
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



NASA Technical Memorandum 81236
	

USAAV RADCOM TR 80-A-12

(NASA—TM-81236) TRANSONIC ROTOR NOISE:
t.''EORETICAL AND EXPERIMENTAL COMPARISONS
,ASA) , 1 p HC A03/fIF A01	 CSCL 01A

N81-11012

Unclas
63/02 29147

Transonic Rotor Noise —
Thnoretical and Experimental
Comparisons
F. H. Schmitz and Y. H. Yu

November 1980

NASAU^Cd=^t`r^rf^t^s Arm y
Aviation Research 	

I

National Aeronautics and	 and Development
Space Administration	 Command	 :¢%



PJASA
Pdathonal Aoronautics and
`; ))4 ;r^ Admirw,tration

United States Army
Aviation Research and
Development Command
St. Louis, Missouri 63166

Ames Research Center
f.lr,ffr^tt f^!elrf f;al^t.uni,3'^ 1O'i^;

NASA Technical Memorandum 81236	 USAAV RADCOM TR 80-A-12

Transonic Rotor Noise —
Theoretical and Experimental
Comparisons
F. H. Schmitz
Y. H. Yu, Aeromechanics Laboratory

AVRADCOM Research and Technology Laboratories
Ames Research Center, Moffett Field, California



TRANSONIC ROTOR NOISE — THEORETICAL AND EXPERIMENTAL COMPARISONS

F. H. Schmitz and Y. H. Yu
Aeromechanics Laboratory

U.S. Army Research and Technology Laboratories (AVRADCOM)
Ames Research Center, NASA

Moffett Field, California, 94035 U.S.A.

ABSTRACT

Two complementary methods cf describing the high-speed rotor noise
problem are discussed. The first method uses the second-order transonic
potential equation to def' yp and characterize the nature of the aerodynamic
and acoustic fields and to explain the appearance of radiating shock waves.
The second employs the Ffowcs Williams and Hawkings equation to success-
fully calculate the acoustic far-field. Good agreement between theoretical
and experimental waveforms is shown for transonic hover tip Mach numbers
from 0.8 to 0.9.

1.	 INTRODUCTION

It is now well known that linear acoustic theory fails to correlate
with many features of measured transonic rotor noise. In particular, linear
theory does not predict measured acoustic pressure levels or waveforms of
rotating blades operating with transonic flow in the tip region (Refs. 1-5).
The discrepancy, in level and waveform, is particularly large for helicopter
rotors that use relatively thick airfoil sections (as compared with pro-
pellers) operating at high Mach numbers. As a result, large transonic dis-
turbance fields alter and enhance the radiated acoustic signature., making
high-speed rotor compressibility noise an important and practical research
problem.

Until recent years, the theoretical approaches of rotor nose uti-
lized the "acoustic analogy" of Lighthill (Ref. 6). Ffowcs Williams and
Hawkings (Ref. 7) extended the analogy to allow for relative motion between
the acoustic sources and an observer, yielding an integral equation that
describes the resulting noise. This equation was refined `Or eventual
numerical computation by many authors, most notably those of References 8
and 9. Unfortunately, the helicopter rotor problem is so complex geometri-
cally that an exact "acoustic analogy" was not initially attempted. Instead,
the governing equations were linearized and the resulting integrals were
numerically evaluated.

Although the success of the linear model at low Mach numbers can
still be debated, its success at transonic tip Mach numbers is quite
limited (see Fig. 1). Neither the amplitude nor the shape of the far-
field acoustic disturbance is accurately predicted. In fact, although a
radiating discontinuity (shock) was experimentally measured, linear theory
cannot, to any extL.t, account for this phenomenon. Similar discrepancies
have been confirmed by tests with both model and full-scale helicopters in
high-speed forward flight (Refs. 1, 10).

22-1

3

i



300

150

N

Z
JW
^ -1rJO
W
ccD
y -300
W
cc
CL
Y
w -450
CL

-600

-750

Figure 1. Comparison of theory and experi-
mental pressure-time history, in-plane,
r/D = 1.5, Mtip = 0.9. (Adapted from Ref. 2).

Realizing this, several researchers have set about to capture the
important nonlinear aspects of the high-speed rotor problem (Refs. 1, 11-13).
Two different but fundamentally similar approaches have been taken:
(1) nonlinear "quadrupole" terms have been re-incorporated into the
"acoustic analogy" formulation as additional source terms; and (2) a non-
linear potential equation has been formulated for the acoustic radiation
of rotors.

In this paper, we compare and highlight the differences and similari-
ties of both methods. The potential formulation will first be used to help
explain some of the more interesting experimental features of the nonlinear
flow field surrounding the blade. Then the acoustic analogy approach will
be discussed and quadrup:)le sources will be used to help predict the result-
ing noise field. Finally, the results will be critically compared with
specially run tests to highlight the promise or failings of the acoustic
analogy approach and to explain, in simple physical terms, how sound is
radiated by a rotor with transonic tip velocities.

2.	 THE POTENTIAL EQUATION AND ITS IMPLICATIONS

The acoustic radiation of an isolated rotor hovering at transonic
tip Mach numbers is considered in this paper. The more difficult problem
of high-speed forward flight is deferred until the steady transonic and
acoustic features of the hovering problem have been identified. Assuming
constant specific heats and weak shocks (i.e., negligible entropy increases),
the classical potential equation is:

22-2

J °



1 - a2 020 + 2 grad¢ • grad
at?	 at

+ 2 grad¢ • grad[(grad¢) 2 ] - 0	 (1)

where ^ represents the velocity potential and a is the local speed of
sound. This nonlinear, time-dependent equation is written in a space-fixed
coordinate system; however, the aerodynamics of a hovering rotor are basi-
cally steady when viewed from a blade-fixed reference frame. Therefore,
following the work of Isom (Ref. 11) the governing potential equation can
be transformed to blade-fixed cy'indrical coordinates and expanded to
second-order, yielding

a2

W2 - r2 - ( + 1) r2  8 epee - 2w: r¢r6 - 2w¢z¢ze

ja0 +

¢
(y	

1)w¢ e (^rr + r + ¢ zz	 (2)

where

w = angular rotation rate
ao = undisturbed speed of sound
r = radial distance from the axis of the cylindrical coordinate system
y	 ratio of specific heats

This nonlinear but steady second-order partial differential equation gov-
erns the acoustic as well as the transonic behavior of the hovering rotor.
At the present time, no closed-form solutions to this equation exist. A
procedure adopted by some researchers is to numerically solve limited
regions of the aerodynamic flow field (Refs. 14, 15). Others (Ref. 11)
have chosen to solve the nonlinear acoustic far-field, using weak-shock
theory (Ref. 16). As we shall see, neither is a completely satisfactory
solution, for the nonlinear aerodynamic and acoustic fields are interwoven.

The choice of a cylindrical coordinate system whose axis is aligned
with the rotor is sketched in Figure 2. An observer riding in this coordi-
nate system sees a free-stream velocity that increases linearly from zero
at the origin to wr at r. As indicated, this increasing free-stream
velocity continues out past the tip of the rotor; it will be shown to be
important to many of the arguments to come.

Before attempting to solve Equation (2), it is instructive to follow
the approach of References 11 and 12 and explore the behavior of the gov-
erning equation. It is known from the theory of partial differential
equations that the coefficient of ¢ee governs the general character of
the potential equation. For when

2a0
A H w2 - r2 - (Y 1) r2 $e	 (3)

< 0 : elliptic behavior

> 0 : hyperbolic behavior
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Figure 2. Cylindrical coordinate system.

However, A takes a more recognizable form after some further manipulation:

2

	

A = w2 - r2 _ (Y r21) w 	- r2	 (4)e	 e

Using the energy equation, this becomes

a2 2w^
A = w2

 - r2 - r2

Defining Uc. = wr, 
^e 

= -ur, we obtain

2	 Ua ((	 (. + 
U) 2	

u l
A =- ^2 S 1 -	

a2	 + a2
2

 }	
(6)

The last term in the brackets of Equation (6) can be neglected. It is
second order to A and a third-order correction to the second-order poten-
tial equation. If we now define

U. +
MQ	 a - = local Mach number,

the coefficient of ^ Oe (Eq. (6)) becomes

2
A 2 (1 - M2)	 (7)

We have shown that the general behavior of the second-order transonic
potential equation is governed by the lor.al Mach number of the flow. If
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MR < 1.0, then A < 0 and the governing equation is elliptic. In this
case, no wave-like structure is possible. However, if M R > 1.0, then
A > 0 and the governing nonlinear partial differential equation is hyper-
bolic. Then, characteristics are formed along which disturbances can propa-
gate in a wave-like manner. It is also important to realize that the local
Mach number M^ is dependent on the free-stream velocity wr, the local
speed of sound a, and the local perturbation velocity, u = -fig/r. Eaca
contribution is separately identifiable in Equation (6).

These ideas are quite useful when one is attempting to interpret the
experimental results of Reference 2. In that sequence of experiments, a
1/7-scale twisted and untwisted Lai-1H model rotor (NACA 0012 airfoil) was
run in an anechoic hover chamber at .near zero thrust at high subsonic tip
Mach numbers. In-plane acoustic signatures were measured and stationary
hot-wire measurements of the local perturbation field (u) surrounding the
blade were made. A phenomenon labeled "delocalization" was observed in
this experiment as the hover free-stream tip Mach number was increased
above 0.88. Shock waves on the rotor suddenly "delocalized" and radiated
to the acoustic far-field. The measured far-field acoustic signature
transitioned from a near symmetrical triangular pulse shape to a distinct
sawtooth character — confirming the existence of a radiating shock wave
(Fig. 3).

The connection between the phenomenon of delocalization and the
change in equation type has been suggested in References 11 and 13 and
reported in Reference 12, based on a numerically calculated local tran-
sonic flow field. In the following paragraphs, the relationships are
experimentally confirmed and are shown to depend on the local Mach number
of the flow. Three distinct cases are considered: Mtip = 0.85,
Mtip = 0.88, and Mtip = 0.90. Some degree of graphical freedom is taken
in the interest of presenting a clear sketch of the basic relationships
involved. The data are the same as those reported in Reference 17, but are
expanded upon here. In the figures that follow, the top views are sketches
of events Dieced together with limited experimental data, and the aft views
are, for !ne most part, interpolations of experimental data.

300

150

0

-150

-300

-450

-600

-750—	 , ,	 - -- -- -
•—	 3 msec	 0— 3 ;nsec	 —► 	 3 msec	 --►

MT = 0.88	 AIT = 0.89	 MT = 0.90
(a)	 (b)	 (c)

Figure 3. Waveform transition; the development of a radiating discontinuity,
in-plane, r/D = 1.5, Mtip = 0.9.
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Figure 4 depicts the top and aft views of a rotor operating at a
free-stream tip Mach number (M tip) of 0.85. A locally supersonic region
exists near the tip of the rotor. For this region MR - (wr + u)/a > 1.0,
even though wr/ap all along the blade span is less thati 0.85. The hyper-
bolic nature of this pocket of supersonic flow is a result of local aero-
dynamic nonlinearities (i.e., changes in the local speed of sound a, and
local perturbation velocity, u). Surrounding this locally supersonic flow
is a subsonic flow region, MR. 	 1.0, in which the governing potential
equation is elliptic. No wave-like behavior is possible through this com-
pressible elliptic region. Iiowever, as r increases beyond the tip of the
blade, MR again becomes greater than 1 because of the linearly increasing
free-stream velocity field of the blade-fixed cylindrical coordinate system.
For this region u ^ 0, a ^ ap , so

M	 wr > 1.0
k	 as

The surface where this first happens has been called the sonic cylinder
(Refs. 11, 13). At radii larger than the sonic cylinder, the equation
again becomes hyperbolic, and wave-like propagation is certain. The acous-
tic implications of this 0.85 case begin in the hyperbolic pocket of flow
near the blade tip. Wave-like disturbances in this region terminate on
the boundary of an elliptic region where they no longer propagate in char-
acteristic directions. The wave-like character of the inner pocket is thus
broadened as information passes through the elliptic region to the sonic
cylinder. These broadened disturbances are then propagated in a wave-like
manner throughout the outer hyperbolic region. The result is a smoothly
varying near symmetrical acoustic signature in the far-field.
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Figure 4. Top and aft views of shock boundaries
of a rotor, Mtip = 0.85.

The competing phenomena become even more interesting when the undis-
turbed free-stream tip Mach number of the rotor (Mtip ) is increased to 0.88
(Fig. 5). The inner supersonic (or hyperbolic) region grows and extends
off the tip of the rotor — again being driven by local aerodynamic non-
linearities. At the same time, the higher free-stream tip Mach number of

t
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Figure 5. Top and a'-, views of shock boundaries of
a rotor, Mtip = 0.80.

the rotor decreases the radius of the sonic cylinder, thus moving the outer
hyperbolic region toward the rotor tip. In addition, the proximity of the
linear sonic cylinder to the blade tip introduces aerodynamic nonlinearities.
These tend to warp the sonic cylinder inward, bringing the two hyperbolic
regions even closer together. However, the hyperbolic regions do not over-
lap, thus insuring that locally generated waves in the inner region do not
propagate along characteristics to the hyperbolic far-field. , Instead, the
wave-like disturbances are forced to pass through a small elliptic region
where they are broadened before entering the outer hyperbolic region for
propagation to the far-field. The resulting acoustic signature becomes
more sawtoothed in character, but does not contain radiating shocks.

The last and most interesting condition, in which the local free-
stream tip Mach number is increased to 0.9, is sketched in Figure 6. The
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Figure 6. Top and aft views
of shock boundaries of a
rotor — the development of
delocalization phenomenon,
Mtip = 0.9.
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localized inner hyperbolic and outer hyperbolic regions connect off the
blade tip, forming one continuous supersonic region (M k > 1.0). In this
case, shock waves that are generated on the surface of the rotor now propa-
gate uninterruptedly in a radially outward characteristic direction to the
acoustic far-field. The resulting delocalization phenomenon is quite
striking, for the character and the intensity of the acoustic signature
change dramatically. At all three of these conditions, measured values of
local Mach number support and explain the phenomenon of "transonic
delocalization."

3.	 THE QUADRUPOLE APPROXIMATION AND THE ACOUSTIC FIELD

Although the phenomenon of delocalization has been explained by
simply looking at the coefficient of X98 is Equation (2), predicting the
radiating acoustic field is another matter. The explanations presented are
themselves functions of either measured or calculated flow properties. In
essence, a near-field description of the aerodynamic flow field is required
before the events in the acoustic far-field can be explained. Even then,
acoustic nonlinearities in Equation (2) may alter the waveform of the prop-
agating wave (Refs. 11, 13). Precise calculations of the radiating sound

field are dependent on the full solution of the nonlinear potential equa-
tion (Eq. (2)).

On the other hand, the st-^cessful explanation of the delocalization
phenomenon suggests that local aerodynamic nonlinearities strongly influ-
ence the acoustic radiation problem. Therefore, a logical step in the
calculation of the acoustic field is the incorporation of the near-field
aerodynamic nonlinearities in the acoustic radiation equation.

At least two alternative ways of implementing this idea have been
presented in the literature. One recently proposed method (Ref. 12) maps
the nonlinear near-field to a nonrotating control surface where Kirchoff's
theorem is applied. As reported, the control surface must be chosen to be
large enough to capture the nonlinear aerodynamic behavior of the problem,
but not to be so large as to make numerical computation impractical. Ini-
tial calculations, using this procedure coupled with an existing near-field
numerical code, have shown improvement in peak amplitude levels, but not
much improvement in waveform characteristics above the delocalization Mach
number. As discussed in Reference 12, this is most likely due to the
numerical insensitivity of the transonic code at the boundary of the non-
rotating control surface.

The second method employs the well-known "acoustic analogy" proce-
dures to evaluate the volume distributions of local. aerodynamic nonlineari-
ties or quadrupoles (Refs. 1, 5, 17). This approach is utilized in this
paper together with an accurate estimation of the local three-dimensional
nonlinear aerodynamic flow field. It was first attempted in Reference 1
for high-speed helicopter impulsive noise by'approximating the quadrupole
term, using two-dimensional Prandtl-Glauert aerodynamic theory. Although
small improvements in amplitude were noted, there remained major discrep-
ancies between theory and experiment. The authors of Reference 5 performed
a similar calculation for a transonic propeller using two-dimensional
transonic codes for input; they reported better agreement in amplitude but
poor agreement in pulse shape. Three-dimensional transonic aerodynamics
were included in Reference 17 for the hovering helicopter rotor, and the
results were more impressive. However, the limitation of integration
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region for the quadrupole term and the omission of shock terms caused poor
agreement between pulse shape and theory near or above the delocalization
Mach number. In this paper, these latter two restrictions are removed
from the quadrupole approximation in the transonic acoustic field.

The analysis begins with the well-known Fi'`>t,rs Wil Tams and Hawkings
formulation (Ref. 7), in which the sound radiatf. ,.i by surfaces in motion is
exp ressed as the integral equation:

un

4"au , '
 (5E, t)	 t	 K 1 - -

MR1]d - 'Xi rK,i .L MK'1dG

where

.1.

+ 1x 
1 2 17

->x 	It 1 1	 dV	 (8)
i J

Tip = puiu
i
 + p i j - aOpSiJ

and standard notation is assumed.

The first term in Equation (8) is the linear thickness contribution
to the radiated noise. Th''; surface integral has been evaluated by many
authors, but their efforts yielded the generally poor agreement with exper-
iment discussed previously. The ;second term, also a surface integration
over the blade, can be classified as either a linear or a nonlinear term,
depending on how the surface pressure is approximated. However, for most
of the in-plane computations reported here, its contribution to the radi-
ated noise field is small and thus has been neglected. A strict evaluation
of the quadrupole (third) term in Equation (8) requires a volume integra-
tion over all space. However, the interest in this paper is in capturing
those nonlinear aerodynamic terms that may govern the acoustic radiation
problem. Therefore the evaluation of the quadrupole term is confined to a
volume integration within the aerodynamic nonlinear flow field of the blade.

The quadrupole term assumes a simpler form if we restrict our
attention to the acoustic far-field. Then the spatial differentiations
can be easily converted to time differentiations. The last term of
Equation (8) becomes

..	 T

a2	

T

—^—T^ dV - a at R 1 -M` (^ d°	 (9)axiax.	 [R 1. MR	[	 iR

where TER = Tij Ri
• Rj , and R is the unit vector from the source at the

retarded time to an observer in the acoustic far-field. It is known from
transonic computations and experimentation that the primary quadrupole
regions are confined within a few chord lengths normal to the rotor plane.

For in-plane far-field radiation, the unit vector R is nearly in
the blade rotational plane and is nearly parallel to the blade chordwise
direction when the acoustic pressure reaches its peak level. If isentropic
flow is assumed and the perturbation velocities are measured in the coordi-
nate system given in Figure 2, TER becomes

22-9

a



7 RR	 v^, Cos' »^ + 2v ry eos-- sin e + yr sin`•

+- -	
r	

V:,
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where the z component of the perturbation velocity does not appear
because of the choice of an in-plane far-field microphone position. For
simplicity in the resulting calculation,, it has also been assumed that
sin 9 = 0 and that u - v;, near the integration region of interest.
This is true as long as the quadrupole field is in fact localized to a
region near the rotor tip. Then, Equation (10) becomes

TRR - u` cos— + ^ 1 arl^u	 (11)

where u represents the perturbation velocity along the blade chord and
gar is the free-stream velocity of the point in the flow field being eval-
uated. The two terms represented in Equation (10) arise from similar
properties of the flow already discussed in the potential formulation
(Eq. (4)). Changes in the local speed of sounl and local streamwise per-
turbation nonlinearities are included although the equation forms do not
permit a one-to-one correspondence of terms.

Equations (8), (9), and (11) describe the nonlinear far-field acous-
tic radiation of the transonic hovering rotor. For subsonic tip Mach
numbers, numerical evaluation of the surface integrals presents no real
problems. However, the volume integration of quadrupoles is not as
straightforward.

As discussed previously, the accuracy of this nonlinear formulation
is totally dependent on the detailed knowledge of the flow field surround-
ing the blade. In this paper, the flow fields of interest were computed
by the three-dimensional transonic numerical code described in Reference 15.
This code solves the near-field transonic small-disturbance potential equa-
tion in a blade-fixed reference frame. the solution uses a conservative,
mixed-difference relaxation scheme. Because this code was developed to
predict blade-surface aerodynamics, some simplifying assumptions were made
to Equation (2) -- namely, the nonlinearities known to be small near the
blade surface were neglected. In particular, the terms 2w^ rOre and
2w^z^ze on the left-hand side and the factor (y - 1)w^e on the right-hand
side of Equation (2) were not pLogrammed.

The nature of the calculated chordwise pressure distributions as a
function of blade radius is shown in Figure 7 for a tip Mach number of 0.9
at zero angle of attack. On the blade surface, a shock wave forms at
about 90% of the span and persists over the outer portions of the blade
and beyond. These calculated pressure distributions are consistent with
the experimentally sketched flow regions of Figure 6. The maximum value
of shock strength is calculated to occur at 95% radius. It is also impor-
tant to note that the shocks that are calculated i1th this code do not look
like measured shock waves. The numerical solution has built into it a
numerical viscosity which tends to smooth discontinuities over several mesh
points. This tends to smooth the final acoustic waveforms to some degree.
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Figure 7. Cp distribution on the blade surface and at
1.18 chords up, aspect ratio = 13.7, NACA 0012, near zero
angle of attack, Mtip = 0.9.

The vertical extent of the local flow field is shown in Figure 8 for
the 95% span location. The rapid decay in disturbance velocity u has
been confirmed by experiment. However, as indicated in Reference 17, the
decay with vertical distance from the airfoil is much faster than with
two-dimensional transonic theory, but much slower than with linear calcu-
lations. The faster decay of three-dimensional transonics is caused by
tip relief. This figure illustrates that the blade tip region is governed
by local nonlinear three-dimensional transonic efforts and must be calcu-
lated accordingly.
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field, Mtip = 0.9.

The final problem in the evaluation of the quadrupole integral is
the development of a calculation procedure for Equations (8), (9), and (11)
that is v3ld when MR = 1.0. This problem occurs when the volume integra-
tion is extended up to and beyond the linearized sonic cylinder. The inte-
grand in Equation (9) then contains the product of two terms which compete
to decide the eventual magnitude of the quadrupole radiation. The first
is the decaying source field represented by the TPR term in Equation (9).
This is multiplied by the 1/I1 - MR I term which goes to - as MR
approaches 1. Fortunately, the sin gularity is integrable, but it must be
handled quite carefully. In this paper the acoustic planform technique
was chosen t^) perform the numerical integration near MR = 1.0. A complete
discussiorw of the procedures and pertinent references is given in the
Appendix.

Equation (11) governs the magnitude of the quadrupole source strength,
TRR . For an observer in the acoustic far-field, and for an integration
region confined near the blade tip, all effective source points normal to
the rotor plane will arrive at the same retarded time. Therefore it is
possible to integrate u2 in the z direction and effectively collapse
the quadrupole volume integration to a surface integral in the rotor plane
(Ref. 17). The resulting integration for the model rotor operating at near
zero thrust at a hover tip Mach number of 0.9 is shown in Figure 9 for sev-
eral radial stations. The integral fu g dz is the largest at about
r/rp = 0.95 and decreases both inboard and outboard of this point. The
monotonic decrease in amplitude out past the tip to beyond the linear Ponic
circle suggests that quadrupole sources die quickly. However, the ultimate
strength of the quadrupole term is dependent on the integration over an
effective planform of the product of fug dz and 1 /I1 - MR I. Because
1/I1 - MR I is singular when MR = 1.0, the net quadrupole integration is
weighted heavily near the sonic circle. The resulting contributions to the
acoustic field are shown in Figure 10 for the same hovering rotor at near
zero thrust. As shown, the dominant integration region for the quadrupole
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Figure 9. Quadrapole source strength as a function of r/ro
for Mtlp = 0.9.

term is between the rotor blade tip and the linear sonic circle. The figure
also illustrates how the shape of the quadrupole term changes near a hover
tip Mach number of 0.9 for the UH-1H model rotor. At these high tip speeds,
the shape of the quadrupole term is strongly influenced by the shape of

jut dz near the sonic circle. The resulting waveform becomes sawtoothed
in character because the governing equations are nearly hyperbolic in char-
acter in this region. The structure of the ju t dz field is nearly pre-
served, yielding a shock-like quadrupole waveform in the acoustic far-field,

This does not happen at lower hover tip Mach numbers. The amplitude
of the fug dz field dies away rapidly causing the quadrupole integral to
be dominated by the linear elliptic region. Here, no wave-like structure
is possible and the structure of ju t dz is smoothed in the amplification
process, producing nearly symmetrical pressure time histories.
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4.	 COMPARISON WITH EXPERIMENT

An evaluation of the overall prediction accuracy is presented below
by a comparison with data ,)resented in Reference 2. In that test, a
1/7 scale model of a UH-1H helicopter (NACA 0012 airfoil with 10.9 0 twist
and with no twist) was run at nearly zero thrust at transonic tip Mach
numbers from 0.8 to 1.0 in honer in an anechoic hover chamber. Micro-
phones located in the plane of the rotor recorded the radiated noise.

Figure 11 presents the monopole ::n.; quadrupole contributions to the
radiated noise at Mtip = 0.8. As di:-...=.^v:d previously, at these low tip
Mach numbers the monopole contribution	 -he radiated in-plane far-field
noise underpredicts the magnitude of the measured data (Ref. 2), but
accurately predicts the pulse shape (Fig. lla). The quadrupole contribu-
tion is of an almost similar shape (Fig. llb) and helps improve the corre-
lation with experiment (Figs. llc, lld) to nearly acceptable ,levels.

As the hover tip Mach number is increased to 0.88 (Fig. 12) the
monopole and quadrupole terms (Figs. 12a, 12b) become equally large in
magnitude. More importantly, however, the shape of the quadrupole term
begins to change from a near-symmetrical to an asymmetrical character.
This is noted on the pressure recovery side of the quadrupole calculation

TIME	 TIME

Figure 11. Theory-experiment comparison, M tip = 0.8.

22-15



300

0

N
E
Z
J
> -300
W
J

W
fn
H

Wj -600

w 300
cc
CL
W

H

W 0Z
Y¢
W
a-

-300

-600

MT = 0.88

TIME
	 TIME

Figure 12. Theory-experiment comparison, M tip = 0.88.

and is a direct result of including the local shock structure of the flow
field in the numerical calculation. When the monopole and quadrupole
contributions are added, good correlation in amplitude and pulse shape is
observed (Figs. 12c, 12d). The overall shape of theory and experiment are
still basically symmetrical in character, but the local shock structure of
the transonic flow field is acting to destroy this symmetry.

At the slightly higher hover tip Mach number of 0.90, localized
transonic effects cause large changes to the radiated noise field (Fig. 13).
Although the linear term (monopole, Fig. 13a) remains quite symmetrical in
shape and substantially underpredicts the measured data, the nonlinear
(quadrupole, Fig. 13b) term changes shape dramatically and increases in
amplitude. This is a reflection of the fact that local shocks are propa-
gating to the far acoustic field ("delocalization" in Ref. 17). When
the monopole and quadrupole terms are compared with experimental data
(Figs. 13c, 13d), good agreement in pulse shape is observed. To the
authors' knowledge, this is the first time calculated pulse shapes have
compared favorably with measured data for a rotor operating near the
"delocalization" Mach number.

The relative accuracy with which the peak negative amplitude of the
high-speed impulsive noise phenomenon can be predicted is illustrated in
Figure 14. Much better agreement between theory and experiment is demon-
strated for Mach numbers of up to 0.9. At M tip ? 0.9, amplitudes are
overpredicted. This result is related to the sensitivity of this approach
to perturbation velocities near the linear sonic circle and to the accuracy
with which existing transonic near-field codes can predict these velocities.
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5.	 SOME FURTHER OBSERVATIONS

Some insight into why overprediction of the acoustic pulse near the
"delocalization" Mach number is likely can be gained from Figure 15. In
this figure, peak values of measured horizontal perturbation velocities
are compared with the local transonic potential code used in this paper
for Mtip = 0.9. Inward from the tip of the rotor blade comparison with
experiment is quite good; however, near the linear sonic cylinder where
the quadrupole contributions to the radiated noise are large, theory and
experiment diverge. It is quite likely that the overestimation of the
transonic perturbation velocity in tl. s region causes the quadrupole con-
tribution (which squares the error) to become too large. A transonic code
that incorporates all of the near-field nonlinearities should help the
correlation of this acoustic theory with experiment at the higher transonic
tip speeds.

A plot of the torque coefficient versus hover tip Mach number is
given in Figure 16 for the untwisted model rotor (Ref. 2) at near zero
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thrust. The resulting curve increases sharply, defining a point at a hover
tip Mach number of about. 0.85 that might be considered to be the onset of
"drag divergence." This is in contrast to the phenomenon of "delocaliza-
tion," which occurs at Mtip = 0.9 for this model rotor. It is probable
that the two events are relted, but the experimental and theoretical evi-
dence to date does not explicitly connect drag rise with radiated noise.

6.	 CONCLUSIONS

Inclusion of the quadrupole terms in the numerical evaluation of the
Ffowcs Williams and Hawkings integral equation improves the comparison with
measured data for high-speed helicopter rotors operating at tip Mach num-
bers from 0.8 to 0.9. The predicted waveform closely matches the measured
data. At low-tip Mach numbers (M tip = 0.8), nearly symmetrical pulse ,shapes
are predicted and measured while at the delocalization Mach number
(Mt ip = 0.9) sawtoothed shock-like waveforms are predicted and measured.
However, at Mach numbers greater than 0.9, theory tends to overpredict mea-
sured peak negative amplitudes.

The changing character of the acoustic waveform depends critically
on the local three-dimensional transonic flow field surrounding the blade
tip. If the local supersonic region surrounding the blade is bounded by
a subsonic cylindrical region, the waveform remains near symmetric in
character. However, at higher Mach numbers (M t . = 0.9), when the local
supersonic region connects with an outer hyperbolic region, the waveform
becomes sawtoothed and local shocks propagate (delocalize) to the acoustic
far-field.

Predicted acoustic waveforms are dependent upon accurate knowledge
of the near-field perturbation velocity field near the blade tip. For the
present paper, this near-field is computed using a small disturbance code
which incorporates near-field aerodynamic nonlinearities near the blade
surface. Measurements of peak perturbation velocities indicate that this
small disturbance transonic theory is in good agreement in-board of the
tip region but becomes less accurate (overpredicts) off the blade tip.
This is thought to be one reason why the quadrupole acoustic formulation
tends to overpredict measured values at Mach numbers greater than 0.9. It
is doubtful that quantitative prediction of far-field transonic rotor noise
at Mach numbers greater than 0.9 can be attempted until the transonic poten-
tial equation is solved over regions of larger radial extent than the equa-
tion has dealt with to date. It is clear that local transonic aerodynamics
strongly influence the high-speed rotor's acoustic far-field. In the next
few years, design changes based on this new understanding should help
reduce the radiated noise.

APPENDIX

The integral equation for the volume displacement effect is shown

as follows (Ref. 7):

47ra2p'(R,t) = at f
t  

J
	 - () d(f) IofIS(g)dy d-r	 (Al)

00 9
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(A2)g T - t + a
0

T = retarded time

t = observer time

R = IR - YJ

R = observer position vector

3

,T) = 0

where

QM T) = pOvn

f = 0: body surface
	 Y = source position vector

Since the intervals of the integrals are infinite, the order of
integration can be interchanged. Then Equation (Al) becomes

47ra2p' (x.t)	 at 111 
C

O	
S{f(Y,T)j I Df (Y, T ) IdY

	
(A3)

where

R
aO

If the y coordinate system is changed to the Z coordinate system, such
that the ^j axis is perpendicular to the surface f.(y,T) = 0, and the
E2,^3 axes are on that same surface (see sketch), Er:iation (A3) becomes

47ra2p'(R,t) = 8t fff^ gjf(,T)j jOf (,T) (J(Y,) d	 (A4)

The Jacobian J(y,^) between coordinate system] y and ^ is expressed
as follows

J(Y, D)	 10f ja

where

11,2
\2

a = 1 + 2 ao Ri n + (ao

This expression is obtained as follows. Define a function F such that

F = f (^,T)
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Then

I

OF 7f+at a^

s D f - v • nIVfl
0

_ D f In+ a n RI
o 

Also,

IVFI = I D f 1 1 + 2 
v n i

0

= IVEfIa

Therefore,

+
vn 

2 1/2

(
n	

a0 

1

__ 1 __ 1
J	

OF	 of a

Now Equation (A4) becomes as follows with the Jacobian J(y,^)

4Tra2p' (X,t) = at 
j
	 (^Ra	 S l f(,T) ^ d	 (A5)

Since the ,coordinate system is defined such that E1 is perpendicular to
the surface defined by f(^,T) = 0, d^ becomes as follows:

dT = del d^2 dE 3

= df d^2 dE3

With *_his, Equation (A5) becomes

	

4Tra2p' (x,t) _ -y Jf QQ21E3 ,TJ 
d 2 d 3	 (A6)

0	 at	 Ra

S:

f(^,T) = 0

This is the general equation for the acoustic planform method
(derived also in Ref. 8), where the integration interval covers only the
area of source locations in retarded time for which signals arrive at the
observer simultaneously. This is equivalent to the formulation for a
collapsing sphere method (see Ref. 8). The area S U (0,E2,^3,T) = 01
for the integration in Equation (A6) is called the acoustic planform.
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OBSERVER

MR<1

The acoustic planform changes shape depending on the radiation
(component of) Mach number, MR. For very low MR, the acoustic planform
is almost congruent with the shape of the blade planform. As Mg increases,
the acoustic planform distorts, and finally breaks into multiple regions for
MR greater than 1, as shown in Figure 17. Figure 17 shows a case in which
a blade is rotating in a circular path with a constant supersonic tip Mach
number Mtip. With a supersonic tip Mach number, the radiation component
of the tip Mach number MR varies from subsonic to supersonic, and then
back to subsonic speed again as the azimuthal angle increases.

The multiple regions of the acoustic planform for a supersonic MR
is explained in Figure 18.

TO OBSER ER

MT

MR
MR <1

MT
TO OBSEFt	 MR

MR >1

Figure 17. Physical plate and acoustical planform
for a supersonic tip Mach number.
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(e) MR >1

(fj MR<1

WAVE FRONT

ao

(a) MR<1

(b) MR<1

(c) Ĵ 	MR>1

(d) MR>1

(9)	 (^^	 MR <1

Figure 18. Relative position between wavefront
and blade.

1. At t = 0 a sound wave is generated; because the speed of sound
is Faster than the blade motion MR, the wavefront moves ahead of the blade
(see Figs. 18a, 18b).

2. Now, the blade speeds up until MR is greater than 1, and the
blade catches up with the wavefront (Figs. 18c-18e).
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3. The blade again slows d OWii to a subsonic speed, and the wave-
front now moves ahead of the blade (figs. 18f, 18g).

During the variation of the blade MR relative to the propagation
speed of the wavefront, the wavefront can interact with a particular point
on the airfoil one, two, or three times, depending on the value of the
airfoil MR.

TheGe multiple values of source positions can also be shown from
the point of view of a retarded time expression. The relationship between
the observer time and the retarded time is give- as follows:

z = t - R
a0

From this expression, in order for signals from two separate positions on
the rotir blade to reach the observer simultaneously, the following equa-
tion should be satisfied:

R1 + ^''1 `R2+^2
a0	w	 a0	 w

where R 1 and R2 are distances from two different sources to the observer,
and tij and w, are respective azimuthal angles from the original location;
w is as angular velocity.

For a given angle ^1, the position of the second source k may
be found by the following function:

F (V ) =- a (R1 - R2 ) + V 2 - 1 - 0	 (A7)
0

SOURCE =1 POSITION
AT EMISSION TIME

r1	 SOURCE =2
OBSERVER	 r	 ,POSITION AT

Z 50;	

EMISSION
DTIME

SKETCH

For a given value of ^1 and R 1 , Figure 19 shows the graphical
solution for Equation (A7). That is, for a subsonic Mach number M R, the
function F increases monotonically such that only one value for ^'2
can be obtained (see Fig. 19a). For a supersonic case, the function F
has one, two, or three roots, depending on the value of M R ; that is,
one root is obtained for a subsonic MR, two roots for MR = 1, and three
roots are obtained for MR > 1 (see Fig. 19b).

A typical acoustic planform for a supersonic tip Mach number is
shown in Figure 20, in which the leading and trailing edges corresponding
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Figure 20. A typical acoustical planform for the
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to a physical blade are shown. Two observations stand out. The first is
the center portion of the planform, where the trailing edge and leading
edge are reversed. This phenomenon can be explained from Figure 18.
When a wavefront i:; ahead of an airfoil (see Fig. 18c) and the airfoil is
accelerating, the -wavefront first interacts with the leading edge, and
then sweeps the airfoil to the trailing edge (see Figs. 18d, I8e).

A second observation is that of the two local depressions A and B
shown in Figure 20. The depth of these depressions depends mainly on the
magnitude of MR. Generally, these two depths have different values.
Between these different depths, the acoustic planform has only two possible
regions: either one leading edge and three trailing edges or three Lirail-
ing edges and one leading edge, depending on whether the local depres-
sion B is deeper or shallower than A. The outermost radial portion has
three regions, and the inner radial portion has one region.
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