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NOTATIONS

The symbols for currents and voltaScs at 0e torq:inals of devices

have subscripts, The uppercase and lowercase zymbols and subscripts are
P

used to distinguish between instantaneous values, quiescent values, and

small signal low-frequency averaged values.

For example;	 vI	 input voltagav instantaneous value

r	 v	 V +vI	 I
}
VI : input voltage, do average value

i

`	 vi	 input voltage, small signal low-frequency

'	 average term

v0 s U'put voltage, instantaneous value

v0 V  + v 

V' out)ut voltage, do average term

vo : output voltage, small-signal law-frequency

average term.

Tp : Period Oaf a switching cycle

TON : Switch on time

TFI: Switch off time in continuous inductor mmf operation

TF2: A portion of the switching off time when the inductor mmf

has vanished

d	 TON	 duty cycle ratio d z D+ a_
T

D

	

	 Steady state duty cycle ratio

Small signal, duty cycle variation

d i 	 TOFF
dt x D 	 d

T 
D'	 Steady state value for d'

-vii-
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a

V
C
 ; Output filter capacitor voltage

L ; Inductor current of the buck, and boost converter

Magnetie. flux of the energy-storage inductor of the two-

winding buck/boost converter'

x R jiL , YT	 state variables for buck and boost converter

T	 -x lo, VC )	 state variables for the buc,!boost converter

vDC do loop sensing voltage "'DC v0

VAC s ac loop sensing voltage

Power Stagg

L	 : energy storage inductor

Rt	 winding resistance of L

p,IS `t winding resistance of the primary winding and secondary

winding, respectively of the two-winding buck/boost

i converter

C	 : output filter capacitor

RC	 : output filter capacitor ESR

NL	 : number of turns of L

Np,NS : number of turns for the primary and secondary windings of

two winding buck/boost converter

R 	
,
R'	 buck

r
Re/(D')2	 boost

RS/(D') 2	buck/boost
k

i

_JX_



L - L	 buck

L/ (D)
2
	boost

i

LS (D') 2	 buck/boost

Rce . RC	 buck

i

- 'RC/D'	 boost and 'buck/boost

i
Req - Re + RCe RC

j
t

	

	
^

r,►o

l .	 l + Red
2wo CRL 	Le

Tzl ' RcC
J

a	 ^

Control CircuEt

RI ,R?	 : control loop resistor dividcr

R	 do loop resistor
-I

R

	

	 I
r ac loop resistor

{

RS	 : compensation loop resistor
i	 a

Cl	 : operational amplifier integrator capacitor

Z	 : compensation loop capacitor

N3	 : number of turns of the ac sensing winding
r

n	 ac loop sensing winding turns ratio n 	 N3/NS for

buck/boost converter,

Rx ,^	 Rl // R2

g, _	 R2/ (RI +R2)

-X-

}
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R 	 +	 (R3 + Rx)/8

m	 R4/(n Ry)

r a	 R4 /(n Ry) buck

R4/(D'n Ry) boost and buck/boost

'	 Al	 1 buck
R	 24w L

1 ..	 +°
L w	 2

- ( â °)	 boost

I
DR ,	 2tw DL

1 _+	 °	 e
L w	 2'

_ D( RL)

	

buck/boost

i

A2	 0 buck
i

1/(RLC) boost	

f

A	 ( ^

•	 D/(RLC) buck/boos,

T Z2 s	 (RS +_ Ry)C2

Tpl	 RSC2

a r	 a
Al - A2TZ2a

TZ2^	 TZZ
buckr

Le
(T	 +	 )	 (1 -Z2	 aRL

RL) +	 e (1-a)	 boost
RL	 aRL

Le
(TZ2 + a )	 (^ -)

eDR	 DLe
+ (1- a) 

aRL	
buck/boost

Pulse Modulator's

F	
6 , 2R4C1

M
M

duty cycle modulator gain
n

M is defined in Table 7-1

=x1-
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CHAPTER l

INTRODUCTION

Functionally speaking, a do-dc regulated converter can be divided

into two parts: a power circuit and a control circuit. By definition,
7

the power circuit handles the energy tranifer from the source to the

load. The control circuit manages 6 rote, of the source-load energy

transfer as a function of the load demands. During nominal steady

state and transient operations, the control objectives are associated

with (A) the tracking of a certain controlled quantity in accordance

with a given reference, and (B) the compliance of converter specifications

such as the system response to step or sinusoidal line and load distur-

bances and to external command signals. During abnominal operations,

the control objective becomes the electrical-stress limiting for all

elements associated with the converter to provide effective protection

against catastrophic/degration types of failures. A control circuit 	 t

thus serves the multiple functions of regulation, command, and

protection.

The electrical perfrrmance of do-dc switching regulators is largely

dictated by the particular power stage configuraton.and control method

chosen. Often in the design practice, when a power stage is chosen

and parts designed`, the subsequent attention is then focused on selecting

the best suitable control method and frequency stabilization (compensation)
;

E	 network tailored to the chosen power stage in order to optimize the

overall system performances. The lack of a unified control method and

design strategy often necessitates the undertaking of time consuming

i

1
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paper and bench design iterations which frequently result in incoilr-	
c

patibIn and intricate performance characteristics.
t

The incentive for performance improvement a nd control standardization

had prompted the initial development of a 'multiple--loop Control

concept in the late sixties [l]. Since then, the control concept

has undergone several major program offort.s, Modell culminate, in the	 4
Ott

development of a Standardized Control, Module (^C&M) for do-de converters

(2,3j. Figure 1.1 illustrates the SCM applied to the three basic

power stages, buck, boost and buck/boost. The SCSI contains all Analog

Signal Processor (ASP) and it Digital Signal p rocessor (uSr.) . Implementations

of both ASP and USP are sta ►ndairdi Pd. The key feature of the SCM is

the utilization of an inherent at switching-frequency siinal, within

the power stage. The utilization is in- addition to the conventional

do sensing of output voltage v, and comparing with a reference FR.
9

The sensed at signal and the do error are processed by the ASP. As a

result, total--stage control, is obtained. The bSp processes the control-

signal output from the ASP in conjunction with a prescribed duty-cycle

control law, and operates the on--o fd: of the power switch via a duty

cycle signal d

In reference (3), a detailed description on the digital signal

processol. was provided. A standardized implementation scheme for

various >oatrol, command, and protection blocks was proposed, and

actuaal. hardware Implementation was performed s;accessfully on the

three converter configurations, buck, buck/boost, and the parallel	 a

inverters. The following performance improvements were observed

and verified in rev ent: modeling and analysis efforts as discussed

^'
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in detail in Volume 1 of this report, Application Handbook for a

Standardized Control Module for DC-DC Converters.'

(1) High-gain, wide-bandwidth, and precision regulation

(2) Superior dynamic performances, such as taudiosusceptibility 	 E

and transient response

(3) Stabilisation effect by shifting the positive zero oat the

right-half 9-plane to the left-half s-plana.

(4) A control :adaptive to the output filter parameter variations

due to environmental rhangas, duty cycle modulations, and

capacitive loading.

In the present volume, the. $CM user's Design Handbook, the key

performance characteristics of SCM-controlled switching regulators

derived in Volume Y are summarized, and a. unified iuialysis: biased design
f

procedure is presented for the three switching regulator 'types, buck,

boost, and buck/boost shown in Fig. 1.1. This procedure enables the

designer to select the key SCM control circuit parameters so that for

an arbitrarily given power stage, the proscribed performance charac-

teristics concerning stability, audiosusceptibility and transient

response call be met concurrently. To accomplish this goal, the	 a

universal circuit model shown in fig. 1.2 is derived for the. three

SGM regulators. Detailed derivations are presented in Volume 1,

This common circuit model, is employed to examine the following

regulator performance categories:

(A) Frequency domain converter performance, characteristics:

• Response of vC to a sinusoidal disturbance in vi. (audiosusceptibility)

9 Response of vC to a sinusoidal disturbance in i C (output impedance),

4
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d

0 Response of the regulator loop to a small' disturbance in d(t)
1

(stability)

(H) Time domain performance characteristics,,

0 Response to a step load change.

(C) DC regulation of the converter.

A normalization procedure for tbul power stage parameters is

employed such that the mathematical: expression for each performance

category has a common form for all three switching regulator types.

Employing the common block diagram representation, the SCM

design guidelines for arbitrarily given power stage configurations and

'

	

	 element values are represented in analytical form when available,

and graphical form when necessary. A simple design procedure is

presented such that the regulator performance specifications, such

as stability, audiosusceptibility, and transient response can be

satisfied simultaneously. This procedure provides simple and

straightforward guidelines for selecting the do loop, ac loop, and 	 7

i

	

	 RC compensation loop parameters for adaptive compensation to the

output filter parameter variations and optimization of the regulator

audiosusceptibility and transient response.

The design procedure virtually eliminates the often painful

and time consuming iterative paper and bench design process. Several

design examples are illustrated with good laboratory support.

i
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CHAPTER 2

DE'SCRIP'TION OV SCM ON BASIC DUsIGN CONSIDERATIONS

The objective in Chapter 2 is to inform the user gust whet SCM is,

and why he should apply it in converter design.

2.1 SCM Circuit-Descriptions

The standardized control module applied to the three basic

switching converters is shown in Pig. 2.1.	 The SCM consists
	 9

of two parts; (1) the analog signal processor; and (2) the digital

signal processor. The analog signal processor, employing three

feedback loops (dc, ac, and compensation loops), processes the error

signals to achieve optimal control. for various loop-dependent por.formances

such as stability, audio sus cep t bili,ty , and transient responses The

digital signal processor processes all incoming control signals including

error signals front regulator control loops, command and protection

and duty cycle timing signals. A brief description for bath the

analog signal processor and the pulse modulator is provided in the

following._

(A) Analog Signal Processor.

Three input signals are applied to the amplifier through three

feedback hoops working in unison. The do loop senses the output of

the regulator and compares it to the reference voltage g to generate

a` do error signal, e'In conjunction with an externally-generated

threshold level ;CT , the do output of the amplifier is determined

by e, do
*
 This loop is no different than that of any other single-loop

error amplifier. The ac loop senses, the ac voltage across the energy

storage inductor. Since the inductor voltage is of rectangular

7
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waveform, a triangular ramp is conveniently achieved through the

integration of the rectangulz.^- voltage. In this caso the amplifier

is configured with capacitive feedback to serve ttho dual function of

amplification and integration. The: third loop, an RC compensation

network, senses any change in.dv
0
/dt, and feeds this information to

8

the integrator amplifier in order to improve regulator performance.

The significance of this network is described in detail in Volume 1,

and in references (4,5,6, 7) 	
1

(2) DiSital Signal Processor.

The digital signal processor (pulse modulator) is the nerve

center of the +control system, and must process all incoming control

signals and transmit the correct output signal tcti operate the, power

switch. The sign^l {processed by the digital signal processor

encompasses control signals and protection/command signals.

The SCH is capable of operating in several different duty cycle
1

control modes based on different: ramp and threshold-level implementations:

1) Pulse frequency modulati on.

-o constant Tn variable

• constant Tf , variable Tn

2) Pulse with modulation -- constant frequency with variable

T and variable Tf

3) nixed pulse width and pulse frequency modulation - two'
threshold-level. control, with variable frequency, variable
T and 'variable Tf.

9	 ;



The standardized implementation of the digital signal processor

including various duty-cycle, control, command, and protection signals

is discussed in detail in ttaference (3).

2.2 Merits of SCM

The electrical performance of a power processor depends, to a

,large extent, on the quality of its control system. While numerous

control circuits have been proposed and are in use today, most of

these circuits suffer shortcomings that tend to restrict their

utility. The 0CM, on they other hand, overcomes many of these short-

comings. Some features of the $CM are:

1)	 Ability to perform different modes of duty-cycle control,.

Various control Laws can he used to govern (modulate) the

power switch conduction (ON) and nonconductor (OFF) intervals to

achieve a given control objective. The available means of timing

implementation axe: Constant on-time T n,, variable off time T f ; Constant

Tf , variable Tn ; Constant (Tn + Tf ), variable Tn and Tf ; Variable Tn,

+ Tf). While it is quite often true that the means employedTf , and (Tn 
to accomplish the control objective is irrelevant as long as all

specifications are met, there are certain po^.fer processors for which the

use of specific mean rs of duty-cycle control is necessary. For example,

requirements on synchronization and electromagnetic compatibility may

dictate a control based on Constant (Tn + T f), whereas in certain LC

resonant applications, the ;sinusoidal current in the power switch for

one hal f of the LC resonant cycle inherently demands a control based on

a constant Tn and a variable T f . Under special circumstances, one

10



particular modulation schema may offer distinct advantages over another

from the point of view of protection or transient response.

(2) Ability to rovide ower-com ponent stress limitin g,

One of the moat lagging aspects of present power processing

technology is reliability, The reliability of the power processors

can be greatly enhanced by controlling the power component stresses

during steady state, and more sig,%ificantly, during dynamic operations

such as step line and /or load changes, sudden output short circuiting,

and converter starting. Without this stress control., the rel,inbili,ty

data based on the aggregation of component statistical failure rates

becomes meaningless, and no amount of elaborate quality assurance can

increase the level of confidence. Thus in the magneti.e-semiconductor,

transient-prone power processors, the means of achieving reliability

enhancement is to implement circuit techniques to instantaneously limit

the electrical stresses in all power processor components, thus en-

suring safe operation during steady state And transients. Existing

power processors often forsake this limiting function, and rely instead

on generous derating of all power components to foster reliable operations.

Such a practice forces the power processor to remain at the mercy of

uncontrolled j.'ransient stresses and will inevitably become impractical

in future high power applications.

(3) Ability to provide immunity to output-filter parameter changes.

Sources of output-filter parameter changes include initial component

tolerances, temperature variations, aging, and most significant,, the

possible reactive nature of the power-processor load. It is not uncommon

for a user's load package to have an input filter with higher capacitance

than that of the power- processor output filter. A power processor seldom



enjoys the luxury of having the nature of its loads well defined when

it is under development. As a result, the compensation networks of

most existing control circuits are devised from consideration of the

power-processor output filter alone assuming a resistive load. Exotic

means of pole-zero cancellation have been the prevailing art used in

negating the second-order filter effect to achieve stability and well-

damped respdiises. Needless to say, such a cancellation can miss its

mark badly when tolerance, temperature, aging, and reactive loading

have collectively made their presence felt.

(4) Ability to provide adaptive compensation to the moving poles.

The complex poles of the boost and buck/boost converters are

affected by the duty cycl-e of the power switch. The duty=cycle

variation which results from line voltage changes is known to produce

two moving poles (9,10) which are very difficult to compensate when con-

ventional control means are used. Because of these moving poles, a

well compensated regulator, stable under nominal operating conditions,

can become unstable under extreme line/load conditions. The SCM

control can provide second-order zeros adaptive to the moving poles

of the power stage. The stability margins are therefore maintained

throughout the entire operating range.

(5) Ability to shift the zero from the right-half s-plane to the
left-half s-plane.

It is known that a positive zero (a zero in the right-half s-plane)

exists in the power-stage transfer function of the boost and buck/boost

converters (9,10). This positive zero is a function of the duty-cycle

ratio of the switch, and produces a 90
0
 phase-delay in addition to the

ii
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180 phase delay produced by filet ont puts filter of tile power stage.

This additional phrase delay, imposed by tile I 'mov;ing'! zero, has to be

compensated by the contvol-»circuit design foi- stable opa a atom, 	 i

particularly when the input voltage Is subjected to ai w; do-ramp

of variation.

(6)	 Ability t o 'Prov:ido as Unified Des,i: n A vroa► ch.

Performance churacterista;ies of do-dc switching regulators are

largely dictated by Lite particular power stage configuration and

control scitome chosett. Often in tile design practice, once, at power

stage Is chosen and marts designed, subsequent attention is ,focused

Ott 	 the most Suitable control, method rural frettuoncy stabilization

(compensation) network in order to optimize rile overall system

parformaances. Tile lack of a universal coutat;ol method and a uniform

design strategy often necessitates Lite undertaking of time conswiti tg

itatitc't° and bench dc.a;igu Iterations which .i:mjue tly result in incompatible

4110' intricate performance cha ac teris ties. Tito SCH is capable of

providing a► ottified design procedure which enables the: designer to

select the control, cit: lot parameters so that for an arbitt m-ily gJ,veu

power stage the proscribed per formance citatt rt+^irorJ sr^.cs coucca^tt^n

stability, audiosatsceptii IlitFy, aittd transient >;eaapouse can tf n ►et

concurrently.
t

2.3 Uexsi n Consideration for SCH 111 db mk.

In the earlier reports (2,3), dotrailed description on the digital}

signal processor was provided. A sta►ndarditted im>t'lementatioa scheme

;i.n:volVing individual butld;fng blocks for various control,, command:, and
,



protection signals was proposed, and actual hardware implementation

was performed successfully for tlwe three convertor configurations:

buck, buck/boost and. the parallel inverters. Attention is now

being focused on development of analysis-based design guidelines for

selecting control parameters In, the ASP in order to achieve the

following specified dynamic performances in one non-iterative design

attempt:

A) frequency domain converter performance chara ►cteristics

• Response of vA to a► sinusoidal, disturbance in vl (audio

susceptibility)



i

j	 CHAPTER 111	
' a

ANALYTICAL MODELS AND Pt:1VORMANCC CHARACTERISTICS

As presented in, Volume 1 of this report, tine three basic SCR

switching '̂ ,regul.ators, buck, boost and buck/boost ahown In Fig. la,

call 	 "'epresented by the common ftequeacy domain block diagram 	 Ifs

shown in Fig. 1.2. This diagram
 incorpor

a
tes disturbances from 	 r

the lime vi , the load i and tine duty cycle control loop d. This	 j
0	 3g	 1 	 icommon bock dia rn►^, representation is emplo yed  to evaluate various 	 3

control-loop dependent reg)Alatot perfoi ,anew such as stability,
!I

audio-susceptibility and transient response. In order to formulate

analysis-based SCH design
y	 g gul.del3.ncns to meet: a given setset of performance

speci-Flr_..stions, tine model is f;implified by omitting certain anon

^'ssentl.al terms and high-frequency effects. la doing so, n comprehensive

i
design procedure becomes mathematically tractable. A normalization

procedure for the converter power stage parameters is used so that Lite

mathematica' expression for each performance category --enjoys a common

form for alb. three regulator types ^i

I?

3.1 System Modeling and Block Din ,ram Re resentatioa.

The three basic functional blocks of an SCR-controlled converter

are tine power stage, the analog -signal.-processor (ASP) and rile digita l

signal processor (D$P). Modeling and analysis of these blocks was

performed in' Volume X. Subsequently, the common ;frequency domain block	 F

diagram shown in	 1.2 was developed. This common block diagram

representation is employed in the present report for performance

15
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evaluations, and later, control-circuit design. For convenience of

reference, the transfer functions for all blocks shown in Fig. 1.2

are summarized in Table 3.1 for each power stage. Only the continuous

Inductor current mode is considered in this volume.

A brief description for each block is given in the following.

A. Power stage transfer functions Fl , F D
, Fig , ZP, Fl , F2 , F3 and F4:

The power stage transfer function model incorporates all possible

forms of small signal disturbances including the line disturbances

vi , the load disturbance io , and the duty cycle disturbance d. This

model provides both do and ac error signals to the analog signal

processor.

The power stage transfer functions are defined as follows:

Fp (s):	 Equivalent output filter transfer fun-'tion.

FZ (s):	 Input voltage gain, (F1F
p
 represents the open loop input-to

output-voltage transfer function).

FD (s): Duty cycle gain, (FDFp represents the duty-cycle-to-output-

voltage gain).

Fp (s) The output impedance of the open-loop converter power stage,

(Z 
P 

1 
o 

reps Rents the open-loop output voltage variation due

to the load current disturbance io)

The next two transfer functions are ;employed to provide the ac error

signal (the voltage across the ac loop sensing winding voltage vat

shown in Fig. 1.1):

F
1
 (s)and F

2
 (s):	 Together, these functions provide the small-signal

low-frequency ac inductor current (or magnetic 'flux) due to

disturbances from the output voltage vo and duty cycle d.

16



it should be noted that the feed-forward path through F exists for

the boost and buck/boost converters because the inductor for these

two configurations is separated from the output filter capacitor by

a switch. As a result the equivalent inductance in the small-

signal model-is modulated by the duty cycle of the switch.

F3 (s): Impedance function employed to convert the inductor current

or magnetic flux into an ac error voltage vacs) across

the sensing winding.

F
4
 (s): Transfer func tion characterizing the amount of dis turbance

of the Inductor current due to Load disturbance.

B. Analog signal. processor (ASP) transfer .functions: ` FDC AND FAQ

The analog signal processor combines the do error signal v o and

the ac error signal vac to form a total state control. The output of

ASP is fed to the input of the duty cycle pulse modulator.

F'	
F(s): The transfer function of the combined do loop and RC
DC

compensation loop.

F

ir^AC(s)	 The transfer function of the ac loop.

C. Duty cycle pulse modulator transfer function FM.

FM : The describing function of the duty cycle pulse modulator.

Table 3.2 presents the duty-cycle describing function models for constant

T control, constant T	 control,, and constant frequency control withon	 off

and 'without an external ramp. As discussed in Volume I and references

(3,4,5,8)., the constant frequency control is 3nherently.unstable when

the duty cycle is greater than 50 percent with the constant-frequency

clock :initiating the turn-on time and less than 50 percent with

I



i,

u
0
r—
ca

0

uC
.3
U-

4J
u
C

LA-

4T
W

4-
O

Em
cn

Hr

IV
-i Ln

W.
+

44 u0 lw
0
co

j	
-i

im 
1. -1 Cd	

0:
C,	 ri

w O:x IQ:
a cm +

C 11

m ra
vi +

M
-j

im w
lu

tzz^

to
W^.

IN4) -1
W U 0, -t

_j cz U 4)
w r— +

W in C) + + c
l

L)
0o 1

r—
::N- C3 W W

r IMIC3

u

Ise
u C3 CD

C u
u	 IA —i

ca (A	 +

%- 41
a)

-U

-U
u LA. w IL

N M
U. LL

m
t1p, U::t

ca

r—
col



3

I

u a--.+ U
z

lo'^c Z cv

N N
N N

H	
a' A ^A

Q N v
Zh- Lam..

U 3 > > z (z

F-	 a r. r.
a	 X: ''-I A
C/)
	 o ^ ^ >

z^zu 3 > >
U-

LL LL

O F-

F-

a U- u-
F- U- U.

~ ~c-7 z zp .,
u

z

F-

a +
o o

u
F-i

v^I>zv >•~ Z

NY cn

OO
C4 m F9 W

u
_r =
cr-
N r-,z

li o
F-

U- a
w
CL
0

a
(D

z
w
a

o
a
M

N

A' O

E z

w zCl)

CL

N

',	 Mw
J
a0



i

the clock initiating the turn-off time. The constant frequency FM given in 	 it

Table 3.2 corresponds to the former case when the clack initiates the

turn-on time. When the duty cycle is greater than 50 percent, M

becomes negative. The negative FM together with a negative feedback

thus forms an unstable positive feedback system. a

f

i

t

3.2 Normalization

To facilitate analysis and design for the three converter types, a

normalization procedure for the power stage parameters is proposed. The

mathematical expression for each per _for_mance category of the normalized

system enjoys a common form for all three switclAng regulator types.

Let s (normalized) 
w 

s'(unnormalized)	 (3.1)
0

Then,

t w s + 1
F(s)

	

	 zl 0	 1	
(3.2)

s2 + 24 9 + l wo

p 

where wo	
l	

(3.3)

	

-e	 •.
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2	 Rh 	ea
	

(3.4)

Tzl Roc	 (3.5)

L _ D	 buck

L/D' 2 	boost And buck/boost	 (3.6)

LB/D' 2 buck/boost
i

Re 
a 

Rt	 buck

	

z2 +_p► c	 boost	 (3. 7)

Dv

Rs' + p, R

D

	

^^ D c	 buck/boost

where U A=
 

Tan/T'D
1
 ^ aff/1p

 And R^ is the winding resistance of the

inductor. For the two-winding buck/boost converter, R$ represents the

winding resistance of the secondary winding.

In Addition, the following expressions are used in the disucssnn

which follows;

i

rtpl R5 02(3.8)

Tze	 (RS + Ry)C2	 (3.9)

2R C

FM
a 

n!
(3.10)

}

where n is the turn ratio between the sensing winding and the inductor

	

winding, And Ry	 (R3 + R1  R2) Rl/(R1 IL R2 )	 (3.11)

21
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3.3 Stability Analysis

R

	

	 The classical }lode analysis technk4ue is employed to investigate

the open-loop gain and phase. For a multiple-loop control system,

j

	

	 the "loop-opening" should be performed at a, place common to all

feedback paths. It is clear from Figure 1.2 that such a place is the

path containing the block FM By opening the loop at the point marked

X, the open-loop transfer function based on the various blocks of

Figure 1.2`s obtained. Using the open-loop transfer function, the

`

	

	 detailed transfer function can be expressed in terms of circuit parameters.

Prior to simplification, the detailed equations reveal how the various

SCM parameters should be designed to achieve ample sta'oility margin.

The SCM feature of adaptive stability is then made apparent.

The open-hoop transfer function can be expressed as

G (s) ,
F [F F F + F F (F	 ± F F F ) ]	 (3.12)T	 M AC 1 3	 P D DC,;-	 3 2 AC

The transfer ;function is applicable to all three power stages.

Substituting contents of Table 3.1 into (3.12), and assuming Tp
l = Tzl

(see section 4.3 for detailed discussl.on) the open-loop transfer

functions GT(s) of the normalized system can be derived as

22



Kl	
Ala	 a I s2+rz2raos+]

G (s )	 r
T	 m0s 'l+A2a Tz

	 s2+2ts+1

aF

'K	 8+1
......_

wos	 s2+24s+1 	 (3.13)

where the parameters Kit, wo , a, a', Tz2 and C are assigned different

values for different converter configurations. The parameters a and a'

are defined by the equations:

R
a = nR
	

buck

► 	 y	 ^

(3.14)

t	 R4

= nR._D'	
boost and buck/boost

Y

and
A100

' _	
a

or	a= 
°	 A^-A2TZ2 a	 1+A2a TZ2	

(3.15)

For most practical designs,a 	 a. The other parameters are defined

by the equations:

Al = l	 buck

1	 _ %
	

2 woLe	 eLwo	
2

= 1	
RL	

+	
gL	

- (	
Rh	

)	 boost	
(3.16)

DReg	2Sw DL e	 Lewo	 2	 buck/boost_	 {	 _ D (	 )
1-	 R

i
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R

A2 W p	 buck

	

l/(RL C)	 boost	 (3.17)

	

= D/ (RLC)	 buck/boost

T'
x2 	 x2	

buck
_ 

= [ T + -

	

R	 L

	

) (1 - -!) + --e -(1 a) M T	 boost	
a

z2	 aRL	RL	 aRL	 z2	 (3, @)	 y1

Le	 DRe	 Me N

(TZ2 + aRL^ Cl - -	 ) + (1 a) altL `, 'r z2	 buck/boost

K =
2V

M	
buck
l  

iLV
t	 = A I	

boost	 3. 19)

N 
2VT

Ns
Np DM

buck/boost

it is important to note that the open, loop characteristics of

the three different converter circuits using SCM control are

converted into the 'same form. This .finding has significant impact on

the basic design philosophy. It is commonly known that the small

signal, characteristic off:, the boost and buck/boost converters, unlike the

buck converter, has ap6sitive zero which introduces addition 'phase'

delay. Employing a conventional single-loop control, an additional

compensati'or acneme is needed to stabilize the converter. Nevertheless.

24;



when SCM is employed the positive zero of the boost or buck /boost

converter is shifted to the left-half a-plane such that the open loop

characteristics for all three converters share a common form. In

addition a second-order zero is generated by SCH control to compensate

the second-order pole of the output Filter. The SCM has thus

mitigated to a large extent. the particular instability concerns of boost

and buck/boost regulators. (For detailed discuasi,ons, please refer to

chapter 9 of Volkoe 1.)

The two zeros of eq. (3.13) can be expressed as

o,' w "'	 ,'

	

sol'so2 .
	

1- 

1°^ 2	 (3.20) ]
((' "oTz2)

The open loop transfer function is expresse4 as

L	 01% (s/sol+l) (s/so2+1)

	

T(s)	 ws	
2 + 2s + 1	

(3.21)o	 s 

The locus of the second-order zero of (3.20) is illustrated in Fig. 3.1
'^	 It	 .for a fisted a 	 1 and variable fiz2 8 As the magnitude of xz2 increases	 i

the second-order zero changes from a complex-conjugate pair to two

negative real zeros. It is interesting to note that a complete:

pole-zero cancellation can be achieved for the case of a' - 1 and

Worz2 - 24. Since sol and ao2 are also functions of wo , the pole-zero

cancellation Is held true foi any arbitrary filter L and C vFaues.

A control adaptive to filter parameter changes is thus reaUted.
r	

However, as discussed in detail in Volume I, in order to aehieve

higher loop gain and Wer bandwidth for performance optimization it

is desirable to have two negative real zeros instead of complex

conjugated zeros. For negative real zeros, the following inequality

should -be siIti,sfied

I
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i
3

_.....!°..'.....,^	 (3. 22)
ca' (woTz2),^

TI I a II  the following 91111pl lfie d expretsnion can be obttninad

41W

1

s©2	 (0 T
o z2

0

The nuouca r<ssrutipttion. is valid if tho two zeros 
"poi 

ntad s02 era

sufficianttl,y apart. This inayuaUtty is rain only desirable in order to

simplify the design proaadurc, it also ;improves the dynamic performance
`	

of swittcMng regulators as discussed itt detail in Vol.uno T..

'like qualitative behavior of Olen open loop characteristic Is

examined bawd on t be simplified equations (3.23) .

Consider an zarbl.ttvtry case ere the asymptotic curves of (3.21) are

showaa ka Figure 3.2. if all coverer frequencies are sufficiently

nlatrtR, the Iollawlar, nia roxi,tnntiort:t t,ltol.d true.

irlii
s	

sot	

Csl,()	 is

sot ` s
aso2'oi

(3.23)
ry
Y	

yf^

C S	 s01 „(e)
ttao o2 s2+2cs+1

K

o l	 Tcfas
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normally occurs at a frequency above S ol and the open-loop transfer

function in the neighborhood of the cross-over frequency can be simply'

represented by G, (s)	 l• ° -• This is a very interesting discovery,
o	 a

since for frequency above Sol the open-loop transfer function is not

affected by any control loop parameters.

Proper arrangement of the zeros Sol and Sot, by careful.. selection

1 of the control parameter values, can result in any desired open-loop

characteristic.	 *Figures 3.3(A) and (8) illustrate the effect on gain

and phase of changing the location of the zero S ol by varying a'	 The

zero So2 is kept fixed.	 *Families of gain and 'phase curves with w 0 T z2	 I

4 5.0 are shown for twelve different values of a'. 	 These values are;

0.04,	 0.1, 0.2, 0.4, 0.6 0 098, 1,	 2 0	3, 4, S,	 and 5`	 The effect of in-	 1

creasing the value of 
Sol 

is to increase the gai,h at frequencies lower

than _Sol while keeping the gain constant for frequencies higher than Sol.

In the gain plot of Figure 3.5(a), a higher a' produces a higher'

gain.	 However, such a gain is accompanied in the phase plot of Figure

3.3(b) by a correspondingly higher phase angle, resulting in a smaller

phase margin.	 The effect of the parameter a' on the open-loop gain and

phase is vividly displayed in the three-dimensional plots Fig.3.4(a)

and (b).	 The family of curves shown in Fig. 3.3	 is represented by a

three-dimensional surface by introducing a third axis representing the

variable a'.

In the above example, a two-winding buck/boost converter with

the following parameter values is employed:

29



LS = 220 NH, C = 700 pF, Re9 . 0.5 n, RC 0.05 D,

RL w 28 np N$ = NP = 33 turns,,,,n = 0.667 0 Vi . 20V,

V0 - 28 V, %1;2 . S ' M . VITon = 0.5 x 10-3 V-sec. ,

Tp, M 0.16 x 10-4 sec. and	 0.2

i

a
i

7
i
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3.4 Audiosusceptibility Analysis

4	 Audiosusceptibility refers to the regulator's ability to attenuate
t

a small-signal sinusoidal disturbance propagating from the regulator
F

input to its output. The audiosusceptibility performance is of consid-

erable importance, as the regulators generally share the input bus
1

with other online equipment. The steady-state and dynamic operations of

'	 this equipment generate noise voltages on, the input Line which must
i

be attenuated by the closed-loop regulator so that payload operations

at the regulator outputs will not be detrimentally compromised. Since

the passive filters in the regulator generally can provide adequate

attenuation of disturbances at higher frequencies, interest in

audiosusceptbility from a feedback-control-performance viewpoint is

more often confined to a lower frequency range within, say, zero to ten

times the output filter resonant frequency of the regulator.

The audosusceptibility analysis utilizes the same block diagram

of Figure 1.2 previously used for the stability analysis. Interest is
A A	 A

focussed on the voltage ratio vo/vi, with output-current disturbance 1 o
A

assumed to be zero. It is clear that the v i to vo propagation actually

portrays the closed-loop frequency response of the regulator.

It is easily proved form Figure 1.2 that the closed-loop frequency

response GA(s)-can be expressed as:

v	 F 
p	 1- 3 AC M

(1+F F F F )
AO
	 _ I 	 ^:^	 (x.25)

GA(s)	
1 + Gx(s)v

where F1 , Fp , Fi t F FAC , and FM have been defined in Table 3.1. and

GT (s)'is the open-loop frequency response derived previously in eq. (3.13).

rr
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Substituting the defined parameters in Table 3.1 into ( 3. 25) and applying

the normalizatiori of eq. (3. 1), one has

K2 	It W s + 1	
(3.26)

A 	 0 1+GT(s) s2+2Cs+1
E

e
Substituting (3.13) into (3.26), one obtains	

s

K2 wo	 s ('r xyWos + 
l)

G {s)	 ._......	 (3.27)
A	 Kl a	 wo s3 + (i + wo)s2 +(T ^	

+s +(1 +,wo)OKi	a	 aK	 z2
w o aKl	 UKi

1

The closed loop transfer function GA(s) has two zeros and three poles.

For sufficiently large K1, the three poles are generally negative real

and sufficiently apart. However, by increasing the control parameters a'
l	 _

for large loop gain and wider bandwidth as illustrated in Fig. 3.3, the

root-locus follows the pattern shown in Fig. 3.5. Notice in Fig. 3.5

that the symbols used for zeros in GT (a) are now used for the poles in

GA(s), namely $
n 1 and sot

. This is true because the poles of the closed-

loop transfer function GA(s) and the zeros of the open-loop transfer

function GT (s) are approximately the same.. In the closed-loop transfer

function G
A
 (s), an additional high-frequency pole is introduced and is

represented by ao3 .	 For small a', the roots s 
0 and 02 form a. complex

pair. As a' increases, a01 
and sot moves toward the real axis where they

merge,then move apart. As a' increases still more, sp crosses the high

frequency zero, then merges with 8a 3 to fom another complex pair. The

complex roots can result in severe peaking of the audiosusceptibility

characteristic. For sufficiently small a' the detrimental peaking of

G
A
 (s)characteristic occurs at low frequency as discussed in detail in

Chapter 9 of the companion report. For sufficiently large a', the peaking

-,	
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of GA(a) characteristic occurs at high fre.quecies. These peaking phenomena

	

f	 are illustrated in Fig, 3.6 employing a buck/boost converter with the same

values as used in Fig. 3.3. The characteristic of GA (a)as a function of 	 E

	

k	 frequency and the control parameter a' can be vividly displayed as the

three dimensional surface contour shown in Fig. 3.7.

it is shown that an apparent peaking effect is present at high

frequencies for large a'. Such a peaking effect can cause severe degra

dation of the regulator performance. The effect of high frequency peaking

	

t	 of GA(s)- can be mitigated when an input filter is employed. In contrast

	r	 to GA(s), the undesirable high frequency peaking effect in the output

impedance characteristic (to be discussed in the next section) cannot be

alleviated by an input filter. This high frequency peaking; is frequently

observed in the laboratory for high-gain, wide-bandwidth regulator design,

and the cause is comprehended only now through the analysis effort.

It is important to note that while higher loop gain and wider band-

width can always be achieved by increasing the a' purametor values as shown

in Fig. 3.3 optimum audiosusceptibi,li.ty performance can only be achieved

by judicious selection of a'. Guidelines for selection of control para -

meters to optimize the audi.osusceptibilty characteristic may be derived

as follows

The asymptotic curve of GA(s) for different values of sol is iglus

traced in Fig. 3,,.8. Qualitatively speaking, if so y is sufficiently small,

the worst audiosusceptiblity occurs in the low frequency range, while if

sol is sufficiently large, the worst G A (s) occurs in higher frequency range

with possible peaking effect. The following two cases are considered:'

Sol < l/ (moT Z1) and Soy >1/ (W0T zl) '

3$
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Cue 1; sA1 a 1/(moo r. )

The maximum ja (s)l occurs at low frequencies between s01 
and sn2

R In the frequency range of interest, it is adequate to assume that

I^x(s)
I >> 1

and eq. (3.26) can be simplified as

	

0 2	 zl 0
GA (^ ) ^ w	

s{T w s +	 (3.28)

	

a K	

^s 1)	 .	 i

	

1	 (	 + 1)(	 + h)
s 0	 sot

w K	 c. ► K2	 ,
(G (s) 

1 0 2 s	 o	 at	 (3.29)
A	 max a K 1 o2 K1s01 a

3

'	 where	 sot s s < sol

i
It should be noted that equation (3.29) is only a low frequency; approximation.

Such an approximation is adequate for all practical purposes, since the worst

case of audosusceptibil,ity usually occurs at low frequencies. Equation

(3.29) implies -, that the audiosusceptibility can be improved by increasing the

magnitude of so t . The improvement is expected since increasing the magnitude

of 
sot 

results to higher gain-bandwith product of the open-loop character

istics as discussed in the previous section.

Ca.ee TI: sot 
> 

1/ (W 
o 

'r 
zl)

As sot continues to increase and surpasses the zero, -11(rao Zl), caused by

the output filter FSR, the audiosusceptibility can no longer be improved

and in fact it becomes worsened due to possible peaking effect. A maximum

value of 0 (s) characteristic occurs at a frequency higher th t that of sot.
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i. 2	 ,

w° 2-
	 2 xc r ,I G	 (s) I	 I*	 r	 < s	 e ;^	 (3.30)

A	 max	 K1a	 zl	 K1 Le 
a	

w0Txl	
o3

F

Under this condition, the high frequency peaking effect is often observed..	 "	 !.

When such an effect is considered, the maxIGA(s)I is general:,; greater than 	 i.
E

^
,

4
S

that indicated in eq.	 (3.30) .

Based on the above described. two cases, the best audiosusceptability	 h.

' performance can be obtained under the following condition

I

(3.31)

^
sol w T

o zl

K	 R	 1

min {IGA(s)I max )	 Kl	 Le	 a	
(3.32)

If 
sol 

is approximated by a'woT'z2, equation (3.31) yields the condition

L

a' Ir' Re 	 (3.33)
z2 c

Equation (3.33) provides the upper limit for the product at'r'z2`

' The output filter capacitor ESR varies over a wide .range due to

the temperature change.	 For example, the ESR of a Tantulum capacitor

has the following temperature dependant relationship:

Rc(-30 °c) z (3 or 4)	 Rc(25°c)

Therefore, some common sense should be used to determine the upper

Limit of a' t' z2 for a specific design.
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3.5 Output Impedance Analysis

The converter response to a sinusoidal, disturbance of the output

current can be investigated by using the output impedance characteristic.

The output impedance is measured as the ratio of vo(s)/ 0 (a), where Io(s)

is the sinusoidal disturbance at the converter output. The output impedance

characteristic of an open-loop regulator usually has its maximum value at

the output filter resonant frequency. The undesirably large output imped-

ance can be reduced effectively by properly designing the control loop

paramenters of the SCM.

The 'closed-loop output impedance can be derived using the small.

signal model of fig. 1.2 with vi (s) 0,

V(s)	 Z (1+F F 	 ) + FFFFF Fo	 Zo(s) _ P 	
MFl 31AC 

G 
D P 3 4 AC M	

(3.34)
1 (s)	 T

Substituting F's of Table 3.1 into (3.34)

	

W T ZIS + l	 woL
Z (s) _ K	 [- e S + 11	 (3.35)0	 3 (S2 

+ 2CS + 1)(1 + GT(s)) 	
x3

where

2V L	 2V L
Z eK3 Req +	

I
M	 M

e
	K1Le (3.36)

x	 Comparing (3.35) with ( 3.26), the analytical expressions for GA (s) and Zo(s)

	

are similar except for an additional high frequency zero, -K3 /(wo e)' for	 j

the Z0 (s) characteristic. High frequency peaking"phenomenon for sufficiently

large a' similar to that described in the previous section is illustrated'

in Fig. 3.9.
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The following two cases are examined:

Cabe 1:	 sot < 1/(W oTZ1)

Equation (3.35)can be simplified if one assumes that K1 is sufficiently

large and the zero - 1;'3/(woLe) has insignificant effect in the low frequency

range. Equation (3.35) can be simplified for low frequency approximation as

Z (s) _ 
w Le	 s(TZiW0a + l)	

VA 37)

sol	 sot

Comparing (3.37) with (3,28), the simplified output impedance charac-

teristic is almost the same as that of the audiosusceptibility characteristic,
a

except that the do gain is different.

The maximum output impedance occurs at a frequency between a 0 and sa2

1ZO (s) ( 
ax G wv'S s	 Ie	 (3.38)o m	 a	 o2 air Z2

CaAe TT:	 Sol ' w T
o Z1

Similar to Case II of the previous section, the maximum output impedance

occurs ` at a frequency higher than that of 1/(W o T U)

1Z min	 Zo (s)] max ~ Re a	 (3.39)

Equation (3.39)imposes the theoretical limit of the output impedance which

i^
is determined primarily by the output filter capacitor ESR. (The ratio of

a_'/a is close to one for all practical concerns.) Of course, the high

frequency peaking is likely to occur in this case and the maximum 1Z0(s,)(

can be worse than that indicated by (3.39) should Case II prevail.
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3 6 Trtins3et ►at Roallonse Due _t as ® Stop ],load Glaa►n o.

Tito <wnvorter ,load U ofte^.j subjected to step load Changes.,

Undesireabia resonance between the toad and the regulator due to

these load changes may xosijlt in excessive disturbances of the output

voltage. For this reason, the time constant of the transient responses

and the amount of allowable laeaking are specified for each application.

If the load charge is net a severe one, such as a sudden short at the

output, the output voltage and duty cycle of the converter usually cl ► a►nge

only slightly during the entire transient. The output impedance derived

in the previous section for the small signal, model can be used to

examine th y, transient response of the converter. For as step change

of the, load current At /s, equation (3.37) can be rewritten with an

unnormalized s as

13	 13	 `

V (s)	
At 

to b
a' y 

[	 ,	 +	 ,	 (3.40)
0	 0o ea s+s

, ol^ s+sol

where	 9

, s	
a' 

Tz2mo	
1 +	 -	 Oct	 (3.41)

S 
ol 02	 ^-

(tt^ T	
2

z^a^o)

Z1 01 +
131 r , + 

s'	
(3.42)

01	 0

Tzlsol L^1
2	 s	

(3.43)
01 + sod

`raking the ;inverse Laplace transform of eq. (3.40) =results in the time

transient response as a ► sum of two exponential terms:

	

. 5 1 t	 _gI t
AVo (t)	 X11 0 

 a
^ to 2Le [131 a 01 + 13 2 c o2 ]	 (3. 44)
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1

j	 The transient response of the output voltage is illustrated in
f

FIg. 3.10. The settling time and the peaking can be determined

j	 analytically from (3.44). The time constant of the transient response
a

Is usually dominated by the second term of (3.44) since for all

practical designs the two corner frequencies are sufficiently apart

and sal >> so2 as suggested in earlier sections. However, if sol

and s^ form a complex conjugate pair, the transient response will be
w

02

oscillatory instead of exponentially decaying. For an illustration of

the latter case, please refer to Fig. 9.8. of Volume I.

The peaking of AV  during the load transient can also be derived
s

from (3.44), As a first order approximation, it is reasonable to assume

sol >> sQ2. Therefore, the peaking magn ;ltude can be approximated by

AI Lo
JAVo (t)I max —MT 1e	

(3.45)

f
z2

Employing eq. (3.38), one can express (3.45) by the following equation

JAV
o i max	 AIo 1 'zo f max	 (3.46)

I

1	 j
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3.7 DC Regulation

The operational amplifier transfer function A(s) can

be expressed as

A(s)

	

	 K
1+ s

W 

where K is the DC gain. A typical value for K is 105. The gains

FAC (s) and FDC (s) shown in Table 3.1 can be expressed as

R  + R3

FAC(o) K Rx + R3 + R	 (3.47)

where RX t RI)R

FDG (o) _ R [R41!(Rx + R3))4	

y
8

where

R  + R3
Ry	

8
(3.48)

9

andsees_.. 	 1

R2
g 

Rl + R2 i{
Substituting (3.47) and (3.48) into the open loop gain 'GT (a) and letting

s _ 0,-one obtains

GT (o) : FM a FD(o) FDC(o)

2R
 4 1 

K	
gR

'	
X	

F (0 )	 (3.45)RX +R3 +R4 'D

where
V

FD (o)	 D	 sees Buck
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It ..,V ! "' 
^e	

• . • • Boost
L

M	 V..

`D (1
	 D ---S)	 a , .. Muck/Hoost

I.

(o)^ F̂(o)AVo 	 FI
G (a) .^

A	 ev	 + cx(o>	 c,^ o>

(3.50)

	

gk4	 F o
(FMK g4 Rx )

FD(o)

where

F (o)	 D
F (o)	

^-	 Buck
A	 I

D"
Boost

	R 	 (3.51)
VI (]. - RP )
	 I

L

DD'. 0 0 • Buck /BoostR
V (i - Re )	 -

L

The DC regulation is expressed as a percentage change of the output
a

voltage vjith respect to its nominal. value.

AVo	 gR4	 1 'F1 (0) AV
V. . (FMK. ^ + B)	 F (o) V	

(3.52)
a	 4	 x	 D	 o
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1

3.8 Summa a

It is commonly known that the performance characteristics of the

three converters, buck, boost, and buck/boost, are quite different,	 1

primaril7 due to the non-minimum {phase property (a zero on the right
s

half s-plane) that exists in the boost and buck/boost converters but

not in the buck converter. The existence of a zero on the right-half s

plane, and two moving poles, have caused the boost and buck/boost

converters to be more susceptible to loop instability.
i

It is quite astonishing to discover that the performance

characteristics of all three switching regulator types share a common

form when SCH control is employed. As discussed in Chapter 10 of

Volume 1, the SCM control is not only capable of moving the zero in

k

	

	 the right-half s plane to the left-half s plane, but also of adaptively

compensating the two moving poles of the boost and buck/boost converters.
i

This analytical finding has a significant design impact: A simple unified
i

design procedure can be devised for all three regulator types such that

all regulator performance specifications can be satisfied concurrently

in one design attempt.

i

a

r	 ,

'	 I

i
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CHAPTER IV

INPUT FILTER EFFECTS

4.1. Introduction,

An input filter is often required between a switching regulator

and its power source. The filter serves to prevent the regulator

switching current from being reflected back Into the source, and 2)

to isolate source-voltage transients so as not to degrade the perform-

ance of the switching regulator downstream. Consequently, the !Ater is

required to provide not only high attenuation at the switching fre-

quency, but also sufficient damping against any line disturbance so

that output peaking is properly controlled, A presumably well-designed

input filter, satisfying the aforementioned requirement.,, when married

to a switching regulator, can often cause significant performance de-

gradations. These degradations are due primarily to the complex interaction

between input- filter, output-filter, and control loop [11-13], and result

n various design problems which include; 1) the destablizini 8 P g interactions

between an improperly designed input-filter and the regulator loop, 2) the

detrimental effect of input-filter resonant peaking on the closed-loop

input-to-output transfer characteristic of the switching regulator

(commonly referred to as the audosusceptiblity performance), and 3)

the ever-present weight and loca limitations placed on the input-filter.

y The objective of the present chapter is to investigate the Inter-

actions between the control loop and the power stage in the presence

of an input .filter and to incorporate input filter effect into the SCM

design guidelines.
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4.2 Switching Regulator Model With An Input-Filter.

The effect of the input-filter is characterized by the forward x

transfer characteristic of the input filter, H F (s), and the output

impedance of the input-filtert Z F (s), as shown in Fig. 4.1. The

G	 common block diagram shown in Fig. 1.2 is Applicable for a switching

j

	

	 regulator with an input -filter if the following modifications of the

transfer functions FI(s), FD(s) and Fp (s), (rticervnce to Volume T for

t
details), are made:

3	
'

Fi(s) '^ u` HF(s)

a	 where p - D	 (4.1)	 9

D"

NP D,

Ns D	 9

YO	 O
F"(s) ' v (1 Z2

F 
s)	 Buck

D
u RL

V	 R +sw L	 Z (s)
_o [ (1	

ea	
) •^ 

F	 ] ........ Boost
(4.2)

"D	 RL
o e 

U2^

V	 R +sw L	 Z (s)
= UD, [(I -D 

e o e)
	 2
u RL

and	 .. ..... Buck/Boost

l
Fp (s)	 ZF ( s ) + Zi(s)	 w 2	 (4.3)

0

where Zi(s) Req + swo e + (Rc + sw c) JJ,
o_

'	 Zi(s) is the input impedance of the equivalent output filter of the power stage.
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4.3. Input Filter Interactions.

Employing the small-signal linear model shown in Fig. 1. 2,

interactions among input filter, output filter, and control loop are

investigated.

A. Loop Stability The stability of a switching regulator can be

examined by the open-loop gain C,l,(s) of eq. (3' 12) The input

filter design parameter central to the Loop gain is the output impedance

ZF (s) which affects the transfer function F' D (s) and F'p(s).

d

1) The output impedance ZF (s) is related to the duty-cycle power-

stage gain V1 through equation (4.2). it 
is interesting to point out

that p2RL is the absolute value of the negative impedance of +

9

	

	 switching regulator at a given operating condition. As a necessary

condition for stability, the magnitude of the output impedance of an

input filter should not be greater than the absolute value of the negative
3

Impedance of the regulator.

Zp (Jwl ) < p21tb 	- (4.4)
0

Excessive output impedance Zr (s) at the resonant frequency of

the input filter can result in a nega tive duty-cycle power-stage gain.

The negative duty-cycle power-stage gain FA(s) together with the

negative feedback loop will contribute to an unstable positive .feedback

system.

Figure 4.2 illustrates the Bode plot of the amplitude of F'(s)

The effect of the resonant peaking of ZF (s) results in an abrupt re-

duction of V (s) at the resonant frequency w1 . For boost or buck/boost

56

.^:. mow., ......^.,,.>,...



converter, the input filter resonant frequency wl can occur before

{	 the positive zero (shown in Fig. 4.2(b)) or after the positive zero	 A
I

(shown in Fig. 4.2(c)). Since the positive zero usually occurs at

high frequencies, the case shown in Fig. 4.2 (c) is seldom encountered	 1

j for most practical, designs.

2) The output impedance is related to the power stage transfer

function F"
P
(s) through equation (4.3). Excessive ZF(s) at the

resonant frequency can significantly reduce Fp(s), and therefore, the

loop gain. The following relation should be observed

I 
ZF (s)I « IZi(s)I for all s. (45)

The degration of Fp(s) due to ZF(s) can be avoided, if there is

a sufficient separation of the input-filter resonant frequency

wl l/ I,1Ci and the output ,filter resonant frequency wo
e 

l VTC—.

Fig. 4.3(a) shows that a maximum interaction occurs between the input-

filter and the output-filter when w l coincides with Wo. This interaction

can. result in, a large reduction of Fp(s). Such interaction can be	 a

minimized by either decreasing W, or increasing Wl , as shown in Fig. 4. 3(b)

and (c) Larger wl is desirable from the point of view or weight and size

reduction. However, for higher 'resonant :frequency w the effect of the

peaking of ZF(s) becomes more prominent since the loop gain descends

rapidly as frequency increases.

Figure 4.4 illustrates the open-Loop gain and phase plot of a bu,.,k/

boost regulator with the same circuit parameter values employed in

Fig. 33. The filter parameters are L	 77uH, Rl = 39.6m, and Cl _ 412 f, 	
f

which gives an exaggerated I Z F (^ Wl)^ = 4.75Sd and I NF Owi)` = ll
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at the resonant frequency w = 1/ C. to demonstrate the effect of an

input filter. It is interesting to note that although there is a signi-

ficant gain and phase disturbance at the input filter resonant frequency,
i

the open loop characteristics in the neighborhood of the cross-over
i

frequencies are rather unperturbed due to the high-gain wide-bandwidth

nature of the open-loop characteristics. Therefore, the loop instability

due to the input filter interaction is much alleviated with SCM control.

B. Audiosusceptibility. The audosusceptibi.lity is expressed as

F1(s)FP'(s) 11+Fl (s) '3 (s)FAc(s) M's)1
GA(s) 

s	 1 + GT(s)	 (4.6)

The forward transfer function HF(s) is related to the transfer function

F,(s) as shown in equation (4.1). Execessive peaking of HF(s) can result
3

in severe degradation of the audiosusceptibility of the regulator.

L

	

	 Figure 4.5 illustrates the audiosuseeptibility of a buck/boost converter

with an input filter for different values of a'. For a' - 1, approximately

23 dB of peaking is observed, compared to 21 dB calculated using (4.1)

thus accounting for the effect of HF (s) in the Transfer function F,'(s).	
9

The particular peaking effect at very high frequency discussed in Volume I

is not important in the audiosusceptibility-characteristic since it is

largely attenuated by the input filter.

r

	

	 The maximum value of GA(s) due to peaking at resonant frequency is defined

to be IGAI(Jwl)l max and is calculated as follows.

ZF(jw)
Let KF 

4'_ 2 	(4.7)

u RL
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Then open loop gain can be expressed as

a 1 - KF a s2 + rz 2s +

	

f 1+KF 	 1+KF

Assuming that the open loop gain at the input filter resonant frequency
1

wi is sufficiently large, i.e.

IGT(j w) l

1
',Chen for ;low frequency approximation

F' F'
GA(s)	 G	 (I +(S)

	
F2F3FACFM

T

HF(s)	
woK2 s(rzl

wos+l)

" 1 - KF aK1 ( s +1) (s +1)

	

B01	 sol

HF(s)
[G (s))	 (4.9)

1 - KF	 A	 w/o input filter

If the input filter resonant frequency satisfied the relationship,

w

isl ` 
IW1) ` IsolM

02 1
	(4.10)

the desired  
GA I(Jwl) 

Imax is given by the equation

B

IGA(Jwl) I	 ^'	 $	 ' IGA(^wl) I	 without an	 (4.11);

max	 1	
R	 input filter	 I

N2

In equation (4.11), B F is defined to be the peaking of the input filter

forward ,transfer characteristic, and BR is defined to be the peaking of

the'ontput impedance of the input filter. BF and BR are given by the

expressions
BF 	 IHF (jw1) L	 Y

(4.12)
:.'	

BR a IZF(jw1) L

It is evident from (4.11) that a substantial amount of input filter

peaking (high BF and/or BR) would result in severe degradation of the

audio-susceptibility.of;a converter.	 x

u
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C. Output Impedance Characteristic. The output impedance characteristic

is illustrated in Fig. 4.6 for different values of a'. The input filter

Interaction is 11ss noticeable here than in the audiosuseeptibility or

the open loop characteristics because the output impedance of the power	
i

stage, Zp(s), is less sensitive to the input filter peaking effect. For

all practical purposes, the effect of the input filter on the output

impedance characteristic can be neglected for SCM controlled regulators.

d

l

i

I

7
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4.4 Input Filter Design Considerations

One can conclude that the minimization of 
ZF(a) 

anti HF(a) at

filter resonance is the key to designing an input filter for a switching
regulator with a given power stage. and ,specified sine and load conditions.

In conventional single-stage input-:Filter design, the per-

formance degradations are often compensated by using a larger filter
I

L and C, or by using an externally added R in series with filter L or C

to bring the resonant peaking under control. In any case, the designer

has to suffer the penalty of increased size, weight, and loss. A

satisfactory filter design becomes rather difficult to achieve without

w
trading one or more performance characteristics for size, weight,

or efficiency.

An optimum, two=stage input=filter configuration as shown in

E

Fig. 4.7 was described in detail {11-13). This filter configuration is

capable of 'providing low-loss, light-weight, high-attenuation, and a
i

controlled resonant peaking of HF (s) and ZF (s). The filter is particularly

useful for switching regulators which have stringent efficiency, attenu-

ation, and peaking requirements, and which would fail to meet size and

weight requirements if a conventional, single-stage filter were used.

4.5. Input Filter Related SCM Design Guidelines.

High-gain and wide-bandwidth is one of the intrinsic characteris-

ti s of switching regulators employing SCM control. Typical open

loop cross-over frequency occurs at 1/3 to 1/2 of the switching fre-

quency. Because of the stringent military specifications on conducted

interference requirement, the loop gain reduction due to an input filter

usually occurs at a frequency approximately a half decade or even a

decade prior to the open-loop crossover frequency'.

67	
_y



^F s
4

SINGLE-STAGE I IYPUT FILTER

RI L_^



As a result, gain reduction occurs at a frequency where there is

sufficient loop gain. and is not likely to cause loop instability.

In pig. 4.4 a poorly designed input filter causes a llj^iceabie

gain reduction. Otis gain reduction, however, occurs a decade

earlier than the cross-over frequency and dues not cause loop in-

stability. if an input filter is designed with a controlled 7.p(s)

peaking lees than 20% of the negative impedance ji 2RL , and the

input filter resonant frequency w  is much less than 1/3 of the

switching frequeny, the ;input filter related loop instability can

be largely avoided. Therefore, no special attention is given in

SMC design to avoiding the loop instabi lity in the presence of an
z

;input filter.

The peaking effect of the forward transfer characteristic	 1

IIF(s) has significant effect on the audiosusceptib ility character-

istic of a switching regulator as shown in rig. 4.5. A sharp spike

is seen at the input filter resonant frequency and is primarily con-

tr tbed by the peaking of I1F (s) . This effect will be considered in 	
t

the SCM design process.

9
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CHAPTER V.

r

	

	 DESIGN ASSUMPTIONS AND CONSTRAINTS 	
{

5.1. Introduction.

The philosophy of system design is to establish a simple correlation
E	

,v

R	 between the system parameters and the characteristic roots so that the

roots may be set at desired locations by adjusting the system parameters.
j

Then the roots are interpreted in terms of the time and frequency res-

ponse.

In this chapter, the key power stage parameters and SCM parameters are

{ identified. Switching regulator performance specifications._ ze presented

in the form of design constraints. The design objective is to determine

the set of S01 parameters for given power stage parameters such that the

prescribed design constraints could he satisfied and subsequently switching

regulator performance optimized.

t	 5.2. Key Design Parameters.

The key design parameters can be divided into the following categories:

(A)key power stage parameters which have already been determined prior

f
j	 to the control circuit design.

(B) key SCM parameters which are the desi,gr, variables to be

determined with given power stage parameters and performance

specifications.

These two categories of design parameters are given as follows:

(A) Key power stage parameters.

x	 e Tnput filter resonant frequency wl

• Peaking of the input filter forward transfer characteristic

BP =IHF(Jwl)l

•	 Peaking of the output impedance of input filter BR -IZF(Jwl)I.

r
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• Equivalent .^;#:put filter parameters: Le, e q , C, RC, wO , ^.

These parameters are defined in section 3.2.

• Output filter Tzi = R 
c 
C

• Input voltage range, output voltage and duty cycle ranges:

VI , VO , D and D'
	 E

• Negative Resistance of the switching regulator at an operating

condition p2RL



i

i

	

5.3 Design Assumptions.	 t

(1) To simplify the mathematical representation of the open-loop

transfer function, it is assumed that the compensation loop

parameter 'Tpl is designed to match Tzl

TT	 (5.1)pi
	 Z1

If the above equality constraint is not grossly violated, only

minor effects in the overall loop performance will result.

Figure 5.1 shows that for different values of R 5 , ranging from
l

500 n to 2000 2, the open-loop characteristics of a buck/boost

converter change very ;little. The parameter values used for

the converter in Figure 5.1 are the same as those used for

Figure 3.3. Figure 5.2 shows that if the equality constraint

(5.1) is violated by one order of magnitude, the difference in

phase delay becomes more discernable.
a

Fig. 5.3 illustrates the effect of changing output filter ESR.

In general, larger phase delays are shown at high frequency as
s

a result of employing either smaller T pl or larger TZI. The	
j

mathematical expressions of the open-loop transfer functions,

with the inclusion of the effect of Tpl when equation (5.1) is

violated, are too complex to render analytical insight. As

shown in equations (10.2), (10.3) and (10.4) in Volume I, the

order of the transfer functions are increased by one for both

the numerator and denominator, terms,
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Examining Fig. 5.2, it appears that a large Tpl (curve A)

is preferable to a smaller Tpl 
(curves C and D).	 This is not

necessarily the case, however, if one examines the audio-

susceptibility characteristic or the output impedance charac-

teristic.	 The output impedance characteristic of a buck/boost

converter employing three T pl values is shown in Fig. 5.4. 	 For

larger Tpl (curve A), an apparent increase of the output impedance

is shown at the corner frequency 1/(27Tp1
).	 A similar character-

istic can also be observed for the converter audiosusceptibility.

A qualitative explanation is that the inclusion of the Tpls + l

term when rpl.0 
TZl introduces an additional pole n04 to the

output impedance transfer function as shown in Fig. 5.5. 	 When

the magnitude of Tpl is increased, the pole s 04 is moved to the

right and merged to the pole 
s01 

to form a. complex pair which
4

results in the peaking effect shown in Fig. 5.4.

From ttie above discussion it is quite obvious that an adverse a
d

effect will inevitabley occur when the equality constraint (5.1) is

violated.	 A deliberate measurement of the output filter ERS is
i	

_

^o
therefore in order.	 It should be noted, however, that the equality

constraint (5.1) is ,introduced mainly to simplify the mathematical

expression of the open -loop characteristic. 	 When such an equality

constraint is not easily achievable in a'practical design, one

could consider using - a small Tpl value such that it will not

introduce any significant phase delay in the frequency range of

interest.	 Employing Fig. 5.2 for example, a Tpl value of 0.16 x 10_5

or 0.16 x 10-6 should be chosen to avoid any adverse effect.

r
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a

1
1

(2^ The roots of the open-loop-characteristic second-order-zero

are assumed to be real and sufficiently apart so that the

following approximation is valid:

s2 +tz2wos + l _ ( ss + 1)(2s + 1)	 (^.2)

of	 02

I

where 
Sol OW oTz,2

^,	 1

so2 * wo Z

(3) The open loop gain is assumed sufficiently large so that the audio-'	 -
a	 ,

susceptibility GA(s) and the output impedance Z o(s) can be approxi-

matedby (3 . 28) and (3.37), rAspectively. The approximation
a

simplifies the high frequency characteristic by ignoring a high-

frequency pole, but makes no simplification of the low frequenc y
_	 q	 y

characteristics. This assumption is valid since the worst case audio-

susceptibility and output impedance usually occur at low frequencies
a

so that only the simplified equations (3.28) and (3.37) are of	 j

design importance.

(4) Complications due to the high frequency pole and described in

Volume I can be ' avoided - by observing the following assumption=

s ol < 1/(wor Zl)	 (5.3)

80,
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If the above inequality is satisfied, the maximum GA(a) or Zo(a)

will occur at a freq+,Bncy between s 0 and ao2 . hued on assump...

tions 2 and 4, sol and sot are confined to a certain frequency

range as shown in Fig. 5.6.

(5) The magnitude of TZ2 is assumed sufficiently large so that the

following approximation .olds:

TI . TZ2'	 (5.4)

While this assumption is true for all practical designs, it is

not a necessary one in the design procedure to follows.

(6) Input filter effect on the stability and output impedance
I

characteristics may be neglected if the following relation

is observed;	 I

BR = ZF ( jw1) 4 u 2RL.	 (5-•5)

As a rule of thumb, the peaking BR should be less than 20 percent

of 
u2RL 

which is rather a relaxed constraint for input filter

design. Usually, the audiosusceptibility requirement will impose

a tighter constraint on B as well as on B
r	 F	 R	 t

5.4 Design Constraints.

(1) Audiosusceptbility requirement. The switching regulator

performance specifications are presented in the form of design

constraints. In converter design, the maximum tolerable mag-

nitude of IGA(s)I is normally specified as KA . Employing
eq. (3.29) without an input filter, one obtains
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4 :t
ti

k

20 log j 0^(s)1 max " 20 log (K2 r°) 6 20 log KA	 (5.6)
I Z2

Employing eq. (4.11) with an input filter, one obtains

i

K
20 log j C (s) l	 R 20 log (h2 .- 1; ^-) + 20 log	

>3k 2

1.	 nu^x	
l n T22	 1--lax/(}a RL)

20 log KA	 (5.7)

Eq. (5.7) is derived with the assumption that the i,tput filter

resonant frequency occurn between 
Iao2 and Pall (which is

generally Elie case) Thus:

W
So2 < Wl 

< Sol	 (5.8)
o i

t
If (5.8) is not satisfied, the effect of input filter peaking

on the audiosusceptibility performance is Less profound than

indicated in (5.7).

9

The minimum audiosusceptibi,lity that can be achieved by

any- ontxol circuit design for a given power stage was derived

In (3.32) as

i	 maxLe ►̂
!

Taking logarithms as before,

K2 R

	

20 log min { GA(:s ) max }	 20 log (	 L° a, >	 (5. 9 a)
I	 L K 

e

Thus, 20 log GA(s}'^ must satisfy the #equal'i.ty

r

^	 K R A '	 ^. 	 'd
20 log (K? i;C a) < 20 log GA(s)	 20 log (K2 ar' :,) a+ 20 log 1^ B F2 < 20 log KA

1 e	 1 _ z2	 R/U RIa

(5.9b)

83

1Lal	 -	 .aYY	 ,..	 ffi	 . .. We ..,



i`

ii

ii

r

;t(2) Output impedance requirement. A maximum output impedance should

be specified as Ko . Employing eq. (3.38), one obtains

L

zo(s)I max aTe
	 Kb
Z2

The best achieveable output impedance for a given power

stage dcaign was derived in (3.39) as

min zo(s) max 
^.RO 

a,	
(5.11)	 n

(3) Stability requirement. It is a presumption in any switching

a

	

	 regulator design that the circuit should: provide stable operation

under all line conditions, load conditions, and environmental

changes. The assurance ofa stable operation is usually provided

only after the circuit has undergone a series of rigorous tests.
9

The objective here is not in an attempt to eliminate the necessity

of such a test procedure, but rather to add an additional degree

of confidence in the design stage. To achieve this, one can

specify the open loop crossover frequency and the phase margin.

The former assures a high-gain, wide-bandwidth loop charac-

teri,sti,c and the latter assures a st ble operation.

(4) Transient response requirements due to a step load change.

In section 3.6,; it was discussed that If s' >> S', then the
_01	 02

i time constant 1/8o'2 determines the decay rate of the transient

response due to a step change of load current. 	
2
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a

For convenience, the symbol T is used to represent the time

constant /sots

T a i /s'	 (5.1.2)
s	 02

It should be noted that when the SCM design guidelines are

followed, transient response is always in the form of ex-

ponential decay without oscillation

The amount of peaking duct to Iona ch ,rages can be limited
9

through the design of the control, loops. In the design sped

e

	

	 fica► tion, the maximum peaking voltage is expressed as a percentage

( 'SOP%) of the nominal do output voltage. Referring to (3.46) one

obtains
,

'	 9ll
AV, Max ) ^ ( Q̂o ^ ^ !' ^o 'Max 	K(5.1;x)	 aVo	 xo	 l ^^

It is important to note that there exists as theoretical limit
Y

on the lower bound of 1 Z  maaxi given in (5.11). The transient
r	

response ® can not be specified at a value Less than KC a,p	 ^,

since this requirement can not be realized in any .SCM design.

t (5) DC Regalation. The percentage change K of the output voltage
DC

with respect to its 'nominal value due to the line voltage variation

is derived in (5.52)

AV	 AV	 SR 1!y (o) V

Vo	VI	 M hk Rx , CO (o) V0 C

I

where K is the do gain of the operationrl amplifier and F (e)

and F (o) are specified in (3.51).

A
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(6) Other design constraints. In practical design, the voltage

swing at the output of the operational amplifier integrator

shown in Fig. 5.7 should be confined to a permissible operating

voltage range (VT10 VT2). For example, if the LM101 chip is

used with a 5-volt supply, the safe operating range may be

defined as

VTl 
;0 ,2 Volts

P

VT2 G 4 Volta

Once VT1 and VT2 have been selected, the proper ac-loop

time constant may be determined. It is useful to define two

terms, SN and SF , where;

S  is the absolute value of the slopc- of VT.(t) during Ton , and

SF is the absolute value of the slope of VT(t) during Toff

r

With these definitions in hand, the following criterion may be set:

Yon 
s 

SFToff VT2 VTl	 (5,15)

For the buck converter, S,, n (VI-Vo)/R4C1 and Ton V  p/VI,

Substitution of these expressions into equation (5.15) yields

an expression for the ac-loop time constants

R4 C1
 > nVo(Y-D)Tp	

(5.16)
VT2_VTl
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Similarly for the ')post and buck/boost converters:

nV0DD 1 T

	

ClRk > r 2
_VTl
-V 

4	 boost

nV D'T

	

R4CJ V 0 17,	 buck/boost

T2 T1

(5.17)

(5.18)

5.5 Design Trade-Offs.F

Since the number of desig: variables is usually greater than the

number of.design equations, there exists a potentially nfinite set

of designs that satisfy the given design constraints. Among this

infinite set of "acceptable" designs, however., a particular design

might be Identified which would optimize certain performance

characteristics deemed more desireabl.e than others. The process

of obtaining this optimum design naturally involves design trade-

offs of one Performance characteristic for another,. Since the

performance characteristic to be optimized varies from one design

case to another, only a general basis for design trade-off and

optimization will be provided. Precautions to be applied in setting up

the optimization strategies are given.

(1) The inaccuracies of the switching re u^or model at high frequencies.

The accuracy of the power stage model, which inderived using the

State Space Averaging technique, degenerates as the modulation frequency

approaches half the switching frequency esp:ecia.11y in predicting phase

delay. The simplified pulse modulator model, derived using the describing

i
functional, technique, also becomes inaccurate at high frequencies. This

model disregards the phase delay entirely. Experimental measurements of

pulse modulator gain and 	 i

8.9
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phase are shown in Figures 7.8 and 7.9 of Volume 1. While the model

inadequacies may be neglected in the single-loop syntem, they cannot

be neglected in the multiple-loop SCM system being considered here.

SCM control provides High open-loop cross-over frequency. Precautions

must be taken in examining the prase margin since the model does not

provide accurate phase delay information in this high frequency range.

"	 Adequate stability margin can be determined only when the model de-

ficiencies are fully understood and taken into account.

(2)	 Trade-off between stability and other regulator performance.

As discussed to section 3.6, the settling time of the load

a
	 transient response in dominated by the zero s ox of the open loop

transfer function. It is shown in Fig,. 5.8 that the variation of

sox with sol kept constant, affects the open-loop characteristic

in the low frequency range. To provide sufficient phase margin

throughout the frequency; spectrum of practical concern, the corner

frequency at sp2 should be sufficiently smaller that the output

filter resonant frequency W0 1. Why this is so is seen by considering

the extreme case when s o2 -^	 In this case, the open loop phase

delay approaches -2700 for frequencies greater than the filter resonant

frequency. Therefore the trade-off between stability and transient

response should be considered.

The open-loop gain can be increased effectively by changing sot

while selecting an optimum value forao'2. These changes Can be achieve

by simply varying the parameter a' To achieve a higher gain, wider
1

bandwidth open-loop characteristic requires the use of larger a'.
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Increasing a', however, increases the phase delay, as i'lustrated in
x

Fig. 33. This increased phase delay :te undesirable from the stability
f

point of view. Since the crossover freq,nency is usually high (appro-

ximately 1/3 or 1/2 of the switching frequency), and since the additional

phase delay due to the pulse modulator, the transport lag, and the

inaccuracy of the power stage model cannot be accurately accounted for
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CHAPTER VI

DESIGN PROCEDURES AND EXAMPLES

6.1 Design procedures.

Based on the design assumptiono and design constraints specified

in Chapter V. key control circuit parameters can be derived according to

the following design procedures.

F	 Step 2: Employing the nettling time of the output transient response

E
of (5.12), one can determine the range for sot

Sox > w-	 or	 ry2 C xs 	(6.1)
p a

f	
where r defines th^,.1 'tippet¢ ]limit of t' according to the

9

	

	 s	 z2

specified charactea;igttz requirement.

Step 2: The peaking constraint due to a step load change shown in'eq.=

(5.13) is used to compute _a lower bound, ,M , of s]	 o1

tooL e

8 o > K A, L 
Q 

M1	 (6.2)
op^2 e

Al,
AV	 Al

r	 Kop b
	 V max 

)/t I o}	 (6.3)
0	 0

Kop is defined to be the worst tolerable transient peaking.
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Step 3,' The audiosusceptib lity ttonstraint (5.6) or (5.7) is used to

i
detetrminu additional lower bounds, M2 and M3 , of Bolt

(	 !Without an input filter:	 i
i

K2 W 
K1.
	

A
col '., M2 	(6.4)

KA K Al

where 20 Log KA is defined as the worst tolerable audiosuscept bility.

(b) With an input filter;

f

K w	 K A

001 > (K2 A°)/ Kn - K2 ^) TSB	 (65)

,_

B
where K"	 K (1 - K ) /b	 (6.6)

AA	 u2K	 F
^	 L

i

Step d: The orrput impedance constraint (5.10) is used to compute a
E	 lower bound, M4 , of Sol.

gol	 (A e)/(Ko - r, 2)	 M4	 (6.7)Al 	 l
Sr".ep 5: The upper bound of sbl is determined by (5.3)

s 	
^e 

1	 B	 (6.8)
01	 C KG	 2
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StOp 6 The feasible range for aol is determined by using the results

obtained in stop 2 through step 5.

B  
4 

a 0 < B 	 (6.9)

where h^ ^^^^
Re

and Bl 
A 

MAX (MI, M2(or M5 ) O MG)

It should be noted chat a feasible. value for a 0 may not be

attainable from the inequality constraint eq. (6,9) implying

that either the constraints are not specified properly

or they are not achievable by any control, loop design with the
t

given power stage parameters. (Refer to discussion in section
s

5.4 concerning some theoretical limits on regulator performances).
a

Under this condition the design specifications must be

a	 relaxed , or elae the power stage parameters must be redesigned to

accommodate the specification. For example, the worst

'	 audiosusceptibil.ity is specified in the design constraint (5.6)

J G-q(s)jmax -1 K  -

If K ^Ft greater than the practical limit shown in (5,.9), a
C	 A

feasible value for so can never be obtained. Similarly, if

K  is greatt^'r than the practical limit of JZ0W Imax in

(5.11), the design can never be realized.

I
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Step 7 The open loop characteristic is now used to establish stability

i
criteria. These criteria, in conjuntion with the previously de-	 {

rived feasible ranges for sol and sot in (6.1) and (6.9),i establish the

backbone of the design guidelines. Since sot _ woa'TZ2a and sot

1 /(w0TZ2)'	
T

the feasible ranges for 
z2 

and a' can be determined.
r

Proper values for Tz2 and a' can be selected from a given set of

open ,loop gain and phase curves provided in the Appendix. These

curves are constructed for different values of woTZ2 ranging

from 1 to 10 and a'-(U.04, 0 1, 0.2, 0.4, 0.6, 0.8 0 1.0 2, _30

4 0 5, and 6). It should be noted that the damping constant 4 - 02

is employed for these gain and phrase plots. 	 The effect of ,different
z

damping constant 4 is illustrated and is shown to be significant

only within a decade from the natural frequency wo,	 Since the

crossover frequency is 'generally more than a decade from the
9

natural-frequency w
0
	different damping constant imposes negligible

effect; in determining the crossover frequency and phase margin
_ a

of the system,	 The value Of Tz2 is first chosen with the help

i of (6.1).	 Having chosen v,-the corresponding opfn.-loop charac-
z2

teristics may be used to select the best a' such that adequate

stability margin is provided and all'design constraints are

satisfied concurrently. It should be noted that the vertical

scale of the open loop characteristics in the Appendix are normalized

by a factor (kl/wo) (a/a') so that these curves can be applied to all

three switching regulator types.
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Alban S.- From SbaD 1 and Stet) 7 the values for 0 and T l — can k?d- determined.



6.2 Dani n lNnitip'Wa

Four design examples Ytro Swan to 44111011O :rItLe. 014 design procar oro

d4ocribad in the pruvInuer section. Thay tire:

V=Il ld 1. Design er 5GM control circuit, for at Truck convartar without r ►rr

1, ►►put:filter. For editrq► liatt:y ► Gcuo;tdo,v 4 fixed, iti pttt voltage,

st ►rd output power.

&%iftipta so Slu►ul as example 1 desigu l except that a two-sta$q iliput filter

is employed

t ctrtt a' S. $1111:1 lar to cxt►mplia I dca4rr, except that z► n itipu t volts ga rktrng

and an output power r a"gt► are considered.

^Lf7rn^^ r ,I. basigiv the SCH a'Jixt.rol circuit for t► bock/boost ctat vQrt a

at a condition, 61milar to that of Examplia 1.

C

79T

A

'R



fttctmp4e 1. Design the SCM control circuit for the buck converter

shown in Fig. 1.1. For simplicity, consider first a fixed

input voltage, without an input filter,and a predetermined

duty cycle control mode (constant V
I
 TONcontrol).

Input - output requirements.

Vl . 50 volts

V0 20 volts

D . 0.4

Po	 40 watts.

Pnwar iataee narametam.
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i

The design specifications , are given as follows.

(1) The audiosusceptibility should be less than -35 db for all

a
frequencies, i.e. K w 0.0177$.	

{

(2) The output impedance should be less than 0.5 ohm for all Frequencies,
s

i.e. K0	05.	 I

(3) The phase margin at the crossover frequency should be greater than 70°.

(4) Load transient responses

(a) Time constant, T < 2 msec.
f	 s	 , i

(b) Output voltage peaking should be less than 0.5% of the nominal

do value for a 10% step change of the output current from its

nominal value, i.e. KO1, a 0.05.

(5) DC regulation
4

AV 	 AV 	 6
( -0 )

a
/( V )<KDC'10

x

i

Design procedures:

Stop 1

The time constant of the transinent is determined from (6.1)s

Tz < 2 x 10-3 sec.
i
i	 or sot > 0.131

Step 2:

Step load transient response constraints is determined from (6.2) and (6,3):

m L/+s	 >	 _ 
0	 1.751

Step 3:

j	 Audiosuscepribility constraint is determined From (6.4);.
w K /K

aol 
H2	

OK2	
0.754.,_	

A

99



Y

Stop d.	 t
:t

output impedance constraint is determined from (6.7)
w L

sol > M4 KQ .1.761
0

Step 5:

The upper bound of a 	 determined from (6.8):	 :!

x 13
Sol.

e, ,,...
 0 zl

Sts0
The feasible ranges for sol and sot are determined from (6.9):

13l - Max(M1, M r14 < 501--h2 0l3

1	 1.751	 sot. t 13

0.1.31	
a02

The feasible range of the product 
a'r'a2 

can now be determined using

the relationship aol /wb • a'Ti 2 in conjunction with the feasible range
for aol found in Stop 5

4.6 x lo- 	 a Y Z2 < 3.43 x 10-3

Step 7;

if we choose Tz2	
1.31 x 10- 3 sec., then woTZ2 5. Using this

value ofz 2, the `feasible range for a' may be determined from the

result of Stop 6; 0,.35 < a' < 2.62. Curves of gain and phase

corresponding to this feasible range are shown darkened in Fig. 6.1,

the set of open-Loop characteristics corresponding to woT Z' Z - 5.
(These curves are given again in.Fig. A.6)

The phase margin requirement is considered next. Since the vertical

scale of the open-loop gain characteristic is normalized by the
Kd

factor (Kla)/(wo ci"), a magnitude of 20 log {w1a ,) should be added to	 :f
0

Fig. 6.1(a) to represent the actual open-Loop gait. Since a a' 	 x

in this example ) we have

20 log (K
1
/w0)	 29.5 db.
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From Fig. 6.1, one cull find that the crossover frequency fa = 33 fo

for the entire feasible ravage of a l , ìlia phase margins are found

front Fig. 6. 1Cb?

For a' w 2.62 0 phase margin - 60°

For a' * 0. 35, phase ninrgin- m Q5°

it J:;s shown that the larger magnitude* of ai l with*11, tile feasible

range fail to provide the phone margin minimum of 70' specified

in the design requirement. 'Therefore, a compromise between performance 	 1

optimixation,wl►ich requires a larger a', and system stability margin,

which demands smaller a",has to be made. It should be noted, that

a minimum of 70 phase margin which is specified in the design re-

quirement is employed merely to provide a comfortable design margin

to take into account the model inaccuracies. Failure to satisfy

this particular constraint does not imply system instability. It

'i	 is the user's discretion at this design stage either to select the

largest possible a' for best achievable performance characteristics 	
j

'r 	 or to select the smallest possible a' to merely satisfy the perms	 3

formance specification while offering the largest possible stability

margin.

Stem 8

Determine the control, circuit parameters R1, R2 R3 , RV R50

Cl , C21 and n. Since tlu-- number of unknowns is greater than the

number of equations, tile. following parameter values are selected

arbitrarily:
r	 ^,

ER 6.7 V

33.3 XS1

Tt,,
	

16.7 Rig

,n = 0 .6 5
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To provide a good suability margin, a(aa$ ) In chosen to be 0. 355.
This choice gives:

R
4
 /R	 0.692	 (A) i

From (5-1), R5 C2 - RC 	 2 x 10 5 	(D)

From Soap 7, 
rz2 '^ 1.76 x 10 3

I
Rx+R3	 ru Rx+R3	 3

(R5 + --- --,) C 2
	

02 . 1.76 x 10'^

(R +R 
3 
) 0
2  

5.86 x 10-4	 (C)

From (5.16) forVT2 40 
VT1 

2

R4C1 > 1.7.6 x 10-4	 (D)

From (5.14)

R4	 M F1 (0)	 1
R4Cl R4 # Rx > 2 Kg FD(0) KDC

R41
R4CI R4 + Rx .> 6.87 x 10 

5 (using K 1,05)	 (R)

The above five equations (A) to (E) can be used to solve for the

1
five unknowns, R4' R3 , Its, C1 and C2.	 3

R
4
 = 40.7 K52

r	 R3 = 47 Kt2 7

R5 - 2000 n

Cl = 5600 pf

f	 1

C2 = 0.01'uf.

A test circuit was built using these parameter values. 	 results are

summarized in Table 6 . 1. Figures 6.2 to 6.5 present the theoretical and

measured results of switching regulator performance characteristics with
t	 ^

excellent correlations. It should be noted that a measured phase margin

of 50 0 is reported rather than the theoretically predicted phase margin_

of 85°. This discrepancy is due to the inaccuracies of the power stage

and pulse modulator models at high frequencies discussed earlier.	 j
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TABLE 6,_1 SUMMARIES OF THE BUCK REGULATOR PERFORMANCE

CHARACTERISTICS

r

THEORY MEASUREMENT SPECIFICATIONS

CROSSOVER

FREQUENCY (HZ) 14000 12000 N/A

PHASE
$5O 50 700MARGIN

AUD Ip-

SUSCEPTIBILITY -45 --43.5 -35
(DB)

OUTPUT

IMPEDANCE (OHM) 0.375 0,407 0,5

TRANSIENT

SETTLING 1,76 1,8 2
TIME

TRANSIENT PEAKING
Ain

/ 0.038 0.03 0.05
.	 0	 10
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SEEP LOAD CHANGE

R  . 10 OHMS `♦ IZ OHMS

VERTICAL SCALE	 0.1 V/DIV,

HORIZONTAL SCALE: 1 MSEC/DIV.

THEORETICAL MEASURED

SETTLING
TIME 1,76 MS 1.3 MS

PEAKING 68 MV 60 MV

FIG, 6,5 STEP LOAD TRANSIENT RESPONSE IN Exampte I DESIGN

UP i
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Example 2. Exmple 2 is the same as exmple 1 except that a two-stage input

filter is employed as shown in the following figure.

Ll	 R2	 L2

cd

RD

C2

3

R,	 .2 ohm	 u

Ll 325 pH

R2 . .02 ohm

L2` = 116 1A i

Cl M 200 pF

C2 20 OF

RD - 2ohm

The resonant frequency wl is calculated:

w'	
1	

3922 rad/sec.
l

The resonant peaking of ZP(jw) and,H, (Jw) are computed using equations"

from Ref. 11

BR = Z F(jw1) a {Tl(1 + RD C1)}1/2 1.71
-.

	

RDCl	 C2 2 RDCl	 C2 L2C2 2 1/2	 !
BF = HF ,^^wl) a { (1 + L ) / [ (^ ) + L (1 -	 - L Cl ) ]}

1	 1	 11	 1	 1 

1.51

It should be noted that only the resonant peaking at the first stage filter'

resonant frequency w l is important. The peaking effect at the second

stage resonant frequency, w2 - 1/^, is usually less severe than that

of the ;first stage and is neglected for design purposes. The same design

3	 procedure used in the previous example is followed here except that step 3
A

1

^;	 109



is modified to include the affect of input filtar resonant peaking.

	

21	
!3 ^....-........ ^. x..17

	

8 01 . 3	 hA	 ., X171(	 r

This modification does not cause Any change of the feasible range of a'

derived in stop 7 of the previous example.

it should be noted that In this example the effect of the

input filter interaction to the control loop ie gegligibld since
!	 z .(J(O	 °` }1R ' 1.77

and the negative resistance of the regulator

N2ith - 62.5

Thus, l ti to 1	 12•

?	 _ The effect of the input filter t0 the audiosuscet,tibility can be

^f
computed easily in this example. The audiosusceptibility characteristic

is increased at Cite input filter resonant frequency by an amount

equal. to

T3F20 log	 2	
3.82 db.

1 - hKt la RL

which checks very well with the experimental measurements as shown

in Fig. G.G.

y

s
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ExraTle 3 Ex=ple 3 is the same as ex=pte 1 except for V1 and Po which

have the following ranges:

V _ 30 to 50 volts

PO M 20 to 40 watts

The worst case usually occurs during a low-line and heavy-load

condition. Under this condition,

r
V1 . 30 v

D 0.667

D'	 G`. 333

Kl 6.82 x 104

K2 0.667

U^1.,5

^	 s	 _

One can calculate

M1	 1.751	 ti

C(1
	 M2 - 2.094

M4 1.751

Comparing the above parameter values with those derived in example `1,

one can conclude that when the line voltage is reduced,-the magnitude

of M2 increases while Ml and M4 remain unchanged One concludes that

when the line voltage is reduced, the audiosusceptibility degrades

while the step load transient peaking and the output impedance remain

unchanged.

The feasible ranges for sol and sot are determined from Steps 1

through 6.

2.094 ^ s of < 13

0.131 _< so2

112



The previous design, values
ri

a^ 0.355	 aol " 1.751
or

T "^ 1.7& x 10-3	 sat R 0.149

slightly violate the audiosue _ceptibility constraint.

If the input filter of example 2 is now added, all other

parameters remaining the same, the lower bound for e ol becomes

Max{Ml , M3, M41 M3 ►^ 3 . 25. Thus, the. design values given above,

with Sol 1,751, nre, no longer suitable. New values must be

calculated to satisfy the design constraints.
w

Figure 6.7 shows the audiosusceptib l.i.ty with an input filter	 '.

when the control parameters a' w 0.335 and rz2 - 1.76 °x 10-3

derived in eawmplo 1 are employed. It is shown that the worst

audiosuacepti.bil.i.ty (-34.2 db) is greater than that specified

in the design requireim t.

113	
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Example 4: Design the SCM control circuits for a bui

without an input filter.

Input-output requirements:

Vi M 20 volts

V M 28 volts0



Kl •^ ^Mt ,. 8. x 104

L

	

K2 R (	 Kl	 U) . 4.358

l

	

A •_ D 	 29 .76
1	 2	 cRh 	• 	 Al

The design specifications are given as follows:

(1) The audiosusceptibility should be less than, —35 db. for all

frequencies, i.e. KA - 0.01778.

(2) The output impedance should be less than 0.4 ohm for all

frequencies i.e. Ko = 0.4

(3) The phase margin at the crossover frequency should be

greater than 70°.

(4) Load transient response: i

(a) Time constant Ts < 7.5 x- 10-3 sec.

(b) Output voltage peaking should be less than 0. 2% of its

nominal do value for a 10% step change of the output

current from its nominal value, i.e. op 0.02.

(5) Ac, regulation 1.00 < 5 x 10

1
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Design procedures:

Stop 2: Time constant of transient response is detes ted

Tx2 C 7.5 x 10 3 sec. or •02	
0.125,

Step 2: Step load transient peaking constraint:

i
sol 

> M1 	 2.57

I

Stop 3: Audiosusceptihility constraint:

sol > M2 = 3.5

3

Slap 4: output impedance constraint:

sol > M4 - 3.71

Step 5 The upper bound of s01- is determined:

sol	
19.20 21

Step 6: Feasible range for sol and sot

max.{Ml, M2' M
4 1	 sal < 19.2

3.71 < sQl X19.2

sot > 0.125

Feasible range for the product aftz2'

3.49 x 10-3 S a'TZ 2 6 1.81 x 10 2

.1 117	 M



Step 7; Choose Tz2 7.5 x 10-3 sec.

,x

then 0.464 < ti' < 2.4 1
Curves of gain and phase corresponding to this feasible range

of a' are shown darkened in Fig. 6.8 0, the set of open-loop character-

istics corresponding to wntz2 
8 (These curves are given again

in Fig. A.9)• The phase margin requirement maynow be considered.

As before, the vertical scale of Fig. 6.8(a) has been normalized 	 i

Ka
by the factor (Kla) /(moa') so that a magnitude of 20 log (

cola'
0

must be added to Fig. 6.;8(a) to obtain the aetual open-loop gain.

20 slog K1a, = 20 log Kl + 20 Tog,
woa	 wo	 a

-1

= 37.5 + 20 log 1 + 0 106x'

K10
For a'	 0.464, 20 log W1a , = .3,7.08 db.

0

From Fig. 6.8 one can find that:

The crossover frequency 
fxl 

70 fo

The phase margin	 Axi 850

1:1 a
For a' - 2.413, 20 log K ^, = 35.5 db.

O
The crossover frequency fx2 = 65 

f 

The phase margin	 ax2 750

The entire feasible range for a', derived in Step 7 with t ^?I

7.5 x 10 sec., satisfies the stability margin defined

design specification. It may appear to be desirable to . 	 the
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largeot possible a' (in this canto o;' .. 2,41) for optimum switching

regulator performance. Since the upper bound of a' is determined

by the temperature sensitive output filter capacitor RSR# however,

a less than marginal selection of a' becomes desirable, Assuming

that the output filter capacitor ESR could increase to 3 or 4

times its room temperature value while at low temperature, a0

is chosen as

ar	 0.71

From (3.15), a n 0.615.

Step 80 Determine control circuit parameters;
l

Rl' R2, R3' R4' R5, C1 , C2 , n.

Since the number of unknowns are greater than the number of

equations, `the following parameter values are selected arbitrarily.

i
Let ER 7 volts

R1 s 43.2 W2

R2 . 15 KSt

n 
NBC „ 33 0.667

S

Employing a . 0.615,

f	 R
4 . 0.68	 (A)

R3+Rx

E	 Using the previously chosen value of sz2 (-7.5 x 10- 3 sec.) gives
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1.
i

(R + - 3 x^C - 7.5 x 10-3 	(R)

From (5.1), 8502 - RcC n 35 x 10-5	 (C)

a

From (5.15) for VT2 4V, 
VT1 

2v

NC, > 16.6 x 10 5	 (D)
3

From (5.14)

	

...... 4 	 M F1(Q) 1
R401 R4+Rx+R3 4 2 Kg FU(o) KUC

	

R4	 ,12.7 x 1(^ -l1
or R4C1 R

4+Rx+R3 ^	
KDC	

(E)

3

The above five equations (A E) can be used to solve for the

five unknown R4 , R3 , R5 , C1 and C2

R4-40Ki2

R3 - 47.5 Kit

RS = 1.1 Kit

Cl 5600 PF

C  = 32000 PF

To verify the design using this set of parameters, a 0.65, and

Tz2 7.5 x 10 sec., one can examine the open loop, audiosuscepti-

bility, output impedance, and step-load transient characteristics,
p

which are shown in ,Fig. 6.`9, 6.10, 6.11, and 6.12, respectively.

Examining the test result summarized in Table 62, it is obvious that

the design satisfies allthe requirements.
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THEORY MEASUREMENT SPECIFICATION

CROSSOVER 10000 8000 N/A
FREQUENCY (HZ)

700PHASE MARGIN 850 700

AUDIO-
-38,5- -40 -35

SUSC PT I;B IL I TY`
IDB)

0.4
OUTPUT 0,26 0.26
IMPEDANCE (OHM)

TRANSIENT 7.5 7.5 7.5SETTLING -
TIME	 NO

TRANSIENT 0.0095 0,009 0.02PEAKING
(AV Iv MAI /I ),0	 0	 0	 0 >



CHAPTER VII

CONCLUSIONS

Three basic switching regulators, buck, boost, and buck/boost,

each employing a Standardized Control. Modulo (SCM), were characterized

by a common small.-signal block diagram in Volume x of this report, 	 1

"Application Handbook fora Standardized Control Module for DC-DC

Converters." Employing this unified model., regulator performances such

as stability, audioousceptibiltty, output impedance, and step-load

transient response were analyzed, and key performance indices were

expressed in simple analytical forms. A simple, un;itied procedure twits

then realized in Volume 11, the User's Handbook. This procedure enables

the user to select the key SCR Control parameters for arbitrarily given

power-stage configurations and parameter values such them all -regulratorr

	

	 0

performance specifications can. be Piet and optimized concurrently in a

i
single design attempt.

Presented in Chapter IX of the User's Design Handbook are the

circuit descriptions of the SCH including the standaxdized Analog

Signal. Processor and Digital. Signal, Processor. ' The merits of SCri

control, are briefly summarized according to the following categories:

(l) Ability to perform different duty-cycle control modes.

(2)* Ability to provide power-component stress limitations

(l) Ability to provide stabilization against output-filter

parameter changes,

(4) Ability to provide adaptive compensation to the moving poles.

(S) Ability to shift the zero from the right-half s-plant to the

left-half s-plane.

(6) Ability to provide unified design; approach.
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In Chapter III, all key results and performance indices, derived

In Volume I and 'relevant to the SCM design, are concisely presented

to facilitate frequent user reference. Included in this chapter are

the high-lights of the stability analysis, audiosuscepitibility analysis,

output impedance analysis, step-load transient analysis, and DC regulation,

analysis. In each analysis, key performance indices are summarized, and

theoretical limitations of each performance category are identified and

expressed in simple analytical form. Based on the analytic results,

practical design ranges for SCM control circuit parameters are readily

identified, facilitating easy selection of proper control parameter

values in order to optimize regulator performances.

In Chapter IV, the effects of the input filter are discussed, and

input filter design considerations arepresented. Following the suggested

I

	

	 input filter lesign guidelines allows the detrimental. effects of the 	
i

input filter on regulator stability, output impedance, and load 'transient

to be minimized and for all practical purposes neglected. The effect of

an input filter on the regulator audiosusceptibility, however, cannot be

neglected, and is expressed in a simple analytical form ready to be

incorporated into the SCM design procedure.'

In Chapter V, the key power stage parameters and SCM parameters are

identified. Switching regulator performance specifications are presented

in the form of design constraints and the basic design assumptions are

stated. The design objective is defined as determining the set of SCM

'i

	

	 parameters, given the power stage, parameters and duty cycle control

means, such that the prescribed design constraints are satisfied and

switching regulator performance is optimized.
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Finally, easy to follow step-ley-step design procedures are

presented in Chapter Vx. The simple. unified design procedure is

applied to [our design examples covering Muck and Muck/Boost converters

including 
an 

input filter. Excellent correlations tire shown among the

design results, specified performance characteristics, and theoretical.

predications. Thus, for the: first time, a single, non-iterative

design procedure is presented to allow easy saltation of the key

control, circuit parameters such that 0.1 specified regulator`peformances

may be met and opt imzed concurrently.
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CHAPTER IX

APPENDIX

A.1 The Effect of The Output Filter Damping Constant

The effect of the damping constant 4 on the open loop character-

istics is illustrated in Fig. A.l. The following parameter values are

used: wo z2	 5' a' - 1, and 4 - 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5.

The effect of the damping constant on the open-loop gain and phase is

shown only within one decade of the output filter resonant frequency,

Since the open-loop crossover frequency is usually high (about 1/3 to

1/2 of the switching frequency), the stability margins are unaffected

by the damping ratio for all practical. purposes.

A.2 The Effect of The Control Parameters a' and °_'
W	 1

The key control circuit 'parameters a' and Tz 2 are related to the	 i.

zeros sal and s ot of the-open--loop transfer function according to eq.

(5.2). These two parameters are responsible for all the control

dependent, small-signal regulator performances.
i

Curves are provided to facilitate the designer in selecting proper

a' and Tzz for desirable crossover frequency and phase margin (Step ?

of the design procedure; Section 61). Figures A.2 through A.11 show
i

the set of open-loop gain and phase curves with specified mo ' values

ranging from l to 10. For each figure twelve a' values (0.04, 0.1,

0.2 0.4, 0.6, 0.8, 1, 2-, 3, 4, 5, and 6) are employed.

1
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The normalized open-loop transfer function ie employed for the

Cvarious curves from Fig, A.2 to A.11. This normalized transfer function

GT(s) is defined by the equation

I

e	
GTCs)	

",-,rz2
s2 + Twos + 1	

(A.1)a	 aG ^n )	 r
T	 Kla	

s2 + 24s + 1

I	 (woo^

Values on the vertical scale of the gain plots are divided by the
Ka

i	 normalization factor wl , so that the families of curves shown in

`	 Figures A.1 through A.11 are applicable to all three types of switching

regulators.
i

As described in Step 7 of the design procedure, when the particular
xa

woTZ2 value is chosen, teased on the load transient requirement, the

open-loop characteristic curve corresponding to the chosen wo
TZ2 value

is selected from Fig A . 2 to A . 11. From this curve, the a' value can

Q	 !	 be determined in order to provide adequate crossover frequency and

phase margin.
l

i
::

I

t

I

134

1



yq:7)zTTBiYa]yt. fs U.f NN:r •. M i	 :A ..x ,	 IN •r.,.p. Y ..	 ' ' ,^ r	 a 1 ..	 x..pa. 1_;'.^ x	 .. -. s	 > {-±,:.... ..	 n  ]t':	 . .., x

x• Y]JAF: a .r. +ti1lx MT	 r xnt 4	 IY ^. e^e ,.xtx	 ,	 ^ ....,	 e
i p}

.,.^..ua.]uxr ua .u+rM u^u.,t...^M1 ^^. .^. ^ ^ y^	 .xq e._ .n aYx t^r,^.tt ,i ^	 rtt . r vYZ.+ ^., >^u^^x,r u.#+^a; 	 ^ ^ T	 `j*P{
1^

7l}l}^

•5 [[
.	 r^.Min^ua<n^ra. :, ua exaN.. n.x a e	 u ..	 wvr .,. . , rx .......p . n Iq. ,s :.	 ,.  st. rxx .a,	 + .:: - ,; p

•rN]!uut e: x•a, x	 >.+, .. . g • a	 -r..,, r	 ..x"x	 Ys	 i x,..., xx nz

r(F

a, n.	 ,.` x x^r »..,,.r w .,

i_r„rr
cc0

CLoo$

^Q
IL

Zs

v

'r

$

0.01	 0.1	 i 1	 10	 100.

FREQUENCY F/FO

s

wo
w

w$
00

Z^
.	 o

cr$

eo
0I1	

i

ti'	 o
,I o

rx	 r

	

1	 1

n

'	 l000t	 0ll	 1,	 10.	 100*
FREQUENCY F/F0

FIG, A.]. OPEN LOOP CHARACTERISTICS EMPLOYING ar	 I.	 ;

WTz'2 = S AND	 0,051 0,11 0,11 0,3 0.4,0,5

4

II...3..I

135



a

T
1 2

8 _
k	 p ^ q	 pg	 g.

^
N

yy

w

aA

pp ,

1
as

0.01	 0,1Ie	 10.	 too*

t FREQUENCY F FQ

S

.04
a

NI
„

^^^ '

'

^ A	 §
(tSf

e

i
Y f ^ty 1

4

{{

#
f

, VO1 ...
3. ............. ,	 .

Y ^/L

t

}
Q

in
H ..»N. »« Y n •. ..... ,M»5,.,t 4 r y	 ,

-

H.N a'
6 j

i	
10 .01	 0 1 t	 I 	 io.	 100.

FREQUENCY FIFO

FIG, A,2 OPEN LOOP CHARACTERISTICS FOR w Z 2
0,2 AND 01	 0.04, O.L._ 	 0.2, 0A

0.61  08, li 21 31 41 5, 6
136



OF0

dd

q t	 {"	

oat^
	 i	 r	 ^	 t	 ^#	

t

o
'	 0,04

10.	 100.
FREQUENCY F/F

CD

o  

i i"{	 {t	 t	 i 	 j#	 i	
f s fit,

G	

#	 4 t 4 3 'fi	 f	 i	 a^l ^^!	
X04	 {	 t i r f ?	t	 +	 i'

^	 ^	 i	 ,^. 	 t	

! p	 t	

4	
e	

F

CD

I	 t	 " , j p	 4	 {	 i	 t	 i	 ii	 4

7

{..	 '	
f r t `,..	 /	 :!	 c	 t	 i[	 i	 f"

	
r isi	 {	 s	 i	 # #;	 #`t	 t

•	 O	 c	 t	 r	 t	 ^	 y	 ;	 t p	
f

ii

Ln
.
	!{	 t	 y	 t	 f # f f

	 xi	 r	

#	 i 	 ?#

ca

I	 ^	 777
_	 t	 !	 i It	 t	 :	 r	 t	 z^	 ,	 .

g
r

o
CD

 i	
t 

F	 1i r;	 f	
4	 a^,.^ 6'

0.03	 t	 G,l	 1.	 10,	 r	 laa,	
9

FREQUENCY F/FO

FIG. A,3 OPEN LOOP CHARACTERISTICS FOR 
U)OTZ 

2 = 2

137

^W



^k

d







of

a
lo

oo

1^^^ 1, I ^^I

.-
Iii III 'I9

a
4

I

10.01	 0,1	 10	 10,	 100.

FREQUENCY F /FO

S	 '

6a
in

0P
O

O

aN

PO
0

OO
Oin

CC1
	

N

1	 O
0
c

f	 ^

i

i

ool

I

.... . . .......... .... .. ... . ....
III



S
e	 ,

X0,01	 0.t	 1.	 10.

}

	

	

too.
FREQUENCY F/FQ 

0
O

^	 Oi

O
O
oa

C0

f

	

	 Ln

oO

S!

.... ....... ............

. z

^ • ,o.

1...

l

d

^ ^ _..
,

oo

I
I

e

g
0

g
r

g
QN

CO

g
R

g
c;



I ^ i l I II.O.A

a ^^
Ln

CD

v

a

i

3

^O^QI	 0:1	 1.	 10	 100,
F	 FREQUENCY F/FO-

a	
S

4^ -oz
Y

8 .	 x H try N to	 . ,,	 ,., ,

^,xv^.Mt..4 ..^ ..,y... p. ., •H. ,. ^.. i111^ ^ ... . 	 , 	 , .b.a ^ Wt^ ...a.a^. i	 a	 a.	 ..,^
ffffff	 •	 .

t 	3	 . n	 . .h ., .r1`.X1+ .vy.

tt
. ^

C3
m-

y1 ^'

g ^ 9
3



I

o
aw..» ........... „^	 „^

8..,o
Poo

CD

O

in

1

a X 61 111
i10.01 o.1	 1.	 -	 to.	 _1;

a

8
0a

g

0w

^N

O
O

O

1

8

10.01	 0.1	

_	
1.	 10.	 loo.

4	 FREQUENCY F/f0

g

i

° 2 _^^ ilk

oe

4f.



0	 3
0

^	 O

O

ppY
O

ag

00

p

o

S

R

rp4

3r y Y	 1	 ttYYr	 0
1	 I	 e

III

k	

^

k

. !	 `a pp

0 E

6•d! a	 t t	 tj

t	 C	 i

0.01	 0,1	 1,	 M	 100.

FREQUENCY F/F0

g

g
c;.

0
Qa
0O

^Lu°4f

00
00

Y	
o
O
Lrp
0

1

11

00
0

., 5.

^'t

tj^•
^ A^!

f	 a ,f w ,,..»r ..,
F	

^	 ^	 ^ ^ t. ; T	 ` 8	 Y ^ 4 I t	 #

t

{{	 a
61


	1981002806.pdf
	0027A02.tif
	0027A03.tif
	0027A04.tif
	0027A05.tif
	0027A06.tif
	0027A07.tif
	0027A08.tif
	0027A09.tif
	0027A10.tif
	0027A11.tif
	0027A12.tif
	0027A13.tif
	0027A14.tif
	0027B01.tif
	0027B02.tif
	0027B03.tif
	0027B04.tif
	0027B05.tif
	0027B06.tif
	0027B07.tif
	0027B08.tif
	0027B09.tif
	0027B10.tif
	0027B11.tif
	0027B12.tif
	0027B13.tif
	0027B14.tif
	0027C01.tif
	0027C02.tif
	0027C03.tif
	0027C04.tif
	0027C05.tif
	0027C06.tif
	0027C07.tif
	0027C08.tif
	0027C09.tif
	0027C10.tif
	0027C11.tif
	0027C12.tif
	0027C13.tif
	0027C14.tif
	0027D01.tif
	0027D02.tif
	0027D03.tif
	0027D04.tif
	0027D05.tif
	0027D06.tif
	0027D07.tif
	0027D08.tif
	0027D09.tif
	0027D10.tif
	0027D11.tif
	0027D12.tif
	0027D13.tif
	0027D14.tif
	0027E01.tif
	0027E02.tif
	0027E03.tif
	0027E04.tif
	0027E05.tif
	0027E06.tif
	0027E07.tif
	0027E08.tif
	0027E09.tif
	0027E10.tif
	0027E11.tif
	0027E12.tif
	0027E13.tif
	0027E14.tif
	0027F01.tif
	0027F02.tif
	0027F03.tif
	0027F04.tif
	0027F05.tif
	0027F06.tif
	0027F07.tif
	0027F08.tif
	0027F09.tif
	0027F10.tif
	0027F11.tif
	0027F12.tif
	0027F13.tif
	0027F14.tif
	0027G01.tif
	0027G02.tif
	0027G03.tif
	0027G04.tif
	0027G05.tif
	0027G06.tif
	0027G07.tif
	0027G08.tif
	0027G09.tif
	0027G10.tif
	0027G11.tif
	0027G12.tif
	0027G13.tif
	0027G14.tif
	0028A02.tif
	0028A03.tif
	0028A04.tif
	0028A05.tif
	0028A06.tif
	0028A07.tif
	0028A08.tif
	0028A09.tif
	0028A10.tif
	0028A11.tif
	0028A12.tif
	0028A13.tif
	0028A14.tif
	0028B01.tif
	0028B02.tif
	0028B03.tif
	0028B04.tif
	0028B05.tif
	0028B06.tif
	0028B07.tif
	0028B08.tif
	0028B09.tif
	0028B10.tif
	0028B11.tif
	0028B12.tif
	0028B13.tif
	0028B14.jpg
	0028C01.tif
	0028C02.tif
	0028C03.tif
	0028C04.tif
	0028C05.tif
	0028C06.tif
	0028C07.tif
	0028C08.tif
	0028C09.tif
	0028C10.tif
	0028C11.tif
	0028C12.tif
	0028C13.tif
	0028C14.tif
	0028D01.tif
	0028D02.tif
	0028D03.tif
	0028D04.jpg
	0028D05.tif
	0028D06.tif
	0028D07.tif
	0028D08.tif
	0028D09.tif
	0028D10.tif
	0028D11.tif
	0028D12.tif
	0028D13.tif
	0028D14.tif
	0028E01.tif
	0028E02.tif
	0028E03.tif
	0028E04.tif
	0028E05.tif
	0028E06.tif
	0028E07.tif
	0028E08.tif
	0028E09.tif


