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1.	 INTRODUCTION AND OVERVIEW

	

1.1	 INTRODUCTION

The objective of this program is the preparation of a real time computer

simulation model of the Ku-Band Rendezvous Radar to be integrated into the Shuttle

Mission Simulator (SMS), the Shuttle Engineering Simulator (SES), and the Shuttle

Avionics Integration Laboratory (SAIL) simulator. Primary requirements of the

simulation model are to provide crew training and to provide mission planners with

representative predictions of the Ku-Band Radar tracking capability against selected

candidate targets. The crew training requirement imposes the following design

objectives with respect to the track and search modes:

(1) to provide a real time simulation,

(2) to provide accurate timing of discrete events appearing on the

radar cockpit display,

(3) to provide accurate operation of cockpit display meters,

(4) to provide accurate responses to all cockpit radar controls.

In addition, the design objectives generated by a desire for accurate prediction of

track mode operation against candidate targets are as follows:

(5) to provide representative scattering models for all targets of

interest,

(6) to provide accurate processing of the target return signal,

(7) to provide accurate models of all tracking loops.

Based upon our present knowledge of the capabilities of the three simulators, design

goal (1) will conflict with design goals (5) through (7). Therefore, some sacrifices

were made in target model accuracy and track signal processing accuracy to maintain

a real time simulation. The sacrifices in track model accuracy and target scattering

model accuracy and the performance limits they impose are discussed in detail in the

sequel.

The development of the Ku-Band Rendezvous Radar performance computer model

1



that meets the requirements stated above has been divided into three tasks:

W development of the radar tracking performance model, (2) development of the

radar search and acquisition performance model, and (3) development of a target

modeling method. This report documents the results obtained in these three areas.

It includes:

• a detailed description of the parent simulation/radar simulation

interface requirements,

• a detailed description of the method selected to model target scattering

properties, including an application of this method to the SPAS space-

craft,

• a detailed description of the radar search and acquisition mode

performance model.

• a detailed description and supporting analysis of the radar track mode

signal processor model,

• a detailed description and supporting analysis of the angle, angle

rate, range, and range rate tracking loops.

1.2	 OVERVIEW OF RADAR PERFORMANCE COMPUTER MODEL

In all of the material that follows the reader's background knowledge

of the Fu-Band Rendezvo!is Radar s ystem is assumed to be on or above the level given

in (11 or

1.2.1	 Target Scattering Model Summary

Since virtually all target effects work (References 3-9) deals with point

scatterer models, our approach is to represent the target as a collection of point

scatterers. More specificall y , this approach to modeling consists of:

• identifying strong scattering centers ("bright spots") and modeling

them as point scatterers with associated cross section functions to

express the angular variation,

• modeling intricate or rough-surfaced areas of the target as a random

scatterer field. in turn, modeled by point scatterers with random

amplitudes and specified angular variation functions.

i
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It is remarked that these angular variation functions account for the shadowing

effects Niue to a point scatterer's position relative to the other scatterers. Also

these ,angular variation functions do not include the phasing terms given in the

cross: section literature. These factors are reflected in the spatial separation of

the model's point scatterers. An example of this modeling method applied to the

SPAS spacecraft is described in Section 4.0.

	

1.2.2	 General Computer Model Structure

Figure 1-1 illustrates the general configuration of the computer model. It

consists of three major parts: the executive program, the search and acquisition

program, and the track program. The functions of the executive program are to in-

itialize the system and target data when the program is first entered, to determine

the system operating mode each update period and pass control to the appropriate sub-

program, and to initialize the system appropriately when changes in the system controls

have occurred. Search and track program details are summarized below.

	

1.2.3	 Radar Search and Acquisition Performance Model Summary

Aa outline of the search and acquisition performance computer model is

given in Figure 1-2. Main elements of this model are:

• antenna gimbal pointing loop model,

• scan model,

• detection model.

Antenna Gimbal Pointing Loop. The antenna a and d gimbal pointing loops

were both represented by the second order model shown in Figure 1-3. This model

responds to (1) angle designates input from the general Purpose computer (GPO and

(2) slew rate commands input by the crew from the cockpit. In the present con-

figuration, the loop constants are chosen to give a loop damping factor O of 0.7

and a crossover frequency Wc of 1 hz.

Scan Model. This algorithm models radar system performance when a spiral

antenna scan r s in progress. The model is invoked by a search initiate command from

either the GPC or the crew and operates as follows. It tracks the antenna position,

3
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Figure 1-2. Outline of search and acquisition mode Computer algorithm.
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during the scan, to the nearest scan ring (see Figure 5-10) and tracks the target

position exactly. It attempts detection if the target and the boresight are in the

same scan ring in the present data cycle and were not in the same scan ring in the

previous data cycle. The scan model continues in this manner until either the target

is detected or an end-of-scan is reached.

Detection Model. This model contains a constant false alarm rate (CFAR)

detection algorithm and a single-hit detection algorithm. These two models have the

same fundamental construction which is shown in Figure 1-4 with the processing

differences between the two detectors being absorbed in the SNR computation and SNR

versus PD curves used in each case. The inaccuracies of these models occur in the

beamshape and scan loss computations and in the target radar crass section value.

More specifically, an average beamshape/scan loss value is used when the antenna is

scanning and the beamshape loss at the beginning of the data cycle is used for the

entire data cycle when the antenna is being slewed. The target cross section is

inaccurate because it is modeled as a fixed, predetermined value independent of as-

pect angle.

1.2.4	 Radar Tracking Performance Model Summary

Figure 1-5 gives a simplified illustration of the track mode computer model.

This model' is comprised of:

• a signal generation and processing model,

• a break-track algorithm,

• an angle and angle rate tracking model,

• a range tracking model,

• a velocity processor algorithm.

The key features of each of these models are summarized below.

Signal Generation and Processing Model. A simplified diagram of the computer

model used to generate the target return signal, process this signal, and produce

the discriminants for the tracking loops is shown in Figure 1-6. This wodel is based

upon several assumptions about the system and the target mot in. Of these, the ones

I
-
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Figure 1-4 FUNDAMENTAL DETECTION MODEL CONFIGURATION 
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* SNR computed at doppler filter output for CFAB detector and at video filter 

output for single-hit detector. 
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that will have the most impact can be stated as follows:

• any radial acceleration of the point targets over a data cycla is

ignored,

• the antenna does not move with respect to the target during the data

cycle.

• the receiver ' s RF and IF electronics work perfectly, (i.e. no coupling

loss, the down conversion is error-flee, and the filters don't distort

the return signal, but the receiver maintains the correct noise

figure and noise bandwidth),

• quantization ncise contributed by the signal processing chain from

the A /D to the log converter is neglected,

e Automatic Gain Control (AGC) is not implemented.

A complete list of rr-)uel assumptions and approximations is given in Section 6.4.1

and Appendix C. It is noted that this model also generates an estimate of the radar

signal strengrl^ which is sent to the cockpit display. This value is taken as the

SNR referenced tc, the video f llter output and is very accurate for SNR > > 1, but

will not be valid for SNR ti 1.
v

Break-Track Algorithm. The computer model of the break -track algorithm

is identical to the algorithm used in the Ku -Band Radar system. A simplified

block diagram of this algorithm is given in Figure 1-1.

Angle and Angle Rate Tracking Loop Model. This model is used for estimating

the target inertial roll and pitch rate and tracking the target roll and pitch angles

in the GPC-ACQ and the Auto : :ack Modes. It consistr of two tracking loops: one

for each antenna gimbal. The basic loop model adopted for each gimbal is the second

order loop shown in Figure I-8 for the a - loop. These loops are inertially stab-

ilized, as required, and include the following error sources: target error effects

(to the extent that the target scattering model is correct), thermal noise, boom

deployment error, radar offset error, discriminant error, and gimbal bias error.

Range Tracking Loop Model. A simplified block diagram of the range tracking

11
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loop computer model is given in Figure 1-9. The loop filter equations and the loop

constants for the model are identical to those used in the Ku-Band Radar system.

Error sources incorporated into the model include target-effects, thermal noise,

discriminant distortion, and a fixed average range bias error that accounts for un-

known and time varying time delays.

Velocity Processor Model. The velocity processor computer model is shown

in Figure 1-10. This model of the velocity processor is functionally identical to

the algorithm used in the Ku-Band Radar system. That is, the equations, the logic

and the number of bits of accuracy at each step are identical. Error sources modeled

include target-effects, thermal noise, and discriminant distortion.

1.3	 REPORT ORGANIZATION

The remainder of the report is organized in the following manner. In

Section 2 all of the coordinate systems and the vector notation required for the

description and analysis of the Ku-Band Rendezvous Radar simulation model are defined.

In s :tion 3 the parent simulation/rendezvous radar simulation interface requirements

are defined. Presented in this discussion are a definition of the data required from

the parent simulation by the rendezvous radar simulation, the effects of different

.omputer cycle times on rendezvous radar model tracking accuracies, and the effects

of different allowed computing times per cycle on the point target model complexity.

Section 4 gives complete details of the target modeling method. In Section 5, a

detailed description of the radar search and acquisition performance model is presented

and Section 6 gives a complete description plus supporting analysis of the radar

tracking performance model.

T
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1,	 DEFINITION OF COORDINATE SYSTEMS AND VECTOR NOTATIONS

Since vectors, transformation operators, and a variety of coordinate

s y stems pervade the description and anal ysis of the Ku-Band Radar performance

computer model, we begin with definitions of all coordinate s ystems and vector

and operator notation used in this report.

, .1	 COORDINATE SYSTEM DEFINITIONS

In 311. there are five coordinate systems that are useful in the

description of the computer model. All of these coordinate systems have the

following properties. Each reference frame is a right-handed coordinate system

and positive rotation about a coordinate axis of a given frame is defined by the

illustration in Figure 2-1.

Target(T) Frame. This coordinate system is defined to be fixed in

the target. It will be most convenient to assume that the frame origin is

coincident with the target e.g. and to choose an orientation that most easily

accommodates the target description in the computer. Examples of possible target

frame orientations for a multiple-point target are given in Figure 2-2.

Orbiter Body(B) Frame. Definition of this reference frame is the

same as that given in [101. The origin 	 of this .frame lies at the e.g. of the

Shuttle Orbiter. Its x-axis lies along the bod y with the nose in the positive

x-region and its y-axis lies along the wings with the right wing in the positive

v- region. This reference frame is shown in Figure 2-3.

Radar(R) Frame. The Radar Frame origin is located at the 8-frame

coordinates (48. 11, -h), which corresponds to the center of the antenna gimbals.

The x-y plane of the Radar frame is parallel to the x-y plane of the Body frame,

but the x-v axes of the Radar frame are rotated with respect to the Body frame

x-v axes by +67 0 about the z-axis. This arrangement is illustrated in Figure

17



Figure 2-1. Definition of Positive Rotation about a Coordinate Axis.
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'T

Figure 2-2. Examples of Possible Target (T) From Orientations.
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Outer-Gimbal(G) Frame. This frame is fixed in the outer(or a) gimbal.

:ts origin is coincident with the Radar frame origin and its x-axis is coincident

wlth the Radar frame x-axis. The y-z axes of the outer-gimbal frame are rotated

by an amount a(variable) about the x-axis of the Radar frame. The angle a is measured

from the minus z-axis of the Radar frame as shown in Figure 2-5.

Antenna LOS(L) Frame. This frame is fixed in the inner(or 6) gimbal.

Its origin is coincident with the G-frame origin and its y-axis is coincident

with the G-frame y-axis. The x-z axes of this frame are rotated by an amount S

(variable) about the y-axis of the G-frame. As shown in Figure 2-6 the angle S

is measured from the minus z-axis of the G-frame. It should also be noted the z-axis

of the antenna LOS frame is coincident with the antenna boresignt.

Other Useful frames. The only other useful frames for the present

discussion are the Body, Radar, Outer-Gimbal, or Antenna LOS frames translated to

the origin of the Target frame. These frames will be denoted by their usual

letter and a zero subscript. For example, a frame centered at the target origin

with its axes aligned with the antenna LOS frame will be denoted Lo.

2.2	 DEFINITION OF VECTOR AND TRANSFORMATION NOTATION

In this subsection, the vector notation used to describe (1) a point

scatterer's position and velocity measured in a given frame, (2) the target's

inertial angular velocity, and (3) the orbiter's inertial angular velocity are

defined. Also the notation for the various operations on these vectors is defined.

We start with the vector description of a point scatterer's position and velocity.

These are

rK . k th point scatterer position expressed

in P-frame coordinates.

and

-+P	 ^P
rK	 K

or v	 = k th point scatterer velocity measured in the

P-frame and expressed in P-frame coordinates.

22
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Figure 2 .5. Outer Gimbal (G) Frame Orientation with Respect to the Radar Frame.
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where k - 1, 2, 3,---,N. Similarly, the vector description of the position and

velocity of the target e.g. is given by

ro - target e.g. position expressed in P-frame

coordinates,

and

rok or vok . target c.g. velocity measured in the P-frame

and expressed in P-frame coordinates,

where the s0,, .cript o will always be associated with the target c.g. The inertial

angular velocity for the target and the orbiter are defined by the notatio•.

wTP 
0 inertial angular velocity of the target about a specified

point expressed in P-frame coordinates.
and

wBP - inertial angular velocity of the Shuttle Orbiter about a

specified point expressed in P-frame coordinates.

In component form, any of the above vectors can be ex pressed as a 3 x 1 column

vector. For example,

-*P

rk-c

-0-P	 P

r 	 rk y

P
rkz

where rkx, rkN , and r 	 are the components along the x, v, z P-frame axes,

respectively. Also, it should be pointed out that if the reference frame under

consideration is clear from the text, then the superscript will be drcpped from

the vector.

The next sit of definitions describe the notatior. U« ad for various

vector operations of interest. A primary vector operation used throughout the

development is the one that transforms a vector expressed in coordinate system

A to a vector expressed fn coordinate system B where A and B have the same origin.

25



This operation will be denoted r BA and has the following features. Combining

TBA with the vector notation from the previous paragraph, we obtain

-►B	 ;Ar  s 
TBA r 

Also, this transformation notation has the useful property that

TCB TBA

There are two other vector operations that are of use in this report.

They are the vecL)r dot product, denoted by a •b, and the vector cross-product,
1

denoted by a x b. These two products have the usual meaning.

26
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1.	 RADAR SIMULATION/PAREN`r SIMULATION INTERFACE DESCRIPTION AND REQUIRMENTS

Development of the interface between the parent simulation and the Ku-Band

Radar performance simulation is based upon the following assumptions:

(1) the amount of information passed across the interface

;should be kept to a minimum.

(2) the parent simulation (NASA) responsibilities are

• to define and generate all shuttle orbiter and target

motion, including translational and rotational motion,

• to provide all cockpit and GPC radar control information

to the radar simulation,

• to accept all radar tracking and status data generated

by the radar simulation.

(3) the radar simulation (Hughes) responsibilities are

• to define the modeling method that best represents

the scattering characteristics of all targets of interest,

to generate the target return signal and process it during

the tracking phase,

•	 • to accept GPC and cockpit control information from the

parent simulation,

• to provide target tracking data and radar status data

to the parent simulation.

Assumption (1) was motivated by a desire to achieve integration of the radar

performance simulation computer model into the three proposed parent simulations,

the SMS, the SES, and the SAIL simulator, with relative ease. Assumptions (2)

and (3) were partiall y generated from the following reasoning. All definitions

of rendezvous missions, target trajectories, and orbiter trajectories fall under

the heading of NASA experr{se and, thus, these quantities should be p rovided by

the parent simulation. However, definition of a target scattering model and

27



generation of radar return signals fall in the domain of Hughes expertise and

should be provided by the radar simulation. In the following paragraphs, we

shall define the radar/parent simulation interface, which is based upon the

above assumptions, in detail.

3.1	 INPUT DATA REQUIRED FROM THE PARENT SIMULATION

There are two types of input data required from the parent simulation.

The first type is radar control data such as the desired operating mode and the

target position designates that would normally be passed to the Ku-Band Radar over

the modulation-demodulation (MDM) interface in the actual system. The second type

of information required from the parent simulation is the data associated with

target and orbi t er motion, including both rotational and translational motions.

This data is required to generate the target return signal and to simulate

inertially stabilized tracking.

3.1.1	 Required Radar Controls

Table 3-1 and Table 3-2 defines the radar control words required by the

radar simulation that must be supplied by the parent simulation. In the actual

hardware, each of the controls listed is sent to the radar either in discrete or

serial word form through the MDM interface. It should be noted that the list of

controls in Table 3-1 and Table 3-2 represents only those controls required in

the search, acquisition, and tracking phases.

3.1.2	 Required Target/Orbiter Position and Motion Data

All data associated with target and orbiter motion required by the

radar simulation from the parent simulation is summarized in Table 3-3. A

rationale for each of these data requirements is offered below.

In order to generate the target return signal as described in Section

4, the following information is required: (1) position of each point target and

.
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TABLE 3-1 RADAR

SYSTEM CONTROL CONTROL NAME CONTROL VALUE CONTROL STATE
FUNCTION

I

S ystem Power Switch IPWR i
2
3

Power Off
Standby
System On

jSvstem Mode Switch IMODE 1
2
3

Radar Active
Radar Passive
Communications

Transmitter Power ITXP 1 High Power
Level Switch 2

3
Medium Power
Low Power

Antenna Steering IASM 1 GPC-ACQ
Mode Switch 2

3
4

GPC-DES
Auto
Manual

Search Initiate ISRCHC 0 Inhibit Scan

Switch 1 Enable Scan

(From Control Panel)

Search Initiate ISRCHG 0 Inhibit Scan
(From GPC) 1 Enable Scan

Slew Antenna IAZS -1 Slew Left

Left/Right
0
1

No Slew
Slew Right

Slew Antenna IELS -1 Slew Down
Up/Down 0 No Slew

1 Slew Up

Antenna Slew ISLR 0 0.4 degrees/sec

Rate 1 20.0 degrees /sec
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TABLE 3-2 RADAR CONTROLS REQUIRED FROM PARENT SIMULATION

(SYSTEM CONTROL
`FUNCTION CONTROL NAME CONTROL DESCRIPTION UNITS

esignated Target
EDRNG Estimated Target Feet

ange
Range From GPC

Designated Target EDPA Estimated Target
Pitch Angle Pitch Angle From Degrees

GPC

esignated Target EDRA Estimated Target
Roll Angle Roll Angle From GPC Degrees
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Table 3-3 OTHER INPUTS REQUIRED FROM THE PARENT SIMULATION

INPUT
i

I
(	 INPUT NAME INPUT DESCRIPTION UNITS

I
-r0

ERTO(I) Components of T-Frame Feet
I-1,2,3 Origin Position. in

I B-frame

vg EVTO(I)
I-1,2,3

Components of T-frame Feet Per
Origin Velocity Measured Second
With Respect to B-frame
and Expressed in B-frame
Coordinates

TBoT TBT (I,J) Elements of Transformation No Units
I.J -	 1,2,3 Matrix that aligns T-frame

axes with B-frame axes.

TBJT
TBTD (I,J) Elements of Matrix which

Seconds
I,J-1,2,3 is time derivative of TB T

Matrix	 o

B
W EWB(I) Orbiter inertial angular Radians
B

I-1,2,3 velocity expressed in Per Second
B-frame Coordinates
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(2) velocity of each point target as measured in the B-frame. (It should be

pointed out that, ultimately, we want the point target position and velocity

as measured in the L-frame but, since the radar simulation is tracking the antenna

gimbal motion with respect to the B-frame, the radar simulation can easily perform

the transformation from the B-to-L frame.) For the k th point target these data

can be described as follows. Position of the k th scatterer at a fixed time t

can be expressed as

(3.1)	 rk8	
r0B + T

B T rkT
0

where Figure 3-1 illustrates the relation between these three vectors..

Velocity of the k th scatterer as measured in the B-frame is given by

(3.2)	 rk8	
r0B + T

B T r Tk
0

where the dot above a quantity represents time differentiation of that quantity.

It is noted that equation (3.2) is obtained by time differentiating equation (3.1)

and observing that rkT is fixed from the rigid lattice assumption (See Section 4).

Since 
r0B 

and 
r0B 

are associated with target translational motion and since TB T
0

and TB T	 are associated with target rotational motion, they , ill be provided by

-9. 
T

the parent simulation under assumption (2). r 	 is part of the target model

definition and will be provided by the radar simulation under assumption (3).

Orbiter inertial angular velocity 
wBB 

is required to perform tracking

of the target inertial azimuth and elevation rates. The reason for this requirement

is shown in Section 6.

3.2	 OUTPUT DATA TO THE PARENT SIMULATION

All data output to the parent simulation are defined in Table 3-4.

This data includes all cockpit radar displ..v responses and the target tracking
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Figure 3-1. Illustration of Orbiter — Point Target Geometry.
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Table 3-4 RADAR SIMULATION OUTPUT

OUTPUT DATA	 I OUTPUT NAME OUTPUT VALUE OUTPUT STATES UNITS
DESCRIPTION

Scan Warning Flag MSWF 0 Scan Warning False
1 Scan Warning True

Track Flag MTF 0 Target Track False
1 Target Track True

Isearch Flag MSF 0 Target Search False
1 Target Search True

Estimated Target SRNG Variable Feet
Range

Estimated Target SRDOT Variable Feet
Range Rate Per Second

Estimated Target SPANG Variable Degrees
Pitch Angle

Estimated Target SRANG Variable Degrees
11 Angle

Estimated Target SPRTE Variable mead Per
Pitch Rate Second

Estimated Target SRRTE Variable mrad Per
Roll Rate Second

Estimated Radar SRSS Variable dB
Signal Strength

gle Data MADVF 0 Angle Data invalid
alid Flag 1 Angle Data valid
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Table 3-4 RADAR SIMULATION OUTPUTS (continued)

OUTPUT DATA OUTPUT NAME OUTPUT OUTPUT STATES UNITS
DESCRIPTION VALUE

Angle Rate Data MARDVF 0 Angle Rate Data Invalid
Valid Flag 1 Angle Rate Data Valid

Range Data MRDVF 0 Range Data Invalid
Valid Flag 1 Range Data Valid

Range Rate Data MRRDVF 0 Range Rate Data Invalid
1 (	 Range Rate Data Valid
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data required by the guidance and navigation computer.

3.3	 INPUT/OUTPUT DATA FORMAT

The technique used to pass data between the controlling program

(parent simulation) and the subprogram (radar simulation) is to establish

several labeled common storage areas. Labeled common is useful because it

allows one to break a large common block into several smaller, independent

common blocks which are distinguished by assigning them different labels.

Thus, one can modify a section of common without having to perform bookkeeping

on the whole array. Further information about labeled common can be found in

III].
In the development of the radar simulation the common block used for

the interface between the two programs is divided into three parts. These are

labeled: CNTL, INPUT, and OUTPUT. CNTL contains the radar control data required

from the parent simulation and defined in Table 3-1 and Table 3-2. INPUT contains

the target/ orbiter motion data required from the parent simulation and defined

in Table 3-3. OUTPUT contains the radar data output to the parent simulation and

defined in Table 3-4.

3.4	 INTERFACE TIMING REQUIREMENTS

Parent/Radar simulation interface timing involves (1) the length of the

parent simulation update period called the (cycle time) and (2) the fraction of

the period alloted to the radar simulation for computation of required radar out-

puts. The details of these two topics are summarized below.

3.4.1	 Simulati-,n Cycle Time Requirements

Table 3-5 summarizes the different update periods for the various

Ku-Band Radar tracking modes and the update periods for the three simulators.

These data show that the sample interval for each of the tracking modes differs

from the update periods of the three parent simulators. This would imply that

the radar discrete time tracking loops must operate in an asynchronous-fashion
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TABLE 3-5 SUMMARY OF KU-BAND RADAR AND PARENT

SIMULATOR C:CLE TIMES

UPDATE INTERVAL, ms

7 khz PRF modes

3 khz PRF modes

268 hz PRF

Parent Simulators

aru

SES (UNIVAC 1108)

SAIL

i
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w + th the parent simulator. However, rather than a r tempt this type of operation,

tLe radar simulatior is designed to run synchronously with the parent simulation.

This means that the sample interval of the discrete time tracking loops will be

an integral number of update periods of the simulation computer. Then the

primary question is, whit is the impact o1 this design decision on the tracking

performance? Observe that the minimum update rate of the tLZee simulators is

approximately 4 hz and the maximum loop bandwidth for any of the servos in any

of the tracking modes is well under 1 tiz. Therefore the minimum sample rate of

the computer is at least four to five times the tricking loop bandwidth and the

fidelity of the loop response should not be affected. We offer an example to

illustrate this point. Consider a target at a range of 0.4 nm (largest band-

wIlth) which is not moving at time t.to and is being tracked by the radar. At time

t-o, the target is given a step of 10 mrad/sec in roll rate with respect to the

radar. The angle rate loop step response is then generated using update intervals

of 50., 100., 200., and 400. milliseconds and plotted in Figure 3-2. These results

show only slight error in the response for sample intervals as large as 200 m sec.

3.4.2	 Maximum Computation Time Requirements

Table 3-6 gives the computation time alloted to the radar simulation

per cycle for each of the simulation computers. Assuming the present multiple

point scatterer target model, these computation times can be converted to the

maximum number of points allowed using empirically determined conversion factor.

The maximum number of points and the conversion factors for each simulator are

listed in the Table 3-7.
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Table 3-6 SUMMARY OF ALLOWED COMPUTATION TIME PER CYCLE

FOR EACH SIMULATOR

SIMULATOR COMPUTATION TIME PER
CYCLE, ms

SMS TBS

SES (Univac 1108) 200.

SAIL TBS

Table 3-7 MAXIMUM NUMBER OF ALLOWED TARGET

POINTS FOR EACH SIMULATOR

SIMULATOR TIME PEk TA:-,G; - ,- .ALLOWED COMPUTATION
TIME,ms

MAXIMUM NUMBER
OF POINTS

SMS TBS TBS TBS

SES 5.7 200 35

SAIL TBS TBS TBS

40
R



0	

4.	 TAR(CET MODFLINI, METHOD

'rite purpose of target modeling is to predict target effects on the

radar measurement accuracies. In this section, the general modeling approach is

described. an example of the method applied to the SPAS spacecraft is provided,

:uad a mathematical description of the resultant target return signal at the radar

is given.

	4.1	 GENERAL APPROACH

As stated in the proposal a ^ , virtually all of the target effects

analyses in the literature treat the target as a collection of point scatterers.

This :approach was adopted for the computer simulation described in this report.

More specifically, our modeling method divides the spacecraft scatterers into two

distinct classas: (1) those associated with simple geometric shapes and (2)

those which are not. Simple shapes are modeled as point scatterers -+ith the

:appropriate locations and their associated cross section functions to express the

angular variation. (A review of the quantitative cross section results, taken

from the literature, for several useful geometric shapes is provided in the next

subsection.) Intricate or rough-surfaced areas of the spacecraft are modeled as

random scatterer fields. which in turn are modeled by point scatterers with

wits random amplitudes and specified angular variation functions. For both types

of scatterers, the angular variation of the cross section amplitude includes

the approximate effects of shadowing caused by neighboring elements. These cross-

section functions do not include phasing. Instead, phase effects are accounted

for via the spatial separation of the target's scatterers; this is shown in

quantitative terms in section 4.4.

Details of the modeling method, especiall y the rough-surfaced modeling,

are best illustrated b y the SPAS modeling example of section 4.3

	

4,2	 SCATTERING CENTERS AND CROSS SECTIONS FOR SIMPLE AND REPRESENTATIVE

SHAPES

41
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The cross section literature can be used to extract point-scatterer

models for simple geometric shapes, as follows.

4.2.1	 Smoothlv Curved Bodies(Reference 13)

A well-known result of the geometrical theory of diffraction is that the

main RCS contribution from a curved surface comes from the "specular point" at

which the radar line of sight (LOS) is normal to the surface. The cross section

is

c - r R1R2

where Rl . R2 are the surface's principal radii of curvature at the specular

point. This principle is illustrated by the following examples.

Sphere. Here a - ?r a 2 where a	 LOS

is the sphere's radius. The specular point	 SPECULAR
PT

lies on the sphere's surface at the inter-

section of the LOS.

Hemispherical-Ended Cylinder. The specular point is on the upper

hemisphere when the LOS is from above. One has
LOS

o = ra
2

for all A except 0 - 90 0 ; for the latter,

the result for the cylinder (reference 14,

p.9) yields

o	 2 raL`
	

291 al.2

with dimensions in meters and X- 0.0216 meters

1	 42



The width of the "flare" at 90° can be taken to be + L . +

The specular point lies on the intersection of the LOS with t

surface in the xv-plane.

Toruspherical-Ended blinder. In the toruspherical-ended cylinder, the

ends consist of a section of large radius joined tangential-, , to a toroidal section

that in turn is joined tangentially to the cylindrical section (See Figure 4-1).

Here we have

a = nao2 ,	 0 < 19 I< 0 

sin. A
°Ira,	 ao -a l ) sin 8 + a l	 Ao 

S) AI 
< 90

2w aL2	 A . 90° + 1.24 degr^_ea

where we have used the results of Ref 13v p.114 for the toroid.

When the end is designed for maximum strength (everywhere equally stressed),

as appears the case on the SPAS MOMS cannister,

a - 24
o	 c

a l M sc/3

	

sin A° - 0.4	 (Ao M 23.6°)

o	 4eac2, jol< A°

a 2
A 9
	 sin A + 1
	 A° <^A^K 90°

2 1rha	 ( 8	 90°
X

and

R	
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dw B^ • 's' 't

Figure 4.1. Toruspher" - Ended Cylinder Geometry.
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4.2.2	 Other Shapes

Cvli^ nders..Reference 14 provides cross sections for cylinders and discs.

The flat-ended cylinder has three specular points at the intersection of the

plane containing the LOS and the visible edges of the ends (Figure 4-2). The

cross sections associated with these points are

.0046m 2 	1	 + 1 2Q.j

	

1	 sin A	 [ 1 + 2-cos  ?( n+28)3

+ ---► Vertical Polarization
Note:

—+ Horizontal Polarization

.0046m 2	 -1	 + 1 2

sin

	

Q2	 8	 JC 1 + 2 cos 4A
3

.0046m 2	 -1	 ± 1 2

	

03	 sin A
[ 1-+ 2 cos ( r-29)

These relations indicate negligible contributions except near normal incidence

(A - 00 , 900). For A • 00 , one has

ae - 
265,000 a 4

And at 0- 900 , one has

291 aL2

19j< 1.240
2a

lei - 900 + 1.240

Wire, Struts. A typical spacecraft has structural elements that are

typically modeled as wires, i.e., long thin elements. Reference 13 (p.107)

indicates that for a long thin ii -7e (or edge) that

Q. 
1 2 

tan 
2 A 

cos 
4 0	

A <900
16A 3

9.4 x 10-7 tan 2 9 cos 
4 o	

m2

2
cos 4	 45	 9 -W 900



LOS

Figure 4-2. (.blinder Go=*".
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r-

'	 where 0 is the angle of polarization incidence and as is the angle between the

LOS and the wire axis. Thus a significant contribution is seen only at broadside,

reflecting the conelusions of reference 15 that edges don't provide significant

RCS contributions.

Corner Reflectors - Dihedrals. The RCS for a dihedral reflector shown

in Figure 4-3 is ( Reference 16, P. 589)

o - 16n a2 b 2 Sin  ( 	 +0)

at incidence perpendicular to the reflector axis and falls off rapidly away

from no rma 1.

Corner Reflectors - Trihedrals. Square trihedrals have cross section

a - 4n A^ with A the area normal to the LOS for which energy is redirected

(Ref. 13, p.239). and for a square reflector,(Ref. 16, w.591)

c	 12 n 2 4 - 80,802 L4 m2

a

with L the wi.ith of each face. This RCS is maintained over a 23 degree cone

about the symmetry axis. A 1-inch corner reflector thus has .033 m 2 cross

section.

4.2.3	 Reflector Antennas

On boresight, an antenna provides an enormous RCS. Let G(A) be the

antenna power gain pattern. Then

4n

where o is the antenna power reflection coefficient, and usually approaches unity

out of band. One has

G (o)	
4 vrA2

X

so

4ti ^ ro - n A	 ^2	 G1(e)
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Figure 4-3. Dihedral Corrw Reflector Goome".
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where GN (0) is normalized to its maximum value. Taking P - 1, X - .0216 m yields

a - 26934 A 2 n G2(0)

or for a circular aperture of diameter D

o - 16611 D ^1 G2,^ (9)

and taking n - 40% vields

c - 10774 A2G2(0)

6645 D4G2(A)

The width (first null) of this flare is about + A/D radians or + 1.24/D degrees.

For a parabolic antenna, the reflector surface provides a significant

return over a broad angle. For a body of revolution, Reference 13 gives

o - rR1R2

X
- * 2

sin40
dz

where the geometry is as shown in Figure 4-4. For the reflector

X - 21A Tz

wich f the focal length; then one obtains

o - nf 2 cos 4 A

and for	 f/D - .5 ,

2
o -	

?i4
	 coy 4A

- .785 D2 cos 48
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Figure 4-4. Reflector Geometry.

50



This RCS contribution is seer so long as the LOS intersects the reflector at

normal incidence somewh o -e. This occurs if

1 0 1< tan 	
dx - Ao

A^	 tanl 4D

26.6 degrees for D - 0.5

4.3	 SPAS MODEL

4.3.1	 Satellite and its Coordinate System

Figure 4-5 shows the SPAS satellite in isometric view and identifies

our coordinate system. Figure 4-6 shows a drawing of the satellite. Define the

following angles:

0x - Angle between LOS and x-axis

- cos 1 ( 
u  • ux

0v - Angle between LOS and y-axis

cos l ^U. uy>

0Z - cosl (uL,. uz1

where ux , u, u are unit vectors aligned with the x, y and z axes, andy z 
	 UL

is a unit vector aligned with the LOS.

4.3.2	 Scatterer Selection Strategy

Two classes of scatterers may be identified: those that arise due to

geometric shapes discussed in Section 4.2, and those that do not. Among the

former are tanks, experiment cannisters, mounting pallets, and the S -band antenna.

Among the latter are complex areas such as are seen on the SPAS electronics pallets

or structural areas, where multiple bounces and corner-reflector-like areas can

give rise to significant and relatively orientation - free return. We model the

former explicitly, and attempt to model the latter b y associating point scatterers

with the major complex areas, choosing the scatter cross section using a rough-

surface model.
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4.3.3	 Point-Scatterer Model

Table 4-1 lists the po int scatterers that comprise the SPAS model. The

angular region of applicability for each scatterer is indicated by the 0 x , 0y , and

^z columns and these entries provide an approximate inclusion of shadowing effects.

Notes in calculating the cross sections are included as appendix E.

Scatterers 1 through 34 reflect geometries discussed previously. Specular

flares due to plates have been limited to 700-1200m2 to reflect the fact that these

surfaces are not usually good enough to provide the several thousand square meters

predicted theoretically. Scatterers 35 through 54 are intended to model complex

areas. The cross section for each area can only be guessed. The rationale for

our guess is as follows. The area of each complex surface is about .5 m 2 . Taking

a rough surface model (Models 9A4, 9A5 of Ref. 16, 0.678) yields

Q = A ri 0

A = 0.5 m2

0 0 = n cos 01

71-= Backscatter coefficient

¢ = incidence angle (angle from LOS to surface normal)

The constant n has been determined experimentally for terrain and ranges from

-30 to -15 dB for vegetation and ranges up to +10 or +20 dB for cultural areas.

We take n = -10 dB to obtain 0 - 0.05m 2 at normal incidence and allow the RCS to

fall off as the cosine of the incidence angle. This value should be randomized

to avoid interference effects.

At ranges for which the radar beam encompasses the target, modeling

these areas as points still allows the radar ' s range and angle trackers to wonder

over the target since variation in the relative phasing among scattering areas,

t	 55
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TABLE 4-1 SPAS POINT SCATTERER MODEL

Feature
20,2 Yk,a Yk.m 2k,n rk,n 0=,deg. 4	 deg. ♦=, deg.

XY Plaue
Viewed from + Y

Tank	 1 2.6 .24 -.83 .15 -.1 <90 50-150 90 44.1

2 2.6 .24 -1.05 .15 -.1 <90 35-150 90 44.1

3 2.6 .24 -1.27 .15 -.1 <90 30-155 90 +4.1

Cannister	 4 61 .37 1.05 0 -.29 <90 0-145 So +1.5
90-180 73-:55

S 61 .37 .35 0 -.29 <90 25••155 90 +1.5
90-180 47.155

6 61 .37 - .35 0 -.29 <90 2.e-180 90 +1.5
90-180 32-135

Dome	 7 25.7 -.35 -1.05 -.8 -.315 - -145-145 90 +2.3

Plates	 8 13 1100 .12 1.9 0 0 < 2.1 - 90 +1.5

9 13	 900 .12 -1.05 0 0 < 2.1 - 90 ±1.5

10 13 1000 .12 -1.8 0 0 < 2.1 - 90 +1.3

Viewed from +Y

Cyl. End	 11 850 -.3 2.0 -.67 0 - 0 +2.6 90 ±2.6

Viewed from -Y

Cyl. End	 12 1200 -.3 -2.0 -.67 0 -- 180+2.6 90 ±2.6

Comm Ant	 13 3322 -.35 -2.0 0 0 -- 180+2.5 90 +2.5

U Plane

Cylinder	 14 1117 -.3 0 +.67 .24 -- 90t.3 0-125

Places	 15 700 -.35 1.7 -.48 0 90±1.5 90'1.5 0+1.5,180±1.5

16 800 -.35 1.03 -.48 0 90±1.5 90+1.5 0+1.5,180±1.5

17 1000 -.35 .33 -.48 0 90+1.5 90}1.5 0±1.5,180±1.5

18 900 -.35 -.35 -.49 0 90+1.3 90+1.5 0+1.5,180}1.5

19 850 -.35 -1.75 -.48 0 90+1.5 90+1.5 0±1.5,180±1.5

anniscer20
750 .37 1.05 .425 0 90+2 90+2 0+2Frate - - -

21 850 .37 1.)S -.425 0 90+2 90+2 180 + 2

22 850 .37 .35 .425 0 90+2 90+2 0 + 2

23 750 .37 .35 -.425 0 90+2 90+2 180 + 2

24 92C .37 -.35 .425 0 90+2 90+2 0 + 2

23 730 .37 -.35 -.423 0 90+2 90+2 180 + 2
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Wide-Anne Scatterers
Reflector

26

Ta-2k Hemispheres
27

28

29

30

31
32

Dose	 33

34
Cold Gas Panel

35

Data Handling
panel	 36

Power Panel
37

+T Sill Fitting
Asa7.	 38

Ant Aasy 39

MOMS Module
40

8MS Grapple Fixture
41

LISA-D 42

Structure
+z 43

+Z 44

+Z 45

+Z 46

+Z 47

+Z 48

-I 49

-I SO

-I 51

-Z 52

-Z 53
-1 54

0.2	 -.35

.03	 .24

.03	 .24

.03	 .24

.03	 .24

.03	 .24

.03	 .24

1.23	 -.35

0.17	 -.35

O coo 0	 12
35

O coo	 .12
36

O coo	 .12
37	 :

038 cooOF	-.35

03#coo'Ar 180)-.35

040coa (h-180)-. 35

041cos (O i 160)-. 35

* 42cos(* z 180)-.35

0 4 3cos # z	n.33

O "coo ♦ _ 	 -.33

0 4Seoa # a	 -.35

O 46eoe ♦ a	 -.35

047 Cos e a	 -.35

O 48coo 4 a	 -.35

O 
49 

coo( -180-.35

O 50 coo( 4-160)-.35

O 51cos(9i- 190)-.35

a S2 coo(@,- 180)-.35

0 53 coo (ox 190)-•35
O 54 cos( X- 180)-.15

TABLE 4-1 SPAS POINT SCATTERER MODEL (Continued)

-2.15 0 0 - 1eO+26.6	 90 +26.6

-.83 -.02 -0.1 0-90 -	 90 - 180

-.83 +.3 -0.1 0-90 -	 0 - 90

-1.05 -.02 -0.1 0-90 -	 90 - 180

-1.05 +.3 -0.1 0-90 -	 0 - 90

-1.27 -.02 -0.1 0-90 -	 90 - 190

-1.27 +.3 -0.1 0-90 -	 0 - 90

-1.05 -.8 -.35 - -	 156 - 180

-1.05 -.8 -.35 - -	 !0 - 156

-1.05 0 0 0-90 -	 -

-1.75 0 0 0-90 -	 -

+1.75 0 0 0-90 -	 -

+2.15 0 0 - 0-90	 -

-2.15 0 0 - 90-180	 -

-1.75 -.9 O - -	 90 - 180

.24 -.3 0 - -	 90 - 180

+1.73 -.7 0 - -	 90 - 180

1.75 0 0 - -	 0 - 90

1.05 0 0 - -	 0 - 90

.35 0 0 - -	 0 - 90

-.35 0 0 - -	 0 - 90

-1.05 0 0 - -	 O - 90

-1.75 0 0 - -	 0 - 90

1.75 0 0 90-180 --	 -

1.05 0 0 90-180 -	 -

.33 0 0 90-180 -	 -

-.35 0 0 90-180 -	 -

1.05 0 G 90-180 -	 -
1.75 0 0 90-180 --	 -
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than causes the wander, is modeled by the phys.cal separation of multiple

scattering areas.

At short ranges, the radar beam may encompass only one of these areas,

and thus the wander effect will not be observed. Appendix F develops a simple

model for wander that adds a "wander vector" to the scattering points given for

the complex areas.

4.3.4	 Effect of Thermal Blanket

Several, if not most, of the spacecraft will be wrapped by multi-layer

insulation. The RF properties of this material are not known at present. If it

is effectively conductive, it will tend to reduce flares and promote diffuse

returns. The effects are almost impossible to predict analytically and measure-

ments would be very desirable.

4.3.5	 Recommendation

The validation of an analvtical model of as complex an object as a

spacecraft requires measurements. It would be very desirable if

a. Data can be taken with the Ku-Band system tracking

a spacecraft - like target in the planned White

Sands tests.

b. The RCS of a SPAS mockup could be measured with and

without thermal blankets.

4.4	 MATHEMATICAL DESCRIPTION OF TARGET RETURN SIGNAL

If we assume a single pulse was transmitted, then the expression for the

noise-free return signal from a single point scatterer at the antenna sum

(difference) channel output is given by

(4.1)	 Sk(t) - a 	 pkAk cos [27r (f c+fk) (t-tk) P( t
t-tk
 )
t
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R\4
where	 Ak = R Co

Q k = RCS of k th scatterer,

P G 2 2
	 4

C	 T o % c
o = (41r 3R04

1'T

Rk	Range of k th scatterer

R  = Range of target c.g.,

P  = antenna sum (difference) pattern weighting
normalized to the peak gain,

LT = transmit losses,

PT = Peak transmit power,

G
0 

= Peak one-way antenna gain,

c
= wavelength of carrier frequency,

f	 = carrier frequency,
c

2v

f 
	 = - k = doppler shift of k th scatterer,

c

R
t  =	 c G - = delay of target return relative to

the target c.g. return,

c	 speed of light

p/t	
1, O s i s tt

t t	 0, otherwise,

t  = transmit pulsewidth

I
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Then, assumin; the antenna is linear, by applying the principle of linear

superposition the resultant return signal for the entire collection of point

scatterers at the sum (difference) channeloutput terminal can be written as

N

(4. la)	 S (t)	 i'	 Sk(t)
k -1

where the target is composed of N point scatterers. A nice feature of the

present target model hidden in equations (4.1) and (4.1a) is that this model

easily handles the spatial integration of the return signal performed by the

antenna.

In the rest of this subsection, additional details of the antenna

weighting factor and scatterer phase computation models are given. Computa-

tion models for the other terms in equation (4.1) have either been explained

earlier or the computation is clear from the definition of the term.

4.4.1	 Antenna Weighting Factor Computation

Computation of the antenna sum and difference pattern weighting factors

makes the assumption that the return signal from a single point target at the

radar is a plane wave propagating from the direction of the scatterer. The sum

and difference pattern weights can then easily be determined from the antenna

sum and difference pattern models described below.

The sum pattern weighting is computed with the following expression

_
(4.2)	 s(e)	

sirx x (sum pattern weighting)

where	 x - 93.80 A,

0 - target angle off boresight.

Figure 4-7 illustrates the pattern given by equation (4.2). This pattern has

a 3 dB two-sided beamwidth of 1.7 0 and is assumed to be symmetric about the

bore:	 1. For the k th target, the angle off boresight is computed with

(4.3)	 0 k - cosl (rkz	 I kLI)
w
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The azimuth difference pattern weighting is computed from

(4.4)	 P	
1.1465	

y cos y- sin y 1 (difference pattern
AZ y

2

	i	 weighting)

where y - 93.86 . This pattern is assumed to be symmetric about the y-axis

of the LOS frame and is illustrated in Figure 4-8. The angle 6 for the k th

target is obtained from

-1
(4.5)	 6	 ekaz = -sin (rky^Irk1)'

The elevation difference pattern weighting is also computed using equation

(4.4) only in this case the angle 6 is given by

(4.6)	 6	
0kel	

sin l (rkx /jrk1).

and the pattern is assumed to be symmetric about the x-axis.

4.4.2	 Computation of Scatterer Phase

From equation (4.1) the initial (t - o) phase associated with the k th

scatterer is given by

♦k a -27r ( fc + f k ) tk.

If we choose the time origin appropriately, then f 
k 

t k < < 1 for all k and as a

result

^k = tar fctk

For example, the time origin can be located at the center of the range gate or

62



1.0

-aE

x

0
W
C7
<
H
J

j 0.0
O
W
N
J
<

Q
O
2

0.s

1.0

0	 a	 ^_e	 O.O	 1.0	 ZO
ANOLE OFF BORESIGMT. OEOREEf

Figure 4-& AnUms Difference PIMM.

63



at the leading edge of the return from the target c.g. which would give either

_ 41r k-R )
^k	 4 c

or

4 (Rk-Ro)

^k
c

4.5 COMPUTER ALGORITHM DETAILS

Figure 4-9 illustrates the target scattering model computer algorithm.

This algorithm computes the value of the RCS in the direction of the radar

for each scatterer and the location of the scattering center for each

scatterer. Using the modeling description given in sections 4.1 through

4.3 and adhering to the real-time computation constraint, the algorithm

was structured as follows:

(1) determine all scatterers with nonzero RCS in the direction of the

radar,

(2) determine the specular point location for these scatterers where

the geometric optics approximation applies,

(3) compute the RCS for all rough surface scattering areas that are

illuminated,

(4) if at close range, determine the scattering center for the rough

surface (or diffuse) scattering area using the method preserZed

in Appendix F.
r

Details of each of these steps are given in the remainder of this subsection.

The purpose of the first step is to weed out all of those scattering

areas which are not illuminated or have, for all practical purposes, no RCS

in the direction of the radar. Towards this end, we first compute the direc-

tion to the radar from each of the scattering centers using the expression

64



Compute Location
of kth illuminate
scatterer

(eqn 4.9)

Last	
No

catterer?

Yes

Compute RCS For
kth illuminated
diffuse
scatterer(egn4.10

/ Last	 N
Scatterer?

es

Compute Range to
Radar in Target
Frame

(eqn 4.11)

Set Hysteresis
Monitoring
Variable
Relation 4.12)

FIGURE 4-9 TARGET MODEL COMPUTER ALGORITHM (1 of 3)

2

65
	

3



T

FIGURE 4-9 TARGET MODEL COMPUTER ALGORITHM (2 of 3)
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FIGURE 4-9 TARGET MODEL COMPUTER ALGORITHM (3 of 3)
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AT	 -+T -T	 +T -)-T
(4. 7)
	U 
	 ( r  - xR ) / Irk - xR^

	where	 xR = location of the radar in the target
coordinate system.

The kth scatterer is declared to have a nonzero RCS in the direction of the

radar if the components of the direction vector 
-k 

satisfv the following

inequalities

	

(4.8)	
Ni '- uki L'ki	

L = x, Y, z

where the mki 's and the Mki ' s are determined using the appropriate method

outlined previously.

Step (2) of the algorithm is to determine the location of the specular

point (or scattering center) for those scatterers where the geometric optics

approximation applies and with nonzero RCS in the direction of the radar.

For the SPAS scattering model, all of the specular scatterers have circular

or spherical symmetry. In these cases, the specular point can easily be

calculated from the simple expression

	

(4.9)	 sk = rk + akuk	 for all k

	

where	 kr  = location of the centroid of the simple 	 J

shape in the target frame,

ak = represents the appropriate radius for the kth

scatterer.

It is remarked that for those scatterers where specular reflection does not

apply, the a  are set equl to zero.
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The third step is to compute the RCS for all scatterers which were

round in step ;1) to have a nonzero RCS in the direction of the radar.

Scatterers representing simple geometric shapes require no work since the

model for these scatterers are assumed to have a contant RCS over the region

where its theoretical RCS is significant and zero where it is not significant.

However, the rough-surface scatterers require some calculation to obtain

the proper RCS value. In section 4.3, this calculation was given as

(4.10)	 a  = n  cos ski

where	 n  = backscatter coefficient for the kth

scatterer,

cosoki _ -	 nk

nk = normal to the kth rough surface scatterer.

The fourth and final step is to determine whether the target is at close

range (defined below) nd, if it is at close range, to compute the position

of the rough surface scattering center using the method of Appendix F. The

idea is that one wants to avoid using a nonfluctuating scattering model when

the target is close enough so that only one (rough surface) scatterer occupies

the full 3 dB antenna beamwidth. Since all rough surface scatterers in the

SPAS model have the same dimensions of 2.3 feet by 2.3 feet and the 3 dB

beamwidth is taken to be 1.68 degrees, the criterion for closeness is easily

computed to be a range of 78 feet. As an added measure of safety, the boundary

for close range was established as approximately 300 feet. Also a hysteresis

loop (shown below) is used so that the close range model is not swapped in
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L / _ %

300.	 290.

r, feet

and out rapidly when the target range is jittering about the close range

boundary.

To determine whether the short range model applies we first compute the

range to the radar in the target frame using

0.11)	 rR(n) _ ^xR (n)^

Next, the output of the hysteresis loop for the present update period is

obtained from the following relations:

rR(n): 290 - h(n) = 1

rR(n) > 300 -► h(n) = 0

(4.12)

290 GrR(n) <300 and h(n-1) - 1 -► h (n) -1

290<rR(n)G300 and h(n-1) - 0 -> h (n) =0 .

The short range model is invoked if

(4.13)	 h(n) - 1.
70



T-- it has been determined from the above procedure that the short

range model should be used, the computation of the "wander" in the rough

surface scattering center is performed in the following manner. (To faci-

litate the explanation it is assumed that the normal to the kth rough surface

scatterer is parallel to the z-axis of the target frame.) First, the incidence

angle is computed with the expression

(4.14)	
Oki	 k%

= cos (uk(n) . zT)

and is then used in the update of the components of the wander vector as

follows

(4.15)	 xk (n) = a (n) xk (n-1) + o o 11- a (n)1 " u r-,'l

I2D 
x 

6 0 ki  (n) cos 0ki(n) 1
where	 a(n) = exp	 X	

J

60ki (n) 
_ 

Oki.(n) - 
Oki (n-1),

Dx = length of the x-dimension of the rough surface

scatterer,

ao2 = D2 / ( 12 NF)

and u r- '^^ represents a selection from a population which is uniformly

distributed over the interval I-', ^ 1. The y-component of the wander vector

is obtained by replacing all x's by y's in equation (4.15).

The only detail that remains is the intialization of the difference

equation given in ( 4.15), i.e. determining the value of x k (o) and yk (o), when

the close ra.:3e model is first invoked. This is accomplished by choosing the

xk (o) and yk (o) from a random population with the appropriate statistics.

Quantitatively , we have

(4.16)	 rk(o) = J Q u [-^, ^] .
 J
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5.	 SEARCH AND ACQUISITION MODE COMPUTER MODEL DESCRIPTION

As stated in tLe introduction, the search and acquisition mode per-

formance computer model is provided for the purpose of crew training only

which dictates the following design objectives:

(1) to provide a real-time simulation,

(2) to provide accurate timing of discrete events appearing

on the cockpit radar display,

(3) to provide accurate operation of cockpit radar display meters,

(4) to provide accurate responses to all cockpit radar controls.

Since the model is not required for critical engineering evaluation of the

Ku-Band Radar search mode performance, the design objectives above can be met

while providing only a representative model of the target and detection pro-

cessor.

Figure 5-1 illustrates the basic structure of the search and acquisition

computer model. This model consists of a main control program and three major

subprograms dedicated to (1) the gimbal pointing loop model, (2) the spiral scan

model, and (3) the target detection model. The functions of the main program

are to decide which antenna steering mode has been requested and then update

the search sequence for that steering mode. Updating the search sequence requires

a check of internal and external controls to determine which of the three models

listed above should be invoked. In the remainder of this section the details

of the main algorithm and the point, scan, and detection models will be presented.

Before launching a detailed description of the algorithm, we must state a

fundamental assumption that was made in the development of the search and

acquisition mode computer model: all of the acquisition mode logic was ignored

since it is transparent to the crew. Impact of this assumption is to introduce

some error into discrete event titaing under certain conditions. For example,

neglecting the mini-scan will cause a noticeable timing error.

R'
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5.1	 SUMMARY OF KU-BAND RADAR SEARCH MODE OPERATION

5.1.1	 General Antenna Steering Mode Operation

This subsection provides a brief description of the Ku-Band Radar spar-a

mode procedure for each antenna steering mode. For a given antenna steering mode,

the general procedure is the same for active and passive targets; the only

difference between active and passive are in the waveforms and processing as

discussed in the sequel.

GPC-ACQ Search and Acquisition Mode. In this mode, the radar accepts

angle designates from the GPC. The antenna then slews towards these designated

angles and attempts detection once inside zone 0 (within 3 0 of the designated

angles). If the antenna moves into zone I (within 0.3 0 of the designated angles)

without a detection and the search initiate is low, the antenna stops at the

designates, awaits new angle designates or a search initiate from the GPC, and

still attempts detection. If the antenna is in zone I and the search initiate

command has been given, the antenna begins scanning using a spiral pattern,

centered at the inertially held target angle designates. The scan will last for

60 seconds or until a target has been detected, which ever comes first. If a

detection does not occur, the antenna returns to the designated angles and awaits

new designates or another search initiate command. If a detection occurs the

system progresses to the acquisition mode where a mini-scan (if required) and

a sidelobe avoidance test are performed. Depending upon the outcome, the

system proceeds to the rack mode or returns to the search mode. Details of

the acquisition mode are deliberately sketchy because this ;node is not modeled

as noted earlier.

GPC-DES Search and Acquisition Mode. Search operation in this antenna

steering mode is identical to the GPC-ACQ mode minus the spiral scan capability.

6

That is, the antenna only moves if it receives new angle designates from the

GPC. Rules for when target detection is allowed are the same as GPC-ACQ and the 	 f

waveforms and processing for active and passive operation are identical.
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Auto Search and Acquisition Mode. In this mode the crew moves the antenna

to the desired position using the antenna slew switches on the radar console.

Using these slew switches, the antenna can be slewed up or down and left or

right at either 20 degrees per second or 0.4 degrees per second. When the antenna

is being manually slewed, target detection is only allowed if the slew rate is

less than or equal to 0.4 degrees per second. Once the antenna has been slewed

to the desired position and no target detection has occurred, the crew can

initiate a spiral scan search. After a scan is initiated, the antenna will

continue to spiral outwardly for one minute (to 300 off the body-stabilized scan

center) or until a target is detected whichever comes first. If a target is

not detected then the antenna returns directly to the scan center and awaits

either a slew command or another search initiate command. If a target is

detected the system proceeds to the acquisition mode.

Manual Search and Acquisition Mode. The manual search mode is identical

to the Auto search mode minus the spiral scan capability. That is, the antenna

position can only be changed via the slew switches on the radar console and

target detection is only allowed if the commanded antenna slew rate is less

than 0.4 degrees per second. The transmit waveforms and signal processing for

this mode are identical to the Auto mode. Manual control of the antenna is

also maintained during the acquisition and tracking phases.

	

5.1.2	 Display Meters

The only meters that are operational during the search and acquisition

mode are the roll and pitch angle meters. These meters monitor the antenna

position during search and acquisition. All other meters, including the signal

strength meter, are zeroed during this phase.

	

5.1.3	 Search Mode Waveforms and Signal Processing.

Two types of detectors are used in the search mode: a single-hit detector

shown in Figure 5-2 and a constant false alarm rate (CFAR) detector shown in

0
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Figure 5-3. The situations where these two detectors are used are summarized

below.

Passive GPC Modes. The passive GPC modes use a single hit detector when

the designated range is less than 0.42 nm, and the CFAR detector when the designated

range is greater than 0.42 nm. In single-hit detection, returns from the first

3000 feet are processed through the hit detector. In CFAR detection two over-

lapped range gates centered at the target range designate are used to obtain a

detection. (We note that the range gates are of width 3/2 t  and overlapped by t 

where t  is the transmit pulse width). Figure 5-4 gives the general waveform used

for all designated ranges and Table 5-1 summarizes the waveform and processor

parameters used at each designated range.

Passive Auto and Manual Modes. These modes use the relatively complex

waveform shown in Figure 5-5. As noted in the figure, this waveform requires

both types of detectors during an update period. That is, for a given transmit

frequency the first three pulses are processed through the hit detector and

the last 16 pulses are used in the CFAR detection process. In single-'

detection, returns from the first 3000 feet are processed through the hit detector.

In CFAR detection, four juxtaposed range gates, of width t  and covering the

interpulse period are used to obtain a target detection. Table 5-2 gives the

waveform and processing parameters for these modes.

All Active Modes. Single-hit detection is employed in all active search

modes. Only one transmit frequency is used, the PRF is fixed at 268 Hz, the

transmit pulsewidth is 4.15 microseconds, and'the satnple interval is 2.075 microseconds

under all conditions in the active mode. Target returns from up to 300 nm

are processed through the single-hit detector. Also it is noted that the target

range designate is ignored in the GPC active search modes.

5.1.4	 Antenna Scan Operation

GPC-ACQ Passive or Active Modes. In this mode, the scan can only be
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Figure 5.4. Pea km GPC Search Mode Waveform.
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commanded by a search initiate command from the GPC. The scan is centered at

^ a

	

	the angle designates received in the frame when the initiate command is given.

The antenna begins executing the spiral scan pattern when the antenna has moved

to within 0.3 degrees (Zone I) of these angle designates which are inertially held.

Once the scan has been initiated the antenna spirals outwardly to a predetermined

angle off the scan center, which depends on the target designated range, and begins

to spiral inwardly. (These predetermined angles off scan center are called

switch points and are summarized in Table 5-3). All scans will last 60 seconds

or until a target is detected which ever comes first. It is also noted that

the scan will terminate if the system mode or the antenna steering mode is changed.

Auto Passive or Active Modes. In this mode, the crew selects the scan

center by slewing the antenna with the switches on the cockpit control panel.
1

t

	

	 Once a scan center is selected, the crew initiates the spiral scan using the

search initiate switch on the control panel. The scan pattern is the same

in all situations. That is, the anteuwa spirals outwardly to 30 degrees off

scan center and terminates. This procedure lasts for 60 seconds or until a

target is detected whichever comes first.

5.2	 SEARCH MODE CONTROL ALGORITHM DESCRIPTION

Figure 5-1 provides an outline of the overall structure of the computer

implementation of the search mode. The mainstay of this computer model is the

search mode control algorithm (enclosed in dashed lines in Figure 5-1). The

control sequence is (1) determine the antenna steering mode, (2) update the

search operation using the proper antenna steering mode sequence, and (3) set the

appropriate flags based upon the outcome of ste p, (2). Figure 5-6 gives the

detailed computer algorithm (called SEARCH) used to accomplish this task. Basic-

ally, this algorithm is partitioned into four sections where each section of code

is dedicated to the complete search procedure for one of the antenna steering
f

modes: GPC-ACQ, GP::-DES, Auto, or Manual. The computer code for cach of these

n «
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Table 5-3 SCAN SWITCH (FROM OUTWARD TO INWARD SCAN)

POINTS IN GPC-ACQ MODE

A 7 4IGNATED RANGE, nm SWITCH POINT, degree

0 to 8 Outward Scan Only (to 300)

8 to 9.2 27.7

9.2 to 10.3 24.4

10.3 to 11.8 21.7

11.9 to 15 19.6

15 to 25 16.5

25 to 40 13.4

40 to 65 11.0

65 to 145 8.0

145 to 300 6.2
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Figure 5-6 SEARCH MODE CONTROL COMPUTER ALGORITHM

(3 of 5)
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sections closely mimics the operation summary given for the corresponding antenna

1
steering mode in section 5.1.1 and, with the exception of the gimbal pointing 	 i

loop reference computation, requires no further description.

The gimbal pointing loop reference computation is performed as follows.

When the antenna is being dewed manually in either Auto or Manual, the roll and

pitch references are updated using the expressions

Roll 
Ref 

(n) - Roll 
Ref 

(n-1) + Ts 0 A (n)
(5.1)

PitchRef (n) - Pitchuf (n-1) + Ts 
AEL 

(n)

where	 Ts - update interval,

;AZ (n) - commanded roll rate at ,a th time sample,

AEL (n) - commanded pitch rate at n th time sample.

In the GPC modes, the gimbal pointing loop references are set equal to

the present angle designates if the search initiate command is low. But if

the search initiate is high the pointing loop references are maintained at the

angle designate values obtained in the update period when the initiate went

high.

5.3	 GIMBAL POINTING LOOP MODEL DESCRIPTION

A computer model of the antenna gimbal pointing loop is included in the

search model to provide reasonable fidelity in the antenna motion response to

(1) angle designates from the GPC during GPC-ACQ and

GPC-DES search modes,

(2) slew commands from that console during Auto and Manual

search modes,

(3) slew commands from the console during Manual track mode.

It is noted that the present model does not contain gimbal stops or a cable

unwrap capability. A simplified block diagram of the complete antenna gimbal

90
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pointing loop computer model is given in Figure 5-7. The description of this

model is divided into two parts: (1) a definition of the basic servo loop model

and (2) a detailed description of the computer algorithm which implements the

process illustrated in Figure 5-7.

5.3.1 Basic Servo Loop Model Definition.

Both antenna gimbal servos were modeled using the second order loop

shown in Figure 5-8. This choice for the servo loop model is based on the

antenna servo simulation material presented at the March 1978 preliminary design

review (PDR) [1n, the description of the baseline antenna servo design given in [101

and C14 and discussions with Mr. J. C. Riles the antenna servo system designer

for-the Ku-Band Radar. Rationale for each of the basic model components is

provided below. The ! rst stage of the integration represents smoothing and

shaping of the error- signal and the second integration stage represents the

effect of the gimbal. A limiter was placed between integration stages to repre-

sent the fact that the commanded gimbal rate is limited to 58 degrees per second

in the hardware. Loop constants k g and t  are chosen to best approximate the

characteristics of the real antenna gimbal response to slewing and designate

commands . At the present time these constants are chosen to give a damping

factor of 0.7 and a crossover frequency of 1.0 Hertz.

In order to r_^Present the servo model of Figure 5-8 on the computer, it

is approximated by the discrete-time model shown is Figure 5-9. This discrete-

time model can be described mathematically as follows. The first step is to

compute the error signal and update the output of the first integrator using

the equations

(5.2)	
a3 

()1+1) - 3 (n) + Takg E (n)

where	 a9 (a) - smoothed a -gimbal rate estimate at

the n th time sample,
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Ref----- --a- ^ -_ .. - ---- ---r-

a Ref (n) = o -gimbal reference position at time sample n,
a(n) = a -gimbal position at time sample n,

kg	loop constant.

Next, the gimbal rate is updated by the expression

(5.3)	 a (n+l) = as (n) + k9t g e(n)

where	 ar(n+l) = commanded gimbal rate at the n+l th time sample,

t
8	

= loop constant.

The effect of limiting the commanded gimbal rate is given by

1.
	 -58.	 if ;(n+l) <-58.

(5.4)	 ^ (n+l)	 a (n+l)	 if-58 5 (n+l) 558.

	

+58.	 if f(n+l) >_ 58.

Finally, the a-gimbal position at the (n+l) time sample is obtained from

(5.5)	 e(n+l) _ •(n) + Ts 4(n+l).

5.3.2 Computer Algorithm Details

A flow chart of the antenna gimbal pointing loop computer model is given

in Figure 5-10. The required inputs for this model at each update are the desired

roll and pitch reference angles. In the GPC modes these references are just
1

`

	

	 the target angle designates and in Auto and Manual the references are obtained

from equation (5.1). Using these new roll and pitch angle references, the

i
algorithm updates the a and 8 gimbal positions using the procedure outlined

below.

The first step of the gimbal pointing loop algorithm is to transform

3
	 the roll and pitch reference angles expressed in body coordinates to agef
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Figure 5-10 ANTENNA GIMBAL POINTING LOOP COMPUTER ALGORITHM
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Check Obscuration
Zone

(See Figure 5-11)

Tranform a/ 19 to
Roll/Pitch
(Egns 5.8)
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1

and 
d 
Ref 

angles (or, equivalently, roll and pitch angles expressed in the

radar frame). This transformation can be expressed as

SaSp + C 
g 

S 
r 
C 
p

a Ref	 tan-1
	

Cr C 

r	
(5.6)

ORef - sin-1 C S - S S C
g p	 g r p

where	 g - 67 degrees,

p - -pitchRef,

^..	 r - -roll Ref,

C - cos,

S - sin.

Also, it is noted that this transformation is identical to that used by the

radar, i.e. it ignores the radar offset from the orbiter c.g. and the boom

deployment error. In the next step, the a and a gimbal positions are updated

using the servo-loop model given Sy equations (5.2) through (5.5).

Then it is determined whether the new a and s values lie in the

obscuration zone. This task is accomplished using the algorithm given in

Figure 5-11 which can be described as follows. First, the a, 8 angle ambiguity

i
is resolved using the relations

i
-90 < a 5 90

(5.7)
.	 -180 < 4 5 180

a

Then a scan warning is determined by comparing the unambiguous a and $ position

to a map of the scan warning area shown in Figure 5-12 which was digitized to

an accuracy of 5 degrees-by-5 degrees and stored in computer memory. If the com-

parison shows that a, B are in the obscuration zone, the scan warning flag is raised.

The final step in the gimbal pointing loop algorithm is to transform
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Figure 5-11 ANTENNA uBSCURATION COMPUTATION ALGORITHM
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a and 0 to roll and pitch using the expressions

Roll angle	 -taal	
S S +C^SaC
g a	 Q

(5.8)	 Ca C 

Pitch angle	 -Isinl C a SA + S  Sa Cp .

These transformations are identical to the Ku-Band Radar transformations.

Also any angle ambiguity is resolved using the convention given in (5.7).

5.4	 SCAN MODEL DESCRIPTION.

The primary function of the scan model is to provide a simulation of

search mode operation whenever the antenna is performing a spiral scan. Des-

cription of the scan model makes abundant use of a quantity called a "scan

ring". We offer the following definition of this entity. It is-noted that

in reality the antenna traces out a spiral pattern about the scan center, however,

we will approximate the spiral pattern as a set of concentric rings and label

these rings as shown in Figure 5-13. With this definition in mind, the scan

model can be described as follows.

When a spiral scan has been initiated from the console or the GPC, the

model tracks the antenna boresight position to the nearest scan ring (see

Figure 5-14) and tracks the target positon exactly. A target detection is

attempted only if the boresight and target are in the same ring in the present

update period and were not in the same ring in the previous update period. If

an attempt at detection is successful, the scan procuedure is terminated and

control is handed over to the track routines. If no detection is obtained

then the scan procedure continues until another target detection is allowed or

the scan is completed.

The main advantage of the model is that it offers reasonably accurate

estimates of elapsed time from scan initiate to target detection or an end-of-

scan condition for an arbitrary rendezvous situation. Maximum error in elapsed
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I«	 time for any situation should be no worse than + 2 seconds. It is noted that

there are some deficiencies in the model too. These are that (1) there is no

inertial stabilization of the scan center during a scan in the present version

and (2) the target detection capability is highly inaccurate under certain target

motion conditions. For example, when the target is moving radially With respect

to the scan center.

5.4.1 Summary of Scan Operation

Rules and conditions for scan initiation and termination in the various

antenna steering modes are identical to the Ku-Band Radar scan rules summarised

in Section 5.1.4.

5.4.2 Computer Algorithm Details

Figure 5-15 gives a flow chart of the scan model computer algorithm.

Step one of the procedure is to determine whether or not the scan has just been

initiated. If the scan has just been initiated, then the scan model must be

initialized. This procedure consists of raising the search flag and resetting

the scan clock and other time parameters to zero. In step two the scan clock is

updated and checked for an end-of-scan condition. If no end-of-scan is obtained,

then we proceed to the next set of steps which involve determination of target

and boresight positions in the scan area.

In the third step, the antenna boresight Fosition in the scan area is

resolved to the nearest scan ring. When no switch point is involved, i.e. the

antenna only spirals outwardly to 30 degrees and stops, determination of the

boresight scan ring location is done in the following way. Since the elapsed scan

time is known, this value can be used to address a lookup table which contains

the boresight scan ring position versus scan time profile shown in Fixture 5-16.

(Data for this curve was obtained from a detailed simulation of the antenna scan

process written by Mr. J.C. Riles of Hughes.) For those modes where a switch
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point is involved, the following assumption is used: at the switch point, the

horesight begins to retrace the profile given in Fixture 5-16. With this assumption,

the bor%.sight position can be determined in all possible scan cases usin g the

profile of Figure 5-16 and defining the time parameter

tSN (n-1) + Ts , tSN (n-1) 
St switch

(5.9)	 to(n)	

tSN(n-1)-Ta	 , tSN(n-1) >tswitch.

where	 tsn(n) - elapsed scan time at n th sample time,

Ts	a update iii serval,

tswitch - time at which switch occurs (measured from scan

initiation).

The fourth step in the scan model procedure is to determine in which

scan ring the target is located. To do this,we first compute the target's angle

off scan center, call it A SN , using the expression

(5.10)	 0SN(n) a coi
l
 roL. sL

where	 = L	 unit vector in the direction of the target
0

e.g. expressed in L-coordinates,

t L	 unit vector in the direction of the scans
center expressed in L-coordinates.

This value of ASN (n) is used to obtain the target's scan ring position from

the scan ring number versus 6 S curve shown in Figure 5-17 (Data for this curve
was also provided by Mr. J. C. Rites) and stored in the computer. It is noted

that in practice only the ring transition points, denoted by Ai , are stored

in memory. Then, one determines the target Rcan ring location by choosing Ai

such that Ai S ASN
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In the final step, it is determined whether a detection attempt (using

the detection model described in Section 5.5) should be made. A detection will

be attempted if the target ring number and the boresight ring number satisfy the

following two conditions:

(1) they are equal in the present update period,

(2) they were not equal in the previous update period.

If a target detection is attempted the following logic governs the outcome of

the process. If the target is not detected the scan is continued. If the

target is detected the scan is halted, the target present flag is raised (MTP101)

the search flag is lowered (MSF-O), and control is handed to the track sub-

routine.

It is emphasized that no acquisition mode opsrations are modeled.

including the mini-scan sequence. It is also assumed that any detection is a

mainlobs detection and the track mode is initialized accordingly.

5.5	 DETECTION MODEL DESCRIPTION

The detection model provides a simulation of the detection process

for each of the search modes. Figure 5-18 gives a simplified flow chart of the

detection model computer algorithm. The basic model consists of two types of

detectors, a CFAR model and a single-hit model, and some control logic that

decides which operating parameters and detector types should be used. In the

remainder of this subsection, the modeling assumptions are listed, the two

detector models are described, and the computer algorithm details are provided.

5.5.1 Model Assumptions

The following assumptions were used in the development of both detector

models:

(1) the target is a point scatterer with a slowly fluctuating

(Swerling II) RCS which has a fixed, predetermined average

value for all aspect angles,
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(2) the target radial velocity does not change over the

data cycle,

(3) for all nonscanning modes, the beamshape loss obtained

at the beginning of the data cycle is used for the entire

data cycl .

(4) for all scanning modes, an average beamshape/scan loss,

based on the target position in the scan pattern and computed

using a simulation documented in 193 , is used instead of

computing the loss on a pulse-by-pulse basis.

In some cases, assumption (1) can have a significant impact upon fidelity

of the detection process. However, if the fixed average RCS is chosen

carefully, then this model should provide the crew with a reasonable feel for

the target detection capability. Assumptions (2) and (3) are forced on us by

the constraints of real-time operation. That is, the motion is only updated

at the sample rate. We are stuck with assumption (4) because of the method

selected to model the scan process and the real-time constraint.

5.5.2	 CFAR Detection Model

Figure 5-19 illustrates the CFAR detection process. For a given target

range and velocity, target position in the scan area, and average target RCS

value, the basic idea of the procedure is as follows. First, the SNR at the

doppler filter output is computed. (This value excludes beamshape/scan loss

when scanning but includes beamshape loss when not scanning.) This value of

SNRD is then used to determine the probability of detectionPD from a precomputed

PD versus SNRD curve which is stored in computer memory. The statistical

character of the detection process is injected by selecting a number x from a

population which is uniformly distributed on r0,11 and deciding the outcome of

the detection process using the algorithm
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f

X < PD target detected

(5.11)

X > PD target not detected.

It is noted that the PD versus SNRD data implicitly contains the beam-

shape /scan loss in those cases when the antenna is scanning. Further details

of the PD curves are provided in Section 5.5.4.

5.5.3 Single-Hit Detection Model

A block diagram of the single-hit detection model is given in Figure 5-20.

Fundamentally, this procedure is identical to the CFAR detection model. However,

in this case the SNR at the video filter output is used to obtain the required

probability of detection PD from the proper PD versus SN ^ data stored in a

lookup table. Once the PD is selected the rest of the procedure is identical

to the CFAR procedure.

As in the CFAR case , the SNRv computation excludes the beamshape /scan loss

when scanning but includes the beamshape loss when noc scanning. The P D curves

will implicitly contain the average beamshape /scan loss in the scanning cases.

5.5.4 Determination of PD (SNR) Data

All of the PD curves required by the detection algorithm were generated

using a very accurate model of the Ku -Band Radar search mode processor, modified

appropriately for each case. This simulation model, documented in Reference 1191

can be described as follows. It contains a very accurate model of the signal

processor and a slowly fluctuating (Swerling II-type) target model. The model

also contains the capability for including an average scan loss in the PD

computation. This capability is too involved to describe here. Therefore the

reader is referred to 1191  for complete details of the average scan loss model.
It is noted that the scan model uses the scan parameters, i.e. target dwell time

and beam overlap, associated with the outer edge of the scan pattern for all cases,

regardless of target position in the scan pattern. If time permits, the scan loss

will be ,modeled more accurately.	 112
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For a given set of conditions, the simulation model of 119' computes the

SNR versus PD profile in the following manner. For a given nominal SNRv

(nominal means ignore the beamshape/scan loss), the Monte Carlo technique is

employed to determine the associated PD. Then, performing this computation for

a range of SNRv values gives the desired PD versus SNR data. We note that

the range of SNR is always chosen so that the data points adequately described

the curve from 5% to 95% PD . Figure 5-21 gives an example of the resulting data

for the GPC-ACQ CFAR scanning case.

As a side remark we note that the data generated by this model for the

CFAR case implicitly contains an average beamshape/scan loss (if scanning), the

losses associated with the magnitude detector, and the losses due to the thre-

holding technique. In the single-hit detection cases this data will contain

the average beamshape/scan loss implicitly (if scanning).

The PD (SNR) data will be modeled on the computer in the following way.

For all CFAR cases, PD data will be gen^rated by the simulation described above

for SNP  values ranging from 0 dB to 20 dB spaced at 1/2 dB increments. For

any SNRD values above 20 dB, the PD is set equal to 1 and for values of SNR D

below • 0 dB, the PD is set equal to 0. For all single-hit cases, P D data will

be generated for SNRv values ranging from -25 dB to -5 dB-spaced at 1%2 dB

increments. SNR values outside this range are treated in the same manner as

the CFAR cane.

5.5.5	 Computer Algorithm Details

The detection computer model consists of a set of three algorithms:

(1) the control algorithm shown in Figure 5-18, (2) the CFAR detection algorithm

shown in Figure 5-19, and (3) the single-hit detection algorithm shown in Figure

5-20. The control algorithm first computes the target parameters re quired by

the detection algorithms and then it decides which detector algorithm should be

called based on the operating mode. In the first step of the control algorithm,

•	 the point target range, the point target radial velocity with respect to the
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4.
radar, and the angle off the boresight are computed as follows. The range is

given by the expression

(5.12)
r 0 - IT LB C oB 

1	 1 (Range)

where r B is provide: by the parent simulation,t
B

is the fixed radar offset
0

from the orbiter C.G. and TLB is given by

CO	 0	 -SA	 1	 0 0	 Cy	 Sy	 0

TT 
B-J 0	 1	 0	 0	 Ca

)(0

Sa	 -Sy	 CY	 0

CO)	 0	 0	 1.S3	 0	 CC	 -Sa

where a,S - most recent positions of the antenna gimbals,

7 - yaw angle of R-frame with respect to B-frame,

C - cos,

S - sin.

The radial velocity is computed using the equation

(5.14) roL - ro 
cL (Radial velocity)

where L
ro

;. B -+ B,
TLB ro	 + 

;
LB ro

(velocity)

oL
0L/ ( ro (direction)

and r
B
0 is provided by the parent simulation. Lastly, the angle-off boresight

is computed using

(5.15)	 es - cos l (r 
oz

/1
 oL-)'

The second step of the detection control logic is to decide which detection model

should be invoked. The rules for this decision are identical to those for Ku-Band

Radar summarized in Section 5.1.3. Once this decision is made control is passed

to the proper detection model to attempt a target detection.
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CFAR Detection Algorithm. In the CFAR algorithm of Figure 5-22, the

first step is to compute the SNR at the video filter output, neglecting the beam-

shape and/or scan loss. In the sequel, this will be referred to as the nominal
i

SNRv. It is computed using the expression

PT	cG2 X
(5.16)	 SNRv
	 3 4	 (All Passive Modes)

Or) R kLTBnT

whe re

PT - peak transmit power,

G	 one-way antenna gain,

ac - carrier wavelength,

Q - average radar cross section,

R - target range

k - Boltzmann's constant

LT - transmit losses,

B  - receiver noise bandwidth,

T - system noise temperature.

The next step is to compute the net gain of the processor frmn the

baseband filter output to the doppler filter output and to combine it with

the nominal SNRV to form the nominal SNRD . The net gain is comprised of (1)

range gate loss, (2) net presum gain, and (3) net doppler filter gain. Each of

these budget entries is expressed quantitatively below.

Of the three budget entries only the range gate loss differs for the

GPC modes and the Auto and Manual Nodes. Range gate loss for the GPC modes where

overlapped range gates are used, includes the effects of misdesignation loss

and widened range gates and is given by

i► 	 117



Figure 5-22	 CFAR DETECTION MODEL COMPUTER ALGORITHM
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^s
1/3	 if x5 (Range Gate Loss ---

GPC Modes)
(5.17) RGL 2/3 (3/2-x) 2 , if 4 Ix <3/2

0,	 if x >3/2

L2,RG - R°
' where

x
  

ctt

RG M target designated range (center of gates),

c	 - speed of light,

t t M transmitted pulse width.

For the Auto and Manual modes, where the range gates are Juxtaposed, this
loss is given by

X2

, if X< 1 (Range Gate Loss ---

(5.18) RGL • (1- (X-[X]) ) 2 , if l<X < 9/2
Auto and Manual Modes)

and

X+I < .
(X- [X]) 2 if l< X< 9/2 and

X-[XI>

2 R 

where X	 W °
ctt

^•^ - greatest integer in •

The net presum gain computation is identical for all antenna steering

modes and includes the coherent gain of the presumming process and the loss

due to doppler mismatch. This value is computed using the expression

sin2(NPY)
(5.19)	 PSG	 (Net presum gain)

sin 2(y)NP

where	 y 0 of d 's'	
r
• L

2 

f  a target doppler shift	 -	 °
Ac
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* - A/D sample interval,

N  M number of A/D samples per pulse width.

The net doppler filter gain computation is identical for all antenna

steering modes and includes the coherent gain of the doppler filter and the

loss caused by filter straddling. It is computed from the expression

(5.20)	
DFG . sin  160

16 sin (z)
(Doppler Filter Gain)

where	 z - +r (m/32 - fdtp),

t  - PRI,

m - filter nearest fd.

The net processor gain is obtained from

(5.21)	 Net Processor Gain - (RGL)(PSG)(DFG)

in all cases where a CFAR detector is-required.

The third step is to decide whether the antenna is scanning or not. If

the antenna is scanning we proceed to step four. If the antenna is not scanning

the bsamshaps loss is computed, using equations (5.15) and (4.2), and combined

with the nominal SNRD.

In the fourth step, the value of SNRD is used to address the look-up

tab:le,containing the proper PD profile for the given conditions,to determine

the PD value in the present case. It is noted that if the computed nominal

SNRD falls between stored data points then linear (in dB) interpolation is used

to obtain the PD. This value of the PD will implicitly contain an average beam-

shape and scan loss (if scanning), the losses associated with the magnitude

detector, and the losses due to the thresholding technique.

r:
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The fifth and final step is to select a number x from a population which

is uniformly distributed on the interval 10,11 , compare this value of x with the
l J

PD from step (4) and make a target detection/no detection decision based on the

algorithm of O.W.
Single-H t Detection Algorithm. The singl*-hit detection algorithm of

Figure 5-23 is similar in form to the CFAR algorithm. That is, first the nominal

SNRv is computed using equation (5.16) for the passive modes or the expression

(5.22)	 SNR	 PBOBO l .c	 011 Active Modes)

	

v	 (4r) 2R2LBk%T

where	 P  -	 Peak beacon transmit parr,

CB - one-way gain of the beacon antenna,

LB - beacon transmit losses.

for the active modes. In the second step it is determined whether the antenna

is scanning or not. If the antenna is scanning we proceed to step (3), but if

it is not scanning then the beamshape loss is computed in the same manner as the

CFAR case and combined with the nominal SNRv. The fourth step is to determine

the PD associated with present value of SNR`,. This determination is identical to

the CUR case. The last step is to select a uniform random number x, compare it

to PD, and decide hit or miss with the algorithm of (5.11) as in the CFAR case.

I
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Figure 5-23	 SINGLE-HIT DETECTION MODEL COMPUTER ALGORITHM
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5.	 TRACK MODE COMPUTER MODEL DESCRIPTION

An illustration showing the basic structure of the track mode computer

algorithm is given in Figure 6-1. The structure of this algorithm is similar in

form to the search mode computer algorithm of Figure 5-1. It consists of a main

control program and several subprograms dedicated to various tracking functions.

The main program, called the track mode control algorithm, has two purposes:

(1) it controls initialization of all tracking loops and updating of the status

of all data valid `:.ags when control is first passed from search to track and

(2) it controls the computation sequence required to update all tracking loops

during the tracking phase. The initialization procedure requires two major sub-

r.

programs. One is dedicated to initialization of the tracking loos when tracking

'

	

	 first starts and the other subprogram decides when the various data valid flags

should be raised, indicating the track estimates-are accurate. The track loop

update procedure requires several major subprograms which perform the following

tasks: (1) target return signal generation and processing, (2) break-track deter-

mination, (3) angle and angle rate estimate updates, and (4) range and range rate

estimate updates. In the following subsections, models for each of these functions

are described, analysis is supplied whenever appropriate, and details of the

computer algorithm for each function are given.

6.1	 SUMMARY OF KU-BAND F.,%:;AR TRACK MODE OPERATION

6.1.1	 General Antenna Steering Mode Operation

In this subsection, a short description of the Ku-Band Radar tracking

procedure for each antenna steering mode is provided. For each steering mode,

the general procedure is the same for active or passive targets. The only

difference between active and passive modes are the transmit waveforms as

discussed below.

GPC-ACQ Track Mode. In GPC-ACQ the radar performs target angle,

inertial angle rate, range and range rate tracking. Angle and inertial angle

rate tracking are accomplished using the amplitude comparison monopulse technique.
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Range tracking is achieved by maintaining the return pulse centered in two

juxtaposed range gates. Velocity tracking is performed using the algorithm

described in section 6.7.

ljGPC-DES Track Mode. In this mode the radar tracks the target range

and range rate only. Target angle tracking is performed by the GPC which supplies

target angle designates to the gimbal pointing loo during tracking. There is no8	 8	 8	 8	 P	 n8	 P	 8	 8

tracking of the target's inertial angle rate. Range and range rate tracking are

identical to the GPC-ACQ mode.

Auto Track Mode. This mode is identical to the GPC-ACQ mode.

Manual Track Mode. In this mode, the radar performs range and range

rate tracking using the same method as the other three steering modes. Angle

tracking is performed by the crew using the antenna slew switches on the cock-

pit radar console. There is no inertial angle rate tracking in this mode.

6.1.2	 Data Valid Flags

The data valid flag representing a given quantity will be raised when

all transients in the loop tracking that quantity have settled out. The time allotted

from tracker initialization to raising the data valid flag is precomputed based

on maximum allowable errors in the quantities tracked and linearized loop models.

Precomputed times for the angle, angle rate, range, and range rate data valid

flags as a function of the loop bandwidth are summarized in Table 6-1 for active

and passive operation.

The only data valid flag that is allowed to drop during tracking,

without a break-track condition is the range rate data valid flag. Conditions

under which this flag is lowered are (1) when the PRF is switched from 7 kHz to

268 Hz in the active track mode or (2) when the predicted target velocity moves

to a new filter in two out of the last five update periods, including the present

update period. In either of these cases it is raised again if the predicted

velocity remains in the same doppler filter for 15 consecutive update periods.

6.1.3	 Display Meters

Display meters are provided on the cockpit radar console for

125
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Table 6-1	 DATA VALID FLAG TIMEOUTS (AFTER CLOSING TRACKING

LOOPS) FOR ACTIVE AND PASSIVE MODES

RANGE
INTERVAL,nm

DATA VALID FLAG TIMEOUT, SECONDS

RANGE &
ANGLE ANGLE RATE

RANGE RATE

Passive Modes

R < 3.8 6.97 1.02 8.2

3.8< R< 7.2 6.97 i-02 26.23

7.2 <R 29.76 2.33 29.76

Active Modes

R < 9.5 6.15 1.02 8.20

9.5 <R 28.69 5.12 28.69

n r
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• target roll and pitch angles,

• target range and range rate,

• target inertial roll and pitch rates,
r•

o target signal strength,

The target signal strength meter which is zeroed during search and acquisition

immediately becomes operational when the track mode is entered regardless of

the antenna steering mode. Inertial roll and pitch rate meters operate

only in GPC-ACQ and Auto steering modes; in these modes they become

operational when track is first initialized. The target inertial rate meters are

zeroed in GPC-DES and Manual steering modes. Range and range'rate_'display

meters become operational when the track mode is first entered. They are

operational in all antenna steering modes. Roll angle and pitch angle display

meters operate in all antenna steering modes and become operational when the

track mode is first entered.

6.1.4	 Break-Track Algorithm

The basic idea of the break-track algorithm is simple. If a no-

=

	

	 target condition is obtained in five of the last eight update periods, including

the present update period, then a break-track condition is declared and the

system is returned to the search mode. The determination of a no-target condi-

tion is slightly more involved and is discussed in detail in section 6.5.

6.1.5	 Track Waveforms

Passive Modes. The general track waveform for passive modes is

illustrated in Figure 6-2. This waveform consists of five consecutive transmit

frequency intervals with four time slots per frequency interval and 17 pulse

repetition intervals (PRI) per time slot. For a given transmit frequency the

receiver dedicates each of the four time slots to the following information:

n t
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PHI No. I	 FRI NO. 2	 PRO No. 2	 PRO NO. 17

F*m 8.2. Waveform for PmW Truk ModmL

128

L- -;--



r

Slot 1	 (Sum channel output) + (Azimuth Difference
Channel Output)

Slat 2	 (Sum Channel Output) 	 -	 (Azimuth Difference
Channel Output

Slot 3	 (Sum Channel Output) 	 +	 (Elevation Difference
Channel Output)

Slot 4	 (Sum Channel Output)	 -	 (Elevation Difference
Channel Output)

The receiver processes 16 pulses for each of these time slots. 	 The waveform

j	 parameters are a function of range and are summarized in Table 6-2.

Active Modes.	 The general	 track waveform for all active modes is

s
s	 illustrated in Figure 6-3.	 For these modes only one transmit frequency interval

is used.	 This interval is divided into four time slots with , 17 PRI per time

!	 slot as in the passive modes.	 The waveform parameters are listed in Table
i

6-3.

6.1.6	 Tracking Loops and Signal Processor Operation

The signal processor configuration is described in Section 6.4, the angle

and angle rate tracking loops are described in Section 6.6, and the range and
3

range rate tracking loops are described in Section 6.7.

6.2	 TRACK MODE CONTROL ALGORITHM DESCRIPTION

I
The track mode algorithm is entered immediately upon detection of a

f
target in the search mode.	 A detailed block diagram of the track mode control

i
algorithm is given in Figure 6-4. 	 As noted in the introduction to this section

this subroutine has two functions: (1) to control tracking loop initializations and

(2)	 to control the computation of tracking loop estimates. 	 These two functions

are described below.

6.2.1	 Track Mode Initialization Control
y

The first task is to initialize each of the tracking loops. 	 This means

initial values for	 the target parameters being tracked must be computed to allow

t	 129
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Figure 6-4	 TRACK MODE CONTROL COMPUTER ALGORITHM
(2 of 2)
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the difference equation representations of the loops to begirt tracking the para-

meter changes. This initialization is done during the first update period after

control has been passed from the search algorithm to the track algorithm. The

choice of parameter initializatiow and the equations that compute these values

are discussed in detail in Section 6.3 and Appendix A.

The other task is to initialize the clock used to time the data valid flags

and continue to update this clock until the appropriate data valid flags for i given

antenna steering mods drat all raised. Clock initialization is performed is the first

update period after control has been passed to the track algorithms. The sub-

program used by the track mods control algorithm to perform these tasks is shown

in Figure 6-5 and the data valid flag timeout periods era given in Table 6=2.

f	 6.2.2	 Tracking Loop Update Control

The other responsibility of the track mode control algorithm is to control

the computations leading to updated estimates by the various tracking loops. This

is a complex procedure involving several steps and is outlined below. The first

step is to generate a target return signal, based on the latest target - radar

configuration and process this signal to produce error signals in the form of

discriminants to be used by the appropriate tracking loop models. A set

of four subprograms are required to perform this computation. Complete details

of this package of algorithms will be given in Section 6.4.

The second step in the update procedure is to check for a break-track

condition. This is done using the algorithm described in section 6.5. If a break-

track condition is obtained, then the system is reset to the search mode using

the algorithm shown in Figure 6-6. If a break-track condition is not obtained

then the computation nequence proceeds to the third step which is to update the

antenna position and the target inertial angle rates(if appropriate). If the antenna

steering mode is CPC-ACQ or Auto, then the target roll and pitch angles, i.e.

r
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Figure 6-5 DATA VALID FLAG CONTROL ALGORITHM
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the antenna position, and the inertial roll and pitch rate estimates

are updated using the model described in section 6.6. If the system is in

the GPC-DES mode, the antenna gimbal pointing loop (section 5.2) is updated using

the latest roll and pitch designates fron the GPC. If the system is in the Manual

mode, the antenna gimbal pointing loop is updated using the latest positions of

the antenna slew switches on the cockpit radar console and equations (5.2).

Target inertial roll and pitch rates are not tracked in the GPC-DES and Manual

modes.

In the fourth step, the target range and velocity estimates are updated

using the model described in section 6.7. This step is performed in all antenna

steering modes. The fifth and final step is to compute an estimate of the target

signal strength using the algorithm described in section 6.4.

6.3	 TRACKING LOOP INITIALIZATION ALGORITHM DESCRIPTION

This subsection gives a detailed description of the algorithm, illus-

trated in Figure 6-7, used to compute the intial state of each tracking loop for

a given antenna steering mode. The basic philosophy is to set the initial states

of the angle, angle rate, range and range rate tracking loops equal to the respec-

tive values of the target c.g. parameters in the update period in which initiali-

zation takes place. The general procedure is to initialize each of the following 	 _(

items:

• Break-track algorithm,

• Angle and angle rate tracking model (if required),

• Range tracking model,

• Parameters for signal processor,

• Velocity processor model,

• Signal strength algorithm,

in the order shown. Initialization of each item is described in detail below.
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Figure 6-7	 TRACKING LOOPS INITIALIZATION ALGORITHM
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rs
6.3.1	 Break-Track Algorithm Initialization

This initialization requires setting the break-track flag low and

zeroing the registers used to track the number of no-target conditions

obtained in the previous 7 update periods.

6.3.2	 Angle and Angle Rate Tracking Model Initialization

This model is used only in the GPC-ACQ and Auto antenna steering

modes. The initial a and S gimbals positions, the initial a and S gimbal rates,

and the initial target inertial LOS azimuth and elevation rate must be computed

in order to start the tracking loops. These values are initialized using the

following procedure. First, the positions of the a and S gimbals are determined

so that the antenna boresight points directly at the target e.g. using the

equations

B = -tanl ( rox /s)

(6.1)

a M -tanl ( roy / 
roR)

where	 ro = TRB ( rob - x8),

xB = Radar offset from orbiter body C.G. expressed

in body coordinates,

s2	
( `oy2	 2) + ( oz )'

In the next step, the target inertial LOS azimuth and elevation rate

tracking loops are initialized using the expressions

"Tx = voy ' ^ r0Ll+ wBx

(6.2)	
w 	 -V /IrLI+wL

TY 	 ox	 o	 By
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t

F	 where	 voL	 target velocity measured in the B-frame
and expressed in L-frame coordinates,

+L
1	 wT = target inertial angular velocity expressed in L-frame

coordinates,

1	 wB = body inertial angular velocity expressed in L-frama
coordinates.

These relations are derived in Appendix A.

In the final step, the initial rates of the a and S gimbals are computed

using the expressions

a	 voy / ( (roL i cos R)

(6.3)
I

s	 wT
	 By

j	 which are also derived in Appendix A.

6.3.3	 Range Tracking Model Initialization

The range tracker is an a- S tracker (see section 6.7 for details) that

generates an estimate of the target range and range rate at each update period.

It is initialized by setting the first range and range rate estimates equal to

the target c.g. range and velocity, respectively. For the range this is accom-

plished by digitizing the CG range so that the least significant bit (LSB)

represents 5/16 feet and loading it into the digital integrator that produces

the range estimate at its output (see figure 6-32). For the range rate it is

accomplished by digitizing the CG velocity so that the LSB represents 5/(16ts)

feet per second, where is is the update interval, and loading it into the digital

A	 integrator that produces the smoothed range rate estimate at its output (as shown

'	 in Figure 6-32).

6.3.4	 Signal Processor Parameter Initialization

Several signal processor and tracking loop constants change with a

different target range interval, processor A/D sample rate, and PRF. Therefore,
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the internal controls MRNG, MSAM, and MPRF were defined to apprise the system

of changes in the target range interval, the A/D sample rate, and the PRF,

respectively. These controls are defined in Table 6-4 and they are intialized

as follows. MRNG is determined using the CG range and MSAM and MPRF are determined

using MRNG and the system mode switch (DIODE) position.

6.3.5	 Velocity Processor Model Initialization

The velocity processor tracks the target velocity by using five adjacent

doppler filters, always maintaining the target in the center filter. The predicted

velocity estimate in the present update period is averaged with the velocity
3

estimate from the three previous update periods to obtain the final velocity

estimate, i.e. the velocity is smoothed using the moving window average technique.

Thus, initialization of the velocity processor involves (1) setting each entry

of the array used for averaging equal to the C.G. velocity and determining the

location of the center filter (of the five filter bank) using the equation

(6.4)	 me - mod 
CVo 

/A + 0.5 , 321)

where	 mod ( . , 32) = modulo 32,

L 
• J = greatest integer in
A J = ac PRF/64.
me = number of the center doppler filter.

See section 6.7 for comilete details of the velocity Processor nodel.

6.3.6	 Signal Strength Algorithm Initialization

The model which is used to compute the radar signal strength in the

present version of the computer simul_:ion is quite simple and does not require

initialization.

4

r	
9

i
9
5
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RANGE INTERVAL,nm MRNG MSAM MPRF

{ Passive Modes:

0-i20 ft 1 1 1

120-240 ft 2 1 1

240-720 ft 3 1 1

720ft-0.42 4 1 1

0.42-0.95 5 2 1

0.95-1.9 6 2 1

1.9-3.8 7 2 1

3.8-7.2 8 2 1

7.2-9.5 9 2 1

9.5-18.9 10 2 2

Active Modes:

0-120 ft 1 1 1

120-240 ft 2 1 1

240-720 ft 3 1 1

720ft-0.42 4 1 1	 I

0.42-0.95 5 1 1

0.95-1.9 6 1 1

1.9-3.8 7 1 1

3.8-7.2 8 1 1

7.2-9.5 9 1 1

9.5-18.9 10 2 3
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6.4	 SIGNAL GENERATION AND PROCESSING MODEL DESCRIPTION

This subsection gives a detailed description of the model used to

generate the target return signal and process this signal to obtain all of

the discriminants. The objective of this model is to generate the most

accurate discriminant estimates possible given the present target scattering

model selection and the constraint of real-time computer operation. The

method selected to achieve this goal is heavily dependent upon the fact that

the target is modeled as a collection of point scatterers and can be roughly

outlined as follows. Instead of forming the target return signal at the

antenna output and processing the resultant signal on a sample-by-sample basis

using the exact Ku-band radar processing configuration shown in Figure 6-8,

the processor model uses assumed linearity of the processor from the antenna to

the doppler filter output and the assumptions listed in section 6.4.1 to

compute the resultant signal at the doppler filter output in closed-form.

Then, except for replacing the magnitude detector by a magnitude-squared

detector, the remainder of the signal processing model is identical to the

corresponding Ku-band radar processor functions. This computation model is

illustrated in Figure 6-9. By using this model, sample-b}-sample processing

can be abandoned, thereby reducing the computation time per update cycle

significantly without sacrificing signal processing model accuracy.

In the remainder of this subsection, we will present: (1) the model assump-

tions, (2) the technique for updating the position and motion of the point

targets. (3) complete details of all discriminant generations, including the

thermal noise model, (4) the radar signal strength computation algorithm, and

(5) the computer model details.
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6.4.1	 Model Assumptions

The signal generation and processing model is based upon the

assump; ions listed below. Target assumptions are that

(1) the target is composed of a collection of point scatterers

with the properties described in section 4,

(2) radial acceleration of the point targets during a data cycle

is ignored.

Radar assumptions are that

(3) the waveform described in Figures 6-2 and 6-3 are transmitted

without any distortion,

(4) the antenna does not move with respect to the target during the

data cycle,

(5) the receiver's RP and IF electronics work perfectly, (i.e. the

down conversion is error-free and the filters do not distort

the return signal, but the receiver iaaintains the same noise

figure and noise bandwidth).

(6) the baseband (video) filter has a perfect rectangular impulse

response of width equal to the A/D sample interval,

(7) the A/D is treated as an ideal zero-order sample and hold,

(8) quantization noise contributed by the signal processing chain

from the A/D to the log converter (see Figure 6-8) is neglected,

(9) the magnitude detector was replaced by a magnitude-squared

detector,

(10) Automatic Gain Control (AGO is not implemented.

s
147



Motivation for assumption (1) was discussed in section 4. Assump-

tions (2) and (4) are forced on us by the real-time processing constraint

which rules out sample-by-sample or even pulse-by-pulas processing of the

target return signal. Assumption (3) will have little effect on processor

accuracy. On the other hand, assumption (S) can have a significant impact

upon the fidelity of the angle tracking estimates because the difference

channel coupling losses are ignored. The baseband filter assumption will

have little effect upon processing accuracy. Impact of assumptions (7)

and (8) is not known at the present; if time permits, an equivalent quantiza-

tion naise will be added to the discriminant computation model. The magnitude-

squared detector assumption will have only a slight impact upon the model

accuracy. The system AGC will be implemented if time permits.

6.4.2	 Target Position and Motion Computation Model

Generation of the discriminants in a given data cycle requires a

knowledge of each point target's position and radial velocity with respect

to the LOS frame. To obtain these quantities, we utilize the following

information. Firstly, the parent simulation provides (1) to and vo

the present position and velocity of the target C.C. with respect to the

orbiter body frame, and (2) TBOT	 and TgoT	 which describe the

rotation of the T-frame with respect to the B -frame as discussed in sections

2 and 3. Secondly, the radar simulation tracks the angular position and rates

of the antenna relative to the orbiter body frame. From these two facts, the

position of the kth point target, located at an arbitrary but known position

in the T-frame, can be computed in the L-frame using the expression,

L	 _jB)
rk TLB(r0B + TBoT r  
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1

or, regrouping the terms,

(6.5) rkL a TLB roa - XB) + TL TrT
O

where XB a vector describing the offset of the radar from the orbiter C.C.
T
LB

(r0B - XB) position of target C.G. in the LOS frame.

The velocity of the arbitrary point target as measured in the LOS frame,

can be obtained by time differentiating equation (6.5) and noting that IB

and rkB are constant vectors. This gives
(6.6) vk ELB (r0B- X) + TLBr0B I + TLoT 

r 

where the expression in the square brackets is the velocity of the target C.G.

as measured in the L-frame and expressed in L-frame coordinates. Finally,
the target radial velocity as measured in the L-frame is obtained by computing

the component of velocity in the direction of the radar. quantitatively, rids

can be expressed as

(6.7) vk (radial) - vk' rk

where ik • unit vector in the direction of the tarlo*..
6.4.3	 Angle Discriminant Computation Model

The angle discriminant is essentially formed by comparing the sum

channel plus the difference channel signal to the sum channel minus the difference

channel signal where both signals are appropriately integrated over the five
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transmit frequencies and two range bins. In the sequel, :hose two quantities

will be referred to as the components of the angle discriminant. With

this in mind, we proceed to a description of the angle discriminant computa-

tion model which is divided into three parts:

(1) computation of the noise-free discriminant components,

(2) computation of the equivalent thermal noise,

(3) computation of the angle discriminant.

laoise-Free Discriminant Component Computation. Figure 6-10 gives

a block diagram of the model used to compute the noise-free discriminant

components; this model is derived in Appendix C. Figure 6-10a shows the

computation of the target response at the magnitude-squared detector output

for a given transmit frequency and range bin. Figure 6-10b illustrates the

post-detection integration (PDI) of the detector output over frequency and

range bin to form the noise-free discriminant component. A detailed descrip-

tion of these steps is given below.

The total response of the target return at the doppler filter output

is computed using the assumptions listed in section 6.4.1 and the assumption

that the receiver/signal processor configuration is linear from the antenna

to the doppler filter output. First, the response of each point target at

the doppler filter output is computed in closed-form. Then, using the

linearity assumption and the superposition principle, the resultant response

for the complete target is computed by vectorially summing the individual

responses.

Computation of the doppler filter response for a single point target

requires a more detailed explanation. This computation is performed as

follows. Using assumptions (1) through (5) and equation (4.1), the return
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à^m

O to
C. C

oa
Y

014
u
d
L

A F

w c

7 d
CA o'
1 0
01 w

^ 
R•

Y m

H

m
v

r
I'

ar

^d"0„ w U
^ Oatq0 z Vy
y Vim! Ci r---7

Y
a
C
a

a
M

al L
a► s u
hwi A

1	 C
a1 al O
mr+a

L	 v
°o

0C
U

m

V4
A

M
u

°a	 o

Y
at

w
1

as
mM
OZ
w
0

00M
Y

I
w	 ^

0 m al	 ^
w +1 Y

^ y	 v
Y 9 al

N ko

• 'n N

u

u	 00
a^w

Odom
a1 W u 00uCCw u.+
e Q Ism. 9E

Z

Y
ar
m
w
of
E



from the kth point target over a single time slot referenced at the input

to the baseband filter is given by the expression,

	

A l	 P k
(6.8)	 Sk(t)	 ak - k (P Sk + PDkj) n o exp jj[2rfkt--Dkill P( 

tt	 t )

Jf	 t

P Sk, P
Dkj ' kth target sum and difference pattern weightings,

Oki = 244 citk

and the other terms are defined after equation (4.1).

After filtering, sampling, range gating and presumming the signal in

equation (6.8), we obtain

(6.9)	 Sk = ak Ak Rk (P Sk +PDkj ) exp { j [2nn fktp - Oki] }

where n=0, 1, 2, ----, 15. The factor Rk in the above expression

represents the range gate and preslam, weighting. It is noted that this

factor ignores the mismatch in the presummer due to the target doppler

shift. This assumption will have no impact in the short pulse modes

and slight effect in the long pulse modes. Quantitatively, the

expression for the range gate{presum weighting is

(6.10) Rk ' F(tk)
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F(tk)- pp

0	 if A> 2 or A<- 2

3+A	 -3c A<-1
4 

+2 . if	 2_	 2

2	 if	 —2 
Cal 

2

4-Z	 if 2 SA <2 •

t
and A	

k
k
tt

'.	 There is a very important assumption made at this step. The total energy

of the pulse within the range gates is assumed to be exactly split between

the early and late gate contribution. However, the phase associated with

the point target's true position in the range gate is maintained. This is

illustrated in quantitative terms in Appendix C. The assumption was made

to enhance the computation speed but it may have a significant impact in

those cases where the range tracker does not follow the target with fidelity.

If that is the case, the assumption may have to be abandoned.

The final step in this sequence is to compute the response of the

doppler filter to the signal given in equation (6.9). (As an aside, it is

noted that the target velocity is tracked using 5 adjacent doppler filters

where the velocity always seeks to maintain the target in the center (C)

filter of the 5. Only information from filter C is used in the formation

of the angle discriminant). Since the signal in (6.9) represents a pure

doppler tone by assumption (2) of section 6.4.1, we can easily write the

response of the kth target for a single frequency and range gate. It is
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given by the expression

	

(6.11)	 _ip
	 sin (16Zk)

Sk	 ° k k k (PSK + PDkj ) sin(Zk	
exp I-(15Zj

k +ski)]

where Z  - n (mc/32 -f 
k 
t )

m - number of center filter.
c

As noted earlier, the complete target return signal at the doppler

filter output is obtained by assuming the processing channel from the antenna

to the doppler filter output is linear and applying the linear super-

position principle. For the ith transmit frequency and Ith range gate,

this gives

NT

	

(6.12)	 S U I O - E	 Sk(i,k)
k-1

where NT is the total number of point targets. Magnitude-squared detecting

S(i,l) and PDIing over the appropriate number of transmit frequencies and

range gates, we obtain the noise-free angle discriminant component

•	 2 NF 2	 NF	 2

	

(6.13)	 A - RE 1 . i E1 1 S(i,k)	 - 2 E I S(i)
i-1

where NF is the number of transmit frequencies and the summation over the

range gate is replaced by the factor 2 using the assumption stated earlier.

Equivalent Thermal Noise. If we assume that the target signal

plus white gaussian noise is introduced at the front end of the receiver,

the noise appearing at the PDI output can be shown (see appendix D) to be

additive and approximately gaussian with mean and variance given by
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(6.14)	 mean - 2NAan

(6.15)	 variance - 4 NA cr [2 SNRD + 1]

where NA - PDI ratio for the angle discriminant,

SNRD - Signal-to-Noise Ratio referenced to the doppler filter output,

co - variance of noise at doppler filter output.

Angle Discriminant Computation. The angle discriminant is then

computed by the expression

A + n
(6.16)	 DA - 10 log (

A
 + n
a	

a)
d	 6

where Ad represents the sum plus difference noise-free discriminant component,

Ad represents the sum minus difference noise-free discriminant component,

and n  and n  are samples from statistically independent random sequences

where each member has the statistics described above. It is noted that A a and

A  are computed using equation (6.13) with the appropriate antenna weighting

factor.

6.4.4	 Range Discriminant Computation Model

The range discriminant is formed by comparing the energy from the

late range gate to the energy from the early range gate. Description of

this computation model will follow the same format as the angle discriminant

computation model description.

t
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Noise-Free Discriminant Component Computation. A model for the

computation of the noise-free range discriminant component is derived in

Appendix C and is shown in Figure 6-11. The basic configuration of the

model is identical to the corresponding angle discriminant model. However,

there are some differences in the weighting factors between the two and

for this reason we outline the processing of the range discriminant

component below.

We start with a description of the computation of the single point

target response at the doppler filter output. As in the angle discriminant

case, the signal at the input to the baseband filter is given by equation

(6.8) with PDkj Set equal to zero even if the boresight is not pointing

directly at the target. Proceeding to the filtering, sampling, range gating,

and presumming process, we obtain the same expression as equation (6.9), but

now separate range gate/presum weighting factors, R k, must be computed for

the early and late range gates. For the early gate the weighting factor

is given by

(6.17)	 REk - FE(tk)

where	 f_0 ,

FE (tk) NP 326

1-A
2

(Early)

if A< -3 or A> 1

if -3S A <_ -1

if -1<,& < 1

and for the late gate this factor is given by

(6.18)	
RLk - F

L(tk)	 (Late)
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where l±s	 if -1 < Al. 1
2

FL (tk) = NP	 32A	 if 1 S <_ 3

0	 if	 A )- 3 or A< -1 .

The range discriminant components only use information from the

center doppler filter and therefore they have the same doppler filter

weighting as the angle discriminant components. Thus, the kth target

response for the early range gate at the doppler filter output is given by

ain(16Z )
(6.19) S

Ek ok 
A
kREVSk sin Z k 'exp 1-j (15Zk+ Oki]

k

and the complete target response for the ith transmit frequency, the jth

time slot, and the early range gate at the doppler filter output is given

by the expression,

NT

	

(6.20)	 SE(i.j ) ' k E 1 SEk (i.j )

Expressions for the late gate single target doppler filter response and the total

target doppler filter response are identical to equations (6.19) and (6.20),

respectively, with E replaced by L.

The noise-free range discriminant component is obtained by magnitude-

squared detecting the doppler filter response (6.20) and Ming over transmit

frequencies and time slots. This can be expressed as

	

NF 4 2	 NF	 2

	

(6.21)	 RE' ill E SE	
i

(i• j ),	
4 El 

I E (i)S	 Ij1
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where the last equality is obtained by assuming that all time slot components

for a given frequency are equal.

Equivalent Thermal Noise. The thermal noise added to the noise-
s

free range discriminant component has properties which are identical to

F	 the angle discriminant noise, except that the PDI ratio becomes NR, repre-

senting the range PDI ratio, instead of Na.

Range Discriminant Computation. The range discriminant is computed

using the expression

(6.22)	 DR- 10 log RE + nL

RE	 E

where RE and RL are computed from equation (6.21) and n  and n  are samples

from statistically independent random sequences where each member has the

statistics described above.

6.4.5 Velocity Discriminant Computation Model

Definition of the velocity and the on-target discriminants rely

heavily upon the configuration of the doppler filters used to track the

target velocity. The configuration is comprised of five adjacent filters

as shown in Figure 6-12 where the tracker seeks to maintain target velocity

in the center filter. In the sequel these filters will be labeled (from

lowest frequency to highest frequency) Low Outrigger (LO), Low (L), Center (C),

High (H), and High Outrigger (HO), respectively. The velocity discriminant

is then formed by comparing all of the energy from the low (L) filter to

all the energy from the high (H) filter. The form of this model is

identical to the range and angle discriminant model and its description

will follow the same format.
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Noise-Free Discriminant Component Computatio n. Figure 6-13 gives

1

a block diagram of the computation model and Appendix C gives a derivation

t	
of this wodel. Since the processing has the same form as the range and

I

?	 angle discriminant models, we will only provide the various weighting

factors used in this case and point out any differences.

The antenna weighting factor is given by P Sk where P 
Sk 

is computed

from equations (4.7) and (4.8). As in the range discriminant case, the

difference pattern weighting is set to zero even though the antenna may
a

not be pointing directly at the target. The range gate weighting R k is

computed as described in equation (6.10). The range gate weighting assumption
i

used in the angle discriminant computation, applies in this case, as well.

The doppler filter weighting factor is the same as the range and angle case

with ML (or %, depending on the component) replacing mC.

If we let the total response for the ith frequency, the jth time

slot, and the I th range gate at the L-doppler filter output be given by

VL (i,j,l), then the noise-free velocity discriminant component is obtained

by magnitude-squared detecting and Ming over frequencies, time slots, and

range gates. This is expressed as

NF 4 2	 2	
NF	

2
(6.23)	 F- E	 E	 E I V (i,j,^t ) 1 -8 E IV (i)

L i•1 j .l LP1	 L	 iml L

where the last equality is obtained by assuming that all time slot and

range gate components are equal for a given transmit frequency.

Equivalent Thermal Noise. The velocity discriminant noise has the

same form as the angle and range discriminant case with NV , the velocity

PDI ratio, replacing NA in equations (6.14) and (6.15).
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Velocity Discriminant Computation. The velocity discriminant is

computed from the expression

FL + nL

	

(6.24)	 Dv - 10 log P
H nH H

where FL and 
PH are computed using equation (6.23) and n  and 

n  
are asmples

}
from statistically independent random sequences where each member has the

statistics described above.

6.4.6 On-Target Discriminant Computation Model

The On-Target discriminant is formed by comparing the total

energy from the center (C) doppler filter to the combined total energy from

the LO and NO doppler filters over a data cycle. Computation of the noise-

free discriminant components is identical to the v%tocity discriminant case

with mC, mLO, or %0 replacing mL and % in the doppler filter weighting
factor. The On-Target discriminant noise characteristics are identical

to those given for the velocity discriminant case above. Therefore, the

expression for the On-Target d-scriminant is

FC + ^C	(6.25)	 DOT - 10 log F + F110 
nLO HO LO

where FC, FLO , and 
FRO are computed from equations (6.23) and n  and riLO

are samples from statistically independent random sequences where each

member has the statistics described above.

6.4.7 Radar Slinal Strength Computation Model

In the Ku-Band radar, the radar signal strength meter is designed

to work in the tracking mode only. During the track mode the radar signal

strength meter is determined from the following algorithm
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AGC - AGC I initial , if AGC Z. AGC I initial

	

(6.26)	 RSS
0	 , if AGC < AGC linitial

where AGCI 
initial 

is the setting of the sys.sm AGC when the track mode is

first entered. The ACC is designed to maintain the average signal plus

noise voltage at 1.4 quantization levels at the video filter output.

Since the system ACC is not modeled in the present version of the

track mode simulation, the algorithm of (6.26) is replaced by the following

computation:

	

(6.27)	 RSS - SNRV

where SMR is the signal-to-noise ratio at the video filter output and is

computed from equation (5.16)for passive modes and equation (5.22)for active

modes. This approximation will be highly accurate for SNRV>>1, but will

break down for SNRV s 1. If time permits, the Ku-Band Radar AGC algorithm

and signal strength algorithm will be simulated more accurately.

6.4.8 Computer Model Details

The computer model shown in Figure 6-14 consists of five subroutines.

A separate subroutine is dedicated td each of the following functions:

(1) updating of all transformation matrices,

(2) updating of the LOS position, velocity and RCS value for each

scatterer and updating of the LOS position and velocity for the

target C.G.
(3) computation of all noise-free Ascriminant components,

(4) computation of all discriminants (including thermal noiL4),

(5) computation of target signal strength.

Each of these subroutines is described in detail below.
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Figure 6-14 SIGNAL GENERATION AND PROCESSING MODEL COMPUTER ALGORITHM
(1 of 3)
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Figure 6-14	 SIGNAL GENERATION AND PROCESSING MODEL COMPUTER ALGORITHM
(2 of 3)

	

3 )	 ( 4

Compute k th Target
1st	 Phase Factor Due To

	

Transmit	 no_^ D	 Range Difference
requency?

(Eqn 6.36)

Compute k th Target	
Form Comp onents of e aSum Channel Weighting	
6.37 for th Target

(Egns 4.7,4.9)	 and Vectorially Sum
with K-1 Previous
Values.

Compute k th Target
AZ and EL Difference

Channel Weighting	 no	 Last

(Egns 4.8,4.10,4.11) 	 3	 Target?

yes

Compute k th Target	 Form Discriminant Compnnent
Range Gate/Presum	 For ith Frequency, 1.12
Weighting	 Detect and Sum with i-1

(Egns 6 . 10, 6.17)	 Previous Values

(see Eqn 6.38)

Compute k th Target
Doppler Filter
Weightings	 Compute Effective

(E n 6.35)	 RCS

(Eqn 6.39)

4

^^Frejuency?
Last ^

3l	
n 

5

166



Figure 6-14 SIGNA:. GENERATION AND PROCESSING MODEL COMPUTER ALGORITHM
(3 of 3)
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Update of Transformation Matrices (TRNSFM). This subroutine updates

TLB' TLOT, TLB , and TL 
0

T	 The transformation matrix TLB is computed with

the expression

CS 0 -SS	 1	 0	 0	 CY SY 0

(6.28)	 TLB	 0	 1	 0	 0	 Ca Sn	 -SY CY 0

s6 0	 CS	 0 -Sa Ca	 0	 0	 1/

where	 a, 8 - latest measurement of antenna gimbal position,

Y	 - yaw angle of R-frame with respect to
B-frame (nominally 670)

C	 - cos

S	 - sin .

The t ransformation TLT is obtained from

(6.29)	 TLOT	 TL0B
0 TB0 T

where T'- TLB 
is computed in equation (6.28) and TBoT 'is provided by

LOB 
0

the parent simulation.

The matrix TLB is computed by time differentiating T LB as given in

equation (6.28) and noting that a, S vary with time but Y is fixed. Finally,

the matrix TLT is computed from the expression
0

(6.30)	 TLOT - TLO BO TB T + TLOBO TB T  0 	 0

where T
Logo	 Logo	 BoT	 B T

and T	 are defined above and T	 and T	 are provided by

the parent simulation. 	 0
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i

Target Position and Velocity Update (PVTRAN). This subroutine computes

(1) the position, range and direction vector in LOS coordinates for each

scatterer and the target C.G., (2) the velocity and radial velocity component

as measured in the LOS frame for each scatterer and the target e.g., and

(3) the RCS value for each scatterer. The subroutine is organized as follows.

Since each scatterer ' s LOS position and velocity computation requires the

C.G. position and velocity in the LOS frame, the c . g. parameters are computed

first then the parameters for each point target are computed.

The target C.G. position, range, and direction vector in LOS coordi-

nates are computed from

r0L = TLB (r0B - ^XB)	 (position)

(6.31)	 oL =I ro	 (range)

r L= r 
L 

i 1-1, 
L i	

(direction)
0	 0	 0

where r0B is provided by the parent simulation, XB is the fixed radar

offset from the orbiter C.G., and TLB is computed above. The C .G. velocity

and radial velocity component as measured in the LOS frame and expressed

in LOS coordinates are given by

L	 B +T
6.32)	 r 	 TLBroLBroB
	 (velocity)

r0L r0L . ro	 (radial component)

where	 r01 and r 0 are provided by the parent simulation and TLB and ILB

are computed above.

The next step is to update the scatterer positions in the target frame

and the scatterer RCS values using the subprogram described in Section 4.5

(see Figure 4-9). Then, each of the scatterer ' s position and velocity parameters

f	 169



I F

are computed. LOS position, range, and direction for the kth scatterer are

given by

L r
0 + 

TL TrkT
rk 
	

(velocity)
0

(6.33)	 rkL = ^rkL,	 (range)

rkL rkL / ^rkL^	 (direction)

where rk T is fixed and r0L and TLOT are computed above. LOS frame velocity

of the kth scatterer is computed from the expression

-r T
rkL . 

roL + 
T 
LOT 

rk	 (velocity)

(6.34)

rkL = rkL * rkL	(radial component)

where ro and TLOT are computed above.

Signal Generation and Processing (SIGNAL). The main purpose of

this subroutine is to compute all of the noise-free discriminant components.

It performs the calculations which are described in sections 6.4.3 through

6.4.6 and derived in Appendix C. This task is performed as follows.

First, for the kth target and ith transmit frequency, all of the

weighting factors required to form the various responses at the doppler

filter output are computed. These include the sum pattern weighting,

difference pattern weighting, range gate /presum weighting, doppler filter

weighting and initial phase computation. Antenna sum and difference

pattern weightings are computed using equations (4.2) through ( 4.7) and the

antenna models described in section 4. The range gate /presum weighting factor

is given by equation (6.10) for non -range discriminant components and by

equation ( 6.17) for range discriminant components. The doppler filter

weighting is computed from the expression

s
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.s

sin(16Z )
(6.35)	 Fk(m) - sin (Z ) exp-j15Z

k	 I J
where	 Zk n(32 - fktp)9

m = mLO , mL, MC , mH, MHO'

The doppler weights need only be computed for the first transmit

frequency, since the PRF is adjusted at each new frequency to maintain

a constant filter position for a nonaccelerating target. Finally, the

phase of the kth target return referenced to the leading edge of the C.G. return

is computed from
4n L - L

(6.36)
Oki- yci (rk ro )

where Xci is the wavelength of the ith transmit frequency. It is

remarked that one can just as well compute the phase using the expression

4n	 L
skis aci(rk - rG)

where r  is the range to the center of the range gates.

The next step is to form the following responses for the kth target

and ith frequency at the doppler filter output:

A l k m Sum Component :Ap SkRkFk (mc) exp (j Oki)
A21.- Azimuth Difference Component ^^kpAZkRkFk(mc)exp(jOki)

(6.37)	 A3km Elevation Difference Component -rIpELkRkFk(mc)exp(JOki)

R 1 k m Early Component -f kp SkREkFk (mc) exp (j oki)

R2k - Late Component 'fkpSkRLkFk (mc)exp(jOki)

V1,2,3,4k L,H,LO,HO Components 'FkpSkRkFk(')exp(joki)

where	 mL, mH, mLO, mHO , respectively. Once formed these components are
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vectorially summed over the number of targets to form the complete target

response for the component at the doppler filter output for the ith

frequency.

Then, these components are combined appropriately to form the noise-

free discriminant components at the doppler filter output for the i th	 _-

frequency. After this step, the newly formed components are magnitude- 	 ~R

squared detected and summed over NF transmit frequencies. Result of all

of this processing gives the following noise -free discriminant components

at the PDI output:

NFNT	 2AZa i
ll I .kA l (Alk +A2k) I

NF NT
2

AZ
d ill k^l (Alk A2k)

(for ELa , EL  replace the subscript 2 by 3)

N
(6.38)	 RE - iE1 1 1Rlkl2

NF NT	 2
RL

i-1 kE1R2k

VL
NF

-

NT	 2

E1Vlk)
ir1 k

NF NT	 2

VH - iElikE1V2k+

( for VLO' VHO replace subscripts 1,2 by 3,4)

where each of the components above is within a constant scale factor of

the actual noise-free discriminant component seen at the PDI output.

One final step is performed in th.Ls subroutine and that is to

compute a quantity called the average effective cross-section. This
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quantity is a measure of the average target cross-section weighted by

the normalized antenna sum pattern value. This value is averaged over

five frequencies and is given by the expression

r	 2
(6.39)	 Effective Cross 461 NF E o^p e,Qki

Section	 liff i=llk=1 k Sk

Discriminant Component Computation (DISCRM ) . This subroutine adds

equivalent thermal noise to each of the discriminant components and computes

the discriminants with the resulting component values. We first compute

the scale factor alluded to earlier. This factor contains many of the range

equation terms. For the passive mode it is Riven by

4 G2 1^ 2.P7NP .
}	 (6.40)	

S1 =	 3 L 4	 (Passive Mode)
(470 (Ro	 n) LTkTSBNF

where NP is the number of samples per pulse and the other .terms are defined

in Section 5. For.the active mode this factor becomes

4 G 
X2PBT NP

(6.41)	 S	 (Active Mode)

1	 -;47r) 2 (Ro ) 2 LTK TS Bn NF

where	 PBT	 PB GB

LB

P  = peak transmit power of beacon,

GB = one-way beacon antenna gain,

LB = beacon transmit losses.
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The next step is to tackle the angle discriminant computation. This

includes computing the statistics of the noise for this discriminant.

Mean and variance of the noise are computed as follows:

Mean - NA (same for o and d components)

	

(6.42)	 varAZc w L 2 NA S 1AZa
 + NA]	

.'

var
AU = 

[2 NA S1AZ6
 + NA]

where S1 is computed in equation (6.40 or 6.41), AZ and AZ are computed

in equations (6.38) and NA is the angle PDI ratio. It is important to

note that the variance of the I,Q noise components at the doppler filter

output are assumed to be equal to unity for convenience in the computation.

In the next step, the equivalent noise is added to the angle discriminant

components and we obtain

DAZa 
-IN A S1AZa + MeanAZ +yYarAZc N(0,1)1

(6.43)

DAZdsINA S1AZd + MeanAZ 
+VV—

arAZa 
N(0,1)1

where N(0,1) is defined as a random selection from a gaussian population

with zero mean and unit variance. The last step is to compute the angle

discriminant

r

	

(6.44)	 DAZ - 10 log (DAZa/DAU).

where the logorithm computation is assumed to be base 10.
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The range, velocity and on-target discriminants are computed in an

identical manner, making the appropriate changes in scale factors and

components.

Radar Signal Strength Computation (RSS). As discussed in Section

6.4.7, the radar signal strength is computed very simply in the present

version of the tracking simulation. The radar signal strength is set equal

to the SNR at the video filter output cahere it is assumed that the trans-

mitter is at full power. This computation is done using equation (5.16)

for the passive mode where in this case P T is always she maximum peak

tranamittc.j: power and o (the RCS) is computed using equation (6.39). For

the active mode equation (5.22) is used to obtain the SNRV.

6.5	 BREAK-TRACK ALGORITHK DESCRIPTION

The break-track algorithm used in the track mode simulation is

functionally identical to the logic used in the Ku-Band radar signal processor.

Figure 6-15 gives a simplified block diagram of the break-track algorithm.

Key components are the two discriminants and the no-target condition deter-

mination. In this subsection, we will describe the no-target condition and

its determination, describe the break-track condition, and describe the

implementation of this xlgorit:m or the computer.

6.5.1 Nn ise-Free Discriminant Response Functions

Both discr-minants take advantage of the shape of the doppler filter's

mainlcbe and its relative position with respect to the other filter main-

1Qbes in order to determine target location in the filter bank and absence

or presence of the target. This is most clearly seen from plots of the

noise-free velocity and on-target discriminants as a function of target

doppler velocity given in Figures 6-16 and 6-17, respectively.
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Determination of a No-Target Condition

The basic idea "iehind the no-target determination is as follows.

If a noise-only condition exists then the velocity discriminant value will

be in the neighborhood of 0 dB and the on-target discriminant value will

be in the vicinity of -3 dB. However, if a target with sufficient strength

exists within the five filters, at least one of the discriminant values will

not be near its noise only bias value as shown in Figures 6-16 and 6-17.

Thus, the method for determination of a no-target condition is to establish

thresholds about the bias values in each case (shown as dashed lines in

Figures 6-16 and 6-17) and compare the discriminant values to their respective

thresholds. A no-target condition is declared if both discriminants lie

between their thresholds, i.e.. in the region of their no-target bias values.

Qunatitatively,

First, the following quant

1,
FTH 10,

1,
(6.45)	 OT

0,

AOT •
0,

the no-target condition can be described as follows.

;ities (called discretes) are defined:

if IDv < Tv

if ID  (> Ty ,.

if DOT <- TH

if DOT :o

if D
OT > TL

if D
OT < TL

Then, target/no-target decision is based upon the product of the discretes

as follows:

1 , no target
(6.46)	 (FTH) (OT) (AOT) - 0
	 , target

This decision logic is illustrated in Figure 6-18.
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6.5.3	 Break-Track Determination

A break-track condition is declared if a no-target condition is

obtained in the present update period and four of the last seven update

periods.

j 5.4	 Computer Algorithm Details

Figure 6-19 illustrates the computer algorithm used for the break-

track determination. It implements the equations described above and requires

no further description.

!	 6.6	 ANGLE AND ANGLE RATE TRACKING LOOP MODEL DESCRIPTION

In the GPC-ACQ and Auto modes, the radar provides estimates of the

target inertial roll and pitch rates and tracks the target roll and pitch

!	 angles in the Orbiter Body coordinate system. A simplified block diagram of

its mechanization in the Ku-Band radar is illustrated in Figure 6-20. In this

subsection, we shall describe (1) the mathematical model used to represent

this tracking system, (2) the major assumptions and approximations underlying

this model, (3) the system and target error effects incorporated into the

model, and (4) the computer implementation of the model.

6.6.1	 The Model

As noted in Figure 6-20, the tracking system is composed of an a and S

gimbal tracking loop.	 It was suggested in reference [20] that these loops

be approximated by the second order continuous-time models shown in Figures 6-21

and 6-22. The loop constants wn and T were designed (see reference [21] ) so

i
	 that the angle rate estimator is critically damped and so that the loop transient

response is damped out as quickly as possible while still meeting the loop noise

specification. The design values of wn and T are given in Table 6-5 for reference.
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Table 6-5	 ANGLE TRACKING LOOP CONSTANTS fn AND t

RANGE INTERVAL,nm fn, hz *
t, SEC

Passive Mode

R 7 9.5 0.027 11.8

3.8 4 R < 9.5 0.027 11.8

1.9 < R < 3.8 0.075 4.2

R 4 1.9 0.12 2.7

Active Mode

R 2, 9.5 0.027 :.11.8

R : 9.5 0.075 4,2

* P	 1	 in the angle rate loop design.	 Therefore t	 2/wn.

j

1

z

4

f

I
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The a and 8 loop models shown in Figures 6-21 and 6-22 were adopted,

with one modification, as the basis for the angle tracking performance

computer model. The ore modification is that the retv:tn signal is actually

generated and processed to produce the angle discriminants (see section 6.4).

This provides more flexibility and accuracy in the modeling of angle tracker

error sources as discussed below. Introduction of the discriminant generation

into the model requires calculation of the equivalent loop constant k eq . This

is done using the expression

W2

(6.46)	 keq ' 4 17P

where	
w 
	 loop natural frequency given in Table 6-5,

•
k 
	 slope of normalized antenna difference pattern

given in Figure 4-8,

1
P •	 _

1+SNR 1

and it is seamed that SNR >>1 so that P•1. Table 6-6 summarizes the results

of the keq calculation for each value of 
n 

listed in Table 6-5.

6.6.2	 Model Assumptions and Approximations
i

The analog models of the a and B tracking loops are based upon the

following assumptions. In the area of the antenna electronics, the antenna

gimbal motors are treated as perfect analog integrators and any filtering

used for signal shaping, predistortion, or smoothing is assumed to work ideally.

^s
	

The rate stabilization loop is assumed to act instantaneously to remove the

body inertial angular velocity from the estimates of the target inertial LOS

azimuth and elevation rates. This is a reasonable assumption, since the rate

stabilization loop bandwidth is much wider than the angle rate loop bandwidth.

Also, any errors such as gyro drift or thermal noise introduced by the antenna

6I
	

electronics, are ignored. 	
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RANGE INTERVAL, nm keq, deg/sect k; deg/sec

Passive Mode

R ^ 0.5 2.0106 x 134 2.3725 x 103

3.8:1 R :j 9.5 2.0106 x 134 2.3725 x 133

1.9 s R &3.8 1.5529 x 133 6.5907 x 133

R < 1.9 3.9750 x 153 1.0546 x 132

Active Mode

R 20 9.5 2.0106 x 134 2.3725 x 133

R 'i 9.5 1.5529 x 133 6.5907 x 133



The signal generation and processing assumptions that affect the8 8	 P	 8 ^P

present version of the angle tracking model are (1) the choice of antenna sum

and difference patterns, (2) ignoring the quantization noise introduced by the

digital signal processor, and (3) ignoring the difference in microwave loss

between the sum and difference channel. Neglecting the microwave loss difference

will have a noticeable impact upon angle tracker performance at low SNA. This

error source will be included if time permits. Quantization effects are

ignored in all processor steps except the last one: computation of the angle

i	 discriminants. These discriminants are quantized to 3/16 dB accuracy. Thus,

one of the major sources of quantization is included in the model and the

impact of assumption (2) is not too significant. However, quantization of

the discriminant dons increase the importance of the antenna difference

pattern selection, as this choice will affect the resolution capability of

the angle rate estimator and the angle tracker.

The last major assumption involves the implementation of the continuous-
;

time loops of Figures 6-21 and 6-22 on the computer. These models are

approximated by the discrete-tim loops shorn is Figures 6-23 and 6 -24. The

fundamental assumption used in the discretization process was to replace the

analog integrators by the digital integration model of ?igure 6-25. Effect

of this approximation is to constrain the antenna to move in a stair-case

fashion. That is, the antenna position remains constant during an update

period and is moved to the new predicted a and B at the beginning of the next

r

°	 update period. Therefore, the digital integrator approximation will be

practical provided the commanded a and 8 rates are not too large.
1
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6.6.3	 Error Sources Modeled

Error sources in the Ku-Band radar angle and angle rate tracking loop

that are modeled in the simulation include

• Target error effects (to the extent that the target scattering

model is correct),

• Thermal noise,

• Boom deployment error,

• Radar offset error,

• Discriminant error,

• Gimbal bias error.

All of the errors listed above, except the gimbal bias error, are included in

the generation of the angle discriminant. Target-induced angle and angle rate

measurement errors are included by virtue of the fact that the return signal

is generated and processed. Then, provided the target scattering model is

accurate, the target-induced errors will be accurately represented. Thermal

noise is based upon the receiver and signal procer 3r configuration; the exact

method of computation is derived in Appendix D. Boom deployment and radar

offset errors occur because the radar transforms the radar estimates of angle

and angle rate to body coordinates assuming the radar is located at the

oribiter body C.G. and the radar frame is yawed +67 0 with respect to the body

frame. These two errors are included by computing the target return signal based

7

upon a radar offset from the orbiter C.G. and then transforming the resulting radar

estimates with the same equations that are used by the radar microprocessor.

Discriminant error is the distortion introduced by the method of discriminant

computation. This distortion is induced by (1) large target angle errors

or (2) low SMR as illustrated in Figure 6-26. The last error source included

in the model is gimbal bias error, i.e., the error in the gimbal position

3
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reading. This source is easily incorporated into the model as illustrated in

Figure 6-21.

6.6.4	 Model Performance

This subsection presents the results of tests of the angle and angle

rate tracking model. Two tests of the angle tracking model were performed.

In the first test, the response of the angle discriminant generator was-

computed as a function of angle error and SNR. This test was performed with

the quantization removed. Results of this test are given in Figure 6-26 and

they agree reasonably well with the theoretically predicted discriminant function

given in C2.3 and e23 . The second test checked the step response of the

angle rate estimator to determine whether it is behaving as a second order

critically damped loop. This test made the following assumptions: (1) the

SNR was much greater than unity, (2) the loop was run in an "analog" fashion,

i.e. all quantization and discretization of the quantities involved was

ignored, and (3) the a-loop was used for the test with 6 set equal to zero.

Results of this test are shown in Figures 6-27 through 6-29 for each loop

bandvldth. The 2% convergence times obtained from the computer model agree

quite well with the theoretical values as obtained from the solution of

the following transcendental equation

(6.47)	 (a+l) - 0.02e a

where	 a - wn t2 ,

V - loop natural radiar frequency,

t 2 - 2% convergence time .

We make the following disclaimer about the tests and tests results

discussed above. These tests show only that the simulation model provides

accurate representation of the theoretical design of the angle tracking loops.

It does not prove that the model response will closely approximate the actual

hardware response under all conditions.
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i

6.6.5	 Computer Model Details

The computer model of the a and $ tracking loops is broken into

y	 two distinct parts: (1) the generation of the discriminants and (2) using

1	 these new discriminants to generate new target inertial roll and pitch rates

and new target roll and pitch angles. The first step is included in the

signal generation and processing algorithm and was described in section 6.4.

In this subsection we present a detailed description of step (2).

The algorithm used to update the angle rates and angles is shown in

Figure 6-30. A stepwise description of the algorithm follows below. A prelim-

inary step that is required prior to updating the angle and angle rate filter

equation is to quantize the angle discriminants to 3116 dB accuracy:

D (n)s r16 D (n)]

AZ	 33 AZ

i	
r

DEL(n)^ [13 DBL(n)^

where 
1

•1 means the greatest integer in 	 Using this preliminary computation,

we have

8AZ (n) AAZ (n-1) + TS Keq DAZ (n)

(6.49)

9EL(n)	 EL (n-1)+ Ta KeQ DEL(n)

where	
6 E	

smoothed target inertial LOS elevation rate,

8A	smoothed target inertial LOS azimuth rate,

T s	update interval,

eq	loop constant computed from equation 6-46.

F
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Figure 6-30	 ANDLE AND ANCLE RATE TRACK LOOP FILTER COMPUTER ALGORITHM

2

ENTERR

Update a and B
Update TBL gimbal positions

(Eqn B.3) (Eqn 6.51)

Quantize AZ and Check Obscuration 4EL Discriminant
To 3/16 dB Zone.

(Eqn 6.48) (See Figure 5-11)

Ii	 Transform Body rans orm & an
Angular Velocity to Roll and Pitch
to LOS Coordinate rates,

(Eqn 6.52)

p ate Smoothed
Estimate of Targe Transform a and S
Inertial LOS AZ to roll and pitch

-

EL Rates. angles.
• (Eqn 6.53)

a,

Update a and 0
gimbal rates

(Eqn 6.50)

Check for Angle

Ambiguity.

(Eon  5.8

2

EXIT
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^y.

The second step is to update the a and 8 gimbal rates, a and L This
i
(

	

	 is accomplished by subtracting the body inertial angular velocity from the

new estimate of the target inertial rate and transforming appropriately.

Quantitatively, the new a and S estimates are obtained from the expression

;(n) - lw (n) - W  (n) / cos$

(6.50)

OTY	 BY

where	 wTX(n) - 8A Z (n) + kaq r To DAZ (n)

wn(n) - 8EL(n) + kegr Ta DEL(II)

^(n) - X-component of body inertial angular velocity

at time sample n expressed in L-coordinatea.

Equations (6.50) are derived in Appendix A, section A.2 (see equations (A.7)

and (A . 9), respectively).

In the fourth step, we update the a and 8 gimbal positions to be

used for the next update period.	 This is easily accomplished by using the
3

digital approximation of the analog integrator illustrated in Figure 6-25 to

3 obtain the expression

m(n) - a(n-1) + Ts a (n)
(6.51)

8(n) - 8(n-1) + Ts 8 (n) .

The fifth step is to transform the smoothed estimates of the target

inertial LOS azimuth and elevation rates to target inertial roll and pitch

rates.	 This is done using the present values of a and 8 and the expression
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Target Inertial ` _1000.	 (1,1)8 (n) +T
Roll Race 	(TBL 	 AZ	 BL(1,2 ) 8EL(n)

(6.52)

Target Inertial . _1000. T (2,1)8 
(n) + T (2,2) 1 jn)Pitch Rate	 t BL	 EL	 8L	 ^L

where TBL is computed using a(n-1) and 0 (n-1). The above equations are

derived in Appendix B section B.3. The final stop is to transform the present

values of a and S gimbal position, a(n-1) and 0(n-1), to target roll and pitch

angle in the orbiter body (B) frame. This is accomplished by the following

expressions

-1	 TBL(2,3)Target Roll Angle -tan 	
-

BL 3'3 57.29576

Target Pitch Angle -sin-1 ITBL (1,3)157.29576

which are derived in Appendix B section B.2. Once the now target roll and

pitch angles have been computed, any ambiguity in these angles is removed

using the relations (5.7).

6.7	 RANGE AND RANGE RATE TRACKING MODEL DESCRIPTION

The range and range rate tracking simulation model is functionally

identical to the Ku-Band radar range and range rate tracker. Figure 6-31

provides a simolified block diagram of the range and range rate tracking loop

model. It is composed of three major algorithms: (1) the signal processor

which generates the range and velocity discriminants, (2) a tracking loop

filter which uses the range discriminant to produce eat iwatoo of the range and

range rate, and (3) a velocity processor which uses the velocity discriminant and

the rough range rate estimate to produce a very accurate estimate of the target

4 f
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velocity. The signal processing algorithm which generates the range and 	 -•

velocity discriminants has already been described in section 6.4. Therefore,

this subsection will focus on the details of the track filter model and the

velocity processor model.

6.7.1	 Range Tracker Model Description

The range tracker algorithm is composed of a signal processing and

a discriminant generator algorithm and a discrete-time range tracking filter

algorithm. The signal processing and range discriminant generation algorithm

closely approximate the corresponding function in the Ku-Band radar as

discussed in section 6.4. The discrete-time tracking loop filter shown in

Figure 6-32 is modeled exactly. This includes quantizing the range discrim-

inant to 3/16 dB, quantizing the output range estimate to 5/16 feet, quantizing

the ouFput range rate to 16 T feet per. second where -T a is the update interval,
s

and using the acme values for ma and mb, the loop constants. These loop

constants were calculated in [233 and are summarized in Table 6-7 for the

various operating conditionn.

Assumptions. One of the major simplifications in the range tracker

involves the filtering at IF and baseband. It is assumed that the IF filters

pass the perfect rectangular target return pulses without distortion. Also

the baseband (or video) filter impulse response is assumed to be perfectly

rectangular and of width equal to the A/D sample interval. Impact of these

simplifications should be mini Ao% The only other assumption that might

have some impact on model fidelity is neglecting the quantization noise con-

tributed by the signal processing chain from the A/D to the discriminant

generator. This assumption will have varying impact upon the model fidelity,

depending upon target return signal strength.

204
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Table 6-7 EQUIVALENT RANGE TRACKING LOOP CONSTANTS m a and m b

RANGE INTERVAL,nm m
a

m
b

Passive Mode

R > 9.5 16.0 0.25

3.8 t R < 9.5 16.0 0.5

1.91i R 4 3.8 16.0 2.0

0.95 < R j 1.9 8.0 1.0

0.424C R < 0.95 8.0 2.0

R 4, 0.42 0.5 0.125

Active Mode

R > 9.5 4.0 0.25

R G 9.5 0.5 0.125
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i
e Target-induced errors,

e Thermal noise,

e Discrimina t Distortion

e Range bias.

Target induced errors, thermal noise, and discriminant error are included in the

range discriminant computation. As noted in the angle tracker model discussion,

the targee induced errors will be accurate to the extent that the scattering model

for the target is accurate. Thermal noise is computed using the model discussed

in section 6.4 and derived in Appendix D. Range bias is treated as a fixed
ti

number representing errors in the system time delay calibration and time-varying

system delays.

Model Performance. Testing of the range tracker model is analogous

to the angle tracker model testing. That is, the range discriminant was checked

for accurate performance and the tracking loop was tested for proper design

and loop constant values. The rules for the range discriminant test were the

same as the angle discriminant test: quantization was ignored and the discrim-

inant was computed for several values of range error and SNR. Results of the

discriminant computations are shown in Figure 6-33 and agree with the theoretical

calculations shown in reference [2] .

The second test verifies that the loop is operating as designed and

that the constants are correct. It is performed by applying a constant range

acceleration to the target and computing the range response. The range tracker

should respond with a steady state range estimate bias error that is related

to the value of 9 (or mB) and the target range acceleration by the expression

(taken from reference C141 ),
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1
P s

1+SNR
_
 1

_

TS a update interval.

The test described above was performed under the following assumption:

the range tracker was operated in "analog fashion". That is, the

discriminant was not quantized and all multiplications and additions were

done in floating point arithmetic. The results of accelerating the target

at 10 fps  are shown in Figures . 6-34 through 6-37 for range intervals possessing

different S values. These data are in excellent agreement with the theoretically

predicted results, indicating proper operation of the range tracking loop.

6.7.2	 Velocity Processor Model Description

Model. The simulation velocity processor algorithm is functionally

Adentital to the Ku-Band radar velocity processor algorithm. A simplified

block diagram of the algorithm is shown in Figure 6-38. It is composed of

two major tasks: (1) determination of the unambiguous velocity estimate and

(2) updating the position of the doppler filter bank.

As shown in Figure 6-38, the first task is accomplished by computing

the ambiguous velocity estimate and then using this estimate and the rough

s
range rate estimate r from the range tracker to determine the unambiguous

velocity estimate. Figure 6-39 gives a block diagram of the algorithm used

to compute the ambiguous velocity estimate. The basic idea of this algorithm

►̂ 209
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a t

i-i

is as follows: compute the integral number of filter widths between zero

frequency and the target location, combine it with the fractional filter width

that remains, and scale appropriately to obtain the ambiguous velocity estimate.

It is noted that the fractional part is determined to an accuracy of 1/128 of

a filter width in all cases. 	 •^

The ambiguous velocity resolver algorithm is given in Figure 6-40.

This algorithm operates using the following principle. The ambiguous

velocity is used to give a very accurate location of the target in the

doppler filter bank and the rough range rate estimate is used to estimate

the integral number Na of filter banks that the target velocity is removed

(either up or down) from zero frequency. The unambiguous velocity is then

obtained by combining the fractional filter bank width with the integral

number of filter bank widths and scaling appropriately.

It is worth mentioning here that the resolver has some additional

protection against inaccurate determinations of N a (the number of filter bank

ambiguities) caused by noisy i values, especially when the target velocity

falls near either edge of the ambiguous filter bank. The portion of the

resolver algorithm that provides this protection is enclosed in dashed lines

in Figure 6-40 and works in the following way. If the computed position of
A

the rough range estimate in the ambiguous filter bank, call it i a , is more

than half a filter bank (16 filters) from the ambiguous velocity estimate,

then the ambiguity number Na is increased or decreased by one, depending upon

the sign of the difference between v  and ra'

The other major task of the velocity processor algorithm is to update

the position of the five adjacent doppler filters, always maintaining the 	 I

target in the center filter (prov { ded target acceleration is not too great).

The initial position of the filter set is determined by the filter in which
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target detection occurred. Thia position is then updated during track using
the algorithm shown in Figure 6-41. Depending on the values of the velocity

and on-target discriminants, the position can be moved by 0, ± 1, or ± 2

filter widths. The exact decision algorithm is given in the figure.

Assumptions. Modeling assumptions that affect the velocity processor

are that accal-ation of the target is not allowed during a data cycle and 	 •

quantization error contributed by the signal processing chain from the AID'

to the discriminant generator is ignored. Target acceleration during a data

cycle causes broadening of the signal energy spectrum (a spreading over the

doppler filter outputs), causing come degradation in velocity processor 	 ._

performance. Thus, the zero-acceleration constraint will give an optimistic

estimate of performance in those cases where the target is accelerating. The

effects of neglecting the quantization error has not been analyzed yet.

Error Sources Modeled. Velocity processor error sources include

• Target-induced errors,

• Thermal noise,

• Discriminant distortion.

All three of these errors are included iu the computation of the velocity

and the on-target discriminants. Target-induced.error modeling is achieved

In the same manner as in the angle and range tracker models. Thermal noise

is injected using the method described in section 6.4 and Appendix D.

Discriminant error is generated by using an accurate discriminant computation

model.

Model Performance. Performance of the ambiguous velocity estimator.

was tested in the following way. The target estimated ambiguous velocity was

computed as 4 function of target position over a filter width for high and

low SNA values. Results of this test are shown in Figure 6-42 and agree with

the theoretically predicted performance given in [25J.
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The ambiguity resolver has not been tested. However, it is noted

that for ranges less than 12 nm (7 kHz PRF) the error in the rougli range

rate estimate would have to exceed + 123 feet per second before the ambiguity

number is in error.

6.7.3	 Computer Algorithm Details

Construction of the range and range rate tracking loop computer

model is identical to the angle and angle rate tracking loop computer model.

That is, the computer model is broken into two distinct parts. One set of

algorithms is dedicated to generation and processing of the target return

signal to produce the required discriminants. These algorithms were described

in section 6.4. The other part of the model is dedicated to updating of the

range and velocity estimates and updating of internal control parameters.

This part is described in this subsection.

Figure 6-43 gives the range tracker and velocity processor computer

model. This algorithm is divided into four tasks: (1) updating the tracking

loop filter difference equations which give the latest estimate of the range and

rough range rate, (2) ambiguous velocity determination, (3) unambiguous velocity

deo-^rmination and (4) updating of the system internal control parameters. Each

of these tasks are described in detail below.

Range and Rough Range Rate Estimate Update. The first step is to

quantize the range discriminant to 3/16 dB using

(6.55)	 DR(n) - ((16/3) D9(n) + 1/2 1

where 1.3 means take the greatest integer in -.Thee, the range and range rate

estimates are updated using the difference equations

^' r
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Figure 6-43 RANGE AND RANGE RATE TRACKING LOOP COMPUTER ALGORITHM
(1 of 2)

ENTER
2

^--- ----1

Quantize
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nant to 3/16 dB
Accuracy

IUpdate Range
Rate Estimate
(Eqn 6.56)	 I

I
1	 ^
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'	 (Eqn 6.57)
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I	 Widths In Ambig-
uous Velocit	 II

i
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(Eqn 6.59)	

I
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Figure 6-43	 RANGE AND RANGE  RATE TRACKING LOOP COMPUTER ALGORITHM
(2 of 2)

3	 4

Compute Number Of	 1
Filter Bank.Ambig 	 (Update Position Of
uitites in R.	 5 Track Filters

(Eqn 6.61)	
+

	

(Eqn 6.66 or
 6-41)
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1	
Of I in Ambiguous

1	 Filter Bank.
(Eqn 6.62)	

Update Range
Interval Control

I	 (	 Parameter
(Eqn 6.67)

Form: A 
- RA - VA

VB	!	 Update Sample
1	 Rate Control
j	 Parameter

(Eqn 6.68)

no	 4a 
+ N a = Na 1	 !	 1

° t4 -0 Na • Na 1	 lUpdate PRF	 1
•	 Control Parameter	 1

yes	 ,	 (Eqn 6.69)

Compute Unambig-
uous Velocity	 j

1	 Estimate.	 I
!	 (Eqn 6.64)

__j
 I

I	 ,	 EXIT

Compute Smoothed	
System Control	 I

I , 	 Unambiguous	 (	 Parameter Update

Velocity Estimate.
(Eqn 6.65)
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,^	 223



(6.56)	 R( n) - R(n-1) + mBDR(n)

(6.57)	 R(n) - R(n-1) + R(n) + maDR(n)

where it should be noted that R is scaled to 5/16 feet and Rs is scaled to

5/(16 TS ) feet per second. The last step is to scale the range estimate to

feet and add a fixed range bias to form the radar predicted range estimate.

Ambiguous Velocity Estimator. In the first step the velocity

discriminant is quantized to 3/16 dB by replacing D R by DV in equation (6.55).

Next the integral number of filter widths between zero frequency and the

target location in the doppler filter bank is updated using the equation

Integral Number of	 mL, if DV > 0
(6.58)	

Filter Widths
mc, if DV < 0

where	 mL - filter number of low filter

(see Figure 6-12),

m - filter number of center filter.
c

Then, the fractional filter width remainder is determined to 1/128 of a filter

width accuracy in the following way:

Fractional Filter	
F(DV)	 if DV Z.0

(6.59)	
Width Remainder	 1-F(DV), if DV < 0

where the function F is shown in Figure 6-44. This function is predetermined

using the expression

160	
(31n 16XL Sin XR\

(6.60)	 DV	 3 log `sin XL Sin 16XR J

s^
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where(-̂r(- 32 - ftp)

X. - 
r(32 - ftp)

t - PRI
P

^• J - greatest integer in .,

to associate a DV value with each of the following values of f:

0	 1	 127

( 256t	 256t	 256t )'
P .	 PS---.	 P

These values are stored in the computer in look-up table fashion. The last

step is to compute the ambiguous velocity estimate by adding the results

of equations (6.58) and (6.59).

Velocity Resolver. The first task is to compute the number Na of

ambiguous doppler filter bank widths in i(n). This is achieved using

	

(6.61)
	

Na - IR (n) / V 

where V  is the maximum unambiguous velocity. Then, N a is checked for

accuracy using the following procedure: the position of R(n) in the

ambiguous filter bank, call it Ra (n), is computed using the equation

	

(6.62)
	

Ra(n) - mod (R(n), VB)

and is compared to the ambiguous velocity V  obtained from the first step.

The ambiguity number is corrected, depending upon the result of this

comparison, as follows
VB

Na +1 , if Ra Va < - 2

V

	(6.63)	 Na -	 Na	 if - 2 < (Ra-	
Va)< 2

Na	 a a1 , if R-V Z 
V 

2
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s

Once the ambiguity number has been correctly determined, it is

combined with the result from 'step one to obtain the unsmoothed,

unambiguous velocity estimate, Vu (n), i.e.

	

(6.64)	 Vu(n) - Va (n) + NaVB .

The final step is to pass this value of V u (n) through a digital smoothing

filter. This filter is a moving window average which averages the previous

three Vu values with the present value. Quantitatively, we lave

i	 n
	(6.65)	 Va (n)	 E	 Vu(i)

i-n-3
f

Internal Control Parameter Update. Based on the new estimates of

the range, the velocity discriminant and on-target discriminant the

following internal controls are updated: (1) filter bank position, (2)

the range interval parameter, MM, (3) the PRF parameter, MM and (4)

the sample rate parameter, MSAM. The filter position update requires the

on-target and velocity discriminant values and the following algorithm:

c-2 if DV > 0 and DOT < T,

^-1 if DV >51 and DOT > T,

	

(6.66)	
c	

C+0 iflDV I :1 51  and DOT > T,

^+1 if DV <-51 and DOT > T,

me+2 if D
V 

< 0 and DOT < T

The range interval parameter MRNG is determined by finding the integer

i such that

i
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(6.67)	
Ri-1 < R(n)< 

Ri

where the Ri	are listed in Table 6-4. MSAM is computed using the

following algorithm

1 ,	 if MRNG < 9 and IMODE - 1

or MRNG < 4 and MODE - 2

(6.68)	 MSAM •

2 ,	 if MRNG > 9 and IMODE - 1

or MRNG > 4 and IMODE - 2

Finally, the PRF parameter, MPRF, is updated by

1 ,	 if MRNG < 9 and IMODE - 1,

or MRNG < 9 and IMODE - 2,

(6.69)	 MPRF •
2 ,	 if KM > 9 and DIODE - 2,

3,	 if MM > 9 and IMODE - 1 .

The values for MRNG, MSAM and MPRF as a function of range interval

and system mode are summarized in Table 6-4.
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7.	 RECOMMENDATIONS FOR FURTHER STUDY AND DEVELOPMENT

7.1	 SYSTEM ANALYSIS

The present computer simulation model is a very useful tool for

evaluation of the Ku-Band Radar track mode design. As an example of a useful

1	 system analysis where the model can immediately be applied, consider the
i

following problem. At the present, it is not clear that one should PDI over

all five frequencies in the track mode.	 Instead, it has been conjectured

that performance would be improved by selecting the largest return of the

{	 five frequencies, especially when the return signal is weak and the target

scattering properties are sensitive to small changes in transmit frequency.

In this case, the computer simulation model can easily be adapted to perform

an analysis of this problem.

7.2	 RADAR MODEL FIDELITY IMPROVEMENT

Some of the areas where the radar simulation model may be improved are

• reducing computation time,

• discriminant model accuracy,

• AGC model accuracy,

• search model fidelity.

Reducing computation time is always desirable, since it will provide room for

improvement in the model accuracy. For example, a reduction in computation time

would allow us to use a more accurate discriminant generation model (see Appen-

dix C). An accurate AGC model will not consume an appreciable amount of com-

putation time, but it will require a significant amount of time to develop,

install, and test an accurate algorithm. Accurate AGC estimates would be use-

ful in predicting radar performance when a target fades rapidly and providing

accurate signal strength estimates under weak target (low SNR) conditions.

Although the search model has enough fidelity to provide adequate crew training,

significant improvements can be mcde in this area if desired.
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7.3	 TARGET MODEL FIDELITY IMPROVEMENT

If the target scattering measurements recommended in section 4.3.5

are performed, then it would be very useful to correlate these data with

the predictions of the present target model and, if feasible, make the necessary

adjustments in the present model.

s =
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APPENDIX A

DERIVATION OF ANGLE AND ANGLE RATE TRACKING LOOP

MODEL INITIALIZATION

The purpose of this appendix is to derive the equations used to

initialize (1) the target inertial LOS azimuth and elevation rates and (2)

the a and a gimbal rates. Fundamental to both derivations is the following

fact taken from [2g.  Consider two reference frames A and B with a common origin.

Suppose B is rotating uniformly with angular velocity w with respect to A. Then	 .

the velocity of a free point target as measured by an observer fixed in frame

A is related to the velocity of an observer fixed in frame B by the equation

(A.1) VIA M vi  + w x r

where vI A - velocity measured in the A frame,

r	 - position vector of the point target,

and all of the vectors in equation (A.1) are expressed in the same, but arbitrary,

coordinate system centered at origin of the A (or B) frame.

An important assumption that is used in both derivations is that the

target c.g. is assumed to be on the antenna boresight axis, or, equivalently,

the negative z axis of the L- frarae at the time of initialization. Thus, the

-*
position vector r  has the form

0
(A.2) ro—

	

	 0

_ iroLl

A.I.	 DERIVATION OF TARGET INERTIAL LOS AZIMUTH AND ELEVATION RATE' INITIALIZATIONS

Using the assumption stated in the previous paragraph, we can define

the target inertial LOS azimuth and elevation rates by the expressions
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t
L

Inertial LOS	
w L
	 voy^I

Azimuth Rate	 I oLl

(A.3) LI
Inertial LOS D	 L	 _ vox I

Elevation Rateiy
	

(r

where	 vo ^ I	velocity of target c.g. as measured in the

inertial frame and expressed in LOS coordinates.

We can now begin the derivation. Given that the orbiter body has the

inertial angular velocity wB, equation (A.1) can be written

v0L ^I	
GLIB + wBL X 

roL

Using the assumption given in equation (A.2), the x and y components of v  iI

can be written

v L )	 v LI	 - w L r L)ox I	 ox 'B	 By o

(A.4)
Li	 LI	 L I-► LIvoy I	 voy B + wBii r 

Dividing equations (A.4) byl=ol and using the definitions of target inertial

LOS rates given in equations (A.3), we obtain

Inertial LOS- w L - _ voxIB	 + w L

Elevation Rate	 Ty	 Iro I	 By

(A.5) Inertial LOS	 a	 L	 vLVIB	 + w L

Azimuth Rate	 wTx	
1rx1	

Bx 0

235



A.2	 DERIVATION OF a AND S GIMBAL RATE INITIALIZATIONS

The a gimbal rate is defined as the rate of rotation of the outer

gimbal (or G) frame about the x-axis of the R frame. If we assume the

rotation is uniform, then from equation (A.1) we have

a

(A.6)	 v 
G^	

v GI
	

+ 0	 Xr G .
o B	 o G	 0	 0

 )

Noting that
cos S	 -0 sin 6	 0

r 
	 = TGL r 

0
	 0	 1 0	 0

-sin S 0 cos s 4r01

or
- G	 -^ro^ sin 0

O	 0

-Iro l cos S

and writing out the y-component of equation (A.6), we then have

voy i = ovy'+ 	 a ( o cos S.
B	 G

But the y-component of the target velocity as measured in the G-frame and

expressed in the G-frame coordinates, i.e. voyl , is zero. Therefore
G

G	 L	 w  - w 
•	 voy1B	 voylB	 Tx	 Bx

Iro^ cos S	 ^ro^ cos a	
cos s

The d gimbal rate, S , is defined as the rate of rotation of the

inner gimbal (or L) frame about the outer gimbal (or G) frame y-axis.

Using this fact and equation (A.1), we obtain

Q

voG I s vo + S X r0G
G	 L	 0

Noting that v0G ^	 0 by assumption and substituting the resultant expression
L

t
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r"q

for v 0 ^ into equation (A..6), gives
G

a

v G	 = s X r G
o 

JB

	
o

0

Transforming to L-frame coordinates,

a

(A.8)
voL 

I	
TLG S s^C TLG roG

t
B	 0

i	 4 r 0

aj o) cos S

0

The expression for $ can be obtained from the x-component of equation (A.8).

It is

-v L	 L	 L
(A.9) S = °X B	 = wT 

y - wBy
r0

where equation (A.5) was used to obtain the last equality.
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APPENDIX B

DERIVATION OF TARGET PITCH ANGLE, ROLL ANGLE, INERTIAL

ROLL RATE, AND INERTIAL PITCH RATE TRANSFORMATIONS

This appendix presents the derivations of (1) the transformation of

a and a, which are tracked by the radar-, to roll and pitch angles in the Orbiter

Body (B) frame and (2) the transformation of the target inertial LOS azimuth and

elevation rates, which are estimated by the radar, to target inertial roll and

pitch rates in the B frame.

B.1	 DEFINITIONS AND ASSUMPTIONS

We first provide definitions of all quantities which are pertinent

to the derivations given below. The a and S gimbal angles were defined in

Section 2.1, while the roll and pitch angles are defined as follows:

a Target Roll Angle is the angle between the -ZB axis

and the projection of the target direction vector on

the ZB-YB plane as shown in Figure B-1.

a Target Pitch Angle is the angle between the target

direction vector and the projection of the target

direction vector on the ZB-YB plane.

Quantitatively, these definitions can be expressed as

A 
Yr

Roll angle -tan 	
^o	 B

(B.1)	
o	

B

1 [Pitch angle Q -sil-I 
ro XB

where	 o - unit vector in direction of the target,	 t

B'^B'
ZB 

unit vectors along the X B , YB , ZB axis of the B-frame,
A

respectively.

The target inertial LOS azimuth and elevation rates were defined in
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Appendix A equation (A.3). Inertial roll and pitch rate are defined as

s Inertial Roll Rate is the projection of the target

inertial angular velocity (estimated by the radar)

along the XB-axis.

s Inertial Pitch Rate is the projection of the target

inertial angular velocity along the YB -axis.

Again, mathematically we have

Inertial Roll Rate 
A 
wT

(8.2)	 '

Inertial Pitch Rate wT YB .

There are two basic assumptions that were made in the development

of the required transformations. These are that

(1) the radar is located at the origin (or C.G.) of the

B-frame, i.e. no offset,

(2) the 670 yaw angle between the B and R frames is

assumed to be exact, i.e. no boom deployment error.

With these assumptions under our belt we can define one last, but very useful,

quantity. The transformation matrix TBL , which transforms a vector expressed

in L coordinates to a vector expressed in B coordinates (see section 2), is

defined by

	

cy -sy 0	 1 0	 0	 I	 0	 s8

	

TBL - sy cy 0	 0 ca -so 0 1 0

(B.3)	 0	 0	 1	 0 sa	 ca so 0	 c6

	

wherec	 cos,

s - sin,

y - +670.

B.2	 DERIVATION OF TARGET ROLL AND PITCH ANGLE TRANSFORMATIONS

As mentioned in the introduction we are given the a , B angles and
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desire to convert these angles to roll and pitch. Consider the following

argument. ro , the unit vector in the direction of the target, lies along the

ZL-axis in the LOS frames. This can be written

A  0
0

O	 1
r	

8, 

Tranforming this vector to the Body Frame coordinates,

we have

-T BL (1,3)

(B.4)
TBL oL • -T BL (2,3)

-TBL (3'3)

Using equation (B.4) and the definitions of roll and pitch angles given in equations

(B.1), we obtain

-
Roll angle - -tag'
	 TBL(2'3)
-

TBL(3,3)
(B.5)

Pitch angle - -sin-1 TBL(1,3)1.

B.3	 DERIVATION OF TARGET INERTIAL ROLL AND PITCH RATE TRANSFORMATIONS

In this case, the radar estimates the components of the target inertial

angular velocity vector in the LOS frame, and we would like this vector transformed

to the B-frame coordinates. The argument begins by noting that in the LOS frame

the ZL- component is always zero. That is,

T
?

toZ

	 wLx

L	 wLY

wT

	 0

I

Transforming this vector to body coordinates, we have
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A	 n

(BL

L (1,1) 8AZ + TBL (1,2) OEL
WTB(2'1)	 + TBL (2'2) EL

L (3,1) 8 Z + TBL (3,2) EL

Using equation (B.6) and the definition of roll and pitch rate given in

equations (B.2),, target roll and pitch rates can be written as

Target Roll Rate - TBL (111) AZ + TBL (1,2) EL
(B.7)

Target Pitch Rate -IT  
BL (2,1) TAZ + TBL(2,2)
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APPENDIX C

DERIVATION OF THE NOISE-FREE DISCRIMINANT COMPONENTS

COMPUTATION MODEL

This appendix provides a derivation of the noise-free discriminant

component (see section 6.4.3 for a definition of discriminant component) com-

putation model. A simplified diagram of the model, illustrated in Figure C-1,

t	 shows that each of the noise-free discriminant components is computed at the PDI

output. Derivation of this model is structured as follows. First, the complete

target response representing the i th frequency, the j th time slot, the 1 th
i

range gate, and the n th doppler filter is computed at the magnitude-detector

output and then the individual noise-free discriminant components are formed by

summing (PDling) the magnitude-squared detected response over the appropriate

i, j, 1, and n indices.

{	 C.1	 MODEL ASSUMPTIONS

{J

	

	 Assumptions used in the development of the computational model are listed

in section 6.4.1. Rather than repeating the list here, use of each of the

assumptions will be noted at the appropriate point in the derivation.

C.2	 NOISE-FREE MAGNITUDE-SQUARED DETECTOR RESPONSE DERIVATION

The development of the magnitude-squared detector response is broken

into several steps. These are (1) compute the doppler filter response for a

single point scatterer, (2) using the assumed linearity of the processor from

the antenna to the doppler filter,compute the complete target response by vectorial

summation of the individual responses, and (3) compute the magnitude-square of

the result. These steps are illustrated in Figure C-1 and described in detail

below.

Doppler Filter Response For a Single Scatterer. We first write the

expression for the k th target ijsponse at the baseband filter input. This

response represents that portion of the received waveform associated with the entire

j th time slot at the i th frequency (see Figures 6-2 and 6-3). The expression
R
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I
I.

for this response is Stained by starting with the point scatterer ' s single

pulse return at the antenna output terminals given in equation (4.1) and

applying assumptions ( l) through (5) of section 6.A.1. This gives

15

(C.1)	 Sk(t)	 Akok (Psk +Pdkj) E exprj (2efkt - 
®ki)^moo l 	

t-mtp-tk	 1
•P[ t
	 Jt

where

Ak is defined in squation(4.1),

Psk antenna sum pattern weighting for k th scatterer,

antenna difference pattern weighting for k th scattererPdkj 

and j th time slot,

ak - RCS for k th scatterer,

f  • k th target doppler shift,

t  - transmit pulse width,

tp 0 PRI,

t 	 2 (Rk RG) /c'

Oki	 4W(Rk - R 0) /ki t

ki 	wavelength associated with i th transmit frequency,

P(t) - 1 ' 0	 s1

0, otherwise.

The next step is to compute the response of the presummer to the is th pulse

in the above expression. This computation includes several intermediate steps:

baseband filtering, sampling, range gating, and, finally, presumming. Assump-

tions (6) through (8) are used in the filtering, sampling, and ranging gating

process. The result of this process is best described by the illustration provided

in Figure C-2, showing the sampled pulse response with respect to the early and

r 245



#i

Figure C-2. illustration of the Rasult of the
Filtering. Smpling. and Range Gating Process
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late range gates. With these assumptions, the general response of the presummer

for the i th frequency, the j th time plot, the 1 th range gate, and the m th

pulse is

(C.2)	 Sk ( i.J,l,m) ' Ak°k 'Isk + dkj ) exp j(2 efk mtp + 0ki)

Nom^++*E rki(n) exp j2Rfk (n + (t-3/2) ND-1!2) to-tk

n-1

where rkl (n) is the magnitude of the n th sample in the 1 th range gate and
depends upon the position of the filtered pulse in the range gate as illustrated

in Figure C-2. Quantitative expression of each rkl (n) is delayed until r.he
following approximation is stated:

Approximation: It is assumed that the phase progression

over a pulsewidth can be ignored.

Using this approximation, the summation in (C.2) simplifies to

Summation	 N 

[in C.2	 n-1
rk1 (n)

N  RI(tk)

and RI (t) is defined by

0, if 44-3 or &?.1

(C.3)	 Rl(tk)	 32'i, if - 3 < A< -1
	

(Early Cate)

if -1< Q < 1
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or

	

1+D	
if -1< A < 1

	

2	 — —

(C.4)	 R2 (tk )	 3-A	
if 1 < 0 <— 3

2

0 , if A >3 or A <-1

(Late Gate)

where A-tk/t t . It is noted that the approximation given above is excellent

for all short pulse modes. However, it may introduce some degradation in the

long range case where large pulsewidths are used.

Calculation of the n th doppler filter response to the k th scatterer

is easily accomplished by using equation (C.2) and (C.3)(or (C.4)) and forming

the summation

15

(C.5)	 Sk(i.j.1.n)	 Sk(i.j.1.m) exp (-j 2320•

mMo

Performing the summation, we obtain

sin (16z )

Sk ( i . j ^ l ^ n) =.Ck(i.j.1)	 sin (z )k	
exp (-jl5zk)

k

where	 Ck(i, j . 1 ) ' -^ cQk^
(P
A + dkj ) N

pR^ (tk) exp ( -j 21TO

zk = 
7r (32 - f

ktp ) .

Magnitude-Squared Detector Response. The magnitude -squared detector

response is obtained by vectorially summing the doppler filter responses of all NT

scatterers using the assumed linearity of the processor, and then squaring the

magnitude of the resultant sum. The result of these steps is the expression
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(C. 7)

C.3

t

NT	 2
S(i,J,l,n)	 ` Sk(i,j,l,n)

k-1

DISCRIMINANT COMPONENT COMPUTATTO,.,

This subsection derives the closed-form expression used to model each

}	 of the three discriminant types: angle, range, and velocity.

t	 C.3.1	 Angle Discriminant Component Computation

The angle discriminant component corresponding to the j th time slot

is obtained by performing a post-detection summation of the energy from the

center doppler filter(q= mc)over NF frequencies and both range gates. This gives

the expression

NF 2

(C.8) DAj	 FaE S ( i ,J. md)
i-1 lZ-1

Practical Aspects of Computer Implementation. In order to reduce the

amount of computation 'jy a factor of two, the following approximation was used.

Approximation s For a given pulse from a single target,

the early and late gate presum weights are equal and are

given by 4 IR 1 (t k ) + R2(tk)l 	 However, the phase associated
J

wit1 the true position in the range gate is retained.

This approximation has the effect of altering the form of Ck (i,j ")

used in equation (C.8). These coefficients now have the form

(C.9) Ck(i,j•l)	 A cek (sk + P
dkj ) Np rR1 (tk) + R2(tk]/2

r. exp(-j 2 
7

l

We note that the approximation becomes exact when the target is composed

of a single point scatterer. However, for a multiple point target, this approxi-

mation may be invalid, especially if the range tracker does not keep the return

249



pulses close to the center of the range gates.

As mentioned above the original motivation for this approximation

was to insure adequate computation speed. If it turns out that there is room

for additional computation after the target has been represented adequately, 	 aw

then this approximation will be abandoned.

C.3.2	 Range Discriminant Component Computation

The range discriminant component corresponding to the 1 th range gate

is obtained by performing a post-detection summation of the energy from the center

doppler filter over N F frequencies and four time slots. The expression for the

range gate discriminant component is

NF ` 4̀

(C.10)	
DRP 	

S ( i .3 . ^. mc) .

i-1 J-1

Practical Aspects of Computer Implementation As in the angle dis-

criminant case, we desire to speed the computation by making approximations in

DR . In this case, we make the following approximation

Approximation: pdk3 are identically zero for all k and all J.

In effect, this'approximation makes the assumption that the angle tracker is

working perfectly. The result of the approximation is to alter the C k 's as

follows

(C. 11)	 Ck("J ") - Akak sk Np 
RL 

(tk) 
exp [i #kil .

C.3.3	 Velocity Discriminant Component Computation

We note that the velocity discriminant components and the on-target

discriminant components are computed in an identical manner. Therefore, only

the velocity discriminant component computation is described. The velocity
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discriminant component corresponding to the mL (or mH) filter is obtained

by performing a post-detection summation of all energy from the mL (or mN)

filter. This can be expressed as
i

i	 NF	 4	 2

(C.12)	 DVL !^`	
S ( i . j .12, mL)

i-1 j-1 1-1

Practical Aspects of Computer Implementation. To enhance the computer

speed in this case we use both approximations stated above for the angle

discriminant and range discriminant. Therefore, the Ck (i, j,I) for equation

(C.12) are given by

(C.13) Ck(i. j.I)- -
ic°k skNp [R(t)+R(tlk2k) 12	 (-j2-Ir^[exp 	]
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APPENDIX D

DERIVATION OF THE THERMAL NOISE MODEL

As described in section 6.4, the computational model for the noisy

discriminant values generates the noise-free target response at the PDI output 	 -

and adds the equivalent thermal noise sample, obtained from the appropriate

statistics, to the noise-free value. This model is illustrated in Figure D-1.

Motivation for injecting the noise at this point, rather than at the signal

processor input or some intermediate point was to enhance the real-time processing

capability of the track mode. That is, it was desired to maximize the number

of point scatterers allowed in the target model. The purpose of this appendix

is to demonstrate that the equivalent noise can be represented as an additive

noise process and to derive the statistical characteristics, i.e. the mean, the

variance, and the probability density function (pdf) for each member of this

random sequence.

D.1 MODEL ASSUMPTIONS

Derivation of the noise model is based upon the following set of

assumptions. The primary assumption is that the form of the signal, including

thermal noise, at the doppler filter output is given by the expression

(D.1)	 v(n) - vI (n) + vq (n) - (S I (n)' + nI (n)) + j (S q (n) + nq(n)).

S I (n) and Sq (n) are the in-phase and quadrature components of the noise-free

target response at the doppler filter output for the n th time sample. The

quantities nI (n) and nq (n) are the in-phase and quadrature components of the

thermal noise process for the n th time sample. These components are assumed

to have the following statistical characteristics:

(1) both are Gaussian random sequences,

(2) nI , n  are statistically independent for all values of n,

(3) nI (i), nI (j) (and nq (i), nq (j) are statistically independent	 LL
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a.s
for all values of it j such that i

(4) the mean and variance of nit  n areq

mi =m =o
q

QI 2=oco.`
q

The last assumption is that all signal processor quantization effects are ignored.

D.2	 NOISE MODEL DERIVATION

D.2.1	 Derivation of Mean and Variance at PDI Output

We begin the derivation by calculating the output of the magnitude-

squared detector when the sequence of equation (D.1) is applied at the input.

The resulting output is given by the expression,

X(n) 
= Iv(n)I2 = v

12 (n) + vg2(n)

(SI2 + 2S  a  + nI2 ) + (Sq2 + Sq q+ng2)

_ (SI2 + S q 2 ) + (2S InI + 2Sgnq + nI2 + nq2)

Computing the mean of X(n), we.have

X(n)
T_
v(n) Ste+ S +	 + 2 S n + n + n

I	 q	 I I	 q q	 I	 q

where the bar over a quantity means to compute the expected value of the quantity.

Using the assumptions given in section D.1, this expression reduces to

(D.2)	 X(n) - S I 2 + S q 2 + 20  = 
IS12 + 2 02

Calculation of the variance of X(n) is straight-forward, but quite tedious, to

perform. Therefore we will only provide the result of that computation:
r
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(D.3)	 var X(n)	 40 2 ^S(n)o	 ^2 +4QO4
	 .

The next step is to calculate the PDI output signal and its associated

mean and variance. Assuming the PDI ratio is N, the output signal has the form

N
(D.4)	 y(n) - Z X(n)

The mean of y(n) is computed from

N	 N

y(n) _	 X(n) _	 IS(n)12 + 2No02

i
n-1	 n-1

j	 N

or, defining	 ^S	 = N F IS(n)1 2 , we have
j	 n-1

'	 -- 2
(D.5)	 y^n') - NIS(n)1 2 + 2NQ0

Calculation of the variance of y(n) is based upon the following fact which

is stated without proof. (The proof is straight-forward, but quite messy.)

Since it was assumed that n I (i), nI (j') (and nq (i), nq (j)) are statistically

'independent for all i, j such that i 0 j, it can be shown that (x(i), x(j)

are uncorrelated (and satistically independent) . Using this fact, and the

well-known relation,

var (x + y) - var x + var y

where x and y are uncorrelated, one can easily write the expression for the

variance of y(n) as

I -	 1	 255



N

(D.6)	 var y - E var. X(n)
n- 1

4Na
0
2 1 + 4Na0 4

We can define the new random variable

(D. 7)	 Z - y - NS

which has the mean and variance

r

(D.8)
Z' Y- N I S) 2

varZ vary

Thus, from equation (D.7), it is seen that the output of the PDI can be expressed

as the sum of the noise-free target response (NISI 2 ) and a sample from the random

variable z which has the mean and variance given in equation (D.8) and the pdf,

Pz , which is derived in the next subsection.

r.2.2	 Derivation of the PDF for Z

i
The pdf for the random variable Z can be derived as follows. Define the

I

random variable

(D.9) w 1 	 - 2Nao2 
1

	

IZ
	

JN
N

N `1 
x(n) - IS(n) 1 2 - 2a02

NrO

or	 N

W 
1	 el w 

a r
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where the w  are continuous, mean zero, and statistically independent. When

N is reasonably large (we note that N >_ 10 for passive tracking modes), the pdf

for w approaches a normal distribution of the form

2
(D. 10)	 Pw (w)	 1	 e -(2e 2)

°w	 w

N
where owl • 1
	

awn2	
from the central limit theorem [21 . Now, from

u-1
equation (D.9), we have that

Z -mow+ 2N Q 2
0

and thus the pdf for Z is normal with mean and variance

2	 2
(D.11)

'E - 4W7+    2NQ0 - 2N co

c

var Z -! N var w - var y

as shown in section D.2.1.

DA	 PRACTICAL ASPECTS OF : MODEL IMPLEMENTATION

Given the value of I^ the PDI output can be generated using the model

of the previous section as follows:

(D.12) y-NSI + 2N a02 + 2, i a02 
117 

/0 02 + 11 N (0,1)

where N(0,1) denotes a sample from a normally distributed population with zero

mean and unit variance. It is important to point out that, although the probability

is very small, in some instances the resulting value of y obtained from equation

(D.12) can be negative. This result is totally unaccpetable since it does not

in practice and it will cause the log conversion process to become undefined.

M r
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Therefore, to prevent this situation, we make our final approximation: we

simply set y equal to the absolute value of the quantity on the right hand

side of equation (D.12).

It is also noted that since the discriminant formation process computes

the ratio of the noisy discriminant components, any scale factors that are common

to both components can be ignored. We chose to ignore the factor, 2^1 a0

Combining this fact with the absolute value approximation explained above.

equation (D.12) becomes

._

(D.13)	 y -	 S	 +^1	
Z

+ r

2

	
l N(0,1)+ 1 
J

	

2c	 `20
0	 0
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APPENDIX E

1

CROSS SECTION CALCULATION NOTES

I

Features 1-3

of 291 aL2 - 2.6m2

Fenture3 4-6

o j - 291 aL2 - 61m2

Feature 7

o	 291 aL2 - 25.7m2

1
Features 8-10

c	 4 
—7A
 

- 26934 A

1
A - 0.2m2
O

C Z 5000m2 - Limit to 1000m2

Features 11-12

A - (. 24m) 
2x 

A -

c1 . 5000m2 - Limit to 1000m2

Features 13-26

Take D - .5m

f/D - .5

Malolobe (13)

a ^. 6645D2 - 3322 m2

Reflector (20)

n- .785D2 cos 
4 

A- .2 com 40

Take con 0 - 1.
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3 i

Yt

FQAlurc 14

a - .24

L-4m

al - 291 aL2 - 1117m2

Futures 15-25

a - 4nA/A 2 (See text)

Features 27-32

a	 .lm

a - *a2 - .03 m2

Features 33.34

ac
 - .315m

A - 23.600

a(A <0 0  - 4aac2 - 1.25m2

5*a2
a(e >00) °m 9 c - 0.17m2

i

r	 260
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APPENDIX F

A MODEL FOR CENTROID WANDER IN

ROUGH SURFACE MODELS

The areas modeled as r^)ugh surfaces can be expected to experience
1

wander of the apparent center. We take the mean position to be x k ,yk ,zk in

Table 4-1 and add a vector v that reflects the wander. Consider features 35,E	 _

perpendicular to the x-axis, . 7 r .7 m in extent. Then we take v in the yz

plane with y and z components to be random variables with

y-i-o

E yz - o

2

	

Qy2 	 Qz2	 i,^._
f

D - Area dimension - .7m

N  - No. of frequencies averaged

5

The vector changes as the target aspect changes. We model this

behavior as follows. Let v  be the wander vector at the m th simulation update.

Take vm to be a first order Markov process (Ref. 28 p. 324) with uncorrelaten

components and with, for example, the z component given by

zm+1 - z  + m

where w  is zero mean, uniform, of variance

	

° w	 z2	 (1- a) °2

We now choose a to match the correlation time of the model to that of the target.

One has

P 
r Ezm+kzm a 

	k 	 E4
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.At-

and taking the "correlation interval" as

N . -1
C Ln a

a - exp (-11Nc)

This is the number of iterations for which the correlation P  falls to 1/e.

Now consider the target

The target return becomes decorrelated every time its aspect changes enough to

cause another 2n propagation phase change from one edge of the area to the

other. This corresponds to half wave.Length differential range;

Change in Ar - Change in D sin- -A
x	 2

Let 0x change by ,&0x. Then

0(A') ' 00 dT (AR)

A0 D cos $x 2

so that the angle change corresponding to decorrelation is

AOx - 2D cos 0
x

i

i

f
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Let the change in one simulation update period be dm x then the number of

update cycles required for decorrelation is

N 	 _	 aU
	

x
8Q	 2D$ox cosh

x

Matching Nu to N  then yields

-2D 60 cos
x	 x

a = exp	 A
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APPENDIX G

LISTING OF SIMULATION MODEL COMPUTER CODE
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C 00062940
C	 *	 EXECUTIVE PROGRAM: INTERFACE WITH PARENT SIMULATION i 00002950
C	 **+t###*nisi*#####s#ti*ti ###ist*#i#i#########it#t#ttt 00002960
C 00002970
C 00002960

SUBROUTINE EXEC 00002990
COMMON /CNTL/ IPWR * IMO7E * ITXP * IASM * IDUMC(S) *DUMC(3) 00003000
COMMON /OUTPUT/MSWF.MTF.MSF *DUM(7) * IOUM2(4) 00003010
COMMON /ICNTL/IOLDPW * IOLOMD91OLDSM * ISHOLDtKMSCLK *KWMUP910UMI(3)• 00003020

2	 MTP*IDUMS(17) 00003030
DATA OATINT/1.0/ 00003040
KWMUP= I 00003050

C 00003060
Css##*si#*##***#***##*#ii#st*######i#*#####*### 00003070
C	 s STEP 0:	 INITIALIZE ALL TARGET AND SYSTEM DATA # 00003080
C	 **i*ii#iii#iii #ii##iiii#i###iiii**#iiiiiiiii#+i#ii 00003090

IF(DATINT*NE.1.0) GO TO 1 00003100
CALL DATA 00003110
IOLDPW=2PWR 00003120
DATINT=O * 0 00003130

1	 II=1 00003140
IF(I(*EQ*I) GO TO 30 00003150

C 00003160
C	 ii##iii##*##* ti#####i##*#### t###ii 00003170
C	 i STEP 1: CHECK SYSTEM POWER SNITCH # 00003280
C	 stiff*######* #ist#iii#iiiis#ii# t#t#it 00003190

IF(IPWR * GT * 1) GO TO S 00003200
C	 IF POWER OFF -- INITIALIZE ALL SYSTEM FLAGS AND CLOCKS. 00003210

KMSCLK ro 00003220
CALL SYSINT 00003230
RETURN 000 0324 0

C	 IF POWER ON -- UPDATE MASTER CLOCK AND DETERMINE OPERATING MODE. 00003250
5	 KMSCLK=KMSCLK+l 00003260

C 00003270
C	 **#iiii**#**##*#*#i*##*i#i *it **#ii 00003280
C	 * STEP 2: CHECK SYSTEM MODE SWITCH * 00003290
C	 ###i*i*i**#i***i**i*i#*ii#### # ii#*i 00003300

IF(IMODE.LT.3) GO TO 7 00003310
C	 IF SYSTEM IN COMM(IMODE=3) --- INITIALIZE ALL SYSTEM FLAGS. 00003320

CALL SYSINT 000 03330
RETURN 00003340

C	 IF SYSTEM IN RADAR MODE -- CHECK FOR CHANGE IN MODE ( I * E* ACTIVE-TO 00003350
C	 -PASSIVE OR PASSIVE-TO-ACTIVE). 00003360

7	 IF(IMODE: *EO* IOLDMO) GO TO 10 00003370
C	 IF RADAR MODE CHANGE --- RESET SYSTEM TO SEARCH * 00003380

CALL SYSINT 00003390
C	 UPDATE STATUS OF IOLDMD * 00003400

10	 I OLDMO =I MOOS 00003410
C 00003420
C	 *ii##iii#ssi##*#i#ssii###s # *##iii#*##***iiii 00003430
C	 * STEP 3: DETERMINE WHETHER SYSTEM IN STANDBY * 00003440
C	 *##i*##ii*ii#***i**sit*ii *###si #i#st#*ii#iii 00003450

IF(IPWR* GT.2) GO TO 15 00003460
CALL SYSINT 00003470
RETURN 00003480

C 00003490
C	 i###i*#*i# ##*i#iii* #iiti#sii#iiiisiii#i*# *ti#i ##* 00003500
C	 * STEP 4: DETERMINE WHETHER WAR MUP PERIOD EXCEEDED i 00003510
C	 **i*** i****#*****#i**ii#iiiisii#s*iii**####**i#ii 0000352(s

15	 IF(KMSCLK * GT* KWMUP) GO TO 20 00003530
C	 IF NOT EXCEEDED --- INITIALIZE ALL SYSTEM FLAGS AND RETURN. 00003540

CALL SYSINT 00003550
RETURN 00003560

C	 IF EXCE®,ED --- CONTINUE SYSTEM OPERATING MODE DETERMINATION. 00003570
r 00003580

ORIGINAL PAGE IS
OF P(N )R (QUALITY
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s

#*##s*#1111* sslst#sssss*#issli*s* #*#*#*##*#*s*lll#t**ai^sl*spa 00003590	 a
s STEP 5: DETERMINE IF THERE HAS BEEN AN ANTENNA STEERING MODE s 00003660
*	 CHANGE	 l 00003610
st#*s####t#s#st##s####s#* s #*M is##*tics*####si#*i#isiltslsii 00003620
20	 IF(IASM.EO.IOLDSM)GO TO 25 00003630
IF CHANGE HAS OCCURRED -- RESET ALL FLAGS AND GO TO NEW MODE * 00003640 *k

CALL SYSINT 00003650
2S	 IOLDSM:IASN 00003660

00003670	 _f
slats#*tt#*ss##s###s### sssii*ses #**sis##s#st*s#lass*siss*##si## 00003680
* STEP 5: DETERMINE WHETHER SYSTEM IS IN SEARCH AND ACQUISITION * 00003690
s	 OR TRACK MODE.	 s 00003700	 *+
ass#*tsttssstsstst#ssts*#s#*#1111#sssssttst#t#sslssiti#s#*t#i*#s 00003710

IF(MTF.EQ.I.OR.MTP.Ea.I) GO TO 30 00003720
IF TRACK FLAG DOWN -- GO TO SEARCH MODE. 00003730

CALL SEARCH 00003740
RETURN 00003750

IF TRACK FLAG IS UP --- GO TO 	 TRACK MODE. 00003760
30	 CALL TRACK 00003770

RETURN 60003780
FNn 00003790

000 0380 0
000 03810

ss#tss*tssttts#sssttsss*##s####ss*s#sstt#*s*sssti#si#s*s## #s*i#ss*it 00003820
s THIS SUBROUTINE RESETS THE SYSTEM UNDER THE FOLLOWING CONDITIONS * 00003830
R (1) BREAK—TRACK (TO SEARCH)• (2) PASSIVE/ACTIVE MODE CHANGE (TO 	 * 00003840
t SEARCH), AND (3) SYSTEM IN STANDBY (TO IDLE). 	 * 00003850
*sat*s**tsstt*tsss*assstts**ss*#sat*s*#ss#sstss*ss*ist#*s#*iii si#*** 00003860

00003870
00003880

SUBROUTINE SYSINT 00003890
COMMON /CNTL / IPWR.IMODE.ITXP * IASM • IDUMC (S).DUMd ( 3) 00003900
COMMON /OUTPUT/MSWF.MTF•NSF *SRNG.SRDOT.SPANG.SRANG.SPRTE *SRRTE9 00003910

2	 SSRS*MADVF.MRDVF*MARDVF.MRRDVF 00003920
COMMON /ICNTL / IOLDPW * IOLDSD * IOLDSM.ISHOLD•KMSCLKoKWMIIP .KSNCLK • 00003930

2	 KSNMAX*KACCLK.MTP•MZI9MZO.MSS •MTKINT•MRNG•NSAMsMPRF*00003940
3	 MBK T'RK •MB TSUM. MBT (8) 00003950
COMMON /ATDAT/DUMI(4)•ALRATE98TRATEODUM2(2).AL9BT.PREF.RREF 00003960

00003970
s###ttsstsst#tsssssi is**ass#s*tst*s#i*tis#ts##sstt 00003980
* STEP 1: INITIALIZE kALL J NTERNAL FLAGS AND CONTROLS s 00003990
s#sttss##111111*sttssssttttstsss #stt#ss##st#ttts*s*###s 00004000

IOLDMD=IMODE 00004010
IOLDSM=IASM 00004020
ISHOLD=O 00004030
MTP=O 00004040
MZ1=0 00004050
Mz0=0 00004060
MSS=O 00004070
MTKINT=O 00004080

00004090
*tssstttsss*sttstt**ss**ss *tsr*sssss#**s# 0004100
s STEP 2: INITIALIZE ALL INTERNAL CLOCKS s 80004110
s*slat*st*ststttt*sssstt*tttsss*ts*s#t*t 00004120

KACCLK =O 00004130
K SNCLK -0 0 00 04140

00004150
sits*s**sssss*tttstssst*ssttssstt#st*# 00004160
s STEP 3:	 INIT IAL IZE ALL DISPLAY FLAGS s 00004170
*isssssststsssttst*s#ssssstttst s*ssstt 00004180

MSWF=O 00004190
MSF=O 00004200
MTF=O 00004210
MAOVF=O 00004220
MRDVF=C 00004230
MRRDV^=O 00004240
MARD VF =0 00004250

00004260
*#tttsss*sststsssssttttts* #sass*sssssss 00004270
s STEP 4:	 INITIALIZE ALL DISPLAY METERS s 00004280
issssssssst^.sssssstttss*s*ttstttsssssst 00004290

SRNG= 0 .0 0000430 0
SRDOT =0r.0 000043110
SPRTE=O-D 00004320
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SRR"TE=0.0
SRSS 0.0 00004340

00004350
*###s*ss#s#sss#ss***######ss#ses#*ssss#s#s* 00004360
# STEP 5:	 INITIALIZE GIMBAL POINTING LOOP # 00004370
***s**s******sss*s##ss»#»»#*########s**s*s# 00004380

PII=3.14159265/180. 00004340
ALRATE =0.0 00004400
BTRATE-0.0 00004410
IF(IPWR.NE.I.AND.KMSCLK.NE.1) GO TO 5 00004420

00004430
STEP 5-1: IF SYSTEM POWER OFF THEN ALIGN BORESIGHT WITH ZENITH. 00004440

PREF=O.O 000 04450
RRE F=0 .0 000 04460
AL-0 .0 00004 470
ST-0.0 00004480
SPANG= 0.0 00004490
SRANG=0.0 00004500
IOLDPW-tPWR 00004510
RETURN 00004520

5	 IF(IPWR.GT .2) GO TO 15 00004530
000 04540

STEP 5-2: IF SYSTEM IN STANDBY THEN HOLD GIMBALS AT POSITION WHEN 0000455C
STANDBY ENTERED AND ZERO DISPLAYS. 00004560

IF(IOLOPW.EO.IPWR) GO TO 10 00004570
PREF=PII*SPANG 00004580
RREF=PII*S RANG 00004590

10	 SPANG-0.0 00004600
SPANG-0.0 00004610
IOLDPW -IPW R 00004620
RETURN 00004630

00004640
STEP 5-3s PREPARE GIMBAL LOOP FOR ENTRY INTO ANY OF SEARCH MODES. 00004650
15	 PREF-PII*SPANG 00004660

RREF=P I I *S RANG 00004670
IOLDPW=IPWR 00004660
RETURN 00004690
END 00004700

00004710
00004720

*t *s*t»**» #***»»****»**** #*»ss*t**s*t###***s*»sssssssssssss 00004730
• THIS SUBROUTINE COMPUTES THE RESPONSE TO ALL DISPLAYS AND * 00004740
• CONTROLS WHEN THE RADAR IS IN ANY OF THE SEARCH MODES. 	 * 00004750
****###*t*# ss#**** t*s»s**#*#s**s#s***s##*##*s####ss*#*s**# 00004760 

000 04770
00004780

SUBROUTINE SEARCH 00004790
COMMON /CNTL/IDUM(3)•IASM•ISRCHC•ISRCHG•IAZS.IELS•ISLR•EDRNG• 00004800

2	 EDPA •EDRA 00004810
COMMON /OUTPUT/MSWF•MTF•MSF,SRNG•SRDOT•SPANG•SRANG•SPRTE• 00004820

2	 SRRTE • S RS S•I DUM2 (4) 000 04830
COMMON /ICNTL/IOLDPW•IOLDMD•IOLDSM•ISHCILD•KMSCLK•KWMUP•KSNCLK• 00004840

2	 KSNMAX•KACCLK•MTP.MZ19MZO•MSS•MTKINT•MRNG•MSAM•MPRF900004850
3	 IDUM1(10) 00004860
COMMON /SYSDAT/TS•DUMS(14) 00004870
COMMON /ATOAT/DUM2(10)•PREF•RREF•DUMA(2) 00004880
DIMENSION SLWRTE(2) 00004890
DATA SLWRTE/699814E 343.4907E-1/ 00004900

00004910
s# #s#s»s** s#*# #*s* ss s##s# t sss # s#s s* 00004920
* DETERMINE ANTENNA STEERING MODE. s 00004930
*##**ss*s #**#**s*******# #s# #s** 00004940

GO TO (10,20,30.40)•iASM 00004950
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C 000 04960
C 00004970
C	 #s*tits** #ts##s*ss*s###*** s#*p t#si*si#s*ssss*sss*555555*#*#*s*#54!5500004980
C	 ************#*** GPC-ACQ SEARCH AND ACQUISITION MODE. ** #t********w!- 00004990
C	 #5i#*s*si*#**ssss##*ss**** pi*##*s *s***it*s*#*##***sss***555#tssss5*s00004000
C 00005010
C 00005020
C#* *s ##s**#*ts**11# 15#*iii*pis# #*s#ss#sii#*5***st#5555***#* 00005030
C	 * STEP 1: DETERMINE WHETHER SEQUENCING THRU POINT OR SCAN s 00005040
C	 **##**s#ii #s*#*si##*ss*•i p* # *t*##s#s*5**ss***ss*#s#s**ss 00005050

10	 IF(MSF *EQ.1) GO TO 14 00005060
IF(MZ1 *EQ * 1.AND.ISRCHG*EQ*1) GO TO 14 00005070

C 00005080
C	 ###***#ii#*#5s***#s# #iis*s p sp sss #*###**#*# 00005090
C	 * STEP 2: PERFORM GIMBAL POINTING SEQUENCE * 00005100
C	 #*i*s**i#**ii#i##*#*s#**##ptp #ssss*ss#5*## 00005110
C 00005120
C	 STEP 2-1: UPDATE ROLL/PITCH REFERENCES 00006130

IF(ISHOLD *EQ*1*AND* ISRCHG * EQ.I) GO TO 12 00005140
RREF=EDRA 00005140
PREF=EDPA 00005160

12	 ISHOLD =ISRCHG 00005170

C 0000'55190STEP 2-2: UPDATE POSITION OF GIMBALS *
CALL POINT 00005200

C OOOOS210
•	 STEP 2-3: DETERMINE WHETHER BORESIGHT IN ZONE I AND /OR ZONE O AND 00005220
C	 TAKE APPROPRIATE ACTION* 00005230

CALL ZONECK 0000:240
•	 IF NOT IN ZONE O• THEN DETECTION IS NOT ALLOWED* 00005250

IFCMZO.EQ * O) RETURN 00005260
C 000 05270
C	 *iti*###i# p*#*i##i***i#*# #i p t*#i#####**##**#*i#**#** 00005260
C	 * STEP 3: CHECK FOR TARGET DETECTION --- IF IN ZONE 0 * 00005290
C	 555#555!#**si#ss#i##s#*#i*ti#p is#15!!55##sit*is**s#*ss 00005300
C 00005310

CALL DETECT 00005320
RETURN 00005330

C 00005340
C#ssss*s*its**#**## #s*ss*i # psp s# 00005350
C	 * STEP 4: PERFORM SCAN SEQUENCE * 00005360
C	 **i#*#ii*#iii#####i**##si* p* p si 00005370

14	 CALL SCAN 00005380
RETURN 00005390

00005400
C 00005410
C	 #* p**ssi#sss*s**#*#ss*##5 p ip s#**s#ii#**s*ss###s *sss**#s*its##i##*#0000542 0
C	 *i*##**5i* p i*** GPC-DES SEARCH AND ACQUISITION MODE ********* #s#****00005430
C	 ##i!i*##*spit##p##***####^* p s#i*##i##i#ii#ss*##i#*ii**#*##*##i***#00005440
C 00005450
C	 ##*#ii###i#5i##i##**s#i#iip#s#i*#**##*####i 00005460
C	 # STEPI : PERFORM GIMBAL POINTING SEQUENCE * 00005470
C	 ssss**#**s#*i##is# *ss#isiipip s*sit*#s*is## 00005480
C 00005490
C	 STEP 1-1: UPDATE ROLL/PITCH REFERENCE ANGLES. 00005500

20	 PREF-EDPA 00005510
RREF=E DRA 00005520

C 00005530
C	 STEP 1-2: UPDATE POSITION OF GIMBALS. 00005540

CALL POINT 00005550
C 00005560
•	 STEP I-3: DETERMINE WHETHER BORESIGHT IN ZONE I ANDIaR ZONE 0 AND 00005570
C	 TAKE APPROPRIATE ACTIN. 00005560

CALL ZONECK 00005590
•	 IF BORESIGMT NOT IN ZONE O * THEN TARGET DETECTION NOT ALLOWED * 00005600

IF(MZO.EQ.0) P-TURN 00005610
C 00005620
C	 **its**#i#ps#ssp###isp#p#s#***#ssi*#i#sit**s##i#*tss 00005630
C	 * STEP 2: CHECK FOR TARGET DETECTION -- IF IN ZONE O* s 00005640
C	 s**sss**ss pstss*st#ss#s*# p# p #*s**#t*s##sissts##it*tp 00005650
C 00005660

CALL DETECT 00004670
RETURN 000056/0
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C 00005690
C 00005700C	 s*a**!a*si!**a***!t*ttii*#*piii****t#t!t***a*ta* *Iii**ss**#*ssi*ti00006710C	 sits*#slsiiis**i*i AUTO SEARCH AND ACQUISITION MODE i****sass****s*s*0000S720C	 ssss#tats#ss*sssat#s*tsa#s#!*sitisist!!*titsttii*ipisat•tiiisiisiis0000S730
C 00005740
C 00005780C	 !* !* ttttas*ss#*sits**s*ist#t#sass*assttiit*#tas**st*#ss• 00005760
C	 * STEP l: DETERMINE WHETHER SEQUENCING THRU POINT OR SCAN s 00006770
C	 #!!!##!*ssast#♦t#*!ltapias#sitsiitilitit!*isit*s pttats 00005740

30	 IF(ISRCHC.E(6 11 GO TO 32 00005790
C 00006800
C	 i#itiiitsiiiiittitia*t**si#*#ass*atat*lsii 00005810
C	 * STEP 2: PERFORM GIMBAL POINTING SEQUENCE t 0000S620
C	 sasisssas*#*si*antiiss*s#s#tssssiss*last 00005630
C 00005840
•	 STEP 2-1: UPDATE ROLL/PITCH REFERENCE ANGLES. 00005880

PREF=PREF+FLOAT(tELS)*SLWRTE(ISLR+1)*TS 00006860
RREF=RREF+FLOATCIAZS)*SLWR"TECISLR+I)*TS 00005870

C 00005880
•	 STEP 2-2: UPDATE POSITION OF GIMBALS. 00005890

CALL POINT 00005900
C 00005910
C	 STEP 2-3: DETERMINE SLEW RATE AND TAKE APPROPRIATE ACTION. OOOOS920
C	 IF SLEW RATE IS GREATER THAN 094 DEG/SEC• THEN TARGET DET-00005930

IF(ISLR.GT.0) RETURN 00005940
C 00005950
C	 sa#st*assit#a!s**tats*as#s##sits*titst*#astiss*iiiitisls#t 00005960
C	 * STEP 3: CHECK FOR TARGET DETECTION -- IF SLEW RATE <0.4 DEG t 00005970
C	 !	 PER SECOND.	 # 00005960
C	 ssptssss*#tsss!!*s**ssss#ssssassasiasi*** i**i**sstsisssitisit 00005990

CALL DETECT 00006000
RETURN 00006010

C 00006020C	 asasasatssaa*iasasa*taat*it*#sa 00006030
C	 * STEP 4: PERFORM SCAN SEQUENCE * 00006040C	 ###ssss##s##ss#sit#s#ss##s##sa#sa 00006050

32	 CALL SCAN 00006060
RETURN 00006070

C 00006080
C 00006090
C	 !s*!ss*sasa*assssssassais ass*s**s*issssstas*aatisasatatata*a*itasaoo006100
C	 *iis*s**ssilsssii MANUAL SEARCH AND ACQUISITION MODE s*ss***#it****i000061I0
C	 **#**s**ssasss*s#s###sass a#*#s# #slidass*****ssasii**tistii*assassi00006120
C 00006130
C 000 06140
C	 *t*ass*sssst*s#sa*#stass*sasiistass 00006150
C	 * STEP 1: UPDATE ANTENNA POSITION s 00006160C	 ss!*ss#sstsssissssss#ssaas atsissss 00006170
C 00006180
C	 STEP 1-1: UPDATE ROLL/PITCH REFERENCE ANGLES. 00006190

40	 PREF=PREF+FLOAT(IELSI*SLWRTE(ISLR+1)*TS 00006200
RREF=RREF+FLOAT(IAZS)*SLWRTE(ISLR+I)*TS 00006210

C 00006220
C	 STEP 1 -2: UPDATE POSITION OF GIMBALS. 00006230

CALL POINT 00006240
C 000 06250
C	 STEP 1-3: DETERMINE SLEW RATE AND TAKE APPROPRIATE ACTION. 00006260
C	 IF SLEW RATE IS GREATER THAN 0.4 DEG/SEC. THEN TARGET DET-00006270
C	 ECTION IS NOT ALLOWED. 00006280

IF(ISLR.GT.0) RETURN 0000629"
C 00006300
C	 sass#assns!*t*tasassi#saga#aaasa*s**##asssssataititastas*sti 00006310
C	 * STEP 2: CHECK FOR TARGET DETECTION -- IF SLEW RATE <0.4 DEG * 00006320
C	 i	 PER SECOND.	 i 00006330
C	 #**a**satiai***t*iiiititta*taiifiti*al ita!*ti*titaptatt#ti#i# 00006340

CALL DETECT 000063FO
RETURN 00006360
END 00006370
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000 06380
000 06390

tr+!ltRSSSStl+trrrstts#R#!ts#rt **!!!r! Rl RrtstRRtrrrrrssssrrrr*rsrr #*600006400
R TM	 SUBROUTINE PERFORMS THE TARGET DETECTION FUNCTION FOR ACTIVE *00006410
+ AND PASSIVE MODES AND ALL ANTENNA STEERING MODES. *00006420
+###*#!ltt+R 6t**t+rsr #st#! ##rplRt#Rr#*r* !##*R###****#**s#t#*srss ****000 06430

000 06440
00006450

SUBROUTINE DETECT 00006460
COMMON /CNTL/IPWR*I140DE*ITXPolASM*IDUMC(5)9EDRNG *DUMC(2) 00006470
COMMON /ICNTL/IDUM2(9)•MTP•IDU43(17) 00006460
COMMON /SYSOAT/OUM2(12)•TGTSIG•GPS•GAS 00006490
COMMON /TGTIiAT/ITT *DUM3(500)•RO(3) *ROU(3) *CGRNGEoCGVEL 00006600
COMMON /DET1)AT/SIGMA *CLANG 00006510

00006520
+t s#**#atR #tts .st*** *stsrR p tt6 r*s **s#ts*rssttt 00006530
• STEP 1: COMPUTE TARGET PARAMETERS WRT RADAR s 000065406rt! * +s! * *s**sw+sss **s*tssp tss s*# *6##ttsRlrtts 00006550

000 06560
STEP : - I: li2!l': SFORM TARGET C^G^ POSITION AND VELOCITY TO LOS FRAME * 00006570

CALL TRNSFM 00006560
CALL PVTRAN 00006590

00006600
STEP 1-2: COMPUTE TARGET C.G• ANGLE OFF-BORESIGHT (NON-SCANNING). 00006610

CGANG-ACOS (ROU( 3)) 00006620
000 06630

STEP 1-3: DETERMINE TARGET CROSS-SECTION. 00006640
4

SIGMA-TGTSIG 00006650
00006660 =_

!s*t ssttt* tlR+** rt#tsss*ss p tls s#sttt*t*ss#s ** #s*#t# 00006670
i STEP 2: PRELIMINARY DETECTION MODE DETERMINATION t 00006600
ssr•tss*#+s*sasttt#tt#tsssr#sr*rtstsrrt6st ♦*srst#s*s 00006690

00006700
STEP 2-1: DETERMINE WHETHER ACTIVE OR PASSIVE. 00006710

IF(IMO0E.E0.1) GO TO S 00006720
00006730

STEP 2-2: GPC MODES OR AUTO/MANUAL MODEST 00006740 -
IF(IASM.GE.3) GO TO 10 00006750
GO TO 15 00006760

000 06770
s**tt+•ss*+sssst**r*##t#tt*sstsa**RRr! 00006760

:*
+##

STEP 3: ACTIVE MODE DETECTION PROCESS * 00006790
+* p tsRRSS !!***ss+**srsttRS#ss***s+*st*#t 00006000

00006810
5	 CALL SINGLE 00006820

RETURN 00006830
00006840

+**sssatt++t+* **s*ssss+stt s#t** t***tss*s#s ptss*s*rR#t 00006650
+ STEP 4: PASSIVE AUTO/MANUAL MODE DETECTION PROCESS s 00006860
s#s!*s+s++s**6tst*6stsss*+s*ss#RSrss*lsss+s*s*trrs#sts 00006870

000 06880
STEP 4-1: CHECK SHORT RANGE FIRST -- CALL SINGLE-MIT DETECTION 00006890

MODEL. 00006900
10	 CALL SINGLE 00006910

000 06920
STEP 4-2: CHECK FOR SUCCESS IN SINGLE -MIT DETECTION	 IF NOT SUC 00006930 -`

CESSFUL• THEN TRY LONG RANGE SEARCH. 00006940
IFCMTP.EO.0) CALL CFAR 00006950
RETURN 00006960

00006970
*sssts*:+t**•*s+*+*+*ssstsr*+stss#s*ssttsts++t* 00006980
s STEP S: PASS IVE GPC MODES DETECTION PROCESS * 00006990
a• 6##++##+ **** *++* *+*+s st t #sR ## s6*+ +*!+*+* **+*# 000 07000

00007010
STEP 5-1: CHECK DESIGNATED RANGE. 00007020
15	 I F (EDR NG.GT.2552.) GO TO 20 00007030
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C
C
C
C
C
C
C

00007040
STEP 5-2: IF DESIGNATED RANGE C 0.42 NM -- USE SINGLE-MIT 00007080

DETECTION MODEL• 00007060
CALL SINGLE 00007070
RETURN 00007080

00007090
STEP 5-3: IF DESIGNATED RANGE > 0.42 NM -- USE CFAR DETECTION MODEL.00007100
20	 CALL CFAR 00007110

RETURN 00007120
END 00007130

00007140
000071s0

is tsssts*sstftstsffsssssss s#sa ssss#ssss*sssssss*s#sa# 00007160
t MIS SUBROUTINE CONTAINS SINGLE-HIT DETECTION MODEL # 00007170
iss#t*fs*sssfs*s#s *tss*ssi *rstsssss#stts *# a ssss**sssss 00007180

00007190
00007200

SUBROUTINE SINGLE 00007210
DIMENSION P(41) 00007220
COMMON /CNTL/ IPMR•IMODE•ITXP•IASMotDUM(5)•DUMC(3) 00007230
COMMON .-*GUTPUT/MSMFoMTF•MSF90UM(71olDUM1(4) 00007240
COMMON /ICNTL/IDUM2(8)•KACXLKoMTP*tDUM3(5)•14SA$4*IDUM4(11) 00007230
COMMON /TGTOAT/NT•DUM1(500)•RO(3)•ROU(3)•CGRNGE•CGVEL 00007260
COMMON /OETOAT/SIGMA•CGANG 00007270
DATA NSRCH/105/ 00007280
DATA P/6t0.0••001••003.2s•004••008•• 012•.015••043••0539.076•.107,00007290

2 .147•• 193.•244••312••363s•444••5149. 590••644••7069•765•.8is••861ip00007300
3 •8829.918••9379.9559•966 ••9769•9809•969•.9919.997•.096 / 00007310

00007320
s*a*sts**att*ssss#ssf*tf afa*stt#sf**#ssfs*s#stssss 00007330
* STEP 1: COMPUTE NOMINAL SNR AT VIDEO FILTER OUTPUT s 00007340
t*#t**ft*igff*issft*ss*#iiatts#s*si#*s*s#sf*ss##st*s#s 00007350

00007360
STEP 1-12 SET SAMPLE RATE TO OBTAIN CORRECT NOISE Slit IN SNRV• CoMP• 00007370

MSAM -1 00007380
IF (IMODE•EO.1) MSAM*2 00007340

00007400
STEP 1-2: COMPUTE NOMINAL SNRV. 00007410

SNR=SNRV(SIGMA•CGRNGE) 00007420
00007430

t*ll* *ftl*ss#fsrt**ffsff*#i s«i#i s#si*si**ist*ss#**is *## 00007440
t STEP 2:	 IF NOT SCANNING ADD SEA 	 LOSS TO S14	 s 00007450
if#tff#sf f ffsf s#sfllss*s#sass* ississss*ssttsssssssss# 00007460

00007470
STEP 2-1: CHECK SCAN FLAG * 00007480

IF(MSF •EO. I) GO TO 1 00007490
00007500

STEP 2-2: COMPUTE BEAMSHAPE LOSS --- BASED UPON C•G. POSITION 00007510
OFF BORESIGHT• 00007520

BETA2-SPAT(CGANG) *t2 00007530
000 07540

STEP 2-3: ADD SEAMSHAPE LOSS TO NOMINALV• I.E• COMPUTE ACTUAL SNR 00007560
o 00007560

SNR-SNRSBEVTA2 00007570
00007580

**stls*fffat*fff*# *ft**st#***asst*si*ftstifsstst*i#ss*f###ts*s*s 00007590
i STEP 3: DETERMINE PROBABILITY OF DETECTION• PD• BASED UPON SNR i 00007600
flfilif*ftfllfiiffffff**ilfi *ffffli*fffffffiffl*f*f*tf*tf#flit*i## 00007610

00007620
STEP 3-1: DETERMINE INDEX TO ACCESS APPROPRIATE PD VERSUS SNR 00007630

CURVE. 00007640
1	 IF(IMODE.E0.2) GO TO S 00007660

NCRV:l 00007660
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GO TO 15 00007670,
5	 IF(tASM.LT.3) GO TO 10 00007600

NCRV=3 00007690
GO TO 15 00007700

10	 NCRV=5 00007710

000077300`C ADJUST INDEX FOR SCANNING *
15	 NCRV-NCRV+MSF 00007740

C 000 07750
C 00007760
C STEP 3-2: CONVERT SNRV TO OB. 00007770

IF(SNR.LT .1•E-08) GO TO 20 00007780	 .^
SNR=10.*ALOG10(SNR) 00007790
GO TO 25 00007600

20	 SNR--100. 00007810
C 00007820
C STEP 3-3: SNR OUTSIDE (-30 D89 0 08) INTERVAL? --- IF $O. SET 00007630
C OUTCOME APPROPRIATELY AND SKIP REMAINING STEPS. 00007840
C 00007860
C IF SNR < -25 DB THEN SET PD-0.0 (DECLARE A MISS)• 00007860	 -

28	 IF(SNR.LT.-25.) GO TO 30 00007470
C 00007880
C IF SNR > -5 DO THEN SET PO -1.0 (DECLARE A NIT). 00007840

tF (SNR .GT. -'3.0) GO TO 35 00007900
C 00007910
C STEP 3---,: COMPUTE INDEX FOR LOOKUP TABLE AND FACTORS FOR LINEAR 00007920
C INTERPOLATION. 00007430

SCALE=(SNR+25.)*2.+1.000001 00007940
tSNR:tNT(SCALE) 00007960
REMAIN mSCALE-FL=AT(tSN R) 00007960

C 00007970
C STEP 3-5: DETERMINE PO USING TABLE AND LINEAR ( IN DB) INTERPOLATION. 00007980

P ROP- P (I SN R) +REMAIN*(P (I SNR + 1) -P (I SNR)) 00007940
C 00008000
C #####***#*p**s***#**#*** #ptp#*#*#*****##*#* *s#* 00008010
C * STEP 4: DETERMINE OUTCOME OF DETECTION ATTEMPT * 00008020
C ##*#t****#*#*#***#*#* #*ss# p**#*s**#**s*#*#**s**#s 00008030

C X=RNOU(NSRCH) 00006050
IF(X.L E.PR08) GO YO 35 000 08060

C 00008070
C ## p ##**## p##***##*##*#** p* p ##iii#*#####*#**i######**#*i#*#*i 00008080
C * STEP 5. SET CONTROLS BASED UPON OUTCOME OF DETECTION ATTEMPT * 00006000
C **####*####*#*#*#**##!#ss*s** p *s**#*##**###***#**# •s#****##*s*# 00006100
C 00008110
C STEP 5-1: IF NO DETECTION — SET TARGET PRESENT FLAG LOW. 00008120

30	 MTP=O 00006130
1 RETURN 00006140

C 00008150
C STEP 5-2: IF DETECTION SUCCESSFUL --- SET TARGET PRESENT FLAG 00008160
C HIGH AND INITIALIZE ACQUISITION CLOCK. 00006170

35	 MTP-1 00008160	 -
K ACCLK -0 000 06190
RETURN 00008200
ENO nnn082i0
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C 0000008230
C	 lrsirltsttss!!frlfi!!lrrrtirlsrsrtMlilrlisslsrriiisis 00000260
C	 t THIS SUBROUTINE CONTAINS THE CFAR DETECTION MODEL s 00008260
C	 fiMMrltrRltrriMM*MrrrtltliMriMrrttitiMritrtiMriisrii 00008"0C 00006270
C SUBROUTINE CFAR 00006990

COMMON /CNTL/IPMR•I MOD E.ITXP9IASM•IDUMCIS).EDRNG901MC12) 00008=0
COMMON /OUTPUT/MSMF9MTF9MSf9DUM1(7)9IDU41(4) 00006310
COMMON /ICNTL/IDUM2(8)9KACtLK9MTP•IOUM3(4)9MRNG9MSAM 9MPRF 00008=0
COMMON /TGTDAT/NT9DUM3(600) 9ROC319ROUt319CGRNGE9CGVEL 000 as 3W
COMMON /OETOAT/SIa1A9CGANG 00000360
DIMENSION RI(6)•PM(6)9NP(619FV(3)9TPR1(319TS(2)9P(4t) 00008350
DATA MAI9NSR(:M/6937/9C9ALMDA/963.590.070645/9RI/2552. 9 57?2. 9 00008360

2 11544.923084..43747.967722* /9PM/0.12294.1594.3916.6933.2966.4/ 9 00008370
3 NP/192949891693219FM/7.721593.30909092969/9TS/0.122 92.07SI9 00008350
4 TPRI/143.593349793731.1/ 00008390

DATA P/6i0.09.0019.00392l.0 04 9 9 006 900129.0159.04399OS39.07699107900006400
2 .1479.1939.2449.3I2•.3639.4449.S149.590.96449.70699765•.4iS99861.00008410
3 .882..9189.9379 o9S59.9669.9769.9409.9899,99919.9979.996/ 00008420
PI=3.141S9265 00006.30

C 00008"0
C	 frltitMfffttirrlitttfitttltlttftrtliltlftMt!!tM!!llrtrtllMrttifrrr 00008460
C	 f STEP 1: SET INTERNAL CONTROLS BASED UPON SYSTEM OPERATING MDOE ! 00008460
C	 ff#itislit!!tlstrlitsllttt!lsrtstrrrls!!slirMMlMltltssiMMr!!srliM 00008470
C 00008460
C	 STEP 1-1: GPC MODES OR AUTO/MANUAL MODES? 00008490

IF(IASM.GE.3) GO TO 15 00008500
C 000ass10
C	 STEP 1-2: SET INTERNAL CONTROLS FOR APPROPRIATE MOOS. 00008520

C	 CONTROL SETTINGS FOR GPC MODES. 00006540C 00008560
C	 DETERMINE RANGE INTERVAL. OOOODS60

00 S I =1 9NRI 00006570
MRNG=I 0000ss60
IF(RI(I).GT.EDRNG) GO TO 10 00008590

5	 CONTINUE 00006600
C 0000861#1
C	 SET SAMPLE RATE 00008620

10	 MSAM=2 00008630
C 00008640
G	 DETERMINE PRF 00006660

MPRF-1 00008660
IF(MRNG.GE.RI(6)) MPRF-2 00008670
GO TO 24 00008680

C 00008690
C	 CONTROL SETTINGS FOR AUTO/MANUAL MODES. 00006700
C 00006710
C	 SET RANGE INTERVAL. 00008720

IS	 MRNG=6 00008730
C 00008 740
C	 SET SAMPLE RATE. 00008750

MSAM-2 00008760
C 000087f0
C	 SET PRF. 00008780

MPRF-) 00006790
C 00008600
C	 •fgMifiirMffiififlititsrtlftfititiittitiiffifiliirfi 00006810
C	 i STEP 2: COMPLTE NOMINAL. SNR AT VIDEO FILTER OUTPUT t 00008620
C 00008830

20	 SNR-SN9V(SIGMA9CGRNGE) 00006040
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C
C

C
C
C
C
C

C
C

C
C
C
C
C
C
C

C
C

C
C

C
C

#i

00008860
«#.#* ####. A##t A.^.#... A.#• ## A q .A. #.# #.#...*.##.#....# 00006660
# STEP 3: IF NOT SCANNING ADD BEAMSHAPE LOSS TO SNRV . 00000670
A..A*##.^#.MA#.•####.#..A PRAq.*##A####..###..##..#.# 00008800

00006090
STEP 3-1: CHECK SCAN FLAG. 00000900

IF(MSF.EO.t) GO TO 2S 00000910
00006920

STEP 3-2: COMPUTE BEAMSHAPE LOSS --- BASED UPON C.G. POSITION OFF 00000930
(SORESIGHT. 00006940

8ETA2=SPAT(CGANG)•#2 00000950 f
00006960

STEP 3-3: ADD BEAM.'SMAPE LOSS TO NOMINAL SNRV• I.E. COMPUTE ACTUAL 00006970
SNRV. 00008900

SNR=SNR#BETA2 00008990
000 09000

A##AA####*A#A#.A...!##AM#HAM #...#..A#..q.A.#####.#####AA#A##.#.# 00009010
A STEP 41 COMPUTE NET PROCESSOR GAIN AND COMBINE WITH SNRV TO FORM . 00009020 A
A SNRD.	 . 00004030
A#A#A##A#A.#AA#AA#AA#AA...q##..A.AA•AA.##########.#.###########A### 00000040

00004050
STEP 4-1: COMPUTE RANGE GATE LOSS (RGL) --- DIFFERS FOR GPC AND 00009060

AUTO/MANUAL MODES. 00009070 a,
00009000

COMPUTE EQUIVALENT RANGE OF XMIT PULSEWIOTH. 00009090
2S	 CT02-CAPW(MRNG)/2. 00004100

00009110
DETERMINE OPERATING MODE 00009120

tF(IASM.GE.3) GO TO 30 00009130
00009140

COMPUTE RGL FOR GPC MODES. 00009150
DEL=ABS(EDRNG-CGRNGE)/CT02 00009160
tF(DEL.GE.198) RGL=0.0 00009170
IF(OEL.GE.0.S.AND.DEL.LT.1.S) RGL=.6666666A(1.S-O1L)#*2 00009160
IF(DEL.LT.O.S) RGL O .6666666 00009190
GO TO 35 00009200

000 09210
COMPUTE RGL FOR AUTO/MANUAL MODES 00009220
30	 DEL=ABS(CGRNGE)/CT02 00009230

DEL I-DEL- I NT ( DEL) 000 04240
IF(OEL.LE.1.0) RGL zDELAOfL 00009250
t F CDEL .GT. 1.0. AND. DEL . LT. 4. S. AND. DEL I. LT .O.S 1 00009260

2 RGL=(1 .0-DELI )*A2 00000270
I F ( DEL .GT. 1.0. AND .DEL. LT.4. S. AND. DELI .GE .0. S) 000 0920 0

2 RGL-DEL1 *DEL1 00009290
000 09300

STEP 4-2: COMPUTE NET PRESUM GAIN --- SAME FOR ALL PASSIVE ANTENNA 00000310
STEERING MODES. 00004320

00009 330
COMPUTE DOPPLER FREQUENCY ASSOCIATED WITH TARGET RADIAL VELOCITY 00009340
ZS	 FDCP--2.ACGVEL/ALMOA*1&0E-06 00009380

00009360
COMPUTE ARGUMENT ASSOCIATED WITH TARGET VELOCITY 00009370

ARG=Pt *FOOP4TS(MSAM) 00009360
00009390

COMPUTE NET PRESUM G(-,IN 00009400
PSG-SUMCARG.NP(MANG)) 00009410

00009420
STEP 4-3: COMPUTE NET DOPPLER FtLTcR GAIN -- SAME FOR ALL PASSIVE 00009430

ANTENNA STEERING MOLES. 00004440
00009450

COMPUTE NUMBER OF DOPPLER FILTER NEAREST TARGET. 00009460
MFIL-MCID(INT(CGVEL/FV(MPRF).'-320.5)932) 00004470

00009400
COMPUTE ARGUMENT ASSOCIATED WITH TARGET DOPPLER 00004400

ARG=P I *(FLOAT  (MF tL) /32 .*FOOPAT M I (MPRF 1) 000091580
000 0451 O

COMPUTE NET DOPPLER FILTER GAIN 00009620
OFG-SUM(AR G.16) 00009530

00004540
4-4: COMPUTE 	 PROCESSOR GAIN..STP-P	 COMPUTEES 00004880

HPGsRGL.PSGADFG 000 095110

C
C
C
C
C
C

C
C
C

C
C
C

C
C
C
C
C
C
C
C
C
C

C
C

C
C
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C 00009670
C STEP 4-6: QDMPUTE SNR AT 00PPLER FILTER OUTPUT 00009510

SNR*SNRONPG 000099"C 00009600
j

c •••ff#•t•t••tff••••f.t••!••••t.•••#••t•••••t••••••s••ttfff•t• 00004610
C f STEP S: DETERMINE PROBABILITY OF DETECTION BASED VP13N SNR • 000096201	
C issuss•f•s••••f••f•%silt•!•ft•s••ssfs•f•sf##•••slstlt••tssts 00009630
C 0000960
C STEP S-l: DETERMINE INDEX TO ACCESS APPROPRIATE CURVE 00009660

IFcfASM.GE.31 GO TO 40 00009660
NCR V m 1 000 09670
GO TO 45 00009660

40	 NCRV03 00009690
C 00009700
C ADJUST INDEX FOR SCANNING 00009710

} ♦S	 NCRVsNCRVSMSF 00009720
C 000090
C STEP S-2: CONVERT SNR TO OB. 00009740

IF(SNR.LE.I.OE-O/) GO TO 50 000097%0
SNR-10.#ALOG1'J(SNR) 00009760
GO TO 45 00009770

50	 SNR%-100. 000007/0
C 00009790
C STEP S-3: SNR OUTSIDE (0 DB• +20 DO) INTERVAL? --- IF SO * SET 00009/00
C OUTCOME APPROPRIATELY AND SKIP RE alAINING, STEPS. 00004/10
C 00009120
C IF SNRD < 09 DB -- DECLARE A MISS. 00009130

5S	 IF(SNR.LE.O.) GO TO 60 00009640
C 00009050
C IF SNRD > 20. DO — DECLARE A MIT. 00004/60

IF(SNR.GT.20.) GO TO 65 00009470
C 0000!"0
C STEP S-4: COMPUTE INDEX FOR LOOKUP TABLE AND FACTORS FOR LINEAR 00009190

`	 C INTERPOLATION. 00009900
SCALE=(SNR+0.)•2.•I.0000001 00009910
ISNRsINT(SCALE) 00009920
RtMAIN :SCALE-FLOAT(ISNR) 00009930

C 00009940
C STEP 5-3: DETERMINE PD USING TABLE AND LINEAR (IN DO) INTERPOLATION• 00009960

PROB-P(ISNR)*REMAINf(P(ISNR+I)-P(ISNR)) 00009960
C 00009970
C tfft#fssss#fsf#sffasfsssffMiMfsasiftttiff##ffft ♦ 00009980
C • STEP 6: DETERMINE OUTCOME OF DETECTION ATTEMPT • 00009990
C ttMfifsfffftftttffiff+ttftfff••ftfitffftflffftfUff On010000

`	 C 00010010
X=RNOU(NSRCM) 00010020
IF(X.LE.PROR) GO TO 65 00010030

C 00010040
C fit#1111#tt#ft•fifttfi#tit##iMtf###tfftf###t#ft#•#t•tttfit#fiit 00@!O0SO
C f STEP 7: SET CONTROLS BASED UPON OUTCOME OF DETECTION ATTEMPT • 00010060
C tf•fffffft••ttftftftt•ftifift•ffttf ►•lftt•••tt••ft•/iifftt•f#tf• 00010070
C 000 10 010
C GLOM.STEP 7-1: IF NO DETECTION — SET TARGET PRESENT FLAG 00010040

60	 MTPw0 00010100
RETURN 00010110

C 00010120
C STEP 7-2:	 IF DEY£CT ION SUCCESSFUL --- SET TARGET PRESENT FLAG 00010130
C HIGH AND INITIALIZE ACQUISITION CLOCK. 00010140

65	 MTPzI OOO i01s0
KACCLK =O 00010160
RE TURN 000 10 170
END 000101010
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I
C 000 10190
C 00010200C 00010210C * THIS FUNCTION COMPUTES THE EXPRESSION ( SIN(NX)**2/(N SIN ( X)f*2)) * 00010220C 000102+0
C 00010240
C 00010250FUNCTION SUM(X9N) 00010260Y=SIN (X)#2 00010270

IF(Y.GT.I.OE-08) GO TO 10 00010280SUM-N 00010290RETURN 0001030010	 SUM=SIN(N*X)**2/(N*Y) 00010310RETURN 00010320ENO 00010330
C 0001034

350
C *##*#*#si#t*#f**##sssf*#s#s*#**iii#i**#t*##sf#i*###fs##st 00010360 xC * THIS FUNCTION COMPUTES THE f"OMINAL 60 SNR AT THE VIDEO OUTPUT # 00010370
C * -- IT ASSUMES NO BEAMSHAPE OR SCAN LOSS.	 * 00010380
C **#is* i*##i*i*##*sff**##s####is*#is##***f*#*#**#i***i#f#f##is 00010390
C 00010400
C 00010410

FUNCTION SNRV (SIGMA•RANGE) 00010420 $^
COMMON /CNTL/IPMR•I MODE, ITXPotOUMC(6)9DUMC(3) 00010430
COMMON /ICNTL/IDUM(12) *MSS.MTKINToMRNG *MSA149MPRFsIDU142t10) 00010440
COMMON /SYSDAT/DUM(12)vTGi'SIGoGPS.GAS 00010450
DIMENSION PT(3) •BN(2) 00010460
DATA PT/47.923. •7./. BW69. 5 957.2/ 00010470

C 00010460
C *i#**fssi*#its#i****#**i*####*###*####*## 00010490
C * DETERMINE WHETHER ACTIVE OR PASSIVE MODE * 00010500
C *##f**##*####*i*#*#*ifi*#M*#+ts**##*#*#i*s# 00010510

IF(IMODE.E0.1) GO TO 10 00010520
C 00010530
C i#*# is***s#i#**##**##**#* #s# *it*#i* 00010540
C * PASSIVE MODE VIDEO SNR CALCULATION # 00010550
C #i#*#ff**#*i#if###sft##*i### ####iiis 00010560

SNRV-GPS+PT(ITXP)+10.*ALOGIOtSIGMA) —BN(MSAM)-40.*ALOG10(RANSE) 00010570
SNRV=10.**(O.I*SNRV) 00010580
RETURN 00010590

C 00010600
C *s***#*i#*#*##**#*i#i*issi#*###i ##i 00010610
C * ACTIVE MODE VIDEO SNR CALCULATION f 00010620
C ** i*#i*i****i*#*i**#i*#i**#*#i**sif 00010630

10	 SNRV=GAS-20.*ALOGIO(RANGE) 00010640
SNRV=10.**(O.S*SNRV) 00010650
RETURN 00010660
END 000 10 670

C 00010680
C 000 10690
C ii#t##*#*###i##iiiii##****R**i**ii*i**f**###********##i*ta#t 00010700
C s THIS SUBROUTINE UPDATES THE POSITION OF THE ANTENNA GIMBALS * 00010710
C i*i###*##*fk#*##t*#**##*i*#t*ssii*#if#ii*#is#*i##*s*#f#i#f*#*is 00010720
C 00010730
C 00010740

SUBROUTINE POINT 00010750
COMMON /OUTPUT/ IDUMI(3) • DUJ44(2)•SPANG • SRANG90UMS ( 3)*IDUM2 (4 ) 00010760
COMMON /SYSDAT/TS.DUM(3).CG.SG.DUM2(9) 00010770
COMMON /ATDAT/DUM1(4).SALRTE•SSTRTEoDUM3(2)oAL.BT*PREF.RREF • 00010780

2	 AREF96REF 00010790
DATA AK/2.0/vTAU/1.414/•PI/3.141592653/. 00010800

C 00010 810
C *##i s*****#iii#***i*s**#s#i##*iii 00010820
C i STEP 1: PRELIMINARY COMPUTATIONS * 00010830
C #iii*#i**iii*i*#ii**#iii#i##s#+ti#iii 00010840

CR=COS(—RREF) 00010850
SR=SIN(—RREF) 00010860
CP=COS( —PREF) 00010870
SP=SIN ( —PREF) 000 10680
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C
C *• i*is#*i#Mi##•tt#iiiiitisi#*itt###### #i*ti ti#i*sitist##**s**
C t STEP 2: COMPUTE ANTENNA REFERENCE ROLL/PITCH ANGLES IN THE #
C *	 RADAR FRAME.	 #
C i*####*##t*#***t*#** iii#t#####t#*t4t#f#*#*#*t**tttt**t*#ttttt#

XX=CG*SP-SG*SR*CP
YV=SGOSP+CG*SR*CP
ZZ=CR*CP
IF (YY. LK).O.O.AND.ZZ.E0.0.0)	 GO TO l
AREF=ATAN2(YY.ZZ)
GO TO 2

1	 IF tXX. f.T.O.0) AREF =-P I /2.
IF (XX.LT.0901 AREF=PI/29

2	 RREF=ASIN(XX)
C
C it*#i*isi*i*i*#i*# * it*#*i## #t*i#i*tti##*#*iiii#ttt#*bt*1.
C * STEP 3: UPDATE OUTER (ALPHA) GIMBAL RATE AND POSITION t
C iitt+lt**ii*t**i**ti*#*i***t#t#itttt#*##*t*#***t**##t###tt
C COMPUTE ALPHA LOOP POSITION ERROR.

ERRA=AREF-AL
C UPDATE SMOOTHED ALPHA GIMBAL RATE ESTIMATE.

SALRTE=SALRTE+TS*AK*ERRA
C UPDATE ALPHA GIMBAL RATE.

ALRATE=AK*TAU#ERRA+SALRTE
C CHECK FOR ALPHA GIMBAL RATE LIMITING.

IF(A5StALRATE).GT.S6.) ALRATE=56.*ALRATE/ASS(ALRATE)
C UPDATE ALPHA GIMBAL POSITION.

AL=AL+TS*ALRATE
c
C i#tt #*#i***ti**i*i*iiii*t*#*ttlti******iii** i* * i*tttirt*
C * STEP 4: UPDATE INNER tBETA) GIMBAL RATE AND POSITION

} C *t****#***** iii**#i#tii•*****t* #ii**iii****** t****t#*#**

000 10690
000 10900
000 10910
000 10920
00010930
0 00 1094 0
000 10980
000109&0
000 10970
00010980
000 10940
000 11000
00011010
000 11020
00011030
00011040
00011 oS0
0001!060
000 11070
000 1106 0
000 11090
000 11 100
00011 210
000 11120
000 11 130
000 11 140
00011 150
00011 160
00011170
000 11 180
00012190
000 11200
000 11 210
000 11220
000 11230
00011240
00011250
000 11260
00011270
00011280
000 11290
00011300
000 11310
00011320
000 11330
000 11340
00011 3b0
00011360
000 11370
00011380
000 11390
00011400
00011410
000 11420
000 11430
000 11440
000 11450
000 11460
000 11470
000 11480
000 11490
00011500
o0o lido
00011520
000 11590
00011540
00011550
00011 S6 0
000 11 S70
00011580
00011590

C COMPUTE BETA LOOP POSITION ERROR.
;RRB=SREF-BT

C UPDATE SMOOTHED BETA GIMBAL RATE ESTIMATE.
SSTRTE =SBT RTE+T S *AK *E R RB

C UPDATE BETA GIMBAL RATE.
BTRATEMAK*TAU*ERRS+SBTRTE

C CHECK FOR BETA GIMBAL RATE LIMITING.
IF(ASS(STRATE).GT.56.) BTRATE=56.*BTRATE/ABS(BTRATE)

C UPDATE BETA GIMBAL POSITION.
BT-RT+TS*BTRATE

C
C *# i#i**i* t*#•***************sii**t*** i**t*i*
C * STEP 5 : ANTENNA IN UBS CURAT ION REGION?
C i*#iiti*t***** ii*******iM********#*******
C	 CALL SCNVfRN

itti#*iiii ii*# i##**iiii•## *sit# it•# **s## i* **## iii*i*iiti*# #*tt*
# STEP 6: COMPUTE ANTENNA ROLL/PITCH ANGLES IN THE BODY FRAME #
#tii###### ## i### i###***i## ptii i*t*#iii#iiii **i#*i*iit#*iiti *ii

CA=COS(AL)
SA=SIN(AL)
CR nCOS(BT)
SB:SIN(BT)
XX=CA *SB+SG*SA*CB
YY=-SG*SB+CG*SA*CB
ZZ=CA#CB
IF(YY.EO90.0.ANO.ZZ.E0.0.0) GO TO 3
SRANG=-57.295760ATAN2( YY.ZZ )
GO TO 4

3 IF(XX.GT.O.0) SRANG =+90.0
IF(XX.LT.0.0) SRANG=-90.0

4 SPANG--57.29576*ASIN(XX)
RESOLVE POSSIBLE ANGLE AMBIGUITIES * VIZ.. -v0.<SPANG<90. AND
-1$O.<SRANG<180.

IF(SPANG.LE.90.) GO TO 10
SPANG=-( 180.-ABS(SPANG ))*tSPANG/ABS(SPANIG) )
SRANG=(180.-ASS(SRANG) )*(SRANG/ABS(SRANG))

10 RETURN
END

E



00011600
000 11610

**#**************6119*****s***sts*s*t*****s***s#****t##*66999916 00011620
* THIS SUBROUTINE DETERMINES WHETHER	 THE ANTENNA IS IN THE 08— * 00011630
* SCURATION ZONE AND SETS THE SCAN WARNING FLAG APPROPRIATELY•	 * 00011640
1669**6*6***96*96*6**666**#*#*#9*6s#****6#*696666*6#**s***s*** 00011650

000 11660
000 11670

SUBROUTINE SCNWRM 00011680
COMMON /OUTPUT/MSWFoIDU14O(2).DUMO(7)9I0UMOI(4) 00011690
COMMON /ATDAT/DUM(8)9A98 * OUMA(4) 00011700
DIMENSION  ICLEAR ( 36.72) 000 11710
DATA ICLEAR /17*1913*096*1918*1912*096*191861 * 12*096*1 * 00011720

1	 18*1912*096*1 9 19619 11*096*1919*1911*096*1919*1911*096*19 00011730
2 19*1.11*09611919*1911*09601919*1911*096*192001910*096*19 00011740
3 20*1 * 10*0 * 6*1920*1 * 10*096*19-20*1910*096*1920*1910*09- 00011750
4 6*1920*1910*096*1919*1 * 11*096*1918*1912*0 * 6*1*17*1.13*09 00011760
5 6*1916*1914*096*1 91501 91500 96*1914*l 9-16*0*6*19-14*1,16*09- 00011770
6 6*1913*1917*096*1912*1 *18*0 *6*1 * 11*1919*O96*1910*1920*090t 19 00011740
7 9*1921*096*199*1921*0 * 6*198*I * 22*O *6*1 *4*1909-3*19-22*096*I9 00011790
8 4*1926*096*194*1926*0 * 6*19401 * 2690 *6*194*1926*096*194#1.26*096*1 9-000 11 800
4 4*1926*0*6*194*1926*0.6*1*4*1926*096*194*1926*09-6*194*19-260096*1900011810
A 4* 19-260096*1*4*1*26*096*19-4*1926*0*6*194*1926#09-6*194*19-26*09-6*1900011820
B 4*1 *26*096*194*1 * 26*096*194*1926*096*194*197*092*1917*096619- 00011630
C 4*197*092*1917*0*6*194*196*0*3*1*17*0 * 6*1 * 4*195*09-4*1917*096#19- 00011840
O 4*195*09-6*1915*096*1 * 4*1 * 0912*1913*096*1919*19-11*096*19 00011850
E 21*199*096*1924*1 9600 9 601 9-26*1*460* 00011860
F 6*1927*193*096*1928*l92*096*1 * 29*1 * 0 * 6*1929619096*1928#19 00011670
G 2*O *6*1927*0693*096*1 * 26*194*0 *6*1925*195*096*1923*1st*0*6*19 00011880
H 23*197*096*1922*198*096*1919*1-11*0 * 6*1 * 18*1912*09-6*1/ 00011890

00011900
ALPHA=A 00011910
BETA=B 00011920
IF(ABS(8ETA) *LE * 90 * ) GO TO 1 00011930
BETA=— (180 —ABS (B)) * (B/ A8S CB)) 00011940
^*—ABS(A))*(A/ABS(A)) 00011950

1	 CONTINUE 00011960
IA=INT((ALPHAt1809)/5.*1.) 00011970
IB=INT((90 —BETA)/5911.) 00011960
MSWF=ICLEAR(I89IA) 00011990
R ETURN 00012000
END 00012010

000 12020
00012030

t* tt*t*****t**t*******#t**#***tt***6911** *t*t***** *6666 *66**s*s#6 00012040
* THIS SUBROUTINE DETERMINES WHETHER ANTENNA IS IN ZONE 1 AND/OR 6 00012050
* ZONE 0 (FOR GPC —AC0 AND GPC-0ES POINTING MODES ONLY).	 s 00012060
9999*69969*#***9#**6996*6 #*t9 *9**#*s***699911**6*6s#9999***9s#9 00012070

000 12080
00012090

SUBROUTINE ZONECK 00012100
COMMON /CNTL/IDUMC(9)9EDRNG*EDPA*EDRA 00012110
COMMON /OUTPUT/IDUM1(3)•DUM1(2) *SPANG*SRANG*DUM3(3)*IDUM3( 4 ) 00012120
COMMON /ICNTL/IDUM2(10),MZ19MZ09-IDUM4(15) 00012130
MZO=O 00012140
M Z 1=1 000 12150
PII=3.141592653/180. 00012160
RB=—PII*SRANG 000 12170
PB=—P 1 I*SPANG 00012180
P=—EDPA 00012190
R=—ED R A 000 12 200
CPB=COS(PB) 00012210
SPB=S I N(PB) 000 12220
CRB=COS(RB) 00012230
SRB=SI N(RB) 000 12240
CP=COS(P) 00012250
SP—SIN(P) 00 012 260
CR-COS(R) 00012270
SR=SINCR) 00012280
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ANGO I F&IICOS (SPS OC RBOSP ,-R a6 RS*SR+CPS acRS *CP*CR) /PI I 00012290ANGOIF.ASS(ANGOIF) 00012300IF(ANGDIF * GT.3sO) RETURN 00012310MZO=1 00012320IF(ANGOIF * GT9093) RETURN 00012330
MZI-I 000 19340RETURN 000 12350END 00012360

c 00012370
C 00012380
C ttaaetataittasisiaiia***t*tt****i**t***tt*aaiattttaaataaai*i*aaaaa 00012390
C * THIS SUBROUTINE 	 CYCLES THRU THE LOGIC FOR ANY SCAN GENERATION * a 00012400
C *a#a*e*ael*****t***l**a**al*e*taa****e******aa*a*lalaa**alalt**aa* 00012410
c 00012420
C 00012 30

SUBROUTINE SCAN 00012440
COMMON /CNTL/IDUM(4)9ISRCHC9ISRCHG•IDIlMC 3 ► 9EDF7&4G *DUMC(2) 000124'•0
COMMON /OUTPUT/MSWF *MTF* MSF.DUMI(7)9IOUM.'.P 4) 0001?t60
COMMON /ICNTL/IDUM3(6)9KSNCLK91DUM4(2)9MTP * IDUMS(17) 9MSWTCH 9 00012470

2	 KSN 9IAROLD9 ITROLD 000 12480
COMMON /SYSDAT/TSAM.DUMS(14) 00012490
COMMON /TGTDAT/NT9DUM2(503)9ROU(3)•DUM3(2) 00012500
COMMON /ATOAT/DUM4(6)*AL*OT*DUM5(2)oAREF *SREF 00012510
DIMENSION TIMINT(31)9ANGtNT(31)*RSW(10)9TSW(10) 00012320
DATA TIMINTI.791.491*992*6.3.494 * 3959196997998 * 99* 19109491198• 00012530

1 13.391499916*9918.992191923.4925*9928*6931 *5933 *5936 * 6 *39*8 9 00012540
2 43.2946.8950.5954.3958.4960.0/ 00012950
DATA ANGINT/0.99791.S92.929793.694.49S.2969197.97.998.89998910.9900012360

1	 119991390914929159391695917969189891999921919229292394924951P 00012570
2 25969269792798928999309/ 00012580
DATA TSW/609095493943929339592896921-1914999119898909690/9 00012590

2 RSW/48609*295590096962584.3971698 * 6 *91142* 5 * 1S1903989 00012600
3 243046909394949989881041989182284590/ 00012610
PIt=1809/39141592653 00012620

C 00012630
C *a*ii*t*t*t***aft#ittttaatattaaaiaiiiitiiaiii****a*i*tail*ati** t* *a 00012640
C * STEP 1: DETERMINE WHETHER TO PERFORM SCAN INITIALIZATIONIMSF:O) * 00012650
C *	 OR SCAN UPOATE(MSF=1)9 	 * 00012660
C *****t*a*ette*tsatttsttt*taittaeei*ii*ii*#*la*i*s***t*lltet*t**aat* 00012670

IF(MSFoEQeI) GO TO 15 000 12680
C 00012690
C fait**itt***elsieitiie*eatee*eit*i*si** 00012700
C * STEP 2: PERFORM SCAN INITIALIZATION t 00012710
C t**t*taait*e**tee*e*e*i**teal********** 00012720
C INITIALIZE ALL FLAGS * 00012730

MSFa 1 000 12740
C INITIALIZE RING MONITORS * 00012750

I AROLO =0 000 12 760
1 TROLD-10 000 12770

C INITIALIZE SCAN CLOCK * 00012780
kSNCLK =O 00012790

C INITIALIZE SCAN TIME PARAMETER * 00012800
K SN=0 000 12 810

C 00012620
C DETERMINE SWITCH POINT PARAMETER. 00012630

00 5	 I-1910 00012840
IF(EDRNG *L T9RSW (I)) GO TO 10 00012850

5	 CONTINUE 00012860
10	 MSWTCH-I 00012870

C 000 12880
C 00012890

op
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C
C
C
C
C
C
C

C.
C
c
C

C
C

* STEP 3T UPDATE SCAN CLOCKS # 00012900 i
r#a # ss#s####sts#ss#*######ss# 00012910

00012920
STEP 3-1: UPDATE SCAN CLOCK (TRACKS TOTAL ELAPSED TIME FROM SCAN 00012930

INITIATION). 00012940
15	 KSNCLK=KSNCLK+1 00012950

T.FLOA T(KSNCLK) * TSAN 000 12960
000 12970

STEP 3-2: UPDATE SCAN TIME PARAMETER (USED TO DETERMINE BORESIGMT 00012980
SITION IN PATTERN)* 000 12"Q

tF(T.LE.TSM(MSMTCH) ) AKSN-KSN++l 00013000
IF(T.GT.TSM(MSMTCH)) KSN=KSN-1 00013010
TSN=FLOAT(KSN)*TSAM 00013020

00013030
00013060*i*###*r** #i****#***r*ssss **sa *##srss*r####*####s###RIN

* STEP ♦: 'DETERMINE ANTENNA POSITION TO NEAREST SCAN RING # 00013050
iis•r###r*sirs##r##is##i#*##s##s##############s#ss#ssss#sss 00013060

DO 20	 t=1 * 31 000 13070
IF(T5N *LT.TtMINT(t)) GO TO 25 00013080

20	 CONTINUE 00013040
25	 IARNG=I 00013100

00013110
i*irr#irrrsir#rrs##*i***###s######*##s##r######r#####ss#### 00013120
r STEP 5: DETERMINE TARGE7 POSITION IN SCAN PATTERN (SCAN s 00013130
r	 RING NUMBER FOR TARGET) 	 # 00013160
##**** *i**s#*###***#i#**r* a# #+R *######*r##r**r####ri#ss###s 00013150

00013160
STEP 5-1: DETERMINE TARGET POSITION EXACTLY• 00013170

ALOLD=AL 00013160
BTOLD=BT 00013190
AL=AREF 00013200
BT=BREF 00013210
CALL TRNSFM 00013220 ^1
CALL PVTRAN 00013230
AL=AL OLD 000 13240
ST=BTOLD 00013250

00013260
STEP 5-2: DETERMINE TARGET SCAN RING NUMBER. 00013270

000 13280
DETERMINE TARGET ANGLE OFF SCAN DESIGNATES ( DEGREES ) * 00013290

CGANG=ACOS(ROU(3))sPll 00013300
000 13310 =

DETERMINE TARGET SCAN RING NUMBER. 00013320
DO 30	 1-1.31 00013330
IF(CGANG.LT.ANGINT(I)) GO TO 35 00013340

30	 CONTINUE 00013350
35	 I TRNG = I 000 13360

IF(CGANG.GT.3O.)	 ITRNG X32 000 13370
000133808

**isi#*#iia•srss* i# ssss*#sat#s##r*#s*#ii#ssri###s*srs*# 00013340
* STEP 6: OE TE RM I NE IF A DETECTION SHOULD BE ATTEMPTED r 00013400
*is*ii*t*i a**rririr*i*irrriirrrrrir*i*isirrrr#s#ssss### 00013410

00013420
STEP 6-1: CHECK CONDITION. 00013430

tF (tARNG . E(1 * I TRNG *AND. IARaD *NE. I TROLD) CALL DETECT 0001364 0
000 13450

STEP 6-2: UPDATE RING NUMBER MONITOR. 00013460
tAROLD=IARNG 00013670
ITROLO=I TRNG 000 134 O

000134-40
i********* ssss*******iii** q ra ri•*i** *r**ii *rsii 000 13500
r STEP 7: CHECK FOR SCAN TERMINATION CONDITIONS * 00013510
iii*i*ir**•**********#*#iii**irrii*iiriiirir#riri 000/3520

000 13530
STEP 7-1: CHECK ALL POSSIBLE TERMINATION CONDITIONS. 00013540

000 13550
CONDITION U 1: T > 60. SECONDS? 00013560

IF(T * GE.60.) GO TO 40 00013570

C
C
C
C
C

C
C
C

C
C
C
C

C
C
C
C
C
C

C
C

C
C
C
C
C
C
C
C
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C
C CONDITION M 2: NEXT SCAN TIME PARAMETER < 0. ?

ITEMP=KSN-I
IF(ITEMP.LT.0) GO TO 40

C
C CONDITION 0 3: DETECT A TARGET?

IF(MTP.E0.0) RETURN
C
C
C

C
C
C
C
C
C
C
C

C
C
C
C
C
C
C
C

00013500
00013590
00013600
000/3610
00013690
00013630
00013640
000 13650

STEP 7-2: PERFORM SCAN TERMINATION STEPS --- IF TERMINATION COQ 00013660
ITION OBTAINED. 00013670

40	 MSFsO 00013660
K SNCLK -0 00013690
KSN=0 00013700
I SRCHG-0 000 13710
i SRCHC =0 00013"0
RETURN 00013730
END 000 13740

000 13756
00013760

l ts+•rR!•+lsr ► •!rr!••!!r!!A!!!•!!r!!+••!lrlrtlrlilr ►►!!!•!!!ii 00013770
• THIS SUBROUTINE SIMULATES THE TRACKING MODES OF THE KU-BAND ! 00013760
• RAOAR.	 r 00013790
t!!!!tt!!•trtlrt•rtlt!lttaltr!!!!ttltt!!rt!!lttt!!tlrtltrlr!!! 00013600

00013610
00013020

SUBROUTINE TRACK 00013030
COMMON /CNTL / IDUM ( 3).IASM.ISRCHC . ISRCHG.IAZS . IELS . ISLR .EORNG• 00013440

2	 EDPA.EDRA 000138SO
COMMON /OUTPUT/MSMF *MTF *MSF *DUMO(7),IOUMO(4) 00013860
COMMON /ICNTL/IIDUM(13).MTKINT.MRNG.MSAM.MPRF.MOKTRK9I0UM2(9) 00013670
COMMON /SYSDAT/TSAM9DUM2( 14) 00013880
COMMON /ATOA T/DUM 1 (10) *PREF .RREF.DUMA(2) 000 13890
DIMENSION SLMRTE(2) 00013900
DATA SLMRTE/6eQ8I4E-3.3.4907E-1/ 000139/0

000 13920
ttlsr•rl tr!lattrstrtr•t••!!tt••!!tt!!t!!!!!!!t!r!!trl^lrlrr!!!!! 00013930
• STEP 1:	 INITIALIZE TRACK MODE --- INITIALIZE ALL TRACK LOOPS • 00013940
♦ 	 AND UPDATE STATUS OF DATA VALID FLAGS.	 • 00013950
tt •ttttlttt!ltttttlttttrlrr!!!tt•!r!r!ltrr•ttr!!!r!!t!!rtlr!!!!! 00013960

00013970
STEP 1-1:	 IF TRACK LOOPSINITIALIZED(MTKINT=l) SKIP STEP l-2 AND IF 00013980

ALL DATA VALID FLAGS ARE UP ( MT"1) SKIP STEP 1-2 AND 1 -3. 00013990
(F (MTF .EO. 1) GO TO 6 000 14000
IF(MTKINToNE.0) GO TO S 00014010

C 00014020
L	 STEP L-1: INITIALIZE RANGE .ANGtE•ANO VELOCITY TRACK LOOPS --- ASSUMES00014030
C STEADY STATE TRACKING OF TARGET C.G. 00014040

CALL TKINI T 000l40S0
C 00014060
C	 STEP 2-1: UPDATE DATA VALID FLAG STATUS --- ONLY WHEN ENTERING 00014070
C TRACK FROM SEARCH. 00014060

3	 CALL TGTACQ 00014090
C 00014100
C	 rtttt!!••ttltttttrt•ttt•ttsltltrttrtttttttttrtsltt 000/4110
C	 t STEP 2: PERFORM TRACKING LOOP UPDATE PROCEDURE t 00014120
C	 ttts•tttttt•t•t•t•t•s•ttt•!•!•ttttttltt•tlrtlt!!r! 00014130
C 000/4140
C	 STEP 2-1: UPDATE TRANSFORMATION MATRICES AND MATRICE RATES. 00014150

A	 CALL TRNSFM 00014160
c 00014170
C	 STEP 2-2: TRANSFORM TARGET POSITION AND VELOCITY COMPONENTS FROM 00014180
C ORBITER BODY FRAME-TO-ANTENNA LOS FRAME. 00014140

CALL PVTRAN 00014200
C 006t4210
C	 STEP 2-3: GENERATE NOISE-FREE TARGET RETURN SIGNAL AND PROCESS 00014220
C SIGNAL TO PRODUCE NOI SE -FR:E DISCRIMINANT COMPONENTS. 000 14 230

CALL SIGNAL 000/4240
C 00014250
C	 STEP 2-4: ADD EQUIVALENT NOISE TO DISCRIMINANT COMPONENTS AND FORM 00014260
C ALL REQUIRED DISCRIMINANTS. 00014270

81

I
I



C
C
C
C
C
C
C
C
C

CALL OISCRM	 00014260
000 14290

STEP 2-5: DETERMINE IF A BREAK TRACK CONDITION HAS OCCURRED* 	 00014300
CALL BRKTRK	 00014310

000 14 320
CHECK STATUS OF BREAK-TRACK FLAG (MBKTRK=1 --- BREAK-TRACK4 	 00014330

IF(MSKTRK9NE.1) GO TO 7	 00014340
000/4350

IF BREAK-TRACK HAS OCCURRED --- RESET THE SYSTEM AND RETURN TO	 00014360
SEARCH•	 00014370
CALL SYSINT	 00014360
RETURN	 00014 390

00014 400
STEP 2-6: UPDATE ANTENNA GIMBAL POSITIONS AND RATES AND TARGET 	 00014410

ANGLES AND ANGLE RATES FOR DISPLAY (GPC-AGO AND AUTO 	 00014420
MODES ONLY.)	 00014430

7 IF(tASM.E0.29OR9IASM9EV94) GO TO 10	 00014440
000 14450

FOR GPC-ACO OR AUTO USE RADAR ESTIMATED TARGET ANGLES FOR 	 00014460
TRACK SERVO INPUT.	 00014470
CALL ATRACK	 00014480
GO TO 15	 00014490

10 IF (I ASM.EO 94) GO TO 12	 00014500
00014510

FOR GPC-DES MODE USE GPC-SUPPLIED ANGLE DESIGNATES FOR TRACK SERVO 00014520
INPUT.	 000 14530
PREF:EDPA	 00014540
RREFsEDRA	 00014550
CALL POINT	 00014560
GO TO 15	 00014570

00014580
FOR MANUAL MODE USE CREW-SUPPLIED SLEW RATES TO DETERMINE TRACK 00014540
SERVO INPUT. 000 14600

12	 PREFsPREF+FLOAT(IELS)•SLWRTE(ISLR+1)tTSAM 00014610
RREF-PREF+FLOAT(IAZS)•SLWRTE(ISLR+1)•TSAM 00014620
CALL POINT 00014630

000 14640
STEP 2-7: UPDATE THE RANGE AND RANGE MATE ESTIMATES. 00014650
15	 CALL RTRACK 00014660

000 14670
STEP 2-8: DETERMINE RADAR SIGNAL STRENGTH (FOR DISPLAY METER) 00014680

CALL RSS 00014690
20	 RETURN 00014700

ENO 00014710
00014720
00014 730

••p••s•tttitEst•••t••tt•• a••sss••••ttttt••t•t•t•••t•t•••••••• 00014740
• THIS SUBROUTINE INITIALIZES THE ANGLE TRACKING LOOPS * THE	 t 00014750
• RANGE TRACKING LOOP * AND THE VELOCITY PROCESSOR --- STEADY s 00014760
• STATE CONDITIONS ARE ASSUMED. 	 • 00014770
tatsttt♦•• tstt••ts •• st•s••a••tsttt •••s•• +••st•••s•ss•ss•s•ssss 00014760

00014790
00014800

SUBROUTINE TKINIT 00014810
COMMON /CN TL/IPWR.IMODE9ITXP9IASM9tDUMC(5)9DU04C(3) 00014820
COMMON /INPUT/ ERT(319EVT(3)9EWB(3*)90UM(18) 00014630
COMMON /OUTPUT/ I3DUM(3).SRNG.OUM1(6)910UMI(4) 00014840
COMMON /ICNTL/I1DUM(13)9MTKINT9MRNG9MSAM9MPRF9MBKTRiK•MSTSUM 9 00014850

2	 MST(8) 00014560
COMMON /SYSOAT/TSAM.DR(3) oCP9SP9PSI9PSBIAS9DUM2(71 00014670
COMMON /TGTOAT/NT9DUM5(500)9RO(3)9ROU(3)9CGRNGE9CGVEL 00014880
COMMON /SATOAT/RADAR(3)9KTAR9RT(7093)9SLG(70)9ROL09ICLOSE 9 tCLOLO 000/4890
COMMON /ATDAT/CA9SA9CS9SB9AZRATE9ELRATE9ALRATE98TRATE 9 ALgar * 00014900

2	 DUM3(2) 00014910
COMMON /RTDAT/IRDOT9tRNG9RBIAS9VEST(4)9MDF(S) 00014920
COMMON /XFORMS/ TLS(393)9TLBD(393)9TLT(393)9TLTD(393) 00014930
COMMON /AGCDAT/AGC9A000LD 00014940
DIMENSION TRB(393)9ER(3)9EV(3)9ERTO(3)9FLTWID(3) 9 RT(10) 00014950
DATA FLTWID/7.721593.3090.0.2969/ 00014960
DATA RI/1 90-924 0 9 9 780.92SS2.•S772.9115449923089.943747.9 00014970

2	 5772299t98228E46/9NRI/!019PI/3914I5926S3/ 00014960

C
C

C
C

C
C
C

C
C
C
C

C
C
C

C
C
C

C
C
C

C
C

C
C
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C 00014900
C	 tiitiitiititttttttiiiiiiiiM+iMiiiiiiiitiiii 00010000
C	 t STEP O: MITIALIZE BREAK-TRACK ALGORITHM i 00015010
C 000150=0
C 000/5030
C	 STEP 0-1: INITIALIZE MOVING WINDOW -OF-6 REGISTERS* 00015040

DO 3 1.1.8 000 158so
3	 MOT (I) OO 000/5060

c 00015670
C	 STEP 0 -2: INITIALIZE SUM REGISTER. 00015040

MBTS U4.0 000 IS090
c 00015 loo
C	 STEP 0-3: SET BREAK-TRACK RAG TO LOW (OR 01 STATE * 000/5110

MSKTRK =O 000 15120
C 000 15130
C	 111111+ t+++s++ts++a++tiAtttttt+tiii++ti+ttt 00015/40
C	 t STEP 1:	 INITIALIZE ANGLE TRACKING LOOP t 0001s1s0
C	 +111111+st tittlttltttttlltittititiittiitit 00015160

IF(IASM.E092.OR9IASM.EO94) GO TO S 00015/70
C 00015,180
C	 STEP 1-1: COMPUTE INITIAL INNER AND OUTER GIMBAL POSITIONS. 00015190
C	 (NOTE: TRANSFORM CONSISTS OF TRANSLATION PLUS ROTATION.) 00015200
c	 PERFORM TRANSLATION --- SHIFT TO RADAR FRAME ORIGIN. 00013210

DO 1	 I=1.3 00015220
1	 ERTO(I)=ERT(I)-DR (I) 00015230

C	 COMPUTE TRANSFORMATION MATRIX (ROTATES FROM BODY TO RADAR.) 00015240

CALL P4I(TRB9PSI+PSBIAS) 0001s2s0
C	 TRANSFORM TARGET POSITION FROM BODY TO RADAR FRAME. 00015260

CALL MULT31(TRB.ERT09ER) 00015270
C	 TRANSFORM TARGET VELOCITY FROM BODY TO RADAR FRAME. 00015280

CALL MULT31(TR69EVT9EVl 00015290
SOsSORTIER(2)+ER(2)4ER(3)*ER(3)) 00015300

c	 COMPUTE INNER(BETA) GIMBAL POSITION -- BT * 00019310
IF(ER(1)9EO90909AND9SO9EO9090) STOP 00015320
BTR-ATAN2( ER( I) 9SO) 000/5330
ER2=-ER(2) 00016340
E R3=-E R (3) 000 15 350

C	 COMPUTE OUTER(ALPHA) GIMBAL POSITION --- AL9 000IS360
IF(ER29E090909AND9ER39EO9090) GO TO 8 000/8370
AL=-ATAN2(ER29ER3) 00015380
GO TO 9 00015340

8	 IF(ER(1) 9GT9090)	 AL-PI/2e- 00015400
IF(ER(1)9LT9090)	 AL=-Pi/29 UOOI5410
IF(ER(1)9E09090)	 STOP 00015420

C 000 16430
C	 STEP 1 -2: COMPUTE INITIAL TARGET INERTIAL LOS AZIMUTH AND 00015440
C	 ELEVATION RATES. 00015450
c	 PRELIMINARY TRIGONOMETRIC COMPUTATIONS. 000IS460

9	 CA:COS(AL) 00015470
SAeSIN(AL) 00015480
CB=COS (BT) 000 15490
SBESIN (BT) 0001ss00

C	 TRANSFORM BODY ANGULAR VELOCITY VECTOR FROM BIDY TO OUTER 00015S10
C	 GIMBAL(G) REFERENCE FRAMES 0001SS20

WGX-CP+EWR(1)+SP+EW5(2) 000ISS30
WGY=CAt(-SP+EWB(1)+CP*EWS(2))+SA+EWB(3) 00015540
WGZ=-SAt(-SPOEWB(1)+GP+EW13(21)+CA+EWB(3) 00015sba

G	 COMPUTE THE RANGE TO TARGET. 000ISS60
PaSORT(ER( I)+ER(1)+ER(21+ER(2)+ER(3)+ER(3)) OOOIss"

C	 COMPUTE INITIAL TARGET INERTIAL LOS AZIMUTH RATE(AZRATE)9 00015580
VGY:CA+EV(2)+SA+EV(3) 00015590
AZRATEsVGY/R+(CB+WGX-SB+WGZ) 00015600

C	 COMPUTE INITIAL TARGET INERTIAL LOS ELEVATION RATE(ELRATE)• 000IS610
ELRATE=-(CB+EV( I )-S9+(-SA+EV(2)+CA+EV( 3)) )/R+ WGY 00015620

I^.

r ^R
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C
C
C

00015630
STEP 1-31 COMPUTE INITIAL INNER AND OUTER GIMBAL RATES * 00015640

COMPUTE INITIAL OUTER GIMBAL RATE(ALRAT!). 000156b0
RCB=RtCB 000 15660
IF(A8S(RC9).LT•1.0E-6) GO TO 2 00013670
ALRATE avGY /RCS 000 IS680
GO TO 4 OOt'119690

2	 ALRATE =0. 000 15700
4	 CONTINUE 00013710
COMPUTE INITIAL INNER GIMBAL RATE(STRATE). 0001S720
BTRATE-ELRATE -WGY 000 IS730

000 15740
#«.####1118 1111 1111#«# s#«.# attic tti iait#tai 000 15750
# STEP 2:	 INITIALIZE RANGE TRACKING LOOP • 00015760
•..««##r•r#•#..•t.t#.«««••tttat•tt#.ta•#sa 00015770

000 15760
STEP 2-t: TRANSFORM TARGET C.G. POSITION AND C.G. VELOCITY FROM 00015790

BODY TO ANTENNA LOS FRAME. 000tso00
S	 CALL TRNSFM 00015610

CALL P VTRAN 000115620
OOO ISS30

STEP 2-2:	 INITIALIZE THE RANGE ESTIMATE REGISTER. 000115/840
SRNG=C GRNGE 000 15850
IRNGsINTT(SRNG#3.2) 0001S1860

0001151870
STEP 2-3:	 INITIALIZE THE RANGE RATE ESTIMATE REGISTER. 000158/80

IRDDT-INTT(CGVELrTSAMS3.2)
000 5900

.t•s##..•tttr•.«###r•sitatsta#irr•s#iirtasit««isaaiasaasaassa 000IS9t0
STEP 3: SET OPERATING PARAMETERS BASED %'PON INITIAL RANGE + 00016920

r	 AND SYSTEM MODE.	 t 000IS930
.t•s#i«r•.r#rt•ti•r«st#s•asistit•#satai«ttsitttisisaasiaiataa 00015940

00015950
STEP 3-1: DETERMINE CORRECT RANGE INTERVAL. 00015960

00 30	 I =1 . NR I 00015970
4RNG=I OOOIS960
IF(RI(I)	 .GT. SRNG) GO TO 40 00015940
CONTINUE 000 16000

000 16010
STEP 3-2: DETERMINE CORRECT SAMPLE RATE. 00016020

IF (IM OOE.GE.2)	 GO TO 44 00016030
IF(MRNG.GT.9) GO TO 42 00016040
MSAMs 1 000 16050
GO TO 50 000 16060
MSAM:2 000 16070
GO TO 50 00016080
IF(MRNG.GT.4) GO TO 46 00016090
MSAM:l 000 16100
GO TO 50 00016110

EMSAMz2 00016120
00016130

STEP 3-3: DETERMINE CORRECT PRF. 00016140
IF(IMODE.GE92) GO TO 54 00016150
IF(MRNG.GT.9) GO TO 52 00016160
MPRF:1 00016170
GO TO 60 00016160
MPRFs3 000/6190
Go TO 60 000/6200
tF(MRNG.GT.9) GO TO 56 00016210
yPRF: 000 16220
GO TO 60 00016230
MPRF=2 000 16240
CONTINUE 000162b0

00016260
#. +•. «r #...r .. r. •...... •#. •. r «+► •.. r. # #... 00016 270
• STEP 4:	 INITIALIZE VELOCITY PROCESSOR • 00016280
♦•.... r•.rsi.••.r+..•ir..sa•#w.t•srri.rrr 00016290

00016300

C

C
C
C
C
C
C
C

C
C

C
C

C
C
C
C
C
C
C

30
C
C
40

42

4•

46
C
C
50

52

S4

56
60
C
C
C
C

113
'N



t
c
r

10
C
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C
C
C

	

(	 C

	

!1	 C
c
C
C

C
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f	 C

	

i	 c

C

	

t	 C
C
C
c
C

C
C
C
C
C
C
C

STEP 4-1:	 INITIALIZE MOVING WINDOW VELOCITII AVERAGING. 00016310
00 10	 1=19 4 000 16320
VEST(I )ECGVELS20. 00016330

000 16340
STEP 4-2: SET INITIAL POSITION OF 5 DOPPLER FILTERS. 00016350

VR n-CGVEL/FLTMID(MPW ) 00016360
I VR: i N TT (V R+O. S) ♦ 32000 00016 370
MDF(3)+MOD(1VR932) 00016380
DO 20	 1-195 00016390
MD WWF (3) + I-3132000 000 16400
MDF (I) •MOO (MD.32) 00016410

00016420
ttsttsttsttt• +sr trsttsttst w s•••stssssstsssstsss•s•••••fsts 00016430
s STEP S:	 INITIALIZE SIGNAL STRENGTH ALGORITHM PARAMETERS • 00016440
rtsttsstsssstsrrttssssstsssts w •t•s•ta••st•s•ssst•t•s••••*s 00016450

AGCOLO =0.0 00016460
I TXP.I 00016470

00016"0
+1511•ttsttsttstttttssstssss•211111•tssss•s^asttsstsss•sst^s•••s^ 00016490t STEP 6: SET TRACK INDICATOR TO ALLOW OPERAi'ION OF TRACK LOOP • 000/6500
tt•tssssssssssssts• sss••••••••1151st•••s•••sMS•••ts••••••••••i•• 00016510

MTK INT n l 000 16520
00016630

BOLD 0 o 00016540
I CLOSE MO 000 16560
I CLOLD -0 00016"a

00016570
NOTE: DEBUGGING PRINT STATEMENTS. 00016580

WRITE ( 6.899) 000 16590
WRITE(69900) AZRATE.EL RATE.ALRATE98TRATE.AL.DT 00016600
WRITE(69901) 00016610
WRITE(6.902) IRNG.IRDOT.SANG 00016620
WRITE(69903) 00016630
WRITE(6.904)	 (VEST(I)9I=194)v(MDF(J)9J =195) 00016640
WRITS(6.9051 000/6650
WRITE(6-90 ^.P)	 IMOOE.MRNG.MSAM•MPRF 00016660

899	 FORMAT(// • TRACKER INITIALIZATION: 4/ 9 ATRACK: AZRATE 9 , 00016670
2 9 .ELRATE.ALRATE.5TRATE9AL.8T 9 ) 00016680

900	 FORMAT(6F14.6) 00016690
901	 FORMAT ( I RTRACK: IRNG9IRDOTmSRNG 9 ) 00016700
902	 FORMAT(2189F14.6) 00016710
903	 FORMAT( • VTRACK: VEST9MDF 9 ) 00016120
904	 FORMAT(4F14.6.5181 000/6730
905	 FORMAT( • CNTL:	 IMOOE.MRNG.MSAM * MPRF • ) 00016740
906	 FORMAT(4I8//) 00016750

RETURN 000/6760
END 00016770

000 16780
000 16700

+t tstttts•s+tssssststtttss w tssttststttsttss +ss+55515• 000/6800
• THIS SUBROUTINE UPDATES THE DATA VALID FLAG.STATUS • 000/6610
ttstttrrrrats•ss+stttrstt•srttsttssststsssstsssss•ts•• 00016020

00016830
000 16840

SUBROUTINE TGTACO 20016850
.:OMMON /CNTL/IPWR 9 1MODE.ITXP.IASM.IDUMC(51.DUMC(3) 00014860
COMMON /OUTP'^:/MSWF.MTF•MSF.DUM1(7).MADVF * MRDVPoMAiDVF904RROVF 000/6870
COMMON /ICNTL/IOUM3(8).KACCLK.MTPi.MZI.04ZO. MSS.MTKI I !T• 00016880

2	 MRNG. IDUM4 ( 12 ) 00016890
COMMON *SYSDAT/TS90UMS(14) 00016900
DIMENSION ADV(1092)9RDV(1092).AROV(1092) 00016910
DATA %4DVt9t1.02.5ol208s1.02.2*2o33/ 00016420
DATA ROV/9t6.15.28.69.806.97.2+29.76/ 00016930
DATA ARDV/9+8.2.28.69.70 8.2926.23.2029.76/ 00015960
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000 169•. 0
000169k.1t
000 16970
000 16960
00016990
000 17000
000 17010
000 17020
000 17036
00017040
000 17050
00017060
00017070
00017060
000 17090
000 17100
000 17110
000 17120
00017130
000 17140
00017150
00017160
000 17170
00017160
000 17190
000 17200
00017210
000 17220
000/7230
000 17240
000 17250
000 17260
00017270
000 17280
0001t290
000 17300
000 17310
000 17320
000 17 330
000 17340
000 17350
00017:%0
00017370
000 17360
000 17390
00017400
000 17410
000 17420
000 17430
000 17440
000 174so
00017460
000 17470
000 17480
000/7490
00017500
00017510
00017520
00017S,30
00017S40
004 17sso
00017560
00017570
00017580
00017590
00017600
00017610
000 17620
00017630
000 17640
000 176so
000 17660

t

I

V
!tlRrltM!• t!!!ltatR ft••R••!!!q •1111

STEP I2 UPDATE ACOUISITIO?l CLOCK t
tt.tlttr!!rt!!!••!Rlti!•t• g iq Mt•Rt

KACCLKSKACCLK ♦1
ACCLK=KACCLK•TS

.ttrrltrlRlRMRt.•..RRr•R•RptM•f!•ftf•tt•lfifrli!!!i••tiR••••••••
t STEP 2: PERFORM ANGLE DATA VALID TEST 	 GPC-AC0 C AUTO ONLY •
•.1.Rt. tR.!#..M.t.l r R rrRR• Rtrq•r• !••!i•!•!t•!trlt•t•••!••tt••r••

tFCtASM.Eo.2.OR.IASM.E0.4) GO TO 10
IF(ACCLK9LT.AOV(MRNGsIMODE)) GO TO 10
MADVFm l

tttrltlft•f•Mi!•iflflt•i••i•!•••!•!ff•t!R••r•M••M•••t•0
t STEP a: PERIT ORM RANGE ANO RANGE RATE DATA VALIO TEST tRt Rtrtr•RRlRtrt•ttrR R•iR•M gM•r!!•!!•titt! •MM!•ttl4 tti!•
10 IFtACCLK.LT.RDV(MRNG.IMODE)) GO TO IS

MRDVF: 1
MRRDVF -1

IF GPC -OES OR MANUAL INITIALIZE RADAR TRACKING PARAMETERS.
IS IF( IAS149Ea.2.OR.IASM.E0.49AND.04RDVF.E0.1) GO TO 20

ltt!•t• ^w RMR• f.!!lttrr t gtglrirli!!t!f•ttRMfttri•••MMf•itiRii
• S
g
TEP 4: PERFORM ANGLE RATE DA TA VAL I O TEST --- GPC-ACO AUTO f
t 
•	 MODES ONLY *	 irtrrtt•r!l gtt.• rRlttr•!•t!t !q!! t ►lr ftrtfMfrrtrrRf•f••OMriMM•MAi

IF(ACCLK *LT.ARDV(MRNG. IMOOE )) RETURN
MARDVF -1

!! Rltttr•rt.Rf•t!r trMq trtltf•!!!•ttftMfit• •!•!!t•!R•i
• ST

rM
EP
ltrt!

S: P
R
ERFORM STEADY STATE RADAR TRACKING INITIALIZATION •

•.•ft•!tR•t•ittttl.t •r♦ R!••! .♦• R••t•fttrt•R••tt••tr•iiM•rMrfr•
20 KACCLK =0

MTF:1

RETURN
END

rtt!!tt•rtftlwttttlrt!!!t! stttttlttttlttlttt rt•fwwlr••r
• TNtS SNBR(1UTINE UPDATES ALL REQUIRED TRANSFORMATION •
• MATRICES AND TRANSFORMATION MATRIX RATES. 	 i
.t.w•ttrri•tt• r• •!tt!!!•tttf.riRRtRtilfftt•tittttltffi•

SUBROUTINE TRNSFM
COMMON /INPUT/DUM(9),TBT(393).TSTO(3931
COMMON /SVSDAT/DUM2(4)9CP9SP.OUM4(9)
COMMON /ATDAT/CA.SA.CB.SB90UM1(2).ALRATE•BTRATE.AL•ST.OU143(41
COMMON /XFOR14S/TLS(3.3)•TL80(393).TLT(393).TLTD(3.3)

•t!lttttt t•tlftMlt•!t!. Mtq •t•ttt••• •t
• STEP 1:

t
 U
M
PDATE TRANSFORMATION MATRICES •tttrrtrr.w•r.frrltttlfslt•f!••tlfrrtt.rt.t

STEP 1-1: PRELIMINARY COMPUTATIONS.
CB•COS(8T)
SB=SIN(BTI
CA-COS (AL)
SA:SIN(AL)

STEP 1-2: COMPUTE TRANSFORMATION MATRIX TLS (BODY-TO-LOS FRAME).
TL8(1 . l) =C B•CP-S8 tSA• SP
TL8( 1.2)&CBaSP+SBtSAtCP
TL8(1.3)w-S5tCA
TLB(2.1)u-CAOSP
TL5(292)wCA•CP
TL6(293)sSA
TL8(391)sS8•CP+C8•SA.SP
TL8(3.2)=S8$SP-C8•SA•CP
TL8(393)uCB•CA
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000 I7870C STEP 1-3: COMPUTE TRANSFORMATION MATRIX TLT ITA44ET-TOt08 FRA11El. 0001768E
00 10	 t-193 00017"0DO 10 J-10 3 00017700
TLTi t. J)-0.0 00017710
00 10 K• 1.3 0001772010 TLr(teJ)arLrtl*Jl+rLS(l*K)*TBT(K,iI 00017730

C 00017740
G .• s••s rrss Mrr•r••.sr•srssbs••sss•r•ss.ssssr• 00017760C r STEP 2: UPDATE TRANSFORMATION MATRIX RATES s 40017760C •s.. r.•r.ssrt.r.r.a.s.ssssbssrsssssssrrtssrrr 00017VTO
G STEP 2-l: COMPUTE TLe-DOLT. 0001677"TLBO( 1 .1 )=-0TP.ATEiTLSt 3.1 )+ALRATErSSSTLSt2.1 1 00017000

TLBOII.2) • -STRATEOTLS(3.2)+ALRATE.SS•TLSt2.2) 00017610TLBO(1931--STRATEsTLS(393)+ALRATROSS•TLB(2.31 00017tf20TLSOt2 •1)-ALA ATE .SPOTL 0t 2.3 ) 00017630TLBD 12 4) • -ALR A TE sCPO TLS t 29 3) 00017040TLSO ( 2 .3) *ALA ATE OCA oof" 17660
TLBD(391)-STRATErTLB(1 .1) -ALRA TEOCS.TLS( 2. 1 1 000/7060TLIIO(3.2)-STRATE.TLSt 1 .2) -ALRATE•CSr ns(2.2) 00017070
TLBD(3,p3)=BTRATEOTL8(lo3)-ALRATE*CBOTLB(2 * 3) 000/76610

C STEP 2-2: COMPUTE TLT-DOT. 00017900
00 20	 I-193 00017910
00 20 J6193 00017920
TLrD( I .J) -O. 0 00017930
00 20 K-193 00017940

20	 TLTDII .J)-TLTD(t.J) +TLOO ( I•K)OTDTtK . J)+TLB(I.K)04BTD ( K.J) 00017960
RETURN 00017960

C
END 00017970

00017900
c 00 017990
G •.ss•.•..•.r•....•s.•..sr•sss..s.•....r.•...•••a..ssrRSS..srrs 00018000
C . THIS SUBROUTINE COMPUTES TARGET C.O. POSITION AND VELOCITY • 00016010
C
C

r WRY ANTENNA LOS COORDINATES AND INDIVIDUAL SCATTERER POST- •
. TIONS AND VELOCITIES MRT ANTENNA LOS COORDINATES. 	 0 00010090

00016030
C 00016040
c 00018060
C 000 16060

SUBROUTINE PVTRAN 00016070
COMMON /CNTL/IPWR•IMOOE 00010075
COMMM /INPUT/ERT(3)9EVT(3)9DUM(21) 00018000
COMMON /OUTPUT/MS16F.MTF.M3F.DUMO(7).1DU140(41 00016090
COMMON /ICNTL/IJUM6(91.MTP•IDUM7(3).MTKINT 000/6100
COMMON /SYSOAT/TSAM.DR (3) sOiP12(11) 000 16110
COMMON /TGTOAT/NT.RAU(39100)•RANGE(100).RADVEL(100).RO(3)9 00016120

2	 ROU(3).CGRNGE*CGVEL 00018130
COMMON /SATOAI/RADAR(3).N20.RT(7093)•S1G/70).ROLD*ICLOSE.ICLOLD 00010140
COMMON /XF004MS/TLS(393).TLBD(393)9TLT(393).TLTD(393) 00016150
OtMENStON ROR(3).ROD(3).V1(31.RA(3).RL(3).RAD(319RLDI31 00018160

C ......••• . b•••• ♦..•••... . a•arrs.•..r.•.........srs••.•...• 00016170
C . STEP 1: COMPUTE TARGET C.G. POSIT*.ON IN ANTENNA LOS FRAME r 00018280
C •rssrrrr•i..•i •s•..•r•r+s.•r..r..•.•.•..•..irs•r••rr••.••r•rr 000161.0
C 00018200
C STEP 1-1: ADD RADAR OFFSET IN ORBITER BODY FRAME. 00018210

OG S I-193 00018220
S ROR(II-ERT(I I-OR(I)	 00016230

C0001842410
C STEP 1-2: TRANSFORM TARGET C.G. POSITION FROM BODY FRAME TO 	 00016250
C	 ANTENNA LOS FRAME.	 00016260

CALL MULT31(TLB9ROR9QO)	 00016270
C	 o0o ls2so
C STEP 1-3: COMPUTE RANGE OF TARGET C.G. WRY RADAR. 	 00018290

Cir.RNGE-SORT(RU( 1 )iR0( l )+RO( 2)iRO(2I+RO(3)ORO(311 	 00016300
C	 000 16310
C STEP 1-4: COMPUTE UNIT VECTOR IN DIRECTION OF TARGET C.G. WRY 	 00018320
C	 ANTENNA LOS FRAME. 	 000/6330

DO 10 t-l.3	 00018340
10 ROU(I) WRO(I)/cGRNGE 	 000 163bO

sv^

r.



C
C
C
C
C
c
C
c

c
c
C
:
C
C
C
C
C
C

t
C

000 18 360
•s	 00016370
• STEP 2: COMPUTE TARGET C•G. RADIAL VELOCITY WRT ANTENNA LOS t 	 00018380
R	 FRAME (OR RADAR) *	• 	 000 18390
ttttRtttstts+tRtttrttttttttttttttttRRtRtttRRtR ttRtRR•RRtttRR R RRt	 00018400

000 18420

	

VELOCITY COMPONENTS WRT ANTENNA 	 00016420
00016430
000 le440
000 18450
00018460
000 18470

C

	

C STEP 2-2: COMPUTE TARGET C.(:. RADIAL VELOCITY WRT ANTZNA LOS. 	 00018400
000 16400

000 18500CGVEL=0.0	 000 1851000 20 i=1 •3	
0001452020 CGVEL=CGVEL+RDD (I )$ROU (I 1	
000 16530I t -(+

	

000 16540I F (l I . EQ. l) Go TO 24	
000 18550

••it••Rr4ii? • ♦i!r•iRRi•s ♦ «i«•Ri••••••s••s•••si•Ri•iiR•Rtti• 	 0001GS60
• STEP 3: COMPUTE TARGET SCATTERING CHARACTERISTICS -- to OF . 	 OOOISS70
r	 ILLUMINATED POINTS * THE POINT LOCATIONS• AND THE s	 00018580
•♦ i•••sitRw•rrsssss•'tiisrwsw••sri•siiri•.MSitiitRRRiiRiRii	 000185V0

000 18600
STEP 3-1: IF IN ACTIVE MODE• SE ARCH MODE 9 OR TRACKER INI T t AL tIATI ON 000 1862 0

ASSUME SINGLE SCATTERER LOCATED AT TARGET FRAME ORIGIN.00018620

CHECK CONDITION.	
00018630
00016640

IF(IMODE•NE.t•AND .MTKINT .NE .O•ANO.MTP . NE .0) GO TO 30	 00018660
IF ABOVE CONDITION TRUE --- THEN SET PARAMETERS AS FOLLOWS AND 00	 00018660
NOT CALL TARGET MODEL. 	 00018670
24 NT=1	 00018680

SIG(()=100	 00018690
DO 25 I=193	 000/6700

2S RT(t.I)=O.O	 00016710
GO TO 40	 00018720

000 16 730
C STEP 3-2: COMPUTE LOCATION OF RADAR IN TARGE T FRAME.	 00018740

00018 75030 DO 3S I=1.3
000 18 760RAOAR(i)=090
00016770DO 35 J=1.3	
000 187803'J RADAR( I)=RADAR(I)+TLT( J.l )•ROf J) 	
000 18790

STEP 3-3: COMPUTE TARGET SCATTERING CHARACTERISTICS. 00018800
CALL SPAS 00018610
NT c.r10 00018820

000 18830
40	 DO 70 K=I.NT 00018640

00018850
rrsras•rr•••rrsa••rr••sRr ♦ srswi•rri•srrr••s•t•si••ssiis•RStisst 000/8860
• STEP 41 COMPUTE KTH SCATTERER POSITION. RANGE * AND DIRECTION 00018670
r	 VECTOR WRT ANTENNA LOS FRAME (OR RADAR).	 • 000 186810
•••••s•67777•••r••sRis••s•«iw•••rsr••r•••ri••••s•••ti••tr•••r• 00018890

000111,900
STEP 4-1: COMPUTE KTH SCATTERER POSITION WRT ANTENNA LOS FRAME. 00018910

DO AS J= l . 3 000 18920
RL f J)=0.0 00018430
on 4%	 I=t.3 00018940

45	 RL (J) =RL (J )+TL.T (J. I )+R T(K .I 1 000 18950
DO SO	 Is193 00016960

SO	 R A f 1 l y w) (l)+kt (1) 0001897*
000 /8940

4%TFP 4-P • 	COMPO'rF AANW CW KTH SCATTERER WRT RADAR. 00018990
kAN6E1K1 sSQRT(RA(1) r R4(1)+ 	 RA(2) rRA(2)+RA(31 rRA1311 00019000

00019010
:DIEr 4-^:	 CLMPUTE U%l) VECTUR	 IN DIAECIIJH GF KTM c,,A(TEkEk WRT 00014020

C
C

C

C
C
C
C
C
C
C

C
C

C

STEP 2-1: COMPUTE TARGET C.G•
LOS FRAME•

CALL MULT31(TLRD*ROR.V1)
CALL MULT3l(%G99VT9ROD)
DO IS 1=193

:5 ROD(I)aRO0tI1^V1tI)
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i

t

C	 ANTENNA LOS FRAME.
DO 55 I=l a

55 RAUtI,K)=t^A(Il/RANGEtKI
LC ****s^t^►s****as*s*s***s*****ssssta*s*s***sss*****s**sk^k*^ts*
C * STEP 5: COMPUTE KTH SCATTERER RADIAL VELOCITY WRT RADAR
C *s*sss*+ts*s*s**s,r**ss*sss**ss*sss*ss*sssss*ss**ss*saes*s*sss

G STEP 5-1: COMPUTE KTH SCATTERER VELOCITY COMPONENTS WRT ANTENNA

C	 CALL MULT311TLTD.RT,RLD)
00 60 I=1 3

60 RADIIl=ROd(I)+RLO(1)

L STEP 5-2: COMPUTE KTH SCATTERER RADIAL VELOCITY WRT TO RADAR.
kAOVEL(K)=0.0
DO 65 I=193

65 RAOVEL(K)=RA,DVEL(K)+RAD(I)*RAU(I,K)

r 70 CONTINUE

C NOTE: DEBUGGING PRINT STATEMENTS,
L	 WRITE 6 9 900) RO(1),RO(2)9RO(3)9CGkN6E C(vVEL
C	 WRITE(69901) RAU(19,1),RAU(2,1).RAU(391),RANGE(l).RADVEL(l)
C	 WRITE(69902)
C	 WRITE(6,903)(I,(RT(I J) J=1 3),SIG(I) I=i,N201900 FORMAT(//' ROl,RO2,RD3 lGR.tGV =•,5F1D.2)

901 FORMAT(' RAUI,RAU2 RAU 73 R.V =•.5F10.2)
902 FORMAT( • SPAS RCS DATA: S /

1 /,9X,'I . 4X •R(I 11 . 4X ZRlI,2)•,4X,'R(I,3)•,9X,'SIG(I)',/)
903 FORMAT( Ii 0,r3F10.1.F19.11

ENDURN
.	 C

C
C ****>wasaas****+ ►s*s**+esasss*gee***s**s**s*s*sss**s**ss**ss*ssss*sssss
C * THIS SUBROUTINE GENERATES THE NOISE-FREE ANGLE. RANGE, VELOCITY
C * AND ON-TARGET DISCRIMINANT COMPONENTS.
C**********************s************s*s*************** ****ssss**s***

C
SUBROUTINE SIGNAL
COMMON /CNTL /IPWR 1MODE,ITXP,IASM IDUMC(5) DUMC(3)
COMMON /OUTPUT/11 M(3),SRNG,DUMI(6),IDUM2^4)

2 COMMON /ICNTL/MBT 8)13),MTKINT,MRNG,MSAM,MPRF,MBKTRK,MBTSUM,

COMMON /TGTDAT/NT,RAU(3 100),RANGE(100),RADVEL(100),RO(3),2	 ROU(3) 2 C^aRNGE ► CGVEL
COMMON /SATOAT/RADAR(3) N20,RT(70 3) SIG(70)
COMMON /RTDAT/IOUM6(2).DUM2(5) MD'(5)
COMMON /SIGDAT/SPAZSMAZ SPEL,SMEL,EARLY,LATE,DFI,DFS,2	 OF2 3F4 S^GBAR
COMMON /XFU.IMS/TLBt3 3) TLBD(3 3),TLT(3,31 TLTD(3,3)
COMPLEX CSUM CDIFAZ,1DREL,CEARLY,CLATE,CD^I.CDFS.CDF2.CDF4,

2	 OFWTS^,PHASE,PHASEI DOPFIL
2 DIMENSION CRHOLOi ),DFWTS(5,100),ALAM(5),ALAMD(3),NFREQ(2).

DATA CTP/9*.03318.9.799E-4,4*.03318,1.9599E-3,9.8E-4,4.9E-4,
2	 2*2.45E-4.1.225E-4/

DATA NFREQ/1 95/ ALAM/177.439,176.05 178.71.176.71,178.04/,2	 ALAMO/1.27714E-2,2.9691E-2,s.3092E-1/
REAL LATE

CC s**sss*s*+es*saeaa*sssss*s*ss*sas**s*ssss*s*s*ss**sss*sss*s*ssss*ss***
C * STEP 1: PRELIMINARY COMPUTATIONS AND PARAMETER INITIALIZATION
C ****sss*sssssss**ss*s*s********sss*ssss *sssss***ss**ss***ss**sssss

.Y
)

00019330
00019340

00019350
00019360
00019370
00019380
00019390
00019400
00019410
00019420
00019430
00019440
00019450
00019460
00019470
00019480
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19
19
9

19
9
9
9

19
9

19
19
19

19
1
9

1;

19

.r

I
C
C STEP 1-1: IN1TIALIJE DISCRIMINANT GOMPUNENTS (N TEt THESE ARE THE
L	 CUMPUNEN SIGNALS AFTtR St3UARE—LAM UEYECT1ON).

V Az =o.0
SMAZ=0.0
SPELaO.0
SMELi0.0
tARLY n0.0
LATE =0.0
uF1=0.0
DF5=O.O
OF2=0.0
OF4=0.0
SIGdARR0.0

C
NFMAX =NFRE(aSIMODE)
UJ 55 I m IjN MAX

G STEP 1-2: 1N t TI FR Q: C0YMNeX E
1STHESENARE T4E PCOMPONENtF SIGNALSHC	 xMtT FR QUENCY NOT : T

C	 BEFORE SQUARE-LAW DETECTION).
CS M w (G. /•:0.)
CDIFA2= V. •0• I
C^OIFEL- 0.•0.)
GtARLY=
CLATE=(0.

O.tu0..i1

LDF1=(0.•a.)
CDFS=l0.•0.^
LOF2 a U.90.
CDF4=(0. 04
DO 4

C
1F(1.GT.1) GU TO 35

^► *Mai►#**** *M ^RMM#MMMMM ### iM^R#s*MM#M##**+^*#*M###+►#M
* STEP t: COMPUTE* SUM CHANNEL MULTIPLICATION FACTOR FOR KTH

^^#########
*

C +	 SCATTERER.	 #

C
C STEP 2-1: COMPUTE SUM PATTERN ANGLE.

PSI•ACO5(AES(RAU(3•K)))
C
C STtr 1-2: COMPUTE ANTENNA SUM PATTERN MULTIPLICATION FACTOR.

X=SPAT(PSI)
C
C STtP 4-3: CJMPUTE SUM CHANNEL MULTIPLICATION FACTOR.

XX=SIG(K)*X
C NOTE= IF IN ACTIVE MODE SET XX;1.0.

1F(1MODE.E( ► . l ) XXa1.0
S nXX*x

C
STEP 2-4: CHECK ANTENNA STEERING MODE ( IF IN GK -DES OR MANUAL

-- SKIP STEP 4).
IF(IASM.EQ.2.OR.IAS4.E0.4) GO TO 20

C

E
•##Mrs+s^wM#+w##^#*s#i#######M###M#+R##*fit#1 ►#M##*###A#A###M#######
s STEP 3: C;^MPUTE Az AND EL DIFFERENCE CHANNEL MULTIPLICATION #

C *	 FACTORS FOR KTH SCATTERER. 	 •
(
c 

+R#M+► aM+K+^#M#M+Mid +MRM ►####R *#*#** Ic^M^RR*M###^#####*#*wMM#M* ^^ ►#^##

C STEP 3-1: COMPUTE AZ AND EL DIFFERENCE PATTERN ANGLES.
DELA1 a-ASINIRAuM KII
DELEL ;ASIN(RAU11, 11

It
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C

V

STEP 3-2= ccompp T AZ AND EL DIFFERENCE PATTERN MULTIPLICATION	 x I

I	 InDPATGILA`_0
MUM

DPATD L	
pI	 I

STEP 3

Z 
#

-3: C CTDRSA (INCLUDE RCSFAND UUNCPATTERN MET6

8	

H INGS)-

EL n XX

lllittlttltlltMlt#1tlMttittitt!**ii!!i!i###!!#!!!!!!!M i!
! STEP 4t COMPUTE RANGE GATE WE1 4HTIN1. FOR KTH SCATTERER •##ri#ii^ii##Miiilii!!!M!!M!*Mli#!*#!liilt#i!MlIt+MM*M#i !!

D

DEFINITION & CTP n4 ./ (CIPULSEMIDDpTH) 
p

WHERE C IS SPEED OF LIGHT.

20EP D -11 jrPgT6.1MU^I ATI hE lT, IC 
NGiT RANGE GATE CENTER.

STEP 4-21 KTHPVGATEAREY AND LATE RANGE GATE WEIGHTINGS FOR
R;

IR NTIDiXi	 2.

IIF;
GO 1j :^12 :liv12 1v23924v2I1*IX0

21 R0Ln tT.O
22 REa.+O:LX

RGLT.-
G

0-2
23 RRjE n 1ELX

RGLT}.+QELX

24 RE a
RGL n3.-DELX

STEP 4-31 LOMPQNENRANGE GATE WEIGHT FOR NON -RANGE DISCRIMINANT

25 RGWGT nO.SP* RGL+RGE)

STEP 4-41 AMANNEL
ANGE PLICA TIONTING 

TOO SUN AND DIFFERENCE

RGE nS#RGE
R a # Gi IRGWG
&A n OAZ $ GWGT
OEL nDEL#RGWG

MM# #MM#######1iii!!#ilil#i!#itii+^i!!#iiii#ilii!##i!i!!#i#iilii#ilia#
# STEP 51 EOMPUTE DOPPLER FILTER PHASE SHIFT AND WEIGHT NG FOR KTH +

#	 CATTEKER. NOTE& THIS CALCfttjjO N IS INDEPENDENT OF XMIT *

#	 FREQUENCY ANO ASSUMES NO AGCGEL RATI N OV R DATA CYCLE.
!ii#it##ali!##M#1

pp1

iiiiMl##il
i

ll#/ill
4

#iM^llli#####i##t##i##+^lli###llll

DEFINITIONI T ►HEA"CCW STANT20.196 4e*PI
/16,

STEP 5-2t OCFMKTMEggDOTTERRR .
REQUENCY CORRESPONDING TO RADIAL VELOCITY

FOT n -2. •ALAMdIMPRFI#RAOVELIK)
STEP 5-3& COMPUTE DOPPLER FILTER WEIGHTING FOR EACH OF FIVE DOPPLER

()I?'(") p Pf A L p,^G^

E
1

i
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IC	 TRACKING FILTERS.
DO 30 J=1 5
ARG=0.19646*MDF(J)-FDT

C 30 DFWTS(J,K)=UGPFIL(ARG)

C ****^s**s*s**ssss*s*s*#***ss*s^s***ssss*****ss*ss***#*ss^ssss***#
C * STEP 6: COMPUTE PHASE FACTOR ASSOCIATED WITH KTH SCATTERER RANGE *
C *	 (NOTE: PHASE IS REFERENCD TO PHASE ASSOCIATED WITH RANGE *
C *	 OF TARGET C.G.)	 s

G
C *s*****ssss►**s****sss*****s***s***s*sss*ssss**s*s^s*s**s:sss#s##
G DEFINITION: RANGE(KI IS RANGE OF KTH SCATTERER TO ANTENNA PHASE CENT
C DEFINITION: ALAM=4.*PI/LAMBDA WHERE LAMBDA IS XMIT FREQUENCY.

C STEP 6-1: COMPUTE PHASE REFERENCED 10 TARGET G.G.
C 35 DELPSI =ALAM( 1) *(RANGE (K I-CGRNGE)

C STEP 6-2: COMPUTE PHASE FACTOR I.E. EXP(J*DELPHI).
PHASE=CEXP(CMPLX(O.,DELPSI;)

C	
?HASEI=PHASE

C STEP 6-3: COMBINE RANGE PHASE FACTOR AND DOPPLER FILTER #►3C	 WEIGHT AND PHASE FACTOR.

C	
PHASE=PHASE*DFWTS(39K)

C ss*sssss#sssss***s*s#ssssss#****ssss***s#ss****ss#sss#s#s
C * STEP 7: ADD (VECTOR IALLY) KTH SCATTERER CONTRIBUTION TO EACH
C *	 DISCRIMINANTIS COMPONENT SIGNALS.

C
sssss^+ssss^ssss*sss#s*#*ssss#****sssss^*sss**#s*s*s*. **#ssss

C STEP 7-1: ADD KTH SCATTERER CONTRIBUTION TO SUM CHANNEL SIGNAL.

C	
CSUM=CSUM+S*PHASE

C STEP 7-2: CHECK ANTENNA STEERING MODE --- SKIP STEP 8-3 IF IN
C	 GPC-DES OR MANUAL MODE.
C	 IF(IASM.EQ.2.OR.IASM.EQ.4) GO TO 40

C STEP 7-3: ADD KTH SCATTERER CONTRIBUTION TO AZ AND EL DIFFERENCE
C	 CHANNELS SIGNALS.

CDIFAZ=CDIFAZ+DAZ*PHASE
C	 CDIFEL=COIFEL+DEL*PHASE

C STEP 7-4: ADD KTH SCATTERER CONTRIBUTION TO RANGE DISCRIMINANT
C	 COMPONENT SIGNALS.

40 CEARLY=CEARLY+RGE*PHASE
C	 CLATE=CLATE+RGL*PHASE

C STEP 7-5: ADD KTH SCATTERER CONTRIBUTION TO VELOCITY DISCRIMINANT
C	 COMPONENT SIGNALS.

PHASEI=PHASEI*S
CDF2=CDF2+PHASE 1*DFWTS (2,K )

C
CDF4=CUF4+ PHASE I*DFWTS(4,K)

C STEP 7-6: ADD KTH SCATTERER CONTRIBUTION TO ON-TARGET DISCRIMINANT
C	 COMPONENT SIGNALS.

CDFI=CDFI+PHASEI*DFWTS(1,K)
45 CDONTINUFi+PHASEI*DFWTS(5,K)

C
C ss*s*ssas^sssssss***ss*s*ss*s^sssss*wt**s**s*****s***sssscss#**s**
G * STEP tl: 

DIISCRIMINANTRCOMPONEN^SRAi^ITHVFREQUENCYAANDOSQUAREET #
C *	 LAW DETECT THESE COMPONENTS.
C **s*mss ssss* *ssssssss*ssss*sssssssssssssss*ssss**ssssss*ssssss*s*
C
C STEP 8-1: CHECK ANTENNA STEERING MUDE --- SKIP STEPS 9-2 AND 9-3
C	 IF IN GPC-DES OR MANUAL.

IF(IASM.EQ.2.OR.IASM.EQ.4) GO TO 50

00021480
00021490
00021500
00021510
00021520

00021540
00021550
00021560
00021570
00021580
00021590
00021600
00021610
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000 2000
00022010
00022020

I

C STEP 8-1: COMPUTE 
`
AZ DISCRIMINANT COMPONENTS AND SQUARE-LAM DETECT.

SMA =SMAZ+CABStCSIMNCOIFAZl**2

C STEP 6-3: COMPUTEFL DISCRIMINANT COMPONENTS AND SQUARE-LAM DETECT,

SS SMEL=SMEL+CABS 1tCS N `CpDISFFE^LI**2

G SOEPES-4 % ARLY^ ECARA
 GEARLY)*s2INANT COMPONENTS AND SQUARE-LAM DETECT

LATE=LATE+CA8S(CLATE)**2

CSTEP o-5: 
COMPUTE 

VELOCITY DISCRIMINANT COMPONENTS AND SQUARE-LAM

DF2=DF2+GASSttCOF2)**2
OF4aUF4+CASStCOF4)#i2

C
C STEP 8

-6s COMPUTE
ON-TARGET DISCRIMINANT COMPONENTS AND SQUARE-LAM

DF1=DFI+CABSICDFII**2
OF552FS+CABS CDFS **2

C
C ### iR#+R+*is#####i#i+►###i###**#ii*#######^M#####ssiii#^R##s**+tsssi
C * STEP 9: COMPUTE EFFECTIVE CROSS-SECTION AVERAGED OVER PROPER
C *	 NUMBER OF TRANSMIT FREQUENCIES.
C ##ss^►**ii^f*+►+lu► iik+k###**^t^^#*i+l#+^*i#+F+Fa**i**^F^is##+Mi►**sa+►i+k*##♦

SIGBARaSIGBAR+CABS(CSUM)**2
55 CONTINUE

C	
IGBAR=SIGBAR/FLOAT(NFREQ(IMOOE))

C NOTES DDEBUGGING PRINT STATEMENTS
WRITEIa 900) (I•SIG i 	 I=1•NTI

900 FORMAT ( t I SIG =6 ,I8 14.4)
MRITE(6.902) NT ,S OAI,DEL RGE RGL RGMGT MDF(3)

C	 WRITE`(6v901) DFMT?t1,KI•D^MTSI2,K;•OFMT^(3,11,DFMTS(4,1)•

C 9022 
O
FORMATI SiNT•S,DAZ,DEL,RGE,RGL•RGMGT•F3 =•9I596F10.29I51

901 FORMAT(* DF MTS =691OF12.4)

RETURNEND

CC

C
iiti^iss#+sii*is^i*#**iii^i+iii#i*###*####*#**i##i#iii*#i*ii#*#*#i###
* THIS S^yROUTINE ADDS THE DVALENT NO1 E TTO THE A LEE• RANGE• *

C • VELOCITY AND ON-TARGET DISCIRMINANT COMPONENTS AND HEN COM-
PUTES THE ANGLE f RANGEj VELOCITY * AND ON-TARGET DISCRIMINANTS.

C ###i#M^+t*#sr iiE#s*Mss#ssM*#+R*i*#sss#s##i#ii#s##*s###s#i##s
C

SUBROUTINE CISCRM
COMMON /CNTI/1PMR•IMODE•ITXP•IASM9IOUMC(S),DUMC(3)
COMMON /ICNTTL/13DUM114) MRNG,MSAM MPRF 1DUM4(10)

2 COMIMON / SYSDAT/DUMSI3)(i),CP'SP,PSI'PSIIAS•ALBIAS•BTBIAS•GP•GA•

COMMON /TGTDAT/NT#CUMSI SO^,CGRIE,CGVEL
2 COMMON /DSCRM/AI

DDB
ISC ELDI •RDIS ,V ISC•RRTE,ODISC•SIGBRI•SNRO•

COMMON /SIGDAT/SPAZ SMAZ SSPEL•SMEL,EARLY,LATE,DFI,OF5•
2	 OF2•OF4•S1GBAR

COMMON /NOISE/NS1 NS2 NN(101 GGAUSS(200)
DIMENSION NFREQ(2 j •P01A(2) P^IRI2) POIV(2)^PS(10.2),8N(2M•PT(3)
DATA NFREQ/1 5/•BN/9100. 52b./ PS/4*1.92. *1. 2. 4.•8.	 16./•

2	 PDIA P
a0

aIR,PDIV/1.4142 3.1623,2.0.4. x►721,f.8184,6 3240,
3	 PT/500.93125.,195.33

REAL LATE,MEAN
I
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., i

z
r

C NOTE S 0 uGGIN G MRINT STATEMENTS.WRIE16,N00) SPAZ SMAZ SPEL SMEL EARLY*LATE
C	 WRI TE l O 901) DF , F5, 

S
p^2,OF ►̂ ,S IGI;AR

901 FORMAT( OF1sJF59OF2vOF49S 	 ='^SF10.21

C s***^a**+^s^s*s*sss***M**s**^s^esss*sssss*ssslss*ssssss*SRS*s1**ssssss
C s STEP 1: COMPUTE CONSTANT USED IN SIGNAL SCALING AND COMPUTATION A
C *	 OF NOISE STATISTICS.C ss*swpasssss*ss*****ssss*s***s*ss*+^**ss*sss*ss*a*s*ss*ss**ss*ss*ss•

C STEP 1-1: COMPUTE CONSTANT (NOTE: IT IS DIFFERENT FOR ACTIVE AND
PASSIVE MODES).

IF(IMUDE
SS
E .2) GO TO 5

C	 TEYYsGA*PS(MRNG 1MOOE)/(EGRNGE**ZO8CN(MSAMI)S1=YY/FLUAT(NAREW IM00 l l
GO TO 10

C NOTE: THIS IS THE EONSTANT ySEO IN PASSIVE MODE

S S1sYY/FLOATkG,
 MOD1MODE)I XPl/(CGRNGE**4*BNiMSAMII

C STEP 1-2: COMPUTE THE SNR AT THE OUTPUT OF THE DUPFLER FILTER
C	 (NOTE: THIS IS USED FOR DEBUGGING PURPOSES ONLY ).

10 SNRU=YY*SIGBAR
SNRD=10.*ALOG10(SNRD)
SIGDl1s 10.*ALOGIO(SIGBAR )
SI GBRI =SIGHAR

C STEP 1-3: UPDATE NOISE SEQUENCE.
00(15 IOufNN (I)+1,200)+1

15 ID1=NNj/1tNN1I-1)+24,2001+1

6AUSS(ID1)=ANORM(NS19NS2)

C *****ss*ss**ss*s**sss**s*sstsssssssssss*s*******s*ss*
C *STEP 2: COMPUTE ANGLE DISCRIMINANT (INCLUDES NOISE)
C s****s*ss***s*ss*s*ss*sss*****ss**s.*****s*****s**r*+ ►sue

C STEP 2-1: CHECK ANTENNA STEERING MODE --- SKIP STEP 2 IF IN
C	 GPC-DES OR MANUAL.

IF(IASM.:,E.2.OR.I ASM.GE.4) SO TO 20

C STEP AS-ALE=S1*PDEAIIGLE DISCRIMINA NT COMPONENT SCALE FACTOR.

STEP 2-3: COMPUTE 
S ATISTICSS 

OF ADDITIVE NOISE FOR ANGLE

MEAN=PDIAIIMODE)
VARPA=SURT12.*SIsSPAZ+1. ^VA;

=SVRT12.* 11* A
VARPEL=SQRT(2.*S1*SPEL+

+S•
.1

VARMEL=SQRT(2.*Sl*SMEL +1.)

C STEP 2-4: ADD EQUIVALENT NOISE TO ANGLE DISCRIMINAN T COMPONENT
C	 SIGNALS,

ID4=NN(4)
SPAZ=ABSIASCALE*SPAZ+MEAN+VARPAl*GAUSS(IDIII
SMAZ=ABS A SCALE *SMAZ +ME AN +VARM A *GAU (ID4
ID2=NN12
I
Bg
DS=NN 5 u

`	
SMEL:ABS(ASGALE*SMEL+MEAN+VARMEL*GAU SIIOSllS 

C
STEP AzDISCatop*ALOG10tS^PEL/SMELIRIMINANT COMPONENTS.
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* STEP 39 COMPUTE RANGE DISCRIMINANT (INCLUDES NOISE)
tss#t+^*#s**#s*##t####*s#tt*t*tasts##tt#stts^**t#sta

C STEP 3-It COMPUTE RANGE DISCRIMINANT COMPONENT SCALE FACTOR.
20	 R CALE=SI*POIR11NO061

STEP 3-2: COMPUTE STATISTICS OF ADDITIVE NOISE FOR RANGE
DISCRIMINANT.

MEAN=POIIR IIMODEI1
VARELY=S	 T(2.*Si*EARLY+i.)
VARLTE=SQRT(2.*SIOLATE+1.1

C
C STEP 3-3: ADI O EQUIVALENT NOISE TO RANGE DISCRIMINANT COMPONENT

ID6=NN161
EARLY=ABS(RSCALE*EARLY+MEAN+VARELY*GAUgS(ID31)
LATE=ABS(RSCALE*LATE+MEAN+VARLTE*GAUSS(ID6))

G STEP
/EAR

NANT.
LYj ROISC=lO.*A^OG1O(IATE

#*ii*#i*i***iii*i*#*##tA^t#*#i*ii*ttttt*#tt#si*t*##i#t#+Rttt
C * STEP 4: COMPUTE VELOCITY DISCRIMINANT (INCLUDES NOISE)
C *####*M#*i+R#*iiii*ii^R#^ti*##i*##*##i##!###i#####iR#**##*##t

CC STEP 4-1: COMPUTE VELOCITY DISCRIMINANT COMPONENT SCALE FACTOR.
VSCALE=S1*PDIV(IMODE)

OF ADDITIVE NOISE FOR VELOCITY
INANTSTICSG

`

STEP 4-2: C OIPCRIM
MEAN=POIV 1MODE)
VAROF2=SQRT(2.*S1*OF2+1.)
VARDF4=SQRT(2.*S1*DF4+1.1

STEP 4-3: ADO EQUIVALENT NOISE TO VELOCITY DISCRIMINANT
• NT SIGNALS.SSCOMPON

Sf
DF4=AB S(VSCAIE*DF4*MMEAN+VARDF4 GAABlS(IDSII

C STEP 4-4: COMPUTE VELOCITY DISCRIMINANT.
VDISC=10.*ALOG10(DF2/OF4)C

iiiii*iii*####ii######a#i*#+t**+tttt#*^ ►*########t*s###*#*###fit
C
C

* STEP 5: COMPUTE ON- TAR ET DISCRIMINANT	 USED FOR BREAK-
*	 TRACK AND VELOCITY 	

---
ITY DATA INVALID DETERMINATION

C •***^R#ii#*i##i####*###i###i#i####**#i#############*######f#C
C STEP 5-1: COMPUTE STATISTICS OF ADDITIVE NOISE FOR OUTER DOPPLER

_	 C FILTER SIGNALS.
VARDFI=SQRT(2.*S1*DF1+1.)
VARDF =SQRT(2.*S1*DF +1.)

C
C STEP 5-2: ADD EQUIVALENT NOISE TO OUTER DOPPLER FILTER SIGNALS.

OF1=ASS(VSCALE*OFI+MEAN+VAROFI*GAUSS41D2)1
OF5=ABS(VSCALE*DF5+MEAN+VARDFS *GAUSS IO6)) C

STEP 5-3:C
NOTE: THENFAACCTORTOFIE

CQRRT1t21) IS DUEE	 Bp THE METHOD OF
C NORMALIZATION OF 0 SL^RIMINANT COMPONENTS.

OOISC=10.*ALOG10((EARLY+LATE)/(SQRT12.)*(DF1+OF5)))

C NOTE: DEBUGGING PRINT STATEMENTS.
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0002 620

00026400

h8 618U 69
00023710

t
I
t

7
C	

WRITE (6,902) AAZOpIS^C^ELDIS IC RDISC,VDISC,OOISC
C

WRIT E
 6904 SPAZ

t
SMA ^ GBAR EARLY LATE

WRjT 6,909 DF1RF5, 2 OF4 SI AR
902 FO MAT(/ A D,ELRO YD- ,6D ^, 14.6

	

903 FQRMA^I( $NR0 5	 ,^ BAR = • ^3F 4.6#	 2

905 FppDDr̂
R
AMAT1 • Df1vOF5:OF2i0F4vSfG+NO16E s•9SF10.2)

TTURN
END

C

C
#s******s**s**s***ss*#**ssw#******s**s**********#*s*
* THIS SUBROUTINE IMPLEMENTS THE BREAK-TRACK ALGORITHM

G +sMs#f**s*^tsas**sss*****s**sss*****s#*******s******s^a1^

C
SUBR WJTINE BRKTRK
COMMON /1CNTL/IDUM2t171 MBKTRK MBTSUuM,MOTt881
^^,,ppMMON /OSCRM/OUM(3) VO:SC,DUM^•OOISC,DUM2(31
INTEGER THRSHQ THRSHC

C DATA IVMAXvTM SHC,THRSHO/51,5•-1l/

G NOTE= USED
E IN FTTHHETRADAR. ATHESEE VVAALUESRMUSTTBEHCHANGEO STO THE

C	 RADAR VALUES.

C a*+*+a.►+sfas*+*#**s**s*ssss**ssss**sssv►**ss*s#ss
C * STEP 1: DETERMINE STATUS OF L-H DISCRETE (FTH)C *s**s*s*ss**sass*s****sss****^ ►******s**+t****#*****
C STEP 1-1: QUANTIZE THE VELOCITY DISCRIMINANT TO 3/16 05 STEPS.

IVDISC=lNT(VDISC*5.333333+0.5)

C STEP1-2: DETERMINE STATUS OF L-H DISCRETE.
IFTH=0
IF(IABSIIVOISC).GT.IVMAX) IFTH=1

C
C * STEP2: DETERM NE*STATUS*OF*ON-TARGET DISCRETEE (OT)C sss*a#s^#s*#t**s**#***sss*s*********s*sss**********
C STEP 2-1: QUANTIZE THE 0-DISCRI14INANT TO 3/16 OB STEPS.

IODISC=INT(ODISC*5.333333+0.5)

G STEP 2-2: DETERMINE STATUS OF ON-TARGET DISCRIMINANT.
I0T=0
IF(IODISC.GT.THRSHC) IOT=1

C
C ssss#sss*ssss***ss*s**+t******s****s*s**s***********s*********s**

C
* STEP 3: DETERMINE STATUS OF ADJACENT ON-TARGET DISCRETE (AOT) s
#s *+s+Irasssasssssss*ssisss** sr*s******#*sssss***ss#ss*# **#s*ssss

IAQT =0
IF IODISC.LT.THRSHO) IAOTsl

C

C * STEP 4: COM61NE ABOVE ps SCRETEg*g* TTO*DETERMINE STATUS OF *" NQ-*R
C *	 TARGET" DISCRETE (NOTARG).s#*ss#s*****s* *****ssss**s*ss*s**ss# ss***s**s*s ****# ####*

DEFINITION: THE NO-TARGET DISCRETE IS HIGH IOR 1) IF THE DISCRETES
C	 FTH OT, AND AOT ARE ALL LOW IOR We

NUTARG= ( l-IFTH) *( 1-IOT) * Il-IAOT1

C**ss.s**ssss*sssss#* #*ss **i*s*s****s**s*sss*sss*ssss**s
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* STEP 5: DETERMINE STATUS OF BREAK-TRACK FLAG (MBKTRK) *

DEFINITIONS

	

###ssfw##+M####i#####ss#i##*i#g##i
Epp 	

RD

####i**s####s####G
G
#######

LEA

A
TST 5 K AOFTHENOSTRECENT8DATA NCYCLES1 FOR AT

STEP M5-1:UMBTSUMMOVINGG WIMDDW-O;-8 SUN (MBTSUM).

STEP 5-2: UPDATE STORAGE REGISTERS.

10 MB

p
Tf I )=i MBf7l,+11

MBT(8)=NOTARG

STEP 5-3: DETERMINE STATUS OF BREAK-TRACK FLAG (1=BREAK-TRACK).
M9KTRK=MBTSUM/5

ENDURN

*##*#*#^►s****#**s*s**Pik*s*
Z
**s*#!^***s#s#s***s***#**#*

S
****s#ss

AL
LpPP

SHA SAND BETA SGIMBALERATES, T L

	

THE 	 ATAND BETARGINB^LTHE A
* DISPLAYNS• AND THE TARGET PITCH AND ROLL ANGLES FOR THE

****ssit#M ****i#s#*s**##********#****s#s***#*#****ss#****s#it*

^	 C

G

E

G

C

^	 C

^	
ccG

^'	 C

C

yC

G

C

SUBROUTINE ATRACK
COMMON /CNTL/IPMR (MODE I pp^ C(7 ?pVMC(3)
COMMON /INPUT/DUM(6) EMbt3)rDUME^18I

2 CCOMMUN /OIIUTPUT IIUpp^1ii1) • D10O^U,

,
M1II219SS2PAN

N

2G • SRAN6#SPRTE • SRRTE•SRSS•

2 
COMMON %SYSDAT

p
/TS OiR^^IRCP^SP•PS^rPSBIAS•ALBIAS•BTBIAS•

2 COMMON /ATOATAUAM 4SS GB•SB , AZRRpATE , ELRATE•ALRATE • BTRATE•AL•ST•

DIMENSIONS ATit10D ^1C^T2 14hi TX1t9
DATA AT1/9s1.5524E-1•2.OlOLE- !4 6*3.4TSaE (

-31.55 9E333.3)•TBLt3.31

2	 3*22eOF6E-4/ ATL/9*6_.^907E- 2.3725E-3•
DEFINITION: AT1=KE0=4MVR*1)/(4E*OIFFERENCE E PATTERN SLOPE) WHERE

WN It NATURALE FREQUENCY OF THE LOOP.

*^
DEFINITION: AT2aKSQVRGENCE

RT1MEU
I S PROPORTIONAL TO STEP RESPONSE

•*ss+a+#i#ssss##+1#*#s##^Misss##siiii##i##*#i###*#s*sssi#*s#ii#i###is
* STEP 1. UPDATE ANTENNA LOS-TO-BODY TRANSFORMATION (NOTE: TRANS-
*	 FORMATION INCLUuDES GIMBAL BIAS ERRORS AND RADAR YAM
*	 ANGLE ERROR WRT ODY FRAME).
##*sue+lei#i#is

i

TissTi#iM*``#*i#sgisiii*#*#i#si*s#ss*####is#s##*is^i##s#ssi*

ALL MU``T33 TXL TXl•TX3^A
S1^

ALL PHI(TX22 P^II
ALL MULT33 f;2•TX3•TBL)

C	 STEP 2: UPDATE ESTIMATED TARGET INcRIIAL AZIMUTH AND ELEVATION
*	 RATES IN ANTENNA LOS FRAME:iii#si

ZZ

*#w+1^l^ssisi#i sii #iiii##*#s#s+t# i##s##s#sss** s#s ##* i#sisissss
C Q^NIAZDSCT=INTtt`` SEC	

TS TO 3/16 DB.
333333*AtOIS

IELDSC=INTTt5.333333*ELFISE^
ADSG=0.0431*FLOAT ( IIAZOS`c)
EDSC=0.0431*FLOATIIELOSCI	

Z
C UPDAAERATE=AZRATE+TSAM*ATIIMRN6.IM0DE	

TE.
ADSC

^ I^^A'9L
W.4/w(. It
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1

I'
1
i
1
1

CC
G

CC
C

CC

`C
C
C

UPDAE`RATE=ELRATE+TSANRATITMRNG91MOOEI+EOSCRATE.

* STEP 3: UPDATE INNER AND OUTER GIMBAL RATES.
*it►t*^*i*t**ti*iiiiitMiiiiiiitiiitt*it**it***i

PUTE REWIRED COMPONENTS OF URBITER ANGULAR VELOCITY VECTOR INCOM
.,UTER GIMBAL FRAME

wGXaCP*EwB(11+&P*Ew8(2S

2Yn GA* -SP* w8111+CP t MBt2 )+SA*EMBl31
a-

BB
SA*

LLb
(-SP*EMBIl)+CP*Ew (E))+CA*EWB( )

OUTER A
gMS(ij.LT.F1.0EE-61 GO TO 2

AL ApTE n (AARATE+AT2(MRNG•IMODEI*ADSC+wGZ*SB1/CB-wGX

2 AO``RATEaO.
4 MONTINUE
INNE TRIMBAL RATEB ATE=(ELRATI+AT2(14RNGrI140DE)*EDSC)-wGY

#**ts *ss*is*is***iis sM y *s+KS^***i***i** *i*iis+Rt* SRS *s
* STEP 4: UPDATE INNER AND OUTER GIMBAL POSITIONS.
•►*t*it+Mtt **ii+^*s** # #*s i*iisis*i*ss***s** +Li*i**i i*
OUTER GIMBAL POSITION (ALPHA ANGLE)

AL:AL+TSAM*ALRATE
INNER GIMBAL POSITITN ( BETA ANGLE)

BT=BT+TSAM*BTR A E

* STEP S: ANTENNA IN OBSCUR ATION REGION?
#itt*i*t*t**ti^+Mi**t*i**#*i*ti**iitt+tt*M

CALL SCNNRN

ttiia+its*titstt+R t* *ii tiitittttt*t* t**tt**►titi**tti#*+lu^ ***t*^R
* STEP 6: TRANSFORM TARGET ANGLES AND INERTIAL ANGLE RATES TO
► 	 BODY FRAME FOR USE IN DISPLAYS AND G AND N.
sots*+►ssttsi►ss**t***M t►*tt**t**ttt***tits***tstts*t**ittttl
NOTE = 

TRANSFORMATION 
8001IINCLLUDES GIMBAL BIAS ERRORS AND RADAR YAW

ANGLE ERROR
FORAGISPLAYET INERTIAL PITCH RATE IN ORBITER BODY COORDINATES

SPRTEs-100u.*(TSL(2 1)*AZRATE+TBL(2 )*ELRATE)

FO DES
INERTIAL DOLLRATE IN ORB OER BODY COORDINATES

SRRTE=-1000**j TBL( 1 1)*AZRATE+TBL(1 2)*f LRATE)
UPDATE ANTENNA PI7CM AN^•LE IN ORBITER 8bUY OORDINATES FOR DISPLAY.

SPANG=-ASIN(TBl(1 i311*ST.29ST6
UPDAITT	 Qp

FITdLI2N3)IEQ.O80.ANOBTBL(3:31DE0 OEOSFGO p055LAY.
SSRANGa-AfAN2(-T8L(2.31•TBL(3.3)1*S}I.29 76
GO TOT	 _

s 1FITblJ1.31.LT.0.01 SRANNGG890900
IF(TBLI1 3).EQ.0.0) STOP

RESOLVIE POSSS^BLE ANGLE AMBIGUITIES • VIZ.• -90. <SPANG<909 AND

180.<SRANG<180.	 pp 11
T 

S
SAt4 N10.-AP Ga 18B5(S^PANG11*(SSPANG/AB $, (SPANG 1

10 GRATIN(
E80.-ABS ( SRANG ) )*(SPANG/ABSISRANG)1

NOTE= OE6000ING PRINT STATEMENTS.
wRITEt698991

899 FGRMAT(/ • AT RACK DEBUTGGING DATA')
WRITE1,61	 0) ALRATE^8 RATEE AZRATE•ELRATE SRRTE PRTE
wRITE16.9011 TBL(i1., •TBIi^ 	 T2 1 BLl2.1I•^BL(2r^T
wRITE(e 902) AZOISC ELOIS`` ^►DS^ EDSC

900 FORMAT( ALR•8TR•AZ&•ELR•SjR•SP&s'•6F10.21
90	 F̂pQRRMAT( • TB`` zzX2 a•r4F10.4?902 RERTFUIRNI • AN L0•ADrEO s'• F10.4I

END
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t	 W, 
&

4 2091:
•28.27. 7, 4•

N
99 1	 4

If

S-2,2. 27E-

• :As'AArvAUlt h li l41
AS *VEST (4)•14OF(5)

N1 •V
1 9- 40,

2(31
Z 3:4  

4: 23 4: 3 'i2'

P;4P. 1'^•lb •.•
'941 1 .20495 •

•1
,4
•2
,1

E*

swills
00026 00001611050

6150
00026160

Willis

c
#.*slaSS#Ss#w*pp**T#s^^sE##uu.##pp^^«.#*s#s#sEE##.yyps.s#.##*ss#TTE*#.EES#.s.^^^^^.M.a

UPQi►TE DOPPLER FILT SBA(AM^POSITIOVINDASYSTEMIEA(lAs'
* METIERS BASED UPON RANGE IN RVA{t .	 s

SUBROUTINE RTRACK
OMNI	

11
ONM 	 SNSDA /TSAMM%

TGHTL/I UM(1

SIMENE I ON S ►R/MR 12^'

^ ^^iee
•iiR

;i!s2T

7

4 6b' 65 64 63 :03 2 	 _6
S 47:46945449449431
7 

132932 	 '2 '21:200'29
2oRi/ 0A!0;1e

4	 4: Ib:i2
a
vf21/^1:

S	 O.S163•0.046

s*^s*ass*s##s*#*ss#*#ss#*ssss#s#+s#^s##s*mss a^#s^ss*#s*ss*as^##sssss#*sass
s*ssa+•^a*+ss*♦s*+s*# RANGE TRACKER MODEL ***##**#*****s***s#sssas*sss*
###*#i*+^#ss#*##s#*###MRS*##i+R####!qM#*#^***+i+^^# ***#** s*****+•^*#**

*#s****s•*s*****ssss**ss****sss***s•sas**ss
STEPIS UPDATE ROUGH RANGE RATE ESTIMATE

#*#*sps^Iss€^#s#sssss*#s####s*****s**s**^s►*+►*#

INTEiR0A	

INANT AND CHECK

5C2!3333RO*ISif	

FOR SATURATION.

IFl!IRDD
^^II

iS .GT .225	 DISC
225
9) IRIIs2_SS22

C ROUGMFRANGE Si : F..PREDjCTION FROM SALPHA-BETA TRACKING	 ATIpNS.
G OEFIR =FLIRDOT^INTT)RRTI^MSNG,IMODE) S 70

BETA IN ALPHA-BETA TRACK

C	 l 1

C •*s##s*s^****##s*s*## a. ►##sss*s##
C * STEP 2s UPDATE RANGE ESTIMATE

##*#s*mss****s+r*ssss*ssss#s##*#*
DEFINITIONS RT2 CORRESPONDS TO ALPHA IN ALPHA-BETA TRACK ERs

C CONVERTGRAN GE^iiESTIMAtE(IRNG) TO FEET USING THE FACT THAT THE LSB
C OF IRNG REPRESENTS 5/16 FEET.RN(6 s 0.312S*FLOA (IRNG1
C ADO FIXED aIAS TO FINAL RANGE ESTIMATE.

C	
SRNG=RNG+RBIAS

G
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a
ss****s*st*i* **i**ii******rM*M**rIiMMMi*^*^MM

^iisiii
ANO

sTM**s
CHECK
i4*iiii

FOR
*o

INANT	 SATURATION.

i*^R^iMi*M* *siw*
000000"**i *iMM

^s

INT

TION OF AMBIGUOUS VELOCITY

C EST

,ONIFII^PsPORTiOlE1^►Mi000US VELOCITY

OM?iy
SyC11I•l

T	 SS NNAA	 NNE TjEEP E AMe	
^O IFRi

BE ISI /18 OF A^FLTERINIO^N.^L 
AND

R"AC IIO
EAs IF C+ 120INNTE6ifV L

***•••w.ir*s+Fiii•i*ii»•!••*•iN**i^i+ ►*+1•M**
• STEP 2s SCALE ROUGH ^ OELOCITY ESTIMATEi**•i*i+i*s*•i*s.

TH
+*i• ► .iii**i**ii**i*i*•*	

ILTT	 pp

pEFINiiOA^F	 vT1lIMPRIFI^EE/s^AleOAoOAMdIGUOUSEVELOCITYI/I<1
R 11 •F OATIIROOTI*VTIIMPRWtSAM
IRtpa NT E1R11^ `

C 
SOMER^sF^UAT^IR

Al)%dIARY CALCULATIONS.

IR2 a INT`` 21
IRVELiIRZiA096

•** • Mi+^i• i * iNi** ii • M• ** • i*
* STEP 3s RESOLVE AMBIGUITY
***iiw*ii*i*iiwisisa*i•i••*i
COMPUTE AMit;$ OF AMBEG{lO E V LOCITY ESTIMATE.

1F3.IN SSLOATfIFCVAL / 20
C COMP TE f

L SBIR1^p
*pER21 O ROUGH VELOCITY ESTIMATE.

IN IRI.LE.0+
4896TO 10

110TiNUE3
C GOMPA E F3 ANO IR3.

Iii DpE
(
 LT

TA
A , R3- F3

IF(IOELTA.IE._41IIRVEL&IRVEL+0^6

C •iii•iwliiyii*i+^*iii••ii*i•i*N*i•i•i M•i••*i•••i•
C i STEP 4t COMPUTE UNAMBIGUOUS VELOCITY ESTIMATE.
G ****•iiii*i•i*i*A*si*MS*i*iaiMi*iiMisiiM•ii*i

``1VE``LSSy
tsINTTIFLLp ATIIRVE^—IFVEL)l

L
	

11(Si FINITi0Ns 0 VfpplR2sy1MFPT1E2l `F1^ il
LPEF*EAMB Al%1^0lOS B1961VELOCITY LSB1

IVELi1NTT6FLOAT{1VEL!*Vt204 RF1+S.S1
C t

1
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el 301

4 ^!!*ors*os*.M^*i^^^lss^**lae^!!!wo*oo!
Sr * STEP Ss COMPUTE SMOOTHED UNAMBIGUOUS VELOCITY
C Mt!lrslMME+►MM^4t*lM^i*M^IM^Mr.•*w^#M*!

s 93 ^s ^e::env
V T 11 • W.ftIV L

^^	 pppp

S TNS. 1^5*tVE TIR I
N^^pp

TFE1+VESit31+0Mt2f(4
5
)I
EET/SEC.

00	 c	 11 ES l2

* STEP o: RE; ET DOPPLER FILTER SANK!!*!!!!!!!!!!! !!!! M * M! *!! ! ►*^*!* its
tti" CK ON-TARGk T DI $CR IMINANT FOR LARGE ACCELERATION DURING A DATA
,.^^LE OR ^Lj

j
 jjthf!jSS ?FS NAL.

it^ ti	 2Iff
F yVD E 	 M8FI11•"tMOFtl1+a^311

30 FI
I1vDIS3SC.lT. s91}	 f1̀ 1)sM00lMOf(1)#10C

 :,

S
E	 MAtNINt: FILTERS IN SANK.
 D	 e

SO MOf1 I+11 1 DO(NDFt 11+19321

s^lAas*i*!!!iM lts* +t M ilt!* !!!^^!! *!*^*!* M**!!s!^•!^M! irtMlM ^! M
*++***yi* UPDATE SYSTEM INTERNAL CONTROLS ******A*!******!******iiii^♦iiiiilitill!!ii!liii!!iiliiiii!!M!!!^Rlitiyil*!i's!* NMlltiltM

lilit+9^M !M iiii'! i * *i^lil t!• M !r•+^!!!*!!!
* STEP is SET RANGE INTERVAL PARAMETERr*liw+aliii^R!!*lsiM!!!!!!i*iiiililiiMi

Dp 00 I.19NRI
O `

 
NTINU	 III) GO TO 70

IIFF(MRNG .GT.NRI) STOP

iiliMlsiitiii*+ki*liatM•tl^t^Y#!tN
x STEP 2s StT :t ►MPLE RATE PARAMETERi!l* 

l
i^

l
i+f^i► ii

66 CCiilriiiiiiM
tFtMRNNGEGTE9))GOG?OT727a
MSAM•1

TO 80
72	 M AM•2

Gp TO 80
7c	 If (MRWGP.GT .4) GO TO 76

MAM•1

76	 MSAMO260

iii499isiirt*t^^^*^iOlNt!!!*
STEP 1: SiT PRF PARAMETER il*i!ll+rssiii ii^M 2i^t^**!!! *t

yy 
i li

80	 lit Ma0NC09Ef.TE9 !) GpOTO b2y
MPRFul

82	
GORT039u
MP TF

O 90
8o	 I 4ARNG .GT.9) GO TO at,

MPRFS1
G$ TO 90

90	 CQNTINUE

EEENOURN

r 



e

^MMi^lMttttMttttttMtttMttttttttM•tMtt tttMttttM ttMtt
* ISIiE	

OUTIyE ^pM	 S E RADAR S AL RGTH	 ITi	 STEN	 ---	 •

	

I 1 T EQUAL TO THE wl v N THE PRESE VERSIiNI.	 t•ttt•tttM••+ftMt4tt^t•te!• Mtttttttttt+ttttt+••tttttttttttttt
uBR p^TINE  RS

p 	^^OMMON	
A^t9uMa2M	

9 IT!	

31",I NGE, CGVE L
/ 	 g9 	

FL A
 ON 111r

/A AT/A^ AG^J

XP

rr

tt•ttMMMMgttt•tt•too$ tNitt*tt•
• STEP 1= DEFINE TARGET PARAMETERStt•tttwtt•ttt*•^ttt• ttwtt•^^s^ws
SET THE R4Mjf T TARGET C.G.

C SET If
R,MA^SIC R CROSS

—SECTION IINCLUOES SEAMSHAPE LOSS)*

t•• ttMtttt tt•t• t^tM •ttttJ tttttttt•tM tttt
• STEP 21 COMPUTE THE SNR AT VIDEO OUTPUT t•Mt	 •trsM*^Map^ata^ •t^t^i++A• r^at•^

c	 SNR•SNRV (SIGMA *RANGE I

C •t•ttMtttt+t4••••tttM9RtttM
CC • StEP 3s COMPUIE RSS IN Os •

tt•ttt•trstttt•.^tae•ra^tss••t
R_F;A .•ALOG10(SNR1

ek

••ttttMNttttl^!•^ttlnMtlttt•t•*ttgMgt^gtttMSqtM*wMiMt
• THIS su R&TINE INITIAL Z	 ALL DATA REQUIREO BY THE SEARCH, •
• ACVUISi ION, ANO TRACK U ^ROGRAMS.	 ••tss•t•ttr^t•^rt ^tstss•ws••••s•t^•tt•w• •r•t^••s•p•^wr tst^rgs•

$ROUTINE DATA
MMOONN /R pAT/IpUMil??^^ 

2 UMMON /SYSOAT/TGATISIi`14CPIrPSSIASrALBIAS,BTSIAS,GP,GA,

WA
PIIL /NV}SE/NS1ew vNNti01rGAUSSI2001

Al LT K y
t^tt•••srtt^ttt•tttt•
+ SYSTEM PARAMETERS •
s•t t^^tt•s+rss•••t•s

PIsl a.1415926
PIF

nPI/ISO.
C RADARSsIIRAME YAM AN16LE IN BODY COORDINATES (DEGREES).

C	 PSIs``PppIltoo 10

•S^NI PiI l
C RADA R`iATIO0N OFFSET FROM ORBITER C.G. IN oUOY cooA1. (FEET)1

22 s :0

0IÌI)Is1933
RANGrIIASOia

p
ROR.

AS AS•0.0
C ALPMALBIAj!L BIAS.
C BETA trSSsOO&^}AS.
C RADARY

IW AN" 
E ERROR WRT BODY ^4RAME.

^t

I
B
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C

* SYSTEM SAMPLE INTERVAL
C ****««*«*s*****«**«s**s***

C	
TSAM=0.2

C **^R***UWis*iSNF#***N"SRAi*#+t
C * GOMPUTe SNR CONSTANT *
C ***«s«ss*s**«s**rs«s«***
C EQUIVALENT ONE-SIDED NOISE POWER SPECTRAL DENSITY (MW/KH21

KTS=-136.6
KTS=10. *(0.1*KTS)

C SYSTEM LOSSES ON-TRANSMIT (DBI.
LT=3.7 ,
LT

,
 10.**(0.1*LTI

C ONE-MAY ANTENNA GAIN (DB).
G=38.5
G=10.**(0.1*G)
ALMd DA=0.070845

C CONSTANT FOR PASSIVE TRACKING SNR COMPUTATION.
GP=4.*IG**2)*tALMBDA**21/114.*PIT**3*LT*KTSI

C BEACCN PARAMETER IDBM)
BCN=44.0
BCN=10.**(0.1*BCN)

C CONSTANT FOR ACTIVE. TRACKING SNR COMPUTATION.
6A=4.*G*ALMBI)A**2*BCN/((4. *PI)**2*KTSI

C CONSTANT FOR PASSIVE MODE VIDEO SNR COMPUTATION (08).
GPS=183.9

C CONSTANT FOR ACTIVE MODE VIDEO SNR COMPUTATION (03).
GAS=146.9

C
C s««****aRs*««s**ss**s«sss*ss
C * RANDOM NUMBER GENERATOR SEEDS
C ss«****s«****«*s«*s«*ssss**««*«s*

NS =48
NS =135
NN(1)=0

C INITIALIZE NOISE SEQUENCE,
DO 2 I=19200

C	
2 GAUSS(I)=ANORM(NS1,NS2)

C ****ss**s*******s*s*ss«sss**
C * DEFINE TARGET PARAMETERS
C ******.****s*********s*****
C TARGET SEARCH CROSS-SECTION 1 FIXED TEMPORARILY).

TGTSIG=10.0

RETURNEND

C	 00028730
C ********s*ssss*****ss*s**ssss*««s****«s**s*s««*s**ss*«**s*«*s«s*	 000287440
C * THIS FUNCTION GIVES THE ANTENNA SUM PATTERN WEIGHTING OF THE * 	 00028750
C * RADAR SIGNAL FOR THE GIVEN ANGLE(IN RADIANS) OFF BORESIGHT *	 00028760
` ***«**ss*s*sssss«s*ss******************************************* 	

00028780

C	 FUNCTION SPAT(X)	 00028800
C NOTE: THE FOLLOWING VALUE OF B GIVES THE SUM PATTERN A SINGLE-SIDED 00028810
C	 3 OB BEAMWIDTH OF 0.85 DEGREES.	 00028820

Y=93.80*X	 00028830
TEMP=ABS(Y)	 00028840
IF(TEMP.GT.1.OE-06) GO TO 10 	 00028850
S°AT=1.0	 00028860
RETURN	 000 870

10 SPAT=SIN(Y)/Y	 00028880
RETURN	 00028890
END	 00028900
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00029040
00029090
0009 00

888 9 10
000029140
000

1970
00p0p 9 60

00029180

8581910900
000 9 1O
00029220
00029230
00029340
00029 50
00029260
00029370
00029 80
0002990
03

80529310
00029 0
000299330

00029350
00039360
000 9 70
00829380
00029390
00029400

I

• THIS FUNCTION GIVES THE ANTENNA DIFFERENCE PATTERN MEIGTHIN^ OF
* tHE RADAR SIGNAL FOR THE GIVEN AWLE(IN RADIANS) OFF BORESIGHTo *
NOTE: THI S PATTERN IS THE DERIVAIIVE OF THE SUM PATTERN

l
1

FUNCTION DPAT( X3
IF(A6(X).GT,lo —4• i^. 10 10
RETtTJ	

_
RN0.e228*X

10	 YU93.50*X
RETURN 1469*(Y*COS(YI—SIN(Y11/(Y*Y)

ENO

* THIIS FUNCTION GENER&IJ A RANDOM NUMBER FROM A GAUSSIAN POF

	

* MITH Z&RO MEAN A 	 UNIT VARIANCE,

FUNCTION ANORM(KI•K2)
Y1=RNOuiKll
Y2=RNOU K2
TPI=6.26 3iia5-

R ETURN
APNURMaS4RT1 ^.*ALOG(Y1) I *COS(TPI*Y21
END

• TH1SS FUNCTION 6ENER ATES A kANDOM NUMBER FROM A UNIFORM 90911
• DISTRIOUTION.***i a^wrii* *+F*s^^ t#*+^***s#***s*#******** *s#s******* **s**+s s*M#**+s

FUNCTION
	 X NMW 524187. /r I ETAA97/

IF(IRAN) 20910910
20 CONTINUE

IRAN=IETA*IRAN
IKEEP=IRAN/MU
IRAN=IRAN—IKEEP*MU
XRANiIRAN
XRAN=XRAN/MU
RNDU=XRAN

10 END

*****..*****.##******#t***sss***s*********sss#****************
• THIS FUNCT ON COMPUTES THE DOPPLER FILTER OUTPUT AMPLITUDE
• AND PHASE ROk AN INPJT SIGNAL OF FREQUENCY X.
******NNP*************M ****i***:a***	 ********* ****a*

CJMPLEX FUNCTION DOPFIL(X)
COMPLEX DEMON NUMER
DENOM=I.—CEXP^CMNLX(O.vX))
DENOM=16.*DEN M

CHECK FOR DFNOMINATOK EQUAL TO ZERO.
XX=GABSIDEMON)
IFJXX.GT.1.OE-061 GO TO 10
RETURN_ (1.090.0)

	

10 DDUUPFIL=NUMER/	
X(0.916.*X1)

DENOM 

RETURN

t
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s88196s
16611

pp
!019;018

p0
8

p0p0 9118

000 9750

0002899970

0009990
00030000

$ogg o
^a^ 5
0001pp60
0000030070

0000030100
0003301210

0003130
00030140
88830150 
000381 6700 

0
30180
30190

00030200

00035 0
000 Otto
000

33
3022? 0

000003S2AQ
00038 7
00030s0
00030 90

*	 *.**.t***.i.*tt**tttt**tttttttitttt*ttt*t*i*t**tiiittttiitM**i
* AN 1S FUNJj Oh CHE KS F 00R	 AT VE ARGUMENT FOR INT FUNCTION
.*..^+► +Ci+Oi+R► G ^.

THE
*. +U►A.M

Z
w

NE

 •.+1*+RR iii Mt** i*t***ii +R** t***ttt

INTEGER FUNCTION INTT(Y1

IFX0LT.DO X=X-1.0
REIURNNT(X)

CC
C ..*M*i*.*M*.****..***ri*..*t^*t*..**.+M*...t**.i+l^+h.*.**MrR.*M!.*MaM

kN

CC * THIS SUdRUUT1NE GENERATtS A 4301 MATRIX TPHO THATREPR SENTS
! THE OLRIVATIVE OF A MATRIX THAT REPRESENTS UNIFORM k2TA^ D N
* ABOUT The t-AXIS. T ROTATION SPEED IS M AND THE ANGLE AT 	 t* WHICH THE DERIV. IS TAKEN IS PH.

4USKUUTINE PHID ( TPHD•PH•M)
DIMENSION TPHO(3.3)

:1
TPH013,I1=0.0

10	 TPHO I.31=0.0
TPHO 1. 1)=-N*SIN(P;i)
TPHD(2.22) &TPHOtt1 1))
TPHDtl•2)&W*COS(;H ►
TPHO`12.1)=-TPHD1I.2)

ENO RN
C

*.!. 1*M.l.!!**....*+1*!tt**.iii.*!.**M***t*.**i..i*...* gi.tti**t
C * IHIS SUBROUTINE MULTIPLILS THE33 X3 1 MATRIX A AND THE (3X3)G * MATRIX B TO OBTAIN THE (3X3) MATRIX C.	 tC *..rtw'««+► +►..«....!!+► l..s.l..«.........11...*1.1..1...1...*,►.ait

C	 SUBROUTINE MULT33(A B•CI
01M10SIO A(3.31• BI 3.3 • Ct3.3)
p	 __
O I1J)JOla3

10	 C^I!C,K=1^tt•J1*A(1•K)*Ii1K•JI

RETURNEND
C
C

C M THIS SUBRUUTINE MULTIPLIES THE (3X3) MATRIX A AND THE (3X1)
C * VECTOR B TO UBTAIN THE (3X1) VECTOR C.
G!!!!l..1.l....l....!*.*r.Ml..*.*..*litM*!.****......!**.*M^►*....
C

SUBROUTINE 14ULT311A B•C)
DIM

I
EOSIU1: 3(3•.1) •B(1) • 3)

C(II=o.0
00 10 J u l 3lu	 Cjj) = C(I)+A(1•J)*BtJ)

ENOUKN
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00030500

I
1

* THIS SUBROUTINE GENERATES A 13X31 MATRIX TTH THAT PRODUCES
C * A ROTATION OF TH RADIANS ABOUT THE X-AXIS.
C
C

C	 SUBROUTINE TMETA(TTM•TH)
DIMENSION TTH(3931
00o 10 I=193
1710J=13
T^10	
TTH(1,1):=1.0
TTH 2,2)=CUS(TH)
TTH 3,3)=TTH 2,2)
TTH(2,31=SIN TH)
TTH (3, 2) =-TTH (2, :^s9
RETURN

C
C

C * THIS SUBROUTINE GENERATES A (3X31 MATRIX TPH THAT PRODUCES
C * A KOTATION OF PH RADIANS ABOUT THE Z-AXIS.
C
C
C

SUBROUTINE PHI(TPH,PH)
DIMENSION TPH(3,3)
DO 10 I=193
DO 10 J=1 3

10	 TPHCcI,J)=a.0
TPH(3,3)=1.
TPH(1,1)=CUS(PH)
TPH42 9 2) =TPH (1,11
TPH(192)=SIN(PH)
TPH(291)=-TPH(192)

ENO
C
CC+►► asa*ss+rsk*s+Vtr+r*s+L##iitii*iii****it***i#**iii**siiii*i#ii
C * THIS SUBROUTINE GENERATES A (3X3) MATRIX TGA THAT PRODUCES
C * A ROTATION OF GA RADIANS ABOUT THE Y-AXIS. 	 i

G
C

SUBROUTINE GAMMA (TGA,GA )
DIMENSION TGA(393)
DO 10 I=1,3
DO 10 J=1 3

10 TGA(19J)=a.0
TGA``2,2): .0
TGA11,1) US(GA)
TGA(1,3)=-SIN(GA)
TGA 113,31=TGA(1 1)
TGA(3,1)•-TGA(^931

END RN

00030700
000is310
000 vv 7720
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0000031350
00031360
00031370
00031380
000311390

00031410
00031420
0003}430
00031440
00031450

00031470
00031480
00031490
00031500

*****#*#****s**^s****s*s*****say**s##*s**#*##*#***#****ass*
• THIS SUBROUTINE MODELS THE SPAS SPACECRAFT SCATTERING
• PRuPERTIES.###•^##S*iR^^R#iii*+f##*#######****###**##*##*****#**#**##*

SUBROUTINE SPAS
COMMON /SATOAT /RADAR (3) 1pitTAR R(70 3) 9 SI6(70) ROLD9IC LOSE 9ICLULD
DIMENSION SIGMA(631 TARG(63 i),PHiMIN(63.3) ^HIMAX(6 3,31
DIMENSION OFFSET(^^T JHOT(6) JHOT20(63),PHI(63,3)
DIMENSION VECT(31,CO^PHI(63 3;
DIMENSION ALeH(20 31 V(20,3 j NORMAL(20) OIM(20 3) WRAN(20 3)
DIMENSION WSCALE()10+l),OPHI(101,PHI0L0(^0)rVOLa(2a,31•KSE^O(20,31

C
CC yciss*i*i*i

EF
i**iii#*i***i#i*ii#***##si**i***###*#*t#ii**iii##*##*#*

C * DATA DINITION: INCLUDES SCATTERER LOCATION IN TARGET FRAME•
C #	 MAXIMUM SCATTERER RCS VALUE ANGULAR EXTEN^
C i	 OF NONZERO RCS AND OTHER MISCELLANEOUS DATA i
C *	 REQUIRED BY THE ROUTINE.

C

SEED FOR RANDOM NUMBER GENERATOR
DATA KSEED/45i67b 906 b07 S122

o7b+b979345977777,67+49
1 560 609.444,dd8 9A, 595 2 t7090980009
2 5r1^•25.35,45x5^96 5975 9 e 5.959
3 7+17r2 7r*7 g47r 57 67 77,87,97
4 9 8 76 984 9 666or23;89369412 7639 +409 899 561Z5 20:M695,9457,9643,934679^b7656,45^v98b9561r2154/

L DATA UESCRIBING DIMENSIONS OF WIDE-ANGLE SCATTERERS
C DEFINITION: DIM=2*D/LAMBDA (UNITLESS)
C DEFINITION: WSCALE=SQRT ( D**2/(12*NF ) ) (UNITS=FEET* NF=# OF FREW

DATA DIM /60*64.8/
DATA WSCALE /60*0.2965/

i	 C FOR EACH DIFFUSE SCATTERER• SPECIFY NORMAL COMPONENTI-

	

	 DATA NORMAL /3*1929299*3,6*1/
C
C SQUARE ROOT GF RCS VALUES ( FEET).

DATA SIGMA/20*.73493*5929 6*25.6 16.6 109. 96.4 104. 95.T 114.9
2 169.91.467.9110.92*87.92*92.8+2*104.,*9d.lir2*9^.6r8^.9r2 95.69

3 o9.9999.5,66.691.4796*.56893.67+1.35/
A-COOROINATES OF SCATTERERS IN SPAS FRAME (FEET)

DATA TARG /3*.39917*-1.1593*.79,6*1.21
;9
-1.
x2

15 3*.39x2*-.989
1 2*-1.15•-.9b,10*-1.15.6*1.21.-1.15•b*.*-1.15,

Y-COORDINATES OF SCATTERERS IN SPAS FRAME 4FEET)
2 -3.44•-5.74,5.7497.059-7.059-'5.74 79, *5o74 3.4491.15,-1.15•
3 -3.44 5.74 5.7493.4491.15+-1.15.5.44,5.74 -1.72 -3.449-4.179
4 2*3.41rr2*I.15,2*-1.15 -3.44 6.2 3 -3.44x-5 .1 6.5^ 3*-6.56 0.
5 2*5 5tl *2*?^72r2*13141►l2*1

4113i2*;3?443.4493.ZZ;2*1.15+2*-i.l' +
6 -7.05r^

Z-COORDINATES OF SCATTERERS IN SPAS FRAME (FEET)
7 5*0. -2.95 -1.64 -2.30 12*0.0.3*.49.6*0. 0 -2.62 3*0.092*-2.20,
8 2*Ob 22.10*-1.97 1.349-1.39 1.399-1.39+i.399-i.39x0.0+-0.07•
9 .98 ; 4. 67,.98,-0-0       39 .98 .2*-2.62/

L
py 0
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I

1
C MINIMUM SUBTENDED ANGLE IN X-DIRECTION

DATA PHIMIN /14*1.96 *0.94*1.90. •1.90etlotO.i9*l.t1O* o0261779
16*.03489999*1.9

C MINIMUM SUBTENDED ANGLE IN Y-DIRECTION
1 4*l. U. 15*1.,.64279,.8191 5t. 6603 1. .29237 .90631 .682 .90631•
3 .a4da5 6*l.•-.99897,-.99905,-.8941 •.a052491d*.0261,6*.x348999
4 -.89419,8* 1.0•

C
C MINIMUM SUBTENDED ANGLE IN Z-DIRECTION

5 5*1. 9 *0. li*1^ 3*.0 7497 6*.02618 .04013 9 3*.02618.2 *.04 36,
O .04361 .4^b 7. 1. 	 9966,1. -.9966,1. -•99966 1. -.9661
7 1.r-.^966 1.,-•9939/1.1-.99934,1•r-•993511.447;6,x

99
.11.,0.91.18 0.91.,-.91155,0./

C MAXIMUM SUBTENDED ANGLE IN X-DIRECTION
DATA PHIMAX /3*0.,17*-1.14*0.,-1.90.9-1.•0.,2*-1.13*.99933x5*-i.s

C	 2 10*-.0261816*-.0348991-1./6*0012*-1.,
C MAXIMUM SUBTENDED ANGLE IN DIRECTION

3 3*-1. 0.•164-1.x2*-.866	 -.90631,-.81915x3*-.90631 -1. ►4 -.707119-.81915931.,•9989793*-I.x-•00524,10*-.02618,6*-.034899,
5 9*-1.,

C
C MAXIMUM SUBTENDED ANGLE IN Z-DIRECTION

6 8*-1.,6*0.96*-1. 3*-.071497,6#-.02618 -.040132 3*-.026189
7 1*-.04536,-.0436Z t-.43837 -.57358,.9966,-1.,.^9966r-1.9
8 .99966,-1.,.99966•-1.,.99^66r-1./•99939 -1. .999399-1.1.999399

C
9 -1.9-.447769-1.•0.9-1.,0.1-1.x0•, -1.x -•41356/

C RADII OF THE SCATTERERS (FEET)
DATA OFFSET /20*0.013*-93316*-995t-1.03t7*0.,-.79917 *0.9

1 6*-.3392*-1.15/
C
C MISCELLANEOUS DATA.DATA NTAR/63/•KWIDE/20/,PI/3.141592653/
CC ssss+s*sssss*s+►*ss*ssssssssf*+ssssss***s*ss**ss**s*s**s***^s*******
C * STEP 1: DETERMINE WHICH SCATTERER ARE ILLUMINATED AND HAVE A
C *	 NONZERO RCS IN THE DIRECTION OF THE RADAR.
C ssssass*s**s*sail****s*s***s*****ss*s#ss*s**s**s*s***s***s+t***s
C
C STEP 1-1: PERFORM REQUIRED INITIALIZATIONS.

NWIDE=O
KTARaO

C
C STEP 1-2: COMPUTE UNIT VECTOR IN DIRECTION OF RADAR FOR
C	 ITH SCATTERING CENTER.

DO 15 I=19NTAR
DO 5 J=1 3
VECT (J) = ADAR (J I -TARG(I i J )

5 CONTINUE
VNORM=SQRT(VECT(1)**2*VECT(2)**2*VECT(3)**2)00 10 J u l 3
COSPHI(ItS)=VECT(JI/VNORM

C
C STEP 1-3: DETERMINE WHETHER ITH SCATTERER HAS A NONZERO RCS IN THE
C	 DIRECTION OF THE RADAR.

2 GO(TO 1S
I(19J)•LT.PHIMAX(ItJ).OR.COSPHI(19J).GT.PHIMIN(I,J)1

10 CONTINUE
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STEP 1-4:F
` ITH 

AIEOTSCATTERERSS NONZERO THEN ADD TO VECTOR OF

KTAR il( AR+ 1

NN1DEsNMIOE+1
15	

I J LL,KMIOEI

"*se**
TEta 	COMP *4LOCATiON OF SPEGULAR POINTS iTHAT i i^iARE ililkt	 MATEiit^^MMt^ittttttMtiiiii+iitstttiii*t+liMititti+Ri^R*it^ciiii^#

20 K=19KTAR
^JHOT(K)

20 J s l 3

20	
CONff )sTA^G(ItJ)+OFFSETII)*COSPNI(I*J)

'

+tt^i^p^gtttrloMiitiittt
STEP 3:	

ttia
a
ttittiitisitttt*ii titttt+litt*p

o
tiMMM

FUSESCATTE
OE

RSfREPRESENTING DIF UANGLE SCATTEERRE O 	RING

00 22 K=1•NMIOE
sJHOT(K

22	 IGIK)sSORliASS(COSPHI(I•NORNAL(I)11)iSIGMA(I1

iiiii+^M+l^alttiiMittsi<tiittl^l^*i*tiiMt^Rltti
i STEP 4: CHICK FOR SHORT RANGE CONDITION tt#ti+R+RMtiR+Mii**MtiitttiMi+M+M^tittMt
STEP 4-1: DETERMINE RANGE TO RADAR IN TARGET FRAME.
24	 RANGE-SQRT(RADAR(11t t2+RADAR121**2+RAOAR131tt21

C
C STEP IFI

(ROID
TL^STO E

1.ORoRANGEPRODILLE.OMI .ANRpiRAN^LLE.270.1 ICLOSE-1
IFIRANGE-ROLO.GT.O..ANO.RANGE.GT.300.) ICLOSEsO

`
4 STEP 4-3: CHECK MONITORING VARIABLE TO DETERMINE IF SHORT RANGE

DIQN EXISTS.
IFIICLu E

D
.	 .vv.OR.HMIDE.EQ.0) GO TO 55

c
` ittiMiit^tttsitttttttitttttitttittttiitittititttttiiititti
C
C

t STEP 5: PROCEDURE FOR UPDATING OF DIFFUSE SCATTERING 	 t
t	 CENTER LOCATION --- SHORT RANGE CONDITION ONLY. •

G

ttttMttt*ttttt +^ttMt*^/MtiStit*t*ittMtt +^i
ll

i#tt+

^

tt+Mii^R^Rtt•

STEP	 HRU

IFIICLOLD.EQE10E60	 TA	
DNS FOR EALL 0	 FUSEASCATTERERS9

00 30 l a :KMIOE

PH I
` OL.D (I) s ACOS (COSPH I (I sNOR

gg
MAL 111)1

VF2J.EQ.N^AILjI1jtIRNDUIKSEEDtIvJ1!-.51

E41VI
IJ

2S	 §NTINU17,1
	 9J1

30	
NTO 55

CC

C
`

STEPppp5-2: UPOAjEAAN 
UIN ANGLE FROM

FOR 
EACH 

D IFFUSE SCATTERER

35	
ppPNI ^ Ns tP

G

H^1

t

	t)-AI^ASIICI1SP"IIOIDIII1L(I111
PMIOLO1IIsPH^tf *NORMALf I1I

40	 CONTINUE
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STEP 5-4:

I2JNOT

O 45 E-

C`
G

•

o•0 SUP

45
so
55

SCATTERERATTERUPDATEAOIFFERENCELEQUATIOjS,
	 DIFFUSE

IK
JK=1•NWIDE

Q NA `L̀ 1 11) t10 TO 45	 ^p `	 `I

iJ^=SQRTf11VOLD(IrMALPH(IA1)**2)*WSCALEIINJI*t RNDUIK
=ALPHII*J	

SE^O(^rJ!)—.S)
I*3^+WRANIIrJ)

_
s lKl+^J	 IrJ)

C

CC

C

iii* ii+R+R*i* 11111* M i*i iM iii i+L+O i#iiiiMiigii ^RiiM 11111* i* Mi
* STEP 6: UPDATE PARAMETERS USED TO MONITOR TARGET POSITIOK
*	 ON SHORT RANGE HYSTERESIS CURVE. 	 i
+►***iMSSs*+K+ii+F+K11111*M+r+Fiii^►i#iiiMMs+t*i**iiiiiiiiip iiMs

ROLD=RANGE
ICLOLO=ICLOSE

WRITE ( 6,908 KTTAR NWIDE,ICLOSE ROLD
90issss*MSt/iii W^	

a t 318

* NOTE: THE FOLLOWING STATEMENTS ARE PRINT STATEMENTS USED IN THE
*	 DEBUGGING PROCESS.	 •

NOTE: DEBUGGING PRINT STATEMENTS
PRINT LOCATION OF RADAR IN TARGET FRAME.

WRITE(6 99001 RADAR
PRINT TABULAR LISTING OF ALL DATA ASSOCIATED WITH SPAS SCATTERERS.

e WPHIEI6 t 9Ol;lI rSIGMA(I),TARG(I,l)•TARGIIr21,TARG(I.3 ,OFFS T I1

2 Is114AX(Ail/raHIMIN(Ir2),PHIMAX(Ir2)sPHIMIN(1,31rPHIMAX(Ie3!•

PRINT TOTAL M OF SCATTERERS AND 6 OF DIFFUSE SCATTERERS.
WRITE(6,902) KTAR,NWIDE

PRINT INFORMATION ASSOCIATED WITH ILLUMINATED SCATTERERS.
WRITE16003)
WRITE 6904) (I,JHDT(I)rSIGIIIr(R(IrJ)rJ=lt3)r

I I=1,KTAR)

PRINT DATA ASSOCIATED WITH DIFFUSE SCATTERER DIFFERENCE EQUATION.
WRIT (6 9 90511 PHIIOLD(I)

1 (V` I tL),L=1 31• `R(I L1 1=1.31
WRITt(6,90 ,	I pHI(^ N()RMAL1I)) PMIOLDII) ►DPHI(1!
WRITE((6,907)K 	 ``VOLD(I,JI J=1 3) (ALPH(I•JI,J=1x31,

1 (WRANII,J)•J=i•s),(V(I,JI.3=It	 IR(I#J1rJ=1.31

ALL PRINT FORMAT TATEMENTS.
900 FORMAT( • IN FEET, RADAR = ( • ,F8.1 • , r ,F8.1 • • • rF8.1 •1.)
901 FORMAT(I12 F10.2,3F8.3 F12.3.4X,2^8.2,4X,2^8.2,4X 28.2)
902 FORMAT(• TOTAL AOF TARGETS = •,I39•	 OF THES^r M MARKOV =

1 121
903 FORMAT ( /Zt/9X 91•,3X9•JHOT(Il•97X,•RCS99SX99PHI—X•95X,9PHI—Y••
9041 F04MAT12_I1 4FI0.31
905 FORMAT ((I3 FI5.3 2(5X 3FI0.3))906 FORMAT( • 1 9PH191 HIOLa DPHI••/tl3r3F1093)
907 REOTURN(2I3r5(2X,3F7.3;1

EK0

C

C
C
CC

C

C
C
C

C
C
C

cC

C
C
C

cC

C

C
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