
Estimation of Kalman Filter Model

Parameters from an Ensemble of Tests

by

B. P. Gibbs, D. R. Haley, W. Levine, D. W. Porter,

and C. J. Vahlberg

Business and Technological Systems, Inc.

ABSTRACT

This paper presents a methodology for estimating initial mean and

covariance parameters in a Kalman filter model from an ensemble of non-

identical tests. In addition, the problem of estimating time constants

and process noise levels is addressed. The work is motivated by practi-

cal problems such as developing and validating inertial instrument error

models from laboratory test data or developing error models of individual

phases of a test.
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1.0 INTRODUCTION

This paper presents a methodology for estimating initial mean and

covariance parameters in a Kalman filter model from an ensemble of non-

identical tests. In addition, the problem of estimating time constants

and process noise levels is addressed. The work is motivated by practi-

cal problems such as developing and validating inertial instrument error

models from laboratory test data or developing error models of individual

phases of a test.

Previous results in the literature [2,3] employ a Kalman smoother to

obtain a sufficient statistic for the estimation of initial mean and

covariance. Then the Expectation-Maximization (EM) algorithm [I] is

applied to iteratively obtain maximum likelihood estimates of the entire

initial mean vector and covariance matrix. The previous results are

extended in this paper to account for parameter constraints such as con-

straining variables that are physically unrelated to each other to be

uncorrelated. Further, the results are extended to consider time con-

stant and process noise level parameters. Previous techniques capable of

estimating initial mean and covariance parameters and dynamic parameters

require re-reunning a Kalman filter for each value of the parameter vec-

tor considered. The new approach presented here is more efficient in

that the filter need be re-run only for dynamic parameters.

System testing (for example, of inertial instruments in the labora-

tory and error mechanisms from flight data) is often done in multiple

phases that are physically different but linked dynamically in a given

test. In order to obtain models for different phases, the previous

results could be applied where the phase dynamics are stacked one on top

of the other. New results are presented that provide a simpler and com-

putationally improved approach that deals with each phase individually.

The new results are also useful when only one multiple phase test is con-

ducted, it is only desired to estimate the state in each phase, and the

state is unobservable in a given phase but observable over all phases.
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In practical testing situations, suboptimal filters are often used.

Results are presented that account for filter suboptimality.

Theoretical convergence results for the present application of the

iterative EMalgorithm are presented. Both the case of observable and

unobservable per test dynamics are addressed. Also included are some

references regarding rate of convergence and the effect of constraints on
elements of the estimated covariance matrix.
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2.0 THE DL/EM APPROACH

The Data Likelihood (DL) algorithm was derived in [2, 3] during

analyses directed toward the estimation of mean and covariance parameters

of the initial distribution of certain discrete-time multi-dimensional

Gaussian random processes. The essential idea is to use Kalman smoother

(Bayesian) estimates of realizations of the initial conditions to esti-

mate the mean and variance of these initial condition distributions and

to test certain statistical hypotheses thereabout. The iterative DL

scheme arose in the process of attempting to divorce the a priori model

to be validated from the estimated model, and was observed to be of the

form of the Generalized Expectation-Maximization method described by

Dempster, et al [I].

The context of the problem is as follows. For each test, j , the

realization of the r.v. x is assumed to be described by

Xk,j = Ck,jXk-l,j + Wk, j , k=l,2,"',nj , (I)

ooo,Nj=l,

and to be observed by

Zk,j = Mk,jxk,j + vk,j • (2)

Here w and v are assumed zero mean, white, uncorrelated, Gaussian,

and independent of Xo,j for all j • It is assumed that Xo,j are

realizations from a Gaussian distribution with mean u and covariance

Z , u and Z unknown. In [2, 3] it is shown that the log likelihood

function for the process can be written as

log L(,,_) : log LML(,,_ ) + R ,

where
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log
N

i Z
LML(",Z) : -

j=l
log Z+P(J) I (3)

N
1 [_+p(j)]-I-

A

and R is independent of u , _ . Here Xo, j are maximum likelihood

(non-Bayesian batch least squares) estimates of Xo,j , and P(j) are

the associated estimation error covariances. Differentiating Log LML

with respect to u and _ and setting the derivative to zero yields the

equations

N

Z
j=1

EZ+P(j)] -I Exo,j-_] = o (4)

N

j=1
EZ+p(j)]-I (Xo,j.u)(Xo,j.u)t [_+p(j)]-I

N

Z
j=l

[Z+P(j)] "1= 0 •

(5)

It is further noted that the Kalman smoother (Bayesian) estimates

Xo,j _ Xo,j (u,Z) and associated estimation error covariance Pj_Pj(_)

are related to Xo, j and P(j) by

Xo,j= [_+P(J)] Z -I [Xo,j-IJ ] , (6)

pj : (p(j)-l+_-l)-I . (7)
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Then the iterative DL loop can be defined:

^ 1 N = ^
!Xo

Us l_j 1 'J s-l' s-1 ) '
(8)

1 N

j=l

A ^ _ ^ A

{pj(Zs.1 ) + [Xo,j(i_s.l,is_l ) . ijs] x

[Xo,j(___,___)- _]t},

(9)

(10)

Xo,j(_,_,_) : _ +Pj(_) _ [mo,j-__] , (11)

with iteration on s •

2.1 Theoretical Convergence

Theoretical convergence of the DL algorithm is addressed in detail

in references [4] and [5]. The first note begins by proving that the DL

algorithm is a Generalized Expectation Maximization algorithm. It then

follows that the DL algorithm produces a monotone increasing sequence of

likelihoods. It also follows, under the additional assumption that there

exists a pair x* , _* that maximizes the likelihood, that _* , u* is
m _ _ m

a fixed point of the DL algorithm. Finally, it is shown that the

sequence {ks _s}Z:O converges to some _o, _o assuming that _ < cl
' m m m s m u

for all s and some c •

There are two defects in this result. First, it is not guaranteed

that u_o , _o maximize the log likelihood. There is probably nothing to

be done about this. Dempster et al [1] remark, as is probably true, that
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_o _o_ ,_ will, in almost all applications, occur at a local, if not

global, maximum of the likelihood. Second, it would be desirable to

relax the assumption that s < c I . In [51 it is shown that s < cl

is automatically true provided all the tests are identically set-up. It

seems reasonable, but has not yet been proven, that a similar result

holds in general.

2.2 Constrained DL Estimates

In many potential applications of the DL method, the random variable

of interest (whose mean and covariance we desire to estimate) is of

rather large dimension. It is also often true that several of the param-

eters to be estimated are simultaneously poorly estimable and of rela-

tively little interest. The judicious constraint of some parameters thus

presents itself as a reasonable possibility. For example, if there is

reason to believe that some components of the random variable are physi-

cally uncorrelated, and any correlation is believed to be largely irrele-

vant, little is likely to be lost if the estimated covariance is con-

strained to exhibit zero correlation.

It is desired to obtain those values u and _ of the mean and

covariance of the r.v. under consideration which maximize the log likeli-

hood
\

1 N

L = log L(U,Z)ML = -7 Z loglZ+P(j)I
1

_1N
_-Z (Xo,j-") t [Z+p(j)]-I (Xo,j_u) '

(12)

subject to appropriate constraints. Three forms of constraints have been

explicitly considered. Within the DL iterative context, it seems that a

rather wide variety of constraints may be handled quite easily.
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The general approach taken here is to use Lagrange multipliers to

reduce the constrained maximization problem to a modified but uncon-

strained problem.

The first forms of constraint on u : [_i ] and _ = [_jk ] under

consideration here are

w

¢i : ai(_i-"i) : 0 , (13)

w

¢jk = ajk (_jk-_jk) = 0 . (14)

Here [ai ] and [ajk ] are "selectors",

01 if _. unconstrained
_. = I

I if _i constrained

(15)

_i if Ojk unconstrained (16)
ajk = if Ojk constrained

Clearly, reasonableness dictates that [ajk ] and [Ojk] = be

symmetric, and that Z > 0 . The problem now becomes that of obtaining

an unconstrained maximum to

L = L (,,Z)= L + Z _ a (ui-v i)
i i i

+ Z a (o o )_'jk" jk jk" jk "
j,k

(Again, it is clear that [Xjk ] must be symmetric.) To extremize
we set

(17)

L
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_L _L
= TC + diag(_ )[_ ]

_L=-_- + ax : 0
J

(18)

and

@L = @L

_'_ + [Xjk6jk]

@L
=T_+A=0 .

(19)

The explicit computations and solutions become rather tedious and
i

are not reproduced here. The complete details and several examples are

found in [6]. It should be noted that the use of Lagrange multipliers

has an important advantage that is not mentioned in [6]. It is shown in

@L l_jk=_jk and x _L I
= . i =_l_ri . . In words, solving[7] that _jk _jk

_i=ui

Lagrange multipliers gives the sensitivity of the log likelihood to the

constraint.

case where the mean u is partitioned as _ = l,.uIConsider the

L_]c

into its constrained and unconstrained parts. It is rather straight-
A

forward to show (see [6]) that the solution for u at each DL step is

given by

from which the effect of the constraints on

clearly visible. (Here the state estimates xi

partioned as u ,

at each iteration is

are also assumed
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xi = .)

Such a fomal solution is not generally avail able for the covariance

equations. However, several specific cases yield results of some inter-

est, One such case arises when z is partioned as

and we wish to constrain

Denoting

* _ *t *_12 : _12 ' _21 = _ 2 : S12 ' and S22 : _22 "

-M : M : . , (21)

M21 M22

where

N _ _ t ^

.: , (22)

It is shown in [6] that

S12 : Z12 ' (24)

Z22 : _22 " (25)
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One slightly disconcerting question which does arise though regards

the positivity of s11 in (23). It is presently not clear what condi-

tions on E12,$22 yield, z11>0 . The conditions on s12 are more open

to question since $22 is more naturally restricted. Perhaps a relevant

question is "how does one place a reasonable a priori constraint on a

cross-covariance matrix?" One reasonable choice for the problem at hand

might well be s12 = 0 . In this case Sll = Mll ' and the difficulty

regarding definiteness disappears.

A slightly different sort of result arises from the more specific

desire to constrain s to be of the form

with s12 = S_l = 0 , and s22 = diag (_22i) .

Then it is shown in [6] that the solution is

Sll = Mli ' (26)

r12 = z12 : 0 , (27)

M22ii i=j,
: . (28)

_22ij : 0 , i:j .

It is clear that the constrained lack of correlation forces _11

and E22 to exactly follow the data observed for each. It is important

to note that the above result can be applied to cases where elements of

Z12 or off-diagonal elements of _22 are constrained to known non-zero

values. Suppose the Xo, j can be expressed as
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Xo,j : u + Xlj + x2j (29)

where x2j is uncorrelated with Xlj , the covariance of x2j is known

and carries the known non-zero values mentioned above, and the covariance

?T
of Xlj is to be estimated subject to the constraints _'12 = '21 = 0 ,

Z22 = diag (a22i) . Then the results of equations (26), (27), (28) can

be applied where xo,j is re-defined to be

Xo,j : u + Xlj (30)

A second form of constraint on u and Z is

: a_ , and

= BZ* ,

* V*
Here _ ,L are assumed to be given, and _,B are undetermined

constants. For purposes of analysis, these constraints may be more

conveniently stated as

¢i : UlUi - UiUl : 0 , p_>i>_2, (31)

,A- _,

Cjk : allajk " ajkall : 0 l<_j,k<_p, (32)

(j ,k)#(1,1)

The Lagrange multipliers _i,_ik , then enter in the unconstrained

maximization of

L : L + Z _i¢i + Z _jkCjk • (33)
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The explicit extremizing solution for _ is given by

N=

Z I { Xo,i}
1 I

a = N _*t _-I u* "
(34)

A similar but quite complicated analytic solution for B

As was the case for identity constraints, this value of

derivational details are contained in [6].

is obtained.

B and

A third form of constraint of potential interest, applying only to

the covariance estimation problem, is that of a specified correlation

matrix, R = [Pij] , so that the covariance takes the form

Z : diag (av_i ) R diag (¢_) (35)

with a.. being the individual variance components.
11

functions are

Then the constraint

¢i"J = a.. - _ p.. _ = 0 . (iXj)IO 11 Ij jj
(36)

Clearly the usual properties of a correlation matrix are required.

The modified likelihood function is then

@r

L = L + _ Xij ¢ij "
i_j

= L+S •

(37)

We wish to find Z such that _ = 0 • Again, the details of the

solution are found in [6].
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2.3 Observabilit_

The effect of unobservable tests on the DL algorithm is discussed in

detail in reference [8]. The results can be summarized as follows:

(1)

(2)

The state space can be divided into an observable sub-

space and an unobservable subspace.

On the observable subspace the DL algorithm performs as

if the observable subspace is the whole space. Data and

estimates of z and u on the unobservable space have

no effect on the DL algorithm as applied to the observ-

able subspace.

(3)

(4)

The data and estimates on the observable subspace do

effect the algorithms results on the unobservable sub-

space and the correlations between unobservable and

observable subspaces.

If the DL algorithm is initialized with zero correlation

between observable and unobservable subspaces then the

correlation will remain zero and the DL algorithm will

not change the mean and covariance on the unobservable

subspace.

2.4 Estimation of Markov Parameters

In addition to estimating parameters of initial distributions, it is

often of interest to use data from multiple tests to estimate dynamic

parameters of the system, particularly parameters of Markov processes.

Several possibilities exist for such estimation, and three are discussed

very briefly here. It should be noted that such estimation likely is

most useful for consistency checking because of the innately poor identi-

fiability of such parameters during system tests of short time duration.

Further, all methods for their estimation are likely to be computation-

ally costly.
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In [9], Goodrich and Caines have presented a methodology for maximum

likelihood idenfication of system parameters based on data from repeated

independent tests. The likelihood function is based, as in the original

derivation of [3], on Kalman filter innovations, and the assumption of

independence of realization yields a rather tractable form. Methods for

modification of the procedure to allow for correlated tests should be

studied further. The computational burden can be high for this approach

since multiple Kalman filter passes are needed at each iteration.

Sun [10] has presented an application of the E-M procedure to the

simultaneous estimation of system initial state, process and measurement

noise levels, and system dynamics based on data from a single test. The

paper indicates that an extension to repeated tests may be possible.

Again, further study and extension seem necessary.

A third possibility combines several aspects of the DL methods as

previously described, the ideas of Goodrich and Caines, and other work in

maximum likelihood estimation.

Consider a dynamical system as described in equation (1), where

and Q may depend on some parameter vector _ (e.g., time constants and

process noise levels). Whether to solve for e,_,s simultaneously or

separately seems unclear as yet. For a given value of a , one might
^ A

obtain via DL the maximum likelihood estimates u(_),s(_) . Then, fixing

u,Z, numerical/gradient methods could be used to obtain the value _ to

maximize the likelihood. Also open to question is the variability of

-- one might assume a to be universally constant, constant over

groups of tests or unique from test to test.

An illustration of a possible implementation loop on such a proce-

dure is found in Figure I. We desire, again, to estimate _=E(Xo,i)

Z=E((Xo,i-u)(xo,i-_)t) , and the Markov parameter vector a . Dropping

the individual test indicator i for the moment, we have
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X = _I +X ,
O r

X r the random part of xo , and

P
xr
=Z.

The observation z may be decomposed into

Z = Z + Z
xo r '

a part due to Xo. and a random part. In Reference [11] it is shown that

the innovations zk may be decomposed as

zk = T k xo + zk.

where z_ is computed based on assumed filter and truth models of

x =0 . It is then possible to write the log likelihood function, given
o

_,Z,a, and indexing repeated tests by i,

(38)

-2 Iog p(zlu,[,_) + constant =

Z {loglZ+P(i)l+(Xo,i-.)t (Z+P(1))"1
i

(Xo,i-u) (39)

^ t -1

+ Z {logI i÷ tp:1
i,k Pzi ,k,kI I,K Zi Zi,k } "

If _ is known, this procedure reduces to the DL algorithm. If

is unknown then gradient procedures may be used in the maximization.

This requires differentiating the estimate for _ , but not for _,z .

Another idea is to solve for a for each test, and only for _,_ for

repeated tests. The proposed iterative loop is illustrated as the dotted

closure in Figure 1.
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In summary,the detailed analysis of the effect of Markov parameters

is a difficult problem which has really only been recently addressed. It
is felt that substantial additional effort maybe required to fully

develop adequate analysis methodology, but that failure to attempt to

address the problem in detail may lead to inadequate analysis capabil-
ities in someareas.
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3.0 MULTIPLE PHASE THEORY

Many systems are operated and evaluated in a sequence of phases.

The analysis of performance in one phase is carried out relatively inde-

pendent of results from other phases, and then results are combined at

the end. Although this procedure is not a constraint for many systems,

there is interest in studying it. This section presents the theory nec-

essary to combine the results from several phases on one test, then to

analyze the results using a cumulative methodology such as DL. An

approximation is presented which allows for reasonably accurate quick

cumulative evaluations. An extension of the theory is discussed at the

end.

Some framework, nomenclature, and assumptions need to be stated

before the theory is presented. It is assumed that the effects of least

squares estimates of errors from previous phases have been removed from

the data prior to its analysis in a Bayesian per phase filter, or equiva-

lently removed after data analysis is complete. The per phase analysis

is actually done with a Bayes filter, but the theory is developed start-

ing with a least squares (infinite prior) filter. The least squares

estimate of errors in the ith phase can be represented by (see Refer-

ence [12])

: _i + + xixiLs Xri - XTi_l
(40)

where

X

.ri

xi

 Ti.I

= Systematic error in this phase,

= Random error introduced in this phase,

= Residual estimation error from this phase due to Qi ' Ri '

= Residual estimation error from previous phase due to Qi-l' Ri-1 "
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The covariance of this estimate is

^

EC (xLS-,) (xLS-,) T) _i Pi
= + + PTi.1

(41)

where

T)
_i = E(XriXr i

: E(x xT)

- xT ).
PTi_I : E(XTi.1 Ti_ 1

The error at the transition time can be represented by (see References

[11], [13])

" : " "" (42)
*r cxi i

where the following statistics are obtained suppressing the

E(xixi)T= p

xT "= PTE(XT ) = cPcT + PT

E(xi xT) = pcT = PC

E(XTXoT) : 0

i subscript

(43)

These statistics can be calculated following data analysis using a

conventional Bayesian filter. If the initial states are augmented to the

state vector to provide a fixed-point estimate of errors, all necessary

covariances and correlations are obtained. For the state vector defini-

tion
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(44)

the covariance of estimation errors obtained from a fixed-point Bayesian

smoother will be

I, "_,]P * = (45)

N CN PTN]

Using the above, the correlation matrix C and the covariance of

transition-time errors which are independent of initial estimation errors

T 1
C = PCN PN

I

PT = PTN - CPcN

can be calculated

(46)

The max-likelihood information matrix is obtained as

I [:I (47)

Assuming that it is invertible, the max-likelihood covariance is obtained

and is given by

Ip I1P* : = (48)
P_I CT CPCT + P

The discussion thus far has focused upon manipulation of data and

covariances from one phase of a multiple phase system. The result is the
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max-likelihood covariance and by similar procedures, the estimate for the
combined state vector at the initial and transition times. Since the

error in the max-likelihood estimate, as represented by Equation (40) is

unbiased, the error in the estimate of the ith phase, although corre-

lated with the previous phase, is uncorrelated with all phases previous
to that. Hence, the multiphase max-likelihood covariance of the max-

likelihood estimate for the stacked vector of ui+Xri vectors is of the
banded form (see Reference [12]).

p =

- T 0 0 0 -
P1 -Pc 1

-Pc I P2+PT1 _PTc2 0 0

0 p3+PT2 _pT-Pc2 c3 0
T

0 0 P4+PT3 --Pc 3 Pc4

0 0 0 -Pc4 P5+PT4

(49)

This banded form has some interesting properties that lead to a use-

ful result, especially when the following often practical assumptions are

made:

(I) The derivations presented have already assumed that all states

in each phase are observable -- so that the max-likelihood

information matrix is invertible

(2) Interphase correlations can be ignored for preliminary cumula-

tive analysis giving an algorithm suboptimal in the sense that

information is thrown away but not in the sense that an approx-

imation is made.

Although the first assumption may not always be true, it may be

possible to redefine the state vector so that the unobservable states do
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not enter the system until the phase in which they are observable. This

can be accomplished automatically in a mathematical sense utilizing the

Singular Value Decomposition (SVD) algorithm. Thus, although the first

assumption maynot be able to be satisfied explicitly, there are ways to

accomplish its effect without degrading the fidelity of the model.
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4.0 USE OF SUBOPTIMAL STATE ESTIMATES IN MULTIPHASE ANALYSIS

It is often the case that data from the several phases under consid-

eration are obtained from Kalman-Schmidt filter/fixed point smoother

algorithms. Thus the algorithm for processing a test phase should be

capable of handling suboptimal gains. Even if the filter were optimal,

the equations for the suboptimal case would be applicable, and, in some

situations, might be preferable to equations assuming optimality.

It is also desirable that the processing for each phase be done

independently. In some cases, the processing for different phases may be

done by different organizations. Thus, the per phase data reduction must

use no information from other phases. The combination of phase estimates

is done as the final step in the data reduction.

Reference [14] defines the equations required for the phase data

reduction. These equations are fairly general and would apply to most

suboptimal filters. Also presented there are the additional recursive

equations which must be computed in a consider filter so that the phases

may be combined. These equations only apply to a Kalman-Schmidt filter

(which automatically computes the correct covariance matrix) but could be

modified for other suboptimal filters. The following section presents

the algorithm for combining the suboptimal (or optimal) estimates from

different phases.

4.1 Multiphase Reduction Usin_ Suboptimal Estimates

The output of each phase will be a suboptimal, smoothed estimate of

the state at initial time and transition time. Also obtained are the

various covariance and sensitivity matrices. The true state at the epoch

of each phase is assumed to have a mean and random component; i.e., for

phase i

i i i (50)
x0 : _ + xr •
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The DL method attempts to estimate i and cov (x_) by combining

results of different phases and tests. To do this, the state estimates

for each phase are manipulated so that they are in the familiar form

z - Hx0 + v . (51)

Consider the combination of phase l and 2 shown in Figure 2.

The value of x_ is
|

Phase 1 Phase 2

ipxT

> "2 Ll "2
to=l;T _T

Figure 2 Phase Combination

directly included in the phase 2 initial condition, i.e.,

x2 2 2 Txl= + Xr + (52)

where T is a transformation matrix (not to be confused with transition

time tT ).

Now consider the estimates o6tained from phase 1:

_ : wl+ xl+ _I

=' D_o(,l+xlr)+ D_oWT+ v_

^1 1 I 1
xT - DITCTX 0 + D2TW T + vI

(53)

(54)
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and from phase 2

^2= 2+ Txl+ R_x0 2+ Xr

D_0( 2+ 2+T 1,= u xr XT] + v_ .

(55)

These equations can be combined in matrix notation as:

m _ m

^ |

v

Af_

v

^ |

v

A_m

^2

x2
D

m

Olo

= D_TCT

D_0T¢ T
B

a

D_O 0

D_T 0

-yl

wT

y2

m •

Vo I
i

q i

+ vTl (56)

2'

_v0_]_]

l l _ 2 2 2where y = _ + xT and y = _ + xT . Notice that v_ and v are

correlated but are uncorrelated with vR . Also notice that there is

no a priori information on yl and y2_ but that the a priori variance

of wT is QT " Thus, equation (56) can be treated as three measure-

ments in a Bayesian least squares estimator for _l , WT and 32

where

:-V_-

E

is calculated in [14].
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If all states are observable, then 31 and -32 should be maximumlikeli-

hood estimates.

In order to better understand the result of this processing, we

assumethat the first two measurementsin equation (56) were processed

first (to estimate _l and WT) the third measurementwas processed

separately to estimate

2 = y2Ys + TxT . (57)

This can be done because the measurementerrors are uncorrelated. Then
2

we want to combine the estimates. Since y had infinite a priori

variance, all information in the third measurement will be used to estimate

2 yl
y if and wT were observable from the first two measurements,

i.e., the estimates of yl and wT will not change. Thus,

-2 _ T(¢T_I+_T)^2 _ T(¢T#I+_T) = y2 + Ys)2 : Ys
(58)

and the covariance of the error i_ the estimate of Y2 is

li]T 
Ys PYl

WT

(59)

The above analysis is similar to that given previously in the sense

that data processing and requirements analysis can be done phase by phase.
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