
24

A TRANSLATOR WRITING SYSTEM FOR
MICROCOMPUTER HIGH-LEVEL LANGUAGES AND ASSEMBLERS

W. Robert Collins*
Computer Sciences Corporation

Hampton, Virginia

• John C. Knight
Langley Research Center

Hampton, Virginia

and

Robert E. Noonan**
^ College of William and Mary

Williamsburg, Virginia

NASA LaRC uses many dedicated microprocessors in aerospace research. Few
software tools are available for these machines, and in particular, very few have
any form of high-level language facility. Since the Langley environment involves
considerable experimentation, a great deal of software is experimental and may
change frequently. It has to be prepared relatively quickly and at low cost.

In order to implement high-level languages whenever possible, a Translator
Writing System of advanced design has been developed. It is intended for routine
production use by many programmers working on different projects. As well as a
fairly conventional parser generator, it includes a system for the rapid generation
of table driven code generators. This code generation system is the result of
research performed at the College of William and Mary under NASA sponsorship. The
parser generator was developed from a prototype version written at the College of
William and Mary.

The Translator Writing System includes various tools for the management of the
source text of a compiler under construction. In addition, it supplies various
"default" source code sections so that its output is always compilable and
executable. The system thereby encourages iterative enhancement as a development
methodology by ensuring an executable program from the earliest stages of a compiler
development project. '

This presentation will describe the Translator Writing System and some of its
applications. These include the PASCAL/48 compiler, three assemblers, and two
compilers for a subset of HAL/S. PASCAL/48 is a Pascal-like language for the
Intel-8748 microcomputer. The assemblers which have been built are for assembly
language subsets for the Intel-8080, the Motorola M68000, and the NSSC-II. The
HAL/S subset was implemented for the Intel-8080 and the GE 703. Detailed measure-
ments of the use of the system to build the code generators for the HAL/S compilers
will be given.

*Work performed under NASA contract numbers NAS1-14900 and NASl-16078.
**Work performed under NASA grant number NSG-1435.

179

THE PROBLEM

NEED HIGH-LEVEL LANGUAGES, HENCE COMPILERS

NEED ASSEMBLERS

ONE SOLUTION IS A TWS

TWS CRITERIA

ENCOURAGE ITERATIVE ENHANCEMENT

- EARLIEST POSSIBLE EXECUTION

- TEXT MANAGEMENT TO RELIEVE TEDIUM

FLEXIBILITY IN ITS USE

TRANSPORTABLE IMPLEMENTATION

TRANSLATOR WRITING SYSTEM

Grammar

(E D I T O R) / Skeleton New Compiler

d.Grammar
Semantics EDITOR

GRAMJEREfi

f
I COMPILE7
Executable

Compiler

Old Compiler Old Compiler Old Compiler

I . A __

180

USE OF TWS .

1. IF PARSER NEEDED, RUN PARGEN, EXECUTE RESULTING COMPILER TO TEST.

2. CHANGE GRAMMAR AS NECESSARY, RERUN PARGEN.

3. ADD SEMANTICS USING EDITOR.

4. RECOVER GRAMMAR AND SEMANTICS WITH GRAMGEN IF NECESSARY TO RERUN
PARGEN.

5. IF CODE GENERATION NEEDED, PREPARE CGGL SPECIFICATION AND RUN CODGEN.

6. MODIFY CGGL AS NEEDED.

7. ITERATE THROUGH ABOVE STEPS ADDING LANGUAGE FEATURES AS DESIRED.

PARGEN

INPUTS

- GRAMMAR IN STANDARD BNF

- SEMANTICS IN PASCAL

- SKELETON OR OLD COMPILER

OUTPUT IS AN EXECUTABLE COMPILER INCLUDING

- SCANNER

- LALR (1) PARSER

- SEMANTICS ROUTINE

• TEXT MANAGER PRESERVES PROGRAMMER'S CONTRIBUTION TO COMPILER
E. G., SYMBOL TABLE ROUTINES .

181

CODGEN

INPUTS

- CGGL SPECIFICATION

- SKELETON OR OLD COMPILER

OUTPUT IS AN EXECUTABLE COMPILER INCLUDING A CODE GENERATOR.

CGGL IS A NON-PROCEDURAL LANGUAGE FOR DESCRIBING THE CODE-
GENERATION PROCESS.

TEXT MANAGER PRESERVES PROGRAMMER'S CONTRIBUTION TO COMPILER
E.G., MACHINE LANGUAGE FORMATTER.

PASCAL/48

INTEL-8748

- MICROCOMPUTER

- 8-BIT CPU

.- 64 WORD RAM

- 1024 WORD ROM

- 27 I/O LINES

PASCAL/48

- PASCAL DERIVATIVE FOR 8748

- EXTENSIONS TO ALLOW CONTROL OVER GENERATED CODE

- RESTRICTIONS TO PROHIBIT INEFFICIENT FEATURES

- COMPILER AVAILABLE ON CDC CYBERS

182

ASSEMBLERS

CUSTOMIZED SKELETON FOR ASSEMBLERS

- TWO PASSES

- STANDARD LISTING BY DEFAULT

- FLEXIBLE INPUT FORMAT CONVENTIONS

- HANDLES MACROS WITHOUT PARAMETERS

COMPARED TO META-ASSEMBLER, ASSEMBLER BUILT FOR NSSC-II

- WAS PRODUCED MORE QUICKLY

- EXECUTES 5 TIMES FASTER

- USES ONE FOURTH THE SPACE

EXAMPLE PASCAL/48 PROGRAM

NASA/ LANGLEY RESEARCH CENTER 80/08/26. 08.91.12. PAGE 1
PASCAL 8748C VERSION 1.0.0 PROGRAM MAIN CSC/NASA

1 PROGRAM FOR_YOU5
2
3 VAR IC2I t INTEGERj
4 Atl6_300, ROM] > ARRAY [1001 OF INTEGER!
9
6 VALUE A • (99 OF 0, 1);
7
e
9 PROCEDURE GET.INPUTj
10 BEGIN
11 REPEAT
12 UNTIL PORT1 BIT 3
13 END; «* GET.INPUT *)
1*
15
16 BEGIN (* PROGRAM FOR.YOU *)
17 FOR I !• 100 OOWNTO 1 00
16 BEGIN
19 GET INPUT;
20 PORT1 «• PORT1 AND 2.11100011)
21 PORT2 «• ACI] + POPT1 XOR I
22 END (* FOR I i- 100 DOWNTO 1 00 BEGIN *)
23 END. (* PROGRAM FOR.YOU *)

183

GENERATED CODE FOR EXAMPLE PROGRAM

L003t

L007«
L009»

LOODi

LOlZi
101*:

JMP
NOP
JMP
HOP
NOP
JMP
CLR
MOV
JMP
IN
CPL
JB3
RET
MOV
CALL
ANL
IN
MOV
MOV
MOVP3
ADD
XRl
OUTL
DJNZ

L009

L003

LOOT
A
PSW.A
Loi2
A, PI
A
LOOD

LOOD
Pl»»227
A, PI
R1,A
A,P2
A,JA
A,R1
A,R2
P2,A

LINE 9
LINE 13
LINE 13
LINE 13
LINE 14
LINE 18
LINE 21
LINE 22
LINE 22
LINE 22

; LINE 22
! LINE 22
) LINE 22
; LINE 22
i LINE 22

SEPARATE CODE GENERATION
USING CGGL

LANGUAGE: HAL/S

INTERMEDIATE CODE LANGUAGE: HALMAT
178 OPERATORS TOTAL

30 OPERATORS IMPLEMENTED

25 GENERATE CODE

BASICALLY AN INTEGER SUBSET WITH SIMPLE CONTROL
STRUCTURES

CODE GENERATORS
ONE PASS
NO PRE-OPTIMIZATION PASS
NO PEEPHOLE OPTIMIZATION
INTEL 8080, GE 703

184

IMPLEMENTATIONS

INTEL 8080

8.BIT MACHINE
SINGLE ACCUMULATOR
NO INDEX REGISTER
1, 2, 3 BYTE INSTRUCTIONS
HARDWARE STACK
ONLY INTEGER ADD, SUBTRACT
16 BIT ADDRESSES

GE 703

16 BIT MACHINE

SINGLE ACCUMULATION

INDEX REGISTER

ONE WORD INSTRUCTIONS

NO HARDWARE STACK

INTEGER ADD, SUBTRACT, MULTIPLY, DIVIDE

ONLY ADDRESS CURRENT PAGE, PAGE ZERO

PAGE: 256 WORDS

703 CODE GENERATOR

TASK ' TIME (DAYS)

READING MANUAL .5

CGGL PROGRAM 1.5

WRITING PASCAL ROUTINES 1.5.

DEBUGGING " 1.0

4.5 DAYS

NOTES:

1. ALL PROGRAMS WERE CODED AND KEYED BY NOONAN.

2. SOME OF DEBUGGING TIME WAS USED IN CLEANUP.

3. ONE DEBUGGING RUN WAS USED TO FIX A BUG INTRODUCED BY
CLEANUP.

1. A TOTAL OF 6 RUNS (EXECUTION) WERE USED.

5. ONE CGGL BUG.

185

703 IMPLEMENTATION

SOURCE OF
CODE

8080 IMPLE,

MODIFIED 8080

NOONAN

CGGL

No,
PROCEDURES

46

4

9

1

%
LINES

58%

82

10%

24%

% INSTR,
STORAGE

58%

6%

10%

26%

NOTES:

1, CGGL PROGRAM: 292 LINES

2, PASCAL PROGRAM: 890 LINES

3, FOR AN EARLIER NON-TABLE-DRIVEN IMPLEMENTATION, CGGL
ACCOUNTED FOR 83% OF LINES AND 77% OF STORAGE,

186

