zo9976"09905'2.99”“'2093U9’2095‘920;0“’20335920‘27'?03
28691068893 e9769 209629309259 308 703307 00Up3e62593041292e949,263954149
Uol o HebB8T ol aBUS 0T34 UabS g loll  Ue2L0e203%,)3,287,20658,2s1B0,C,T4,y5,
563.5.&5.5.31.“-°9.Hobe.Q.28.3.57'2o393.2.371.6.51.5.33.5.11.5-57.5
BollD eS0Ty ably3e83,30119265U 97620900769 5e5596035595e8895e4U,U0e5%440
TUG9 2027920050701 4708297010 05678060259053e67595e17980d793e9592e¢829843
B3 ol o Te 3970l 0beS010a03 0500 olabS 93000109593 e829B8e8U9T7e05,7457%
Tl ol T9be28 )Sebloy Wby TeTly3edT10e2515303448033,7eB8797e13¢0665M,5081,
Bl oTT o307 9361709067990l oBebE 1810970379667 5e794e529349943627,1
Bl el 1965518098030 eT05905e51 0001 05eli5e80lT93e37910e4Je9688,9,20,
CoOebb T elP0 Ted Tyt adlUsbelToleld oo dolbpluel?y i Celly?el398e0%:7e9697023
Debold,5429,4e30,)3¢55/

NAMELIST /0QUTLZ B /72UT2/ YOBS /JUTL/ YMJ /0UTW/ INDXN /7UT57 RN
NAMZLIST /70UT6/ INDXM /JUTT/NT /Q0uT3/ INOXL /0uT97 IND,2
NAMILIST /Z0UTYu/ NOF TeM /0UTYA/Z N /0JT327 SSJYO0 /3uTau/ Z7TA
NAMELIST /Z0UTL13/7 InixJy TEM, NJIF, TZ3T, UN /ZOUTL1S/VITA

NAMILIST /0UT1o/ R«4D /JUT1T/ ERSQ /JJTL8/7 ERSIASY /0JTLI/7 TENT
NAMELIST /0UT25/7 KODE /JUT2Y 7 3FM
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47
43
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18e= INPUTS AND CONSTANTS

READUIS,BIU) (RIMARRILI)-IZ1 1)

ARITE(5,804) (REMARK(I),I=1,14)

READ (5,80¢) L>%H, N&, X00DC

IF EXKOJE o6Te U ) WwRITE (6, JUT20)
READUS,804) LT4y (THETALL),y L1l m)

READ (5,806) NJELTA, (QELTAIXK), KZL,NOELTA)
wRITE (698u7) NDELTA) (DELTA(K)y KSI,yNIELTA)
READ (5,830) NNy (NUiM)Y, MZ] NND)

KX = L3M4

NC 2 2¢el3Mm4

WRITE (6,803) «X, NCy NN3D, NE

NCM] 2 N2=)
NCMZ S NI=¢2
NCPY = NTeg
NTYX = NT ¢ NCINND)

NTMXPLl = NTMX ¢ |
NEM] = NI =}

FNS = NS

FNE = NE

FNEML = NEMY
FNESNS NESNT

FEMING = NEMIeNC
I1Ce~ POPULATION MEANS

D9 1C I=z3yNS

BeI) = O.C

CONTINJE

DO 20 I=1,NDELTA

8(lel) = JLLTA(]D)

CONTINUE

IF (ROJE oUTe U ) &RITE (B, JUT1 )
D0 22 I=1yNC

NCPEIMI = NCPL-]

YO3ISEI) = BINCPINMIY

CONTINJE

CALL YATIS

IF (KQJIZL +6Te w ) WRITE (6, JUTY )
90 3. Iz1 4N

NCPIMI = N(Pl~-]

YO3SUI) = EUINCZPIMI)

CONTINJE

IF (RODE oC0Te 1 ) WRITE (&, JUT2 )
LG 48 Lzl,LTH

00 47 I=1yhKS

YMULTI L) = YOBSUINeTRETALL)
CONTINJE

CONTINJE

IF (KOJE oGTe ¢ ) wWRITE (6, JUTY )

1Ds = STRATESY
READ (5,808y2N) = 359) ‘I’.K°‘."d.%’,2£f&

MPPLl = MPe}
CALL SAND (Xx$S)
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213

«15

<24

My o

311

J1¢

el

D0 99 w2}
00 98 L=}
AVRIHO(L Y
00 97 I=)
ERSCIIoL,
ERSQSSLI,
SONTINUE
CONTINJUE
CONTINJE

e SIvuL

L0 €655 N
INJXN = N
IF (n0)Z
0o 213 I=
SALL RAN)
CONTINUZ
IF (x0D2
Do 215 1=
E= SCRT(~
0= 6,283
RN(I)Z £s
RN(I*})2
CONTINJE
IF (RODJE
DO 690 L=
INIXL = L
IF (KCIE
D0 2<% 1=
Yo3sStly =
CONTINUE
IF (x0)2¢E
CALL YATEZ
IF (k0D

Je= CONST

go 309 1I:
IND(IY= I
201y = 3¢
3FM(]) =
CONTINUE
IF (xJ)JE
IF (X0)¢

20 313 J=

37

s NNO

' LTH

)2 Jed

.NC
LY
LeM) S 060

ATIONS AND MODEL FITTING
ZagNE

elTe 3 ) WRITE (6, JUTH )
I ,NTPXF;
(RN(T))

elTe w ) WRITE (6, JUTL
1oNTMX,2

2NCAL0GIRNLIN)
B53¢RN(1+1)

< 0s8¢))

CeSINID)

o0OTe 4 ) wRITE (6, 2UTS )
1,LTH

oGTe 7 ) wRITE (6, JUTE )
1,8C
YMULLIWL) ¢ RNUD)

ebTe L ) wWRITE (&, JUTZ2 )
S
oGTe U ) WRITE (6, JUT1 )

RUCTION AND DRDEIING JF MidN 5JJARES

1NC

Ie1)eB8(I+])/FNC
3(I1/FNC

o6Te 8 ) SRITE (b,e JUT® )
o0Te J ) wRITE (6, JUT2) )

1oNCH2

TEST = ZINCvY)

IN = N3M}
DO 312 NA
IF(TEST =2
TESTY = 2¢
TNz NA

CONTINVUE
I1Timz IN)
TEWz (1IN
INJCINY =

SJeNCM2
(NA)) 3140312,311
NA)

¢IN)
)
INCH)
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CONTINUF

IF (rCCE «GTe & ) wPITE €8y OU'TG )
DE &1 MILGNLD

INDXY = M

IF trQLT o6Te 4 ) WERITL (%, CUTE )
IF (hOLE o074 100 WPITE 6, OLTITI LY
[C 2ve T 2 J,0nC

(I = RFwe])

CONTINUF

NT = NC o NIYr)

IF (KQDF o576 & ) WRITE &, OULTT )
FN =2 NTUV)

RFN" = PFeFN,

Yy = .
IF (N I™)=1) 337, 32t, Y0
SsCvYC = o

00 3e2 ISPCFP1GNT

TY = TY ¢ 2N(1)

SELYO = SCCYD o fr(I)eel
COUNTINUE

IF (nCL7T 56T, 21}
TEM = SSCYD = (¢
NCF S N (M) =)
BOAY S (FYCsi(]) ¢ TYI/UFNC o EN )
6C TC 3%

Ty 2 RNINCPY)

TEM eRFUILTES(TY « [FMIL))eeT)
NDF 1

BOY) = (FACoptl) o TY) FNC o BN )
GC YO =%

TEM '
NECF N

IF (rOLF 0Ty &) WHITFE (o, QUTHY

IF t ¥ODE o0 7. T ) WRITE ( &, 0UTE )

TF (ROLT LT4 & } WRITE (&, CLT*,)

IF (hT1") oLlTe 1 obdhlie MF LT, ') GO TO %
IF (pPF ofTe 107 ANy ¥PU CT4 ') GO TO &2}
IF (PP oLTe i) CC TC Q17

DC X¢% 9 = \,MP

INDXY = J

TEM = 1FM ¢ Z2(J)

CONTINLE

NEF - ANCF o mp

IF (ROLF sGTe & ) kEITE (4, OQUT*)

| WRITE (€, OLT'.)
TYes2) /FN ')

" on

~~

o= [ELFTICN OF Tripes

DEC &8 .9 JveP I NCr

INDYS = U

FJg = J

IF (rFF o0LTe () 1C I0 &.°

IF thy o0V FFAT o2%0, INPXJU o(Te 1) CC TC 61N

Fo=- 78T
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C
FADF = NDF
TEST = FNLF * 2¢J) 7 TEM
IF (rOLE 4GTe 12) WRITE (&, OUTY)
IF (TEST oGTe FTEU(NDFLKPF)) GO TO G210
TEM © TEM « 2(J)
NCF = NDF « 1
GG TL 419

C

C Ud = TEST

C

G1& IF (KPU oGTe Y CC TO agr

NDF = HNDF +
JN =2 J
FMDF = MNDF
TEST = FNDF*Z€JY/Z(TEMeZ(J))

IF (RODF «GTe 1C) WRITE (6, OUT!H)
IF (TEST o5Te TRUJUNJKPU)I) GO TC &20
TEM = TEM « 21J)

419 CONTINUE
JETA = NCMY
GO TC 422

424 JETA = U=}
IF (KODE +GTe 12) WRITE (6, OUT'H)
GC 10 &72

4.1 JETA = wmp

422 ETA = JFT?
IF (ROCE oGTs 13) WRITE (6, QUT'4)
JETA = TFIXCRETA®ETA)
IF (KOCGF oGTe 318) WRITE (£, QUT!S)
IF tUETA oLTs 1) CU TO 434
DO &.5 JS!,JETA
INDXD = U
INDX = INC((J)#Y
BOINUXDIZ 1 o7

475 CONTINUF
IF (hCDE oGTe O ) WRITE (6, OUT' )

60 TC &3
422 JETA = ¢
GI4 RMO = NCM1 = JETA

IF (kCDE oGTe 1%) WRITE (6, OUT1e)
AVRHO(L yM) = AVFRHO(L,M) ¢ RHO

~

Se= FREDICTIONS

an

IF (KCDE o6Te 5 ) WRITE ( 64 OUTe )
IF { KUGE oGTe 7 ) WRITE ¢ &, CUTS )
DC Sue Iz iyNC
NCPIMT = MCPl=]
YOBSIT) = BUNCPINI)

546 CONTINUF
IF (KODE o6Te 1 ) WRITE (6, OUTZ )
CALL YATECS
IF (FCDF o6Te N ) WwRTIIVE (&, OQUTY )

C 6e= ACCUMULATION CF EFRORS

_v e -




[aNaNe)

e Nal

(]
LEwv
t9(

€59

750

el
7.

D0 6.9 1I:
NCPIMI =
TEM = (nR{

TyNC
NCF 1=l
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NCPIMI) = YMULT L) )ewy
SRSCQUTIZLyM) = EPSCHUIZL M) ¢

TEM

ERSCSCUT L oyM)- FFSCSQIT oL oM) ¢ TEMERQ
CONTINUF

CONTINUE

CONTINUE

IF (KODE o6Te 18) WRITE €&, OUTIT)

IF (KODE «CTe 17} WRITE (&, OUTYR)
CONTINUF

IF (KODE o0GTe 16) WRITE (&, OUTIT)

IF (ROCE oGTe 17) WRITE (6, QUTIB)

Te= PETERMINATION

CF “AXIMUM AND MEAN SCUARFD ERRORS

DO 7500 MI I NNT
INDXM = M

IF (¥ODE o467,
FNT = NC + N
RIFNT = SCRTU(F
IF (KOCF +GTo.
00 7o LZ?,LTH
INDXL = L

IF (KOLDE &GTa

[ N

o

« g A!
el

el
CTRT T2 Y,MC
S AMAXLIC,ER
S D oe EFSQUI
EM= ERSCSCHI,
S AMAXTHE,TE
S F ¢ TEM
CONTINUF
ERSCMX (L, M)
COEFRMX (L,V)
AVERSQIL,M™)
VESCMX L,V F
AVVESCHL,™) =
AVRHCULL M) = A
APCOLRIL M) =
COCNTINUE
CONTINUF

MM g OO MMM OO
D

5 ) WRITE t 6, OUTE )
M)

NT)

18) wRITE (%, OUT19)

7T ) WRITE (&%, OUT® )

SCIT 4L yM))

'L.P)

LeMl= (LERSCHUTI L y™))xl)/FNF
M)

C/FNE
(SCRTIERSCMXIL,4M)))/ZTHETALL)
D/FMEBRNC

/FLMEM]

F/ZFEMINC

VEHCHL 4M)/FNE
COERMY (L ,M)&RTFAT

wRITE
WRITE
WFITF
WRITEL
WwRITE
WRITE
WRITL
WEITE
WRITE

(6,8 08)
(6,F,1)
$5,833)
1A, RL%)
(6,017)
(6,831)
(hyF1lT7)
(6,:34%)
(«4717)

(MP,

RF,

ALFHA{KPF ), ALPHA(KPU),

RETA)

(N (M), MZi,NNJ)

(THETACLY g VAVRHO SL4M) yMZ Y, NND ) ,LZ1,LTH)
CTHETAGL) g (ERSCMXIL M) gMZT KND ) 4L=1,LTH)

CTHETAUL ) g (BVERSCUL ¢M) ¢MZT NNC ) 4L=1,LTH)
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WRITE (6,836)
WRITE (6,817) (THETA(L) o (VESIMXIL M) ¢MZLyNNO DyL=1,4LTH)
WRITE 16,837)
WRITE (69817) (THETACL) oy CAVVESQUL M)y M1 4NND DyL=1,LTH)
WRITE (6,8238)
NRITE (64817) (THETA(L) y(COERMX(LyM)yMZ14NNC DyL=1,LTH)
WRITE (64839)
WRITE (64B817) ('HETAtL), (ADCOER(L M)y MZL1 NND) 4L 4y LTH)
60 TO 50

879 STOP

800 FOIMAT (13A6,4A2)
B0l FOIMAT (1H1,/7710X,134A5,A277)
802 FORMAT (315
BO3 FORMAT (1MGy3IXy6HLOMA =I5 S5XoUHNC SIS 53X ySHNNO IS S5X4HNZ ZIS)
804 FORMAT (I8 ,5F8B.%)
806 FORMAT {Iust10FR.5))
807 FORMAT (1HU,SHRHO =IS,5X,THDELTA =//(1X,10F10.3))
308 FORMAT (315,2F5.3)
BN FOIMAT (IHL1//741X,4HMP IS, SX o UHRF ZF543,5X4BHALPHAF SF54345%,84ALP
AHAYU ZF0e3y SXy6HRETA =Fbe3)
810 FORMAT (8IZ)
811 FORMAT (1HO,UHNO =7114/7/)
813 FORMAT (1HUySHTHETA)
815 FORMAT (1HO,20X,SHAVRHIZ?Z)
B17 FORMAT (1X,F8e3¢7E14etl)
831 FORMAT (1HO,20X,6HERSQMX//)
6535 FORMAT (1HU,20X,6HAVERSQ//)
336 FORMAT (1HGy20X,6HVESQMX//)
837 FORMAT (1HUy20X,6HAVVESQ//)
333 FORMAT (1HUy20X,6HCOERMX/ /)
939 FOIMAT (1HG,20X,6HADCOER//)
END
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SUSROUTINE VYATES
9¢= YATES METHOD SUBROUTINE

COMMON KK, Y(186),8(16)
IT = 2%xKK

I11J)B2 = 1I1/2

KKM]l < KK=i

U0 908 K=1,KKM]

GO 905 IS1,II,¢

IP1D2 = (I+1)/¢
B(IP1D2) = Y(Iel)ev(])
LL = IP1D2+IIDB?2
BILL) = V‘I’l'f'(l’
DO 9C7 I=1,I1

YtI) = B(I)

CONTINUE

DO 909 IzZ1,II,2

IP102 = (I+1)/2
B(IP122) = Y(Iel)eY(])
LL = IP1J2+IIDB2
BtLL) = Y(I+l)=Y(]I)
CONTINJE

RETURN

END
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APPENDIX E

ILLUSTRATIVE OUTPUT OF COMPUTER PROGRAM POOLIU

MAY 30, 1980 TEM = 0.94117684 wAS TEN = QsSet

15 JELTA =
19 166452 180939 1.22106 130908 734888 «82213
1) +35211 «26905 «1892% «1083S
= . NC = ie NND = 7 NE - j008
a W = 3.000 ALPHAF = ,S00 ALPRAY = ,100 REY
G 1 2 3
AYRNO
«1500¢G2 «8042+0) « 1220002 0122802
«1500+02 73000, 133202 «1283902
«1500e05° «1154402 «1389¢32 «1361002
«1500e 0 1810002 01456432 el84Te32
+1%00¢%2 «1830e02 «1491032 « 1889402
ERSANX
«10¢6401 «9285+00 « 10810} +i038+0)
+1066¢C) 136101 +1C580} 10510}
+1C86+0) «2857+03 «13684)) 107501
+1C66¢0} «2987+0) «1068¢31 +1058+7)
+1C66+0) «1110+0) «1065+01 ¢ 1006201
AVERSQ
+1006+0) «8985+00 « 982030 973500
+1C06+01 +1009+01 10332} «¥985400
+1036+01 «1239¢01 +102923 «100ueny
«1C060C) «1241+01 + 10080} « 10030}
+1006+0) «1022+01 2133323 «10C1+01
VESIMX
24600} «1878+04 22478001 e2560001
«2860:0) 2273540} « 2505401 02571401
+2400+01 «1261+02 +2530+01 0249601
+2860¢01 +6956402 «2523+0) «2538+01
e2460+C1 02246402 22518401 «2531e02
AvvZIsQ
2085401 1842401 «1969+0) 22010001
2085001 «1950+01 2032401 020170}
«2085+01 «3208+0% *«2082¢9) 0204801
2065001 27862401 «2082401 203700}
+2045¢0) 3633401 2080433} 2032431
CoEamx
+8260+0) «7709+0% « 8156101 e8151¢0)
«4130+01 8667401 «8114e)} oN1G1+01
22008+01 «3376+01} + 20670} «207840)
«3033+01 «171703% «1033+01 «1029+0}
«5163¢00 528800 51604230 515300
A0COER
«3300002 3178402 3862002 +3553002
«1652+02 1928402 «1706002 e 1T8Te02
«8260001 01392402 «8770001 903901
*+8130¢01 «7078403 s 8384028 LTI
«206S+01 21800} $2189018 «2246+0}

«T1600

A S ,A30

ol198e02
«1255en2
1342402
el88]en2
«l839¢72

01335y
e1758eny
2197307}
106100y
«1361en}

#9937430
«7955¢n0
0100247}
102010}
7973400

0255202
02573¢0y
e2865¢7)
0252207}
0¢S1%e7)

219970y
203701
020439}
«c031+01
IXYEriXhNY

v318)e0)
s4107en;
+2071e0})
«1N133+0}
+5151+00

236830102
01936002
«7268eN}
460800}
22300¢9)

sb1764

+116612
+1235¢22
1333002
eali37en2
2aW89402

402671
TS P LGB
saNlBTe]
eifMd4enmy
«Af25e7]

ev832490
0994372
«40d1eM
«4C03+01
e¥963+90

24HGSeN]
«2%20001
XLLI L1
sibipuenl
suligdeny

s 193000}
edN02eMN
«203Beny
vc025¢01
ecM15071

«8103en}
wu99e9]
206601
»1728071
+3136eN0

¢3713e232
0a878en2
298597
s4T759e9)
«23548+31

+52593

e1l4ven
el220e7,
e1325e7,
slUlue
213307,

«172%e,
elleTer,
viclfle,
#4836,
elTude",

ev350e7
RLITTEN
evIBTeN
evSp%e ",
evIiUe,

e 25¢1en,
o 28777,
wdd42e,
el¥T72e7,
PSR AT

es97Ten)
e 13977
e<33Ney
o7 %0,

e 2207y

e3l9Tey,
s lyer,
023697,
0132607
eblale”,

o ITwbeng
eifcTe",
2 9T0Ye ",
eUIluer,
e %",
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Table 2. ~ Values of J at which transfer from F to Uj distribution occurs.

ng 0 1 2 3 4 5 6
'F

0.0 2 2 2 2 2 2 2
0.4 2 2 2 2 2 3 3
0.5 2 2 2 2 3 3 4
0.7 2 2 2 3 3 4 5
0.9 2 2 2 3 4 5 6
1.0 2 2 3 4 5 6 7
2.0 2 3 5 7 9 11 13
4.0 2 5 9 13 n.t. n.t. n.t.
8.0 2 9 n.t. n.t, n.t. n.t. n.t.
16.0 2 n.t. n.t. n.t. n.t. n.t. n.t.

n't'No transfer occurs.




Table 3. - Parameter combinations, B+l * esk, By = 0.

k 8 0
0.125 0.250 0.500 1.000 2.000
1 | 2.1082 | 0.2635 | 0.5270 | 1.0541 | 2.1082 | 4.2164
2 | 1.6645 .2081 .4161 .8322 | 1.6645 | 3.3290
3 | 1.4094 .1762 .3524 .7047 | 1.4094 | 2.8188
4 | 1.2219 .1527 .3055 6110 | 1.2219 | 2.4438
5 | 1.0694 .1337 .2674 .5347 | 1.0694 | 2.1388
6 | 0.9386 | 0.1173 | 0.2346 | 0.4693 | 0.9386 | 1.8772
7 .8221 .1028 .2055 .4110 .8221 | 1.6442
8 .7161 .0895 .1790 .3580 L7161 | 1.4322
9 .6176 .0772 .1544 .3088 .6176 | 1.2352
10 .5250 .0656 1312 .2625 .5250 | 1.0500
11 | 0.4368 | 0.0546 | 0.1092 | 0.2184 | 0.4368 | 0.8736
12 .3521 .0440 .0880 .1760 .3521 .7042
13 .2699 .0337 .0675 .1350 . 2699 .5398
14 .1892 .0237 .0473 .0946 .1892 .3784
15 .1084 .0136 .0271 .0542 .1084 .2168
IBk: 1.556 3.112 6.225 12,449  24.898
(zgp) "1 0.643 0.321 0.161 0.080 0.040
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Table 4. - Admissible strategies and their operating characteristics.
(a) n, = 0.
= 2
"o TF {%F % e V(e )max Cae,mx
;k\g 0.125 2.0 0.125 2,0 0.125 2.0 0.125 2.0

0} --11.01]1.0 0.0 15.00 15.00 | 2.460 2.460133.04 2.0651| 1.1215 1.0000
1| --11.0 .75 .20 114.92 14,91 | 2.453 2.504(33.00 | 2.08411.1202 1.0092
1| --11.0 .50 .15 114.72 14.55 2.456 2.791132.97 2.170 1 1.1191 1.0508
1] --11.0 .50 .20 1 14.64 14.49 2.443 2.812132.96 | 2.181 1.1188* 1.0562*
1| --11.0 .50 .25 [ 14.39 14.17 2.442 2,975132.95 2.24011.1185 1.0847
1{--11.0 .75 .54 114,43 14,36 | 2,450 7.879132.94 2.37511.1181 1.1501
1} --{1.0 .75 .55 | 14.42 14.36 | 2.454 8.715(32.92 2.404 | 1.1174 1.1642
1| --11.0 .50 .35 [ 14.04 13.75 | 2.443 8.117(32.90 ] 2.808( 1.1168 1.3598
1] --11.0 .50 .40 | 13.96 13.60 | 2,422 13.75 [32.88 ] 3.178 1 1.1161 1.5390
1| --11.0 .50 .45 113.78 13.34 1 2.398 34.87 132.70 | 3.9101} 1.1100 1.8935
1] --1]1.0 .50 .50 | 13.36 12.89 2.458 98.42 |32.58 | 4.931] 1.1059 2.3879
1} --11.0 .50 .55 113.26 12.79 | 2.429 167.5 32.55 5.479 | 1.1049 2.6533
1} --1]1.0 .50 .75 112.57 11.88 2.383 2135.0 32.46 110,00 1.1018 4,.8426
1 {--1]1.0 .50 .80 ]12.50 11.74 2.409 | 3159.0 132.40]11.11 1.1000 5.3801
1| --11.0 .50 .85 ]12.32 11.57 2.299 4735.0 32.28 1 12.23 1.0957 5.9225
1| --11.0 .50 .90 {12.20 11.36 2,270 1 9239.0 (32.27 | 14.23 1.0954 6.8910
1} --11.0 .50 .95 ]112.05 11.13 2.253 ] 1861G.0 ]32.03 | 16.87 1.0872 8.1695
1| --1]1.0 .05 .70} 6.029 5.710f 1.568 770.8 130.53 1} 19.05 1.0363 9.2252
1| ~--11.0 .10 .80 | 6.209 5.447] 1.631 2632.0 30.39122.36 1.0316 10.8281
1| --11.0 .05 .75 1 5.137 4.7831 1.472 1581.0 [29.721] 23.17 1.0088 11.2203
1| --11.0 .025 .75 | 4.488] 4.389] 1.465 903.1 (29.61 ] 23.63 1.0051 11.4431
S --11.0 .05 .75 4.291 4.000] 1.497 172.6 29.46 | 24.09 1.000 11.6659

*
Security regret strategy.

S ———



Table 4. = Cont'd.

(b) ng = 1.
Mp| TF | OF %y P V(eD) pax Cae,mx R
gk\ﬁ 0.125 | 2.0 p.125| 2.0 |0.125] 2.0 [0.125 | 2.0

0 | 2.0 |0.50 [0.75 |0.65 [10.66 |14.90 [2.291 | 2.512|33.05| 2.118 {1.0875 | 1.0000
0 (3.0 .50 [.25| .80 | 8.747 |14.91 [1.898 | 2.508 | 32.04 | 2.119 |1.0543 | 1.0005
0|30 .5 |.10]| .80 | 8.442|14.90 [1.878 | 22.46 |31.78 | 2.180 |1.0457*| 1.0293*
0|20 .50 | .25 .75 | 7.463|14.65 [1.714 | 408.0 |31.61| 4.094 |1.0401 | 1.9330
0|20 .5 |.10| .80 | 6.741|14.38 |1.692 [1029.0 |31.20 | 5.989 |1.0267 | 2.8277
000/ .50 |.10| .75 | 5.780 |12.27 [1.581 [3796.0 |30.82 |12.17 |1.0141 | 5.7460
0 |o0.5|.25 | .05 | .80 | 5.209|10.60 |1.487 |5046.0 |30.60 |15.57 |1.0069 | 7.3513
0|40 .00 | .05 | .75 | 4.305| 4.737[1.551 |1607.0 |30.53 |23.90 |1.0046 |11.2842
0 |4.0| .01 | .025] .75 | 4.194 | 4.657[1.536 [1426.0 |30.51 |24.02 |1.0039 |11.3409
0|80 .01 |.05| .75 | 4.281| 4.649|1.536 |1408.0 |[30.47 |24.03 |1.0026 |11.3456
0|40 .005| .05 | .75 | 4.275| 4.404(1.539 |1024.0 [30.46 |24.30 |1.0023 [11.4731
0 | 4.0 .005 | .025{ .75 | 4.164| 4.316(1.524 | 811.3 |30.44 |24.43 |1.0016 |11.5345
0|80/ .005| .05 | .775| 4.209 | 4.276(1.517 | 716.3 |30.39 | 24.50 |1.0000 |11.5675

*
Security regret strategy.




Table 4. - Cont'd.

(C) no - 20
, ~ 2

rp ap ay ) V(e )max cae,mx R |

;§\$ 0.125 | 2.0 |o0.12s| 2.0 |o0.25] 2.0 [0a25 | 2.0

0} 2.0/0.75 |0.50 |0.90 |13.12 |14.98 | 2.437 2.519 | 34,40 | 2.187|1.1058 | 1.0000
ol 1.0/ .50 .75 .70 1 10.10 |14.88 |2.,340| 2.533 | 33.98| 2.188| 1.0923 | 1.0005
0| 2.0} .5 .25 .851{ 9,957 |14.91 |2.048| 2,518 | 33.,20| 2.189|1.0672 | 1.0009
0] 3.0/| .25 .50 .85 | 8.959 |14.42 |2.227 7.804 | 33.14 | 2.252| 1.0653%| 1.0297*
ol 1.0} .50 .50 .76 | 8.510 |14.83 |2.180| 31.24 | 33.08| 2.466|1.0633 | 1.1276
o 1.0{ .50 | .50 .80 | 8.142 {14.81 |2.157] 65.72 32,93 2.610/1.0585 | 1.1934
ol o0.0| .75 .50 .80 | 8.045 [14.61 [2.157] 142.3 32,91 ] 3.15211.0579 | 1.4412
0o} 2.0 .25 .25 .75 | 7.508 |14.28 | 1.922]| 384.4 32.70 | 4.022{1.0511 | 1.8390
0 2.0 .25 .25 .80 | 7.327 |14.28 |1.895] 416.8 32,57 | 4.096 | 1.0469 | 1.8729
0! 1.0 .50 .10 .80 | 6.492 |14.43 |1.695] 960.4 32.04 | 5.92111.0299 | 2.7074
0| 1.0 .50 .025| .75 6.361 {14.30 | 1.674/1221.0 31.96 | 6.638}1.0273 | 3.0352
of 0.0/ .5 .10 .80 | 5.362 [12.30 | 1.580/3680.0 31.72112.35 |1.0196 | 5.6470
0| 0.0| .5 .05 .80 | 5.206 {12.04 | 1.546[3958.0 31.66 | 13.06 |1.0177 | 5.9625
0! 0.0]| .50 025 .75 5.136 [11.91 |1.541{4106.0 31.59 | 13.38 | 1.0154 | 6.1180
0! 1.0} .25 .025| .80 | 5.176 |11.24 | 1.53314676.0 31.57 | 14.85 [ 1.0148 | 6.7901
o{o0.0] .25 .05 .80 | 5.045 [10.46 | 1.524/5018.0 31,56 | 16.18 | 1.0145 | 7.3983
0] 0.0/ .25 025 .75] 4.976 |10.30 | 1.517/5086.0 31.48 | 16,51 | 1.0119 | 7.5492
0] o0.0] .10 025 .75 4.909 | 9.569 | 1.516|5249.0 31.42 | 17.77 | 1.0100 | 8.1253
0l o0/ .10 .01 .75 | 4.840 | 9.521 | 1.496|5262.0 31.37 | 17.87 | 1.0084 | 8.1710
0] 0.0} .10 .01 .80 | 4.829 | 9.521 | 1.499/5262.0 31.37 1 17.87 |1.0084 | 8.1710
0] 0.0 .025| .025| .75 | 4.864 | 9.292 | 1.517 {5264.0 31.34 | 18.22 |1.0074 | 8.3310
0] o0.0}! .025| .01 .75 | 4,795 | 9.244 | 1.497[5271.0 31.29 | 18.32 | 1.0058 | 8.3768
0] 0.0 .025] .01 .80 | 4.784 | 9.244 | 1.500/5271.0 31.29 | 18.32 | 1.0058 | 8.3768
0} 20| .002] .10 .80 | 4.362 | 4.436 |1.491{1173.0 31.26 | 24.88 | 1.0048 |11.3763
0| 2.0| .005| .05 .75 | 4.276 | 4.349 | 1.480] 915.8 31,24 | 25.06 | 1.0042 |11.4586
0| 2.0} .002| .05 75| 4.245 | 4.240 [ 1.468] 707.4 31.12 | 25.20 | 1.0003 |11.5226
0| 4.0 .002, .05 .80 | 4.086 | 4.113}1.478] 394.2 31.11 | 25.41 |1.0000 |11.6187

*Security regret strategy.




Table 4. - Cont'd,

. (d) n, * 3.
X < 2
Wp | TF SF %y s V(e )max Cae.nx
;k\s 0.125 2.0 0.125 2.0 0.125 2.0 0.125 2.0

0 1.0(0.75 0.50 0.85]10.53 14.97 2.119 2,523 ] 34.41 2,244 |1.0770 1.0000
0 1.0 .50 .50 .80 7.456 ] 14.89 1.888 2.532] 33.63 2.246 11,0526 1.0009*
0 {0.0 75 .50 .80 1 6.581 1} 14.73 1.691 11.95 33.29 2,301 |1.0419* 1.0254
0 0.7 .50 .50 .80 6.584 ¢ 14.83 1.665 30.94 33.20 2.356 |1.0391 1.0499
0 1.0 .50 .10 .80 6.418 | 14.86 1.706 64.86 32.94 2.578 11.0310 1.1488
0 1.0 .50 .05 .80 6.372 | 14.86 1.705 78.33 32.87 2.684 11.0289 1.1961
0 0.7 .50 .10 .75 5.195 | 14.44 1.520 833.1 32,39 5.725 }1.0138 2.5512
0 0.7 .50 .025 .75 4,988 | 14.28 1.470 | 1161.0 32.21 6.689 ;11,0081 2.9808
0 0.0 .50 028 75 4.387 1 12.31 1.491 | 3665.0 32.19 1] 12.63 1.0075 5.6283
0 0.7 .25 .05 .80 4.354 112.24 1.483 | 3765.0 32,131 12.79 1.0056 5.6996
0 0.7 .25 .025 .75 $.360 | 12.08 1.475 1 3957.0 32.09 | 13,26 1.0044 5.9091
0 0.0 «25 .025 .75 4,298 | 11.12 1.474 | 4662.0 32.06 | 15.20 1.0034 6.7736
0 1.0 .10 .025 .75 4.281 9.967 | 1.463 | 5162.0 32.02}17.16 1,0022 7.6471
0 2.0 .001 .05 .80 4.067 4.117 11,486 427.6 31.97 | 26,08 1,0006 11.€221
0 2.0 .001 .025 .75 4.075 4.0G97 | 1.477 371.7 31.95 1] 26.12 1.0000 11.6399

*
Security regret strategy.




Table 4. - Cont'd.

(e) n, = 4,
- 2
mp | Ty o ay ) V(e )max Cae,mx R
;:\s 0.125 1.0 {0.125 2.0 0.125 2.0 10.125 2.0

0 | 0.510.75 }0.50 j0.85]7.038 |14.96 11.845 2.501 1} 34.38 } 2.300 }1.0536 }1.0000
0|10 .50} .05 .80 ]6.992 {14.89 | 1.864 2,519 | 33.93 | 2,304 ]1.0398 | 1.0017
0 | 0.5 .50 .50 | .80 5.904 |]14.83 | 1.605 2.533 | 33.89 | 2.309 |1.0386* | 1.0039*
0 | 0.0 50| .50 .80{5.616 |14.48 |1.591 12.77 33.71 | 2.421 }1.0331 | 1.0526
0 |10 .25 .10 { .80 | 4.830 |14.48 {1.639 | 151.2 33.12 | 3.096 | 1.0150 | 1.3461
0 | 0.0 .50 .25 1 .80 {4.723 {14.04 |1.539 | 588.4 33.07 | 5.257 |1.0135 | 2.2857
0 | 0.5 .50 .05 .75 14.737 V14.44 |1.486 | 854.5 32.94 | 5.930 }1.0095 | 2.5783
0 | 0.9 .25 .05 .80 | 4.394 114.03 |1.484 | 1131.0 32.90 | 6.710 ] 1.0083 | 2.9174
0 | 0.0 .50 | .05 | .80 4.241 |13.01 {1.465 | 2700.0 32.74 110.69 }1.0034 | 4.6478
0 | 0.5 .25 1 .05 .80 14.243 | 12.85 {1.465 | 2923.0 32.67 {11.15 ]1.0012 | 4.8478

0.0 .25 .05 .80 }4.186 12.13 | 1.460 | 3653.0 32.64 }12.86 |1.0003 | 5.5913

0.9 .10 .05 .80 | 4.142 |11.01 { 1.451 | 4547.0 32.63 |15.11 |1.0000 | 6.5696

| N

* .
Security regret strategy.




B - R

Table 4., - Cont'd,

(f) no b 5.
m | T ap ay I V(ez)max Cae,mx R
‘q\o 0.125 | 2.0 |0.135| 2.0 |0.125| 2.0 |0.125 2.0
0 |0.6{0.50[0.10 | 0.60 }7.120 | 14.89} 1.950 2.488 | 35.92 1 2.352 {1.0719 | 1.0000
0 10.7 .50 .50 .80 16.049 {114.89]1.739 2.486 | 34,81 | 2.354 11.0388 | 1.0009
0 | 0.7 .50 .10 .80 [5.233114.88]1.616 2.501 | 34.30 | 2.360 1.0236* 1.0034,
0 |1.0 .25 .10 .80 14.834 114.5311.615 2,567 1 33.97 12.394 {1.0137" | 1.0179
0 {0.8 .25 .25 .80 14.581 [ 14.4411.537] 88.61 | 33.9612.925!1.0134 | 1.2436
0 (0.5 .50 .10 .75 14.616 | 14.68 1 1.508( 253.0 33.90 { 3.826 { 1.0116 | 1.6267
0 |0.5 .50 .10 .80 14.489 |114.68 | 1.487} 262.1 33.71 ] 3.854 11.0060 | 1.6386
0 {0.7 .25 .10 .80 [4.247 1 14.30 1 1.492| 468.3 33.70 | 4.703 { 1.0057 1.9996
0 0.5 .50 .05 .80 14.403 | 14.55 | 1.462} 571.1 33.60 | 5.120 | 1.0027 | 2.1769
0 {0.5 .50 .025 .80 {4.388 {14.51 1 1.462| 691.4 33.58 {5.540 | 1.0021 2.3554
0 {0.5 .50 .01 .80 14.379 | 14.47 | 1.456} 805,2 33.57 | 5.889 {1.0018 | 2.5038
0 (0.5 «25 .05 .80 }4.101 |13.27 | 1.466(2202.0 33.51 {9.744 | 1.0000 4.1429
*
Security regret strategy.




Table 4. - Concluded.

(g) ng = 6.
5 2
mp | T ap o p V(e) nax Cae,mx
;}\e 0.125 | 2.0 }0.125 2.0 0.125] 2.0 |0.125 2.0
0 {10.6 10.50 {0.10 [0.60 | 6.862 {14.89 {1.805 2.479 | 36.77 | 2.401 | 1.0736 | 1.0000
0 {0.7 | .50 | .10 .80 16.071 114.89 |1.786 2.478 135.38 | 2,402 | 1.0330 | 1.0004
0 {0.5}| .50 | .05 .80 | 4.850 |14.88 |1.549 2.485 | 34.72 | 2.408 | 1,0137* | 1.0029%
0 0.9 .25 | .05 .80 | 4.548 |14.55 |1.679 2.536 | 34.66 | 2,437 [ 1.0120 |1.0150
0 (0.7 .25 | .10 .80 | 4.336 {14.54 }1.500 30,30 | 34.55 | 2.524 |1.0088 |1.0512
0 1.0} .10 | .10 .80 14.239 13.75 |1.499 97.63 |34.48 | 3.274 | 1.0067 | 1.3636
0 {0.5{ .25 | .10 .80 | 4.159 [14.41 }1.496 | 245.1 34.43 | 3.824 | 1.0053 | 1.5927
0 0.5} .25 ] .05 .80 14.080 14.33 [1.493 | 461.5 34,34 1 4,754 11.0026 |1.9800
0 } 0.4} .50 | .025| .75 }4.324 |14.62 |1.453 | 476.4 34,30 | 4,804 | 1.0015 | 2.0008
0 (0.0 .50 | .025| .80 {4.037 {13.65 {1.477 |1573.0 34.25( 8.384 | 1.0000 | 3.4919

x

*
Security

regret strategy.




Table 5. - Values of p as functions of ng, 6, and choice of strategy.

Strategy
AMinimum  Cyq py(2-0) bsecurity Regret “Minimum Cgq py(0.125)
0
ng 0.125 2.0 0.125 2.0 0.125 2.0
0 15.00 15.00 14.39 14.17 4.291 4,000
1 10.66 14.90 8.442 14.90 4.209 4.276
2 13.12 14.98 8.959 14.42 4.086 4.113
3 10.53 14.97 6.581 14,73 4.075 4.097
4 7.038 | 14.96 5.904 14.83 4.142 11.01
5 7.120 | 14.89 4.834 14.53 4.101 13.27
6 6.862 | 14.89 4.850 14.88 4.037 13.65

3From first row of table 4.

bFrom asterisked results in table 4.

CFrom last row of table 4.




2. - SIMULATIONS AND MODEL FITTING
N-1l

YOBS(I) = YMU(L U + RM(D)
1+1, NC
24

CALL YATES TO GENERATE
B(I) FROM YOBS(I)

3. - CONSTRUCTION AND ORDERING OF
MEAN SQUARES

2(D) » B(I+1)® B(I+1NFNC
BFM(D) = BIINFNC

309 I1 NC
313 ORDER Z(D)
M-l

B(I) « BFM(IL 1«1, NC
COMPUTE SUMS OF SQUARES
B(1) = (FNC*B{1)+ TYNFNC+FNO)

i

4. - DELETION OF TERMS
PERFORM TESTS OF SIGNFICANCE
&5 BEYOND B(1) SET n SMALLEST
ABSOLUTE VALUE B(I) = 0.0

4

5. - PREDICTIONS
DO REVERSE YATES ON B(D)

6. - ACCUMULATION OF ERRORS
ERROR? = (BINCPIMI)-YMUIL, L}es2

Figure 1. - Use of arrays YOBS(I), B(I), and BFM(I).




§5-0.0 COMPUTE SS (84)
(83

nd,-o Ngy e 1

320
COMPUTE 55 (B5)

ﬂm . ﬂo‘l (B6)

COMPUTE SS¢ (B)

$S » 554554
ﬂd - ndomp

ar

(&) Computation of sums of squares,

Figure 2. - Flow chart of program POOLIU. Numbers in () are equation
numbers of text. Three digit integers are statement numbers in

Appendix 0,




ar|i=myel

asy
e
NO YES oy10
?
COMPUTE!) ny (140
: NO

Ngg = N+l
CgMPU E tj (16

§S - SS'Z(,‘)
nc, . nd"l

n*ne-l

le
(b) Tests of significance.
Figure 2. - Continued.




aR

4?0‘ Ql‘
ne il nemy
4o |

1« INTEGER fen. "n'&'

!

SET 1 OF SMALLEST ABS. VALUE by = 0.0

n-0

44

pe nc-l';‘

1

COMPUTE

{c) Deletion of insignificant coefficients.

Figure 2. - Concluded,

L
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