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ABSTRACT

An implicit finite difference procedure is developed to solve the
unsteady full potential equation in conservation-law-form. Computational
efficiency is maintained by use of approximate factorization techniques.
The numerical algorithm is first order in time and second order in space.
A circulation model and difference €. tions are developed for 1lifting
airfo 's in unsteady flow, however, thin airfoil body-boundary conditions
have been used with stretching functions to simplify the development of
the numerical algorithm.

1. INTRODUCTION

Current numerical algorithms to compute unsteady transonic inviscid
flow about complex configurations are frequently either inadequate or
too costly to use for routine analysis of a large class of two and three
dimensional flowfields. In particular, numerical algorithms'*“** for

unsteady transonic small disturbance theory neglect terms that can be

important, for example, in helicopter rotor flowfield simulation. Numerical
algorithms based on the Euler eguations are suitable for any inviscid
flowfield simulation, but current numerical algorithms for the Euler
equations have large computer time and computer storage requirements. The
successful development of an unsteady conservation-law-form full potential
finite difference algorithm therefore offers a practical design tool.
Unsteady potential theory can satisfactorily replace the Euler equation
solutions if the shock waves are sufficiently weak and if the equations
employ an equivalent circulation model. Yet, the full potential equation

. has similar computer requirements in time and storage to the simplified

small disturbance theory.
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The purpose of this paper is to present an approximate-factorization,
implicit finite difference algorithm for the unsteady full potential
equations in conservation-law-form. Conservation-law-form is maintained
in order to "capture" shocks with correct strength and location. During
the course of this research, two other unsteady procedures have been
developed for the full potential equations in conservative form. One
procedure, due to Chipman and Jameson solves a system of three equations
for three unknowns. The other, due to Goorjian,® is a scheme which is
quite similar to the one developed independently here. In this report the
governing equations are first reviewed in Section 2. Differencing of the
governing equations in conservation-law-form and their numerical solution
are discussed in Sections 3 and 4. Finally results and concluding remarks
follow. Throughout small disturbance boundary conditions are used to
avoid unduly complicating the development of the numerical method for the
full potential equations.

2. GOVERNING EQUATIONS

Stretching Transformations

As governing equations for two-dimensional unsteady full potential

flow we use the conservation of mass equation

30 3;-"~rx atvv

3t " 3x+3_y=0 (1)

where density, p, is determined from the unsteady Bernoulli relation
R 2
o={1+ l’%"l (Mi - 20, - o - ¢§)}Y:T~= NiR (2)
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Here @x = u, ¢y = v satisfy the condition of irrotationality

-0 (3)
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and in deriving Eq. (2) the far field flow is assumed to be steady.

Throughout the equations have been referenced to freestream quantities,
P =plpy,» U=ula_, X=x/2

and the tilda has been suppressed. Here a is the sound speed while
L is a reference length such as airfoil chord, c.

Boundary conditions are best satisfied by mappings which can also
be used to cluster grid points so as to eniance numerical solution
accuracy. As shown by Viviand® conservation-law-form of t£q. (1) can

be maintained under the general transformation

£ =E(x, y, t)

n=n(x, y, t) 4)

1=t

giving

) 3 Rl ~

‘”“(J/J)* 3E (pU/J) + n (DV/J) =0 (5)
where J is the Jacobian & »n - &£ n_ and

Xy Yy X

U=Ep + &0, +ED = (0, = x) + ty(¢y -y) (6)

Ve=n, +no + ny¢y = nx(¢x - x) ¢ ny(try -y)
The terms Oy and Qy are expanded by chain rule

¢x = fx¢ + nx¢q

(7)
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and U and V can also be written

U= g, + 76+ (6,95 + 9.n) = VE * (0,9 + 0,90 - Fy) (8a)

Vi=ng +Vn - (96 +6Vn) =W " (0 + ¢ -7,) (8b)

where r = (x, y)t. Subject to the same transformation the Bernoulli

equation is written

o= 1+ L1 I - 200, + £yt + ny0) - (€2 + €2)of

1
< 2egn, + E g8, - (8 T )

For the present purpose of demonstrating an unsteady full
potential algorithm in conservation-law-form the transformation is

restricted to the form

£(x)

n(y)

Jry
n

(10)

3
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and the thin-airfoil body-boundary approximation is utilized. Because

of the transformation Eq. (10), the governing equations then simplify to

)
aggiJ, - %? ((p/d)ii@E) + %; ((p/J)n§¢n) =0 (11a)
1
i <) a2 22 2.2,y T
p= {1 +I5— (M - 20, - Ex0p = nyop)) (11b)

Boundary Conditions

As boundary conditions, tangency (i.e. V = 0) is imposed on

the body surface and tie flow at infinity is required to be uniform and

steady. The thin-airfoil body-boundary approximation is utilized
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since our sole interest here is that of developing an efficient unsteady
algorithm. The complete mapping of boundary conditions unduly complicates
this task. Surface tangency (mx - i)nx + (®y - i)ny = 0 is replaced by

¢ = uw% 49 (]2)
Y body slope

which is imposed on the grid lines adjacent to the airfoil -- see
Fig. 1.
At distances far from the body u = u_ and with our use of a_ as

a reference velocity
¢, = M_x (13)

where M_ is the freestream Mach number. Here we chose to cant the
airfoil to obtain angle of attack rather than have the flow vector be
specified at an angle as is often done.

Far 1ifting cases we must allow for a jump of potential across

a cut. As we intend to partially model an unsteady shear layer leaving
the airfoil, this cut is taken off from the trailing edge, see Fig. 1.
On the back boundary then, Eq. (13) does not apply and so on the back
boundary freestream pressure (or density in isentropic flow) is imposed.

From Eq. (11b) this implies that

” n K]
20, + £207 + ngl = M (14)

along the back face cd of Fig. la. Neglecting small perturbations, this

simplifies to
o +E Mo, = M? (15)

Eq. (13) is imposed along ail other far field boundaries, Fig. la.




In unsteady flow, vorticity is continucusly shed from the ai, ..il.
In a potential flow formulation this phenomenon can be modeled with a
cut aligned with the shear layer. Here we further idealize this cut by
keeping it in the mean chord line plane as sketched in Fig. 1b.

The jump in potential along the cut, A¢ = I', will vary with time.
By imposing the usual shear layer assumptions an equation for I'(x, t)
along the cut can be derived. Across an inviscid shear layer normal
velocity and pressure (p) are continuous, while tangential velocity
and density can be discontinuous. Here, however, the incoming flow is
uniform isentropic (i.e. homentropic) and the shocks are weak. Thus,
we have previously assumed that p = oY throughout, and density is also
taken to be continuous across the cut.

Define I' = [ ¢ = ¢, - @, across the cut as illustrated in
Fig. 1b. From the condition that the velocity normal to the shear layer
is continuous, E¢yﬂ 0

ayog = ay¢u - 3y(¢~E +T) (16)

The Bernoulli relation together with the continuity of density and normal

velocity require. that

(26, + 2 + ) :

ylg = (28 + 0

+ ¢§)u

(20, + 62); = 20,(8, +T) + [3, (¢, + 1)]?
+ [3 (0, + r)3?

so that




Consistent with thin airfoil body boundary conditions, Eq. (17) is
approximated by

Ty +MT, =0 (18)

t
Eq. (18) gives an equation to determine I'(x, t) along the cut.

Although ¢V is continuous across the cut and I', = 0, in unsteady

y
flow and ¢yy is discontinuous. This follows immediately from

L 3o + 3,(p0,) + 3 (06, )T =0 (19)
which on employing density continuity becomes

[3,(00,) + 03 0 1= 0 (20)
or alternately

ol ¢yy]] = - 9(er,) (21)

This last equation will be needed to develop accurate difference
expressions for Eq. (11a) when it is differenced to just either side of
the cut (see Section 4). For steady fiow ry = 0 and from Eq. (17) or (18)
it follows that Fx = 0. Thus, in steady flow ¢yy is continuous across
the cut.

3. CONSERVATIVE DIFFERENCING AND LOCAL LINEARIZATIONS

Time Derivative Term

Stable conservative difference operators have been successfully
developed for the steady state part of Eqs. (1) or (11a) (see Refs. 7-10)
so the main task initially undertaken in this research effort has been
to develop stable conservative difference operators for the unsteady

terms as well. Development of nonconservative time differencing schemes




has always appeared to be straightforward. Because p = p(¢), Eq. (1)

can be rewritten as

2 2
20 30, (%, 2 3 20, , 2020,
oat""(ax’3>*°xa¢ax+°yaoay . (22)
y
where
P . _ 2=v(3_ 9 9_
36 - " P (Qt ooty ay> (23)

is a differential operator that does not commute. Performing the indicated
operations, Eq. (22) is found to be a second degree wave equation in
nonconservative form

w [aY=V _ 22 ) -1 _,2
Opp * 20,054 2004 = (5 d)byx = 20,00, + ( dyloy,  (24)

here using pY'] = a2 (in the chosen nondimensional variables) gives the

familiar textbook form of the potential equation (see, e.g. Ref. 11).
Various finite difference schemes have been advanced for simpler but
similar forms of this equation (1-3) and we assume they can be made to
work for Eq. (24).

The problem arises, though, that Eq. (24) cannot be brought back
into conservation-law-form with ¢ retained as the dependent variable.
If, however, one is willing to introduce into the differential equations
the same expansions used in deriving the difference formula, conservative

form can again be maintained. By Taylor expansion

0= 0y + 381 (6 - 85) + 0o - p)? (25)

where o0 represents a neighboring known state or solution. Substitution

of Eq. (25) into Eq. (1) gives




3 2-y(3 9_ 3 e O 3
354002 (3 * 0ulo 55 * ¢ylo B5)?) = x (00 + By (o8,

+ 3t (o - 38l %) * 00 - 65)° (26)

Assuming that all of the density terms are formed with exactly
the same difference operators, we assume that the local linearizatio.. term
d -
at (po - 3%'0 °o) has only a higher order contribution to numerical

+
" or

stability. Moreover, if ¢ - %o is small, for example ¢
wj - ¢j-1 where t = nAt and x = jAx. the error due to expanding p is
second order accurate and is no greater than that usually made in time
differencing.

Consequently, Ea. (26) is a conservation-law-form of Eq. (1)
which is assumed to have linear stability properties equivalent to the

equation

(27)

R " _
3t (u]wt +ayd, u3®y) = 3x(o®x) + By(oéy) i A

As with the nonconservative form, Eq. (24), one can devise stable
difference schemes for Eq. (27) when Ay Gps Qg and p are considered

as constants. With care, these schemes can be expected to apply for the
nonlinear equations as well, although, as discussed immediately below,
assuming p to be a constant fails for transonic flow. A correct treatment

of the right-hand side of Eq. (27), however, is known from Refs. (7-10).




Space Deri.atives

Just as the local linearization approach guides the proper
treatment of the time derivative term, it can be used to analyze the
space differencing schemes developed Tor the spatial terms cf Eq. (1) by
Jameson,” Holst and Ballhaus,® and Hafez, South, Murman'® for transonic
flow regions. Before proceeding with this analysis, however, some
preliminiry background information is in order.

Consider first the simple steady state model problem

2 =
(1= Mo, *+ 6y =0

and let Vs Do Vy and Ay be defined in the conventional way, e.g.

V0 = (05 = ¢5 q)/ox and 8. = (&), - ¢, )/dy. It is well known that the

following difference schemes

2
(1 - M“)vaxo + vyay¢ (29a)

2vo v
(1 - M)V, 9.8 + 700 (29b)

are respectively suitable for the model elliptic (Mm < 1) and the model
hyperbolic (M_ > 1) problems. The differencing (29b) is divergent if

M_ < 1 while that of (29a) is convergent for M_ > 1 only if

[ax/((1 - Mi)sy)l <1, an impractical constraint for M_ -+ 1. Murman and
Cole,'? aware of these simple constraints, introduced their type
dependent different operators for the transonic small disturbance
equation. In this approach the streamwise spatial difference operator is

switched from central to backward as the local Mach number is less or

greater than 1.




Various refinements to the Murman-Cole differencing have bc.n
introduced, but apparently overlooked is the fact that Eq. (28) can also

be differenced as
2 =
vax¢ - vaxvxo + VyAy° 0 M 1 (30)

without any need to switch difference operators. An extra boundary
condition is needed in the x-direction (which is also true of many higher
order difference schemes) and one must pay attention to the physics

because replacing szxvx¢ by MiAxAxw is alco convergent for any M_. The

w

differencing scheme given by Eq. (30) is also less accurate than Eq. (29%a),

but, subject to the usual approximations such as use of periodic boundary

conditions, the authors can demonstrate the convergence of Eq. (30).
Although apparently not recognized as suc.i, the diiference

schemes of Refs. (7-10), which are used when the local Mach number is > 1,

actually mimic the diffe:cncing scheme represented by Eq. (30). The

same differencing is not used in subsonic regions hecause the pure

central differencing scheme is more accurate. The local linearization

process will now be used to clarify these remarks.

Consider the spatial derivative term Bxp3x¢. Use of the local

linearization, Eq. (23), with this term gives

{
3,00, = 00009, + (3, B+ 0 5)1o(0 - 65)]
= 9, [pga,0 - (@xoz'Y)o(at * O lgx * 9y lg3, (e - ¢,))
= 3, [p,3,¢ - (o¢i/az)oaxo] . Bx((oéx/a2)3t¢) - ax((uc‘cy/az)by:)

-3, f, (31)

11




The Oyt and ¢xy terms of Eq. (31) are not crucial to our discussion,
and we can justify ignoring them by assuming steady cmall perturbation
flow. The bracket term of Eq. (31) is clearly a type dependent term of
the form

3,00d,0 - 3,0 (uy/2,)%0 0 (32)
~

where the subtilda is used as a reminder tha. this operator is the ~* “tor
used in the Bernoulli equation to form p. U:ing the differencing formula
of Refs. (7-10), the term 3,0, of Eq. (1) is always treated by central
difference formula, although in supersoniz flow regions p is evaluated
shifted back to the previous point in x. That is, the term axpax¢ is

replaced by (see Ref. 8 or 9)

= 0,(u/a)2 <1
= 1,(u/a)2 >

<<
|

(an3x¢)j =3 [(1 - v)po + vi]o ¢ (33)

L
|

-~

where p is a shifted backward (i.e. upwind) value of density. The
precise difference operators are treated in Appendix A; but, the crucial
point tc be made here is that when density is shifted backwards, the
operator @ of Eq. (32) also is shifted backwards (upwind) as this
operator g:ﬁes from the local linearization of the Bernoulli equation.
Thus the differencing Eq. (33) is equivalent to the differencing

§ [(1 - v)p + V518 ¢ = 8084 - éxooiug/a§)5x¢ +.. . (34)

—— ] ———

central central v =0

backwards v = 1

where Gx are symbolic difference cperators. A rigorous discussion of

the actual difference operators is given in Appendix A.
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e Ty




If the local linearization argument given above is indeed valid,
then the differencing represented by Eq. (34) with v = 1 should be
stable in subsonic as well as supersonic region so that switching is
unnecessary. This is indeed the case as reported in Ref. 8, and, with
the use of second order differencing, the unswitched differencing scheme
gives quite satisfactory results as we later demonstrate.

4. NUMERICAL ALGORITHM

An implicit approximately factored (AF) finite difference scheme is
developed for Eq. (11) in conservation-law-for by using the local
linearization discussed in the previous section. The advantages of an
implicit AF algorithm have been discussed before, see, for example
Refs. 1, 2, 8, and 13. The algorithm presented here is optionally first
or second order accurate in space and time, but the second order in
time option has not proved to be satisfactory.

An implicit finite difference scheme for Eq. (11a) is given by

(here suppressing spatial indices for convenience)

AR+l .n - 2.\N+1- n+l T 2.\n+l+  n+i
(5777 - 7)) + hé [(E,p)7 80777 + hdn[(nyo) 5.0 ]
= (o/3)(8" - 3") (35)
where p = (o/J), h = 3 '3° A and o = 0 for first order time accuracy
or a = 1 for second order time accuracy. The operators Eg and 36 are

defined at each j, k point (x = jAx, y = kAy) by

13




6 (65 65¢) E /J)J+]/2[(] e J+])'—l—1r'—4l

(] + e)pi+ (] e)DJ ]](
¢

+ v

i+l i )

> Ps ¥ 05 (1 +e)p; ¢ +(1-8)o,_
- (gx/'J)j-I/Z[“ - vy) e v 4 5 =21y, - ¢5.17(36a)

i
T (8n%5.6) = (n2/0) U Tk (o )
n ony n ny 'k+1/2 2 k+1 ~ %
O, + Py
- (g qyy = (8 - 0y) (360)

here A = An = 1 and only the varying indices are indicated. The
parameter 8 = 2 for second order spatial accuracy in supersonic regions,
and 8 = 1 for first order accuracy. The switching parameter v is defined

in a way similar to Refs. 7-10 and

v=1[1- (o/0*)%c 1<c<10 (37)
v=0 if v <0, i.e. subsonic
v1 if v>1, i.e. supersonic

The parameter v can be set to one throughout, but accuracy will be

impaired unless @ is also set to 2. The operators (36a) and (36b)

assume that the flow will be supersonic only in the positive x-direction

(see e.g. Ref. 9 for extensions). The density is found from the Bernoulli

equation with (Af = an = 1)

14 !
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Ol s 2 (954 = €5.9)/2 = 805
lk * Opar = 91)/2 = 80
o™ 2 1(2 + @) (6™ - ¢") - ale” - 6" )1 (2nt) = 6 "™

The metrics §x and n, are obtained from

£ 2/(xj+] - X,

J'])

X

ny = 2/(yk+] = yk-])

while the term (gi/d)j+1/2 of Eq. (36a) is formed either as

H

2 2 o4
(EX/J)j+]/2 [(EX/J)j+] : 2 (Cx/J)j]/z

or

2
(£219) 54172 = L€ 54 + (6,49)1/12(x54, - x4)]

(38a)

(38b)

(38c)

© (39a)

(39b)

(40a)

(40b)

2 [ 2 2 o
The terms (&x/J)j_]/z, ‘ny/J)k+1/2’ and (”y/d)k-llz receive similar treatment.

If Eq. (40a) is used, it is essential to add

- . .
Se(p 84/ 9)8 b,

(41)

to the right-hand side of Eq. (35) to subtract out a numerical truncation

error due to incomplete metric cancellation (see also Refs. 14 and 15).

The term, relation (41), should equal O where ¢_ = M _x but this is not
obtained if Eq. (40a) is used and the error can be very appreciable on

highly stretched grid. A similar correction in the Bernculli equation

isn't needec due to the choice of diffarence operators and stretchings.

The local linearization of Section 3 are now introduced. Using

1

Eq. (25) to both expand on+] about 0" and to expand o" about p""', the

terms pn+] - o" of Eq. (35) are approximated

12




N+ 1 ba . +
- s (p"/J"* - (8"0™ D)5, + ()™ ofs, + (D)™ ol 1™ - ¢"))

) <p"“/a“ - ("M, + (£ )" g ‘a + (n) )" n-lg 8, 1" - ¢"“)> (42

where “; of Eq. (25) is replaced by Eq. (23) and 8 = pZ'Y. Here also the
coefficients ¢g and ¢n are evaluated as indicated by Eq. (38), while ST, 65, and Gn
are the same operators defined by Eq. (38). Note both pn+] and p" are linearized
not just nn+]. otherwise, conservation-law-form and second order accuracy is lost.
The operators S 55, and Sn were defined by Eq. (38) because their form is
dictated by the selection of difference operators used in the Bernculli equaticn
for density. These operators work on any product of elements to their right.

The second derivative terms are rear.anged into delta form and pn+]

is eliminated as follows:

+ (2anHlg N+l _ o 2. n+] n+l n 2N+l N
Se(6)" 8" = B (R) S (07 - 07) + B(£B)T S

")

520" (6" - 0

+ TN " + a(e" - o" 1) 180" (43)

The n-term is treated in a similar fashion, and for a = 1 second order time

accuracy is maintained.

Applying Eqs. (42) and (43) to Eq. (35) gives the Tocally linearized

form of the implicitly differenced governing equation:

16




("™ ts, + (™ efs, + (2)™els 1 - 1T (e270)™ 6",

2,\n+] n+l n
- b8 (ng/9) o"Sﬁ)(@ -¢")

= (g"" ]/J")[é + (E )n n- ]6 + (n )n n-1s ](¢n - 0n-l) + (1 - (/3))(8" - 6n-])
+h@5£mﬂ”m“+uw-p“UBg"+gmy»”Nw+am"-w*nﬁw)un

where one must remember that the operators work on any product of terms to

their right, e.q.

8§ -
(6 aé + 8§ bG )(c +d) = 6na nC + 6na6nd + ngsgc + 6£b6£d

The operator 6r that appears in Eq. (44) is given by Eq. (38c). As

it operates on A$, however, we chose to replace it by the operator

n+l - o n+l

5.6 (™1 - e")/(at) = (17at)(1 - E71)e™! (45)

T

which agrees with Eq. (38c) only if a = 0. Eq. (45) is now substituted into
Eq. (44), 8" (3"at) = (:27)"/(3"*1at) is divided through, and the left-hand

side is approximately factored into &£ and n operators:

+

(1 + at(nd)™les - At(dn+]/8n)h36(n§/d)n+]pnsa}x

Y nn

(1 + ()™ ol - at(a" /8" NE(2/0)™ o3 (6™ - o)

[+ (618N @M " - o™ - (@M M M " - 6"

v at(8" /M (™M (D) ] T8 + (nd)"eN s 3" - o)

E y n

+ at(@™8MD - (a/3))(6" - ™) + hEé(ﬁi/J)"+][o" sa(e" - "

+ hfn(r,.s/\])n”[pn + a(on - p"'])]'Sn@"} (46)




This equation has the form

n+l

n, _
LnLE(w -¢) =R (47)

and it is implemented as an algorithm as

L a¢* = R (48a)
. )
LEA¢ = Ap (48b)
d)n+l = oM 4 2" (48c)

The algorithm Eq. (48) requires only a series of scalar tridiagonal
inversions and it is therefore very efficiently implemented. Computer
storage equivalent to four levels of ¢ have to be supplied with p computed
from the Bernoulli equation as needed. Alternately three levels of ¢ and
one level of p can be used, although in our test program two levels of p
where stored for convenience in prograrming - computer code that changed from
day to day. Al1 exporiential functions were eliminated by using binomial

expansions of the form:

o= 1+ye(t + 55l (1 + 152 01 + 353 o)) (49)
where

e = (v - N - 2 - e2of - nied)r2

ve=1/(y-1)
and

8= (1 +ue(l + 35l (1oL ) (50)

18
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where the constant g* = (p")z'Y is evaluated using the nondimensional

critical density, and

€= (p/o*) - 1

bVa22~y

The expansion for density gives at least four-place accuracy in the flow
regime of interest. The expansion for B need not be so accurate as it is a
linearization coefficient. On the CDC 7600 a run time of 90 seconds was
reduced to 60 seconds because of the use of the expansions. In this example
the solution was advanced 400 times steps on a 50 x 62 grid.

Implementation of Boundary Conditions

The thin-airfoil body-boundary tangency condition, Eq. (12), was
directly built into tne implicit algorithm. Indeed, it was in order to
satisfy this boundary condition that n-tridiagonals are formed before the
E-tridiagonals in Eq. (46) or (47). The difference equation (+/- indicate

upper or lower surface)

= d d
= (M, Gy g0/, (51)

% " Y41

is implemented into the numerical algorithm as follows: Eq. (48a) is
first formed just as before ignoring the boundary. Then for points

immediately above and below the airfoil chord -- which is centered in

between, see Fig. 1 -- Eq. (51) is used to correctly overload the tridiagonal
elements as sketched ir Fig. 2. Likewise, in forming the £-tridiagonals
adjacent to the body-boundary, elements are first loaded as usual and then
those elements corresponding to points just above or below the body are

overloaded as sketched in Fig. 3. This approach insures that A¢ above and

19




below the airfoil are unaltered by the XI-inversions, yet come in implicitly
for XI-derivatives just ahead and behind the airfoil leading edge and
trailing edge.

Adjustments to the difference equations and numerical algorithm
must also be made for points just above and below the cut indicated in Fig. 1.

For these points, ¢n is altered as follows (see Appendix B)

" 2 e :
°n'k = (84 = $q - T2 [J/(160ny)]3t(~€xld)6gr (52)

where this change effects the calculation of density as well as coefficients
in Eq. (46). As indicated by Eq. (21), the difference formula for

an‘n53n® must also be adjusted for points adjacent to the cut. For points
above the cut (see the derivation in Appendix B)

2 P41 + Pk
35 yEnw nyld)m,2 e (a7 = )
Pk * Pkl

while for points below the cut

nPMy%n? ” k#1722 Oka1 T %
2 Pk k-1 2, T ;
- (B 1jp L (0 - 4 y) + 1/8 T loEl/ )T, T (54)

For simplicity the term 1/8 Efagizgr is lagged at time level n and it thus
only enters intc the right-hand side of Eq. (46).
At the end of each update of the field for ¢, new values of I' are

obtained along the cut by solving Eq. (16). This equation is differenced as

n+l n

R

J j 2 n_.n n+l n+l Nl o+ 2 n_.n 2
g Ay Ty~ Tyt oy - 0Ty - Ty = (T - Ty )72 (55)
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with initial data in x supplied from the known value of °u - ¢g at the
airfoil trailing edge just upstream of the cut.
5. RESULTS

Calculations to verify the accuracy of the numerical algorithm are
shown in Figs. 4 to 7. The Cp distribution for steady-state flow about a
6 percent thick biconvex airfoil is shown in Fig. 4 for M, = 0.857 and
a = 1° angle of attack. The conservative full potential result obtained
using the secund order option, 6 = 2, is compared to experiment and a small
disturbance nonconservative result. The conservatively captured shock is,
of course, downstream of the nonconservative result. In this case the
vertical far field boundaries are placed at 20 chord lengths away from the
body, although equivalent results are obtained if these boundaries are as
close as 12 chords.

As shown by the results of Fig. 5, essentially the same steady-state
solution is obtained if the switching parameter v is always set equal to 1
(i.e., no switching), provided the second order differencing 6 = 2 is
used. Slight differences in the two solutions are observed at the leading
edge singularity and at the shock wave. The unswitched scheme, v = 1, 6 = 2.
gives a more pleasing shock wave ‘result,

Unsteady solution accuracy is demonstrated by a comparison with a
small disturbance low frequency result obtained by Ballhaus and Steger.'’

In this test case, the airfoil is a biconvex profile which varies in time

from zero thickness to 10 percent thick, and then thins back to zero. A

shock initially forms past mid-chord, and then moves back to the trailing 1
I
edge as the airfoil thickens. As the airfoil then thins, the backward

motion of the shock stops, and then the shock propagates upstream. Fig. 6

shows a trace of mid-chord pressure for such a case with a comparison to
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the low frequency small disturbance result. The small discrepancy between

the theories is about what one would expect for this case, and similar

results are obtained with the full potential schemes of Goorjian.®
As a final test case the unsteady flow about an impulsively plunged
flat plate was computed with M_ = 0.8 and a plunge velocity equivalent to

a =1° Linear theory is valid for this case and good agreement with linear

theory is obtained by Chipman and Jameson“ who solved the full potential,

as well as by Beam and Warming'® who solve the Euler equations. Good

agreement with linear theory is also obtained with the present code as

the load distributions plotted in Fig. 7 illustrate.

6. CONCLUDING REMARKS

An implicit finite difference procedure was developed to solve the
unsteady full potential equation in conservation-law-form. Local
linearizations were successfully used to derive a correct time differencing,
avoid iterative between time levels, and to correctly analyze the spatial
differencing. An unsteady circulation model was developed and various

test cases were done to verify the accuracy of the numericol algorithm.
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APPENDIX A

Details are given in this appendix to show, to first approximation,
the equivalence of Eq. (31) for the actual difference operators used in
the Hoi<t-Ballhaus delayed density scheme. Holst and Ballhaus have
previously shown the equivalence of their scheme to the artificial
viscosity method of Jameson’ and of Hafez, South, and Murman.'?

To make the steps clear, the analysis will be detailed here for the
fully delayed case, v = 1 in Eq. (33), in one-dimensional steady flow.

Then to first approximation it will be shown that

OJ‘]/2(¢14‘] - ﬁ) - 01_3/2(‘3.]' ~ Qj_]) .5 <¢j+] - 2¢J + ¢‘J_])
(Ax;? Aiz

e (0: = 20, 1+ 0.
-pz Y¢i J i; j-2) (A.1)
Ax

where oy in the Bernoulli equation is computed with the midpoint rule,

L - s
e.qg. ®x = 6;¢J = J"’]/zAx ,LI/Z (AZ)

To verify Eq. (A.1) the terms are expanded as follows:

(¢1+] - ¢j)
Pj-172 AX

Pi-1/2%x%541/2

[B + (pj_]/z = B)]éx(g + ¢j+]/2 = &n

06x¢ + Ecx(®j+]/2 - @)
- = 2
+ (Dj_]/z - p)6x¢ + 0(a%)

3 . = 2
= 08y050172 * 0Py - P) + 0(87) (A.3)

where § and p are from a known nearby solution and E& = de.
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From the steady one-dimensional Bernoulli equation

1
p=[1+1— L - oi)]Y—'T (A.8)
and via Taylor series
=5 -85 (0 - ) +0(a)) (A.5)

Using (A.5) to eliminate 05.1/2 ~ ? from (A.3) gives

(®j+] - ¢ ) oo —-2-

i1z L = B0pay2 = BET B8040 - B 4 00D) (A.6)

where the midpoint rule Eq. (A 2) is again used to approximate derivatives.

Likewise

: . Lt

Subtracting (6) from (7) and dividing by Ax gives Eq. (A.1) plus a term
of [0(A ) - 0(a ]/\x = 0(a )

Other ways of shifting the density function give the first

approximations:
(centered)

0. d. - 0.) = D, Ao, = @, ¢, - 20, + 0.
;_*L/Z_‘_r_l_ L ” j-172" 3 J:_L) . (7 - ;Z-w:z)(__ul__-q,_‘ _J_-i) (A.8)
“\x X .‘)X

(centered - upwind)
(205,172 = ©3-372) 08301 = 4) = (20532 = P5.5/2)0¢5 = ¢51)
Axr
¢. ‘4 + ¢, , - 2 ) 2
_— ('J+l o “J-\) . me-y=2 (2®J S¢J;1 —;f‘)-? i ¢1;3) (A.9)
4;? ‘ X ‘X)Z .
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The difference schemes used in Section 4 do not use the mid-point
rule to evaluate ‘bx in the Bernoulli equation. Rather pj-l/Z is
approximated by (oj * pj_])/Z and ¢x is approximated with the three point
relation, Eq. (38a). This gives the first approximation

(o5 + os (ps_q *+ 055
—-‘—;J—w - ¢5) - = (g, - 0y )

ax’

_(@s0q = 20 + 0. ) ) (Psuq = 20 - +
5 j+l J j-1 _32 73;2 j+1 -1

Axr . (24x) 2

45.3)

(A.10)

Unlike Eq. (A.1) a2 pure upwind formula is not used with the negative

coefficient, 52 Y32.

% The resulting formula, however, is sufficiently

biased to obtain the same effect. In fact, the combined differencing
can be more upwind than (A.1) since the coefficient to the j+1 point is

o(1 - u2/(4a2)) rather than p.
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APPENDIX B
The derivation of Eq. {53) is sketched below using the notation

indicated in Fig. B.1. The derivative aypayo is first approximated as

(Ok” + Dk)(d’“,] = ¢k) 2 (Pk + Pk_])({ka_]/z)A\Y
2(ay)°

2,008, = +o(y)  (B1)

Now
2

®k - °u * %¥ ®ylu +1/2 (%g) °yy|u
Ay

2
O-1 = % - %¥ ole +/2 (1?) °yy|£
or
®y|k-1/2 = ®y|u - ¢y'e is found to be
2
¢y|k-1/2 - <k¢k " &) - T "Lé%l' (¢yylu ) ¢yyli‘.);)/Ay

or

2
AY¢y|k_]/2 - (‘:‘k = "k_] B r) o '(—Ag—) [IQ’y.YI] (82)

Approximating Eq. (21) as

P * P P * Pk
e H@yy] s S (B.3)
and substituting Eq. (B.2) and Eq. (B.3) into Eq. (B.1) gives

s on ol = ket T A O - 4 - (ot o )y - Gy - T
yoy lk 2(0y)2

% * D
1 Yk T Ykl
+ B— Kx<—‘——2‘-—‘>:§xr (8.4)
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Eq. (53) differs from (B.4) only in the addition of metrics.

The derivation of Eqs. (52) and (54) proceed in a similar way where

in deriving Eq. (52) one starts with (for k above the cut)

Y AL Sy n =1
|« & " ®|k-172) * &0 ¢ (8.5)
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ACTUAL SHEAR LAYER
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Fig. 1. Schematic showing boundary conditions
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(B C ¥ Fe ”RZ- M@;
ABC 45 Ry
ABC al mal =] Rua
ABC O RM
ABC o Ry
ABC ON+1 R+l
L . -'o_J — J h-: -

(a) Tridiagonal LpA¢* = R before tangency
boundary conaition

'-B c 1 i @2 ) 1 Rz - A.\¢‘ "
ABC ¢3 R3
AR M- Ry
A =
-1 1 oy -8YM_Ye - oM " M-y
I-1 N AYM Yu - o * Ny
ABC N+ RN+1
- . . . . . - : J - : _J

(b) Tridiagonal LnA¢* = R with body tangency

Note: Indices on A, B, C, and * on A¢* are deleted;

here M = k1ower‘ N = kupper

Fig. 2. Adjustment of n-tridiagonal to implicitly include
the thin-airfoil body-boundary condition
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(a) Tridiagonal LCAon = A¢" before adjustment
for tangency boundary condition.

ABC
ABC

A" = ap*
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- '

(b) Tridiagonal adjustment if and only if

k = klower or klower

Fig. 3. Adjustment of £-tridiagonal along k =

or k = kupper'
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CIRCULAR ARC PROFILE, 7 = 0.06
M, = 0857, a=1°

A v EXPERIMENT, NASA TN D-15
-8 NONCONSERVATIVE, SMALL DISTURBANCE
——— UNSTEADY FULL POTENTIAL
-
¢
.l s
L \
I/ ‘
L A4 4
o \
-4t | ‘»( M v \
c; { v \‘
' -
\'
v
\
Co 0 + + : .

x/c

Fig. 4. Steady state flow about biconvex airfoil




BICONVEX PROFILE, 7 = 0.06
a= 1°, M = 0.857

4
SWITCHED CENTRAL-UPWIND
— = — UNSWITCHED UPWIND
6
Pl | 1 | 1 |
0 2 4 6 8 1.0
x/c

Fig. S.

Comparison of solutions obtained with & = 1.8 in Eq. 36a.
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Mo = 0.85
T =01/M4

THICKENING-THINNING PARABOLIC ARC AIRFOIL

LOW FREQ, BALLHAUS-STEGER CODE, AF2
——=— FULL POTENTIAL

-8
-4
-2
Cp
0
2 MAXIMUM
' THICKNESS
al n - -
0 10 20 30
CHORDS TRAVELED

Fig. 6. Mid-chord value of Cp as airfoil thickens then thins
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Fig. 7.

14
M, = 0.8

FLAT PLATE

LINEAR SOLUTION NACA REP. 1077, 1952
— — — CURRENT POTENTIAL SOLUTION

O BEAM-WARMING EULER SOLUTION
NASA TN D-7605, 1974

12+

0L

x/c

(a) Solution at 0.2 chords of travel from
impulsive plunge = 1° of a

Load distributions along plate for various nondimensionai times

35




ACp/a

18

16

14

M, =08
FLAT PLATE

LINEAR SOLUTION
= = = CURRENT POTENTIAL SOLUTION
O BEAM-WARMING EULER SOLUTION

x/c

(b) Solution at 0.8 chords of travel

Fig. 7. Continued
36




20

M, = 0.8
FLAT PLATE

. | LINEAR SOLUTION

.‘l — === POTENTIAL SOLUTION

lO (@) BEAM-WARMING EULER SOLUTION

|
16 J‘

|

|

\

1
12} |
10}
(c) Solution at 2.4 chords of travel
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continued
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