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ABSTRACT

An implicit finite difference procedure is developed to solve the

unsteady full potential equation in conservation-law-form. Computational

efficiency is maintained by use of approximate factorization techniques. 	 If
`	 The numerical algorithm is first order in time and second order in space.

A circulation model and difference u,_-,tions are developed for lifting

airfo is in unsteady flow, however, thin airfoil body-boundary conditions

a	have been used with stretching functions to simplify the development of

the numerical algorithm.

1.	 INTRODUCTION

Current numerical algorithms to compute unsteady transonic inviscid

flow about complex confi g urations are frequently either inadequate or

too costly to use for routine analysis of a large class of two and three

dimensional flowfields.	 In particular, numerical algorithms l, ` ,3 for

unsteady transonic small disturbance theory neglect terms that can be

important, for example, in helicopter rotor flowfield simulation. Numerical

algorithms based on the Euler equations are suitable for any inviscid

flowfield simulation, but current numerical algorithms for the Euler

equations have large computer time and computer storage requirements. The

successful developmen t of an unsteady conservation-law-form full potential

finite difference algorithm therefore offers a practical design tool.

Unsteady potential theory can satisfactorily replace the Euler equation

solutions if the shock waves are sufficiently weak and if the equations

I

employ an equivalent circulation model. Yet, the full potential equation

has similar computer requirements in time and storage to the simplified

sr,, ►all disturbance theory.



The purpose of this paper is to present an approximate- factorizatiun,

implicit finite difference algorithm for the unsteady full potential

equations in conservation-law-form. Conservation-law-form is maintained

in order to "capture" shocks with correct strength and location. During

the course of this research, two other unsteady procedures have been

developed for the full potential equations in conservative form. One

procedure, due to Chipman and Jameson' solves a system of three equations

for three unknowns. The other. due to Goorjian,` is a scheme which is

quite similar to the one developed independently here. In this report the

governinq equations are first rev i ewed in Section 2. Differencing of the

governing equations in conservation-law-form and their numerical solution

are discussed in Sections 3 and 4. Finally results and concluding remarks

follow. Throughout small disturbance bounda ry conditions are used to

avoid unduly complicating the development of the numerical method for the

full potential equations.

2. GOVERNING EQUATIONS

S tretc h ing Transformations

As governing equations for two-dimensional unsteady full potential

flow we use the conservation of mass equation

a-.r	 3,V

^t + axx + 
ayy = 0	 (1)

where density, p, is determined from the unsteady Bernoulli relation

1	 2

p = 11 
+I 

(M2 - 2St - sx - ^y)}^
-T
 = a^-^

Here S x = u. ^ y = v satisfy the condition of irrotationality

au _ 3v _ O	
(3)

ay ax



and in deriving Eq. (2) the far field flow is assumed to be steady.

Throughout the equations have been referenced to freestream quantities,

P = P/Pn, , u = u /a te, , x = x/E

and the tilda has been SUPp ressed. Here a is the sound speed while

is a reference length such as airfoil chord, c.

•	 Boundary conditions are best Satisfied by mappings which can also

be used to cluster grid point< so as to a m-,ance numerical solution

accuracy. As shown by Viviand conservation-law-form of Eq. (1) call

be maintained under the general transformation

_ `(x, Y. t )

n = ►t(x, Y . t)	 (4)

I = t

giving

ai ( ''/J) + 2' — ( ►)U/J) + an (pV/J) = 0	 (5)

where J is the Jacobian I-" X -Y - 
Eyrix and

LI = c, t + yxOX + ^YOy = ^ x (wx - x) + Ey ( Sy - Y)	
(h)

V = TIt + n x41 + ny Qy = r^ x (S x - x) + ny (Sy - Y)

The terms S  and ^y are expanded by chain rule

v x = f x s ,- + nxSn

(7)

Sy = F,y
S,- + T^ysn

3



If

t

and U and V can also be written

U = &t + V& • 0 &VC + ^nVII) = V& • (11V^ + m nvn - r t )	 (8a)

V = nt + Vn	 ( m V^ + 0nVn) = Vn • (),V^ + mnvn - r t )	 (8b)

where r = (x, y) t . Subject to the same transformation the Bernoulli

equation is written

p={1 +
121 [M2-2(^ +Ct0 +rlC ) - (^2+Cy)^2

1

- 2(^ xnx + ^y T1y )^^^n - (n2 + r1y)v211} -1	 (g)

For the present purpose of demonstrating an unsteady full

potential algorithm in conservation-law-form the transformation is

restricted to the form

Vx)

n=n(y)

and the thin-airfoil body-boundary approximation is utilized. Because

of the transformation Eq. (10), the governing equations then simplify to

a	
li) 

+ a
	

(( p/j)^ 2m ) + a
	

((^,I0),,2C^ ) = 0	 (lla)
aT	 a^	 x	 any n

1

p = {1 
+ Y 

(M2 _ 20T - 2 2 - n2^2)p-1	
(lib)

Boundary Condi tions

As boundary r_orditions, tang:ncy (i.e. V = 0) is imposed on

the body surface anal tie f'.ow at infinity is required to be uniform and

steady. The thin-airfoil body-boundary approximation is utilized

A
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(13)Co^  = MMx

since our sole interest here is that of developing an efficient unsteady

algorithm. The complete mapping of boundary conditions unduly complicates

t	 this task. Surface tangency (S x - x)rI x + (4ty - y y	 0 is replaced by

*y = U1 dx

	

	 * Y	 (12)
body slope

which is imposed on the grid lines adjacent to the airfoil -- see

Fig. 1.

At distances far frcm the body u = uw and with our use of a. as

a reference velocity

Is

where M is the freestream Mach number. Here we chose to cant the

airfoil to obtain angle of attack rather than have the flow vector be

specified at an angle as is often done.

1^r lifting cases we must allow for a jump of potential across

a cut. As we intend to partially model an unsteady shear layer leaving

the airfoil. this cut is taken off from the trailing edge, see Fig. 1.

On the back boundary then, Eq. (13) does not apply and so on the bacK

boundary freestream pressure (or density in isentropic flow) is imposed.

From Eq. (llb) this implies that

20 1 + r;xS f + rly,;Z	 = M2	 14)

along the back face cd of Fig. la. Neglecting small perturbations, this

simplifie, to

0 + E x M^p^ = 
M2	 (15)

Eq. (13) is imposed along ail other far field boundaries. Fig. la.



In unsteady flow. vorticity is continuously shed from the ai,..,il.

In a potential flow formulation this phenomenon can be modeled with a

cut aligned with the shear layer. Here we further idealize this cut by

keeping it in the mean chord line plane as sketched in Fig. lb.

The jump in potential along the cut, A (p = I', will vary with time.

by imposing the us,ial shear layer assumptions an equation for r(x, t)

along the cut can be derived. Across an inviscid shear layer normal

velocity and pressure (p) are continuous, while tangential velocity

and density can be discontinuous. Here, however, the incoming flow is

uniform isentropic (i.e. homentropic) and the shocks are weak. Thus,

we have previously assumed that p = oy throughout, and density is also

taken to be continuous across the cut.

Define r = Q s J = ^u - ^, across the cut as illustrated in

Fig. lb. From the condition that the velocity normal to the shear layer

is cont i nuo,is , Q0y I = 0

aym  _ ^y ^' u = ^y (3x + : )
	

(16)

The Bernoulli relation together with the continuity of density and normal

velocity require., tildt

(to t + ^2 + 02 	_ (2S t + © 2 + 02)u

or

(2^ + ^x)^ = 2a (0^ + F) + [ a (m + r)]2

+ [^y (s k + 1)] 2

so that

2^t + 2Qx
V

x + 
'x
2
	 0
	

(1))
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Consistent with thin airfoil body boundary conditions, Eq. (17) is

approximated by

r  + M'.rx = 0	 (18)

Eq. (18) gives an equation to determine r(x, t) along the cut.

Although t^ Y is continuous across the cut and Y  = 0, in unsteady

flow and *yy is discontinuous. This folluws immediately from

Q a t p + (I x (Pv x ) + ^y (0^y )] = 0	 (19)

which on employing density continuity becomes

D x (P4 x ) + Pay Cy T = 0	 (20)

or alternately

PQ 
QYyI = - a x 

(Pr x)	 (21)

This last equation will be needed to develop accurate difference

expressions for Eq. (lla) when it is differenced to just either side of

the cut (see Section 4). 	 For steady flow rt = 0 and from Eq. (17) or (18)

it follows that F  = 0. Thus, in steady flow t̀yy is continuous across

the cut.

3. CONSERVATIVE DIFFERENCING AND LOCAL LINEARIZATIONS

Time Derivative Term

Stable conservative difference operators have been successfully

developed for the steady state part of Eqs. (1) or (lla) (see Refs. 7-10)

so the main task initially undertaken in this research effort has been

to develop stable conservative difference operators for the unsteady

terms as well. Development of nonconservative time differencing schemes

7



RI

has always appeared to be straightforward. Because p = p(0), Eq. (1)

can be rewritten as

a© ^ + 
p it + a--2	

x+ m a a + 0 
^^ = 0	 (22)

3x	 ay	 y am ay

where

L =	 2-y a	 a	 a
am - 0 at + ^x aX + my ay

is a differential operator that does not commute. Performing the indicated

operations, Eq. (22) is found to be a second degree wave equation in

nonconservative form

$tt + 2(; 4	 + 2o yt = G,-Y-1 - ^2 ) I
,	

- 
20x 11	

+ (P N
-1 - 

$ 2 ) ' +	 (24)

1	 1)
here wing pY	 = a ` (in the chosen nondimensional variables) gives tho

familiar textbook form of the potential equation (see, e.g. Ref. 11).

Various finite difference schemes have been advanced for simpler but

similar forms of this equation (1-3) and we assume they can be made to

work for Eq. (24).

The problem arises, though, tnat Eq. (24) cannot be brought back

into conservation-law--form with 0 retained as the dependent variable-

if, however, one is willing to introduce into the differential equations

the same expansions used in deriving the difference formula, conservative

form can again be maintained. By Taylor expansion

00 + ^l o (0 - ^ ) + 0(0 - 00 ) 2	(25)

where o represents a neighboring known state or solution. Substitution

of Eq. (25) into Eq. (1) gives

(23)

A
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a`t	
o2-ti(	

q,x^o ax + my l o ay)t _ ^x 1 pm,^) + ay (uSy)

+ at (00	 aI
o Q') + 0(S - mo ) 2	 (26)

Assuming that all of the density terms are formed with exactly

the same difference operators, we assume that the local linearizatio,. term

a t (0 - a1 1 0 Ito) has only a higher order contribution to numerical

stability. Moreover, if m - Q o is small, for example S n+1 - nor

0  - mj-1 where t = n6t and x = jAx. the error due to expanding p is

second order accurate and is no greater than that usually made in time

differencing.

Consequently, Eo. (26) is a conservation-law-form of Eq. (1)

which is assumed to have linear stability properties equivalent to the

equation

a (,,	+ uS +U")=a (uS)+a(od,) 4 f	 (27)
T I t	 2 x	 3 y	 x x	 y y	 o

As with the nonconservative form, Eq. (24), one can devise stable

difference schemes for Eq. (27) when a l , a2 , a 3 , and p are considered

as constants. With care, these schemes can be expected to apply for the

nonlinear equations as well, although, as discussed immediately below,

assuming p to be a constant fails for transonic flow. A correct treatment

of the right-hand side of Eq. (27), however, is known from Refs. (7-10).

0



Space Deri.atives

Just as the local linearization approach guides the proper

trea"— nt of the time derivative term, it can be used to analyze the

space differencing schemes developed for the spatial terms cf Eq. (1) by

Jameson,' Holst and Ballhaus, e and Hafez, South, Murman' c for transonic

flow regions. Before proceeding with this analysis, however, some

preliminary background information is in order.

Consider first the simple steady state model problem

(1 - M2 Yt	 + 4)yy = 0
	

( 28)

and let C x , /fix, 
V  

and ^y be defined in the conventional way, e.g.

vx,t = (,'j - 
^j-1)/Ax and A y s _ (sk+1 - Ok)/Ay. It is well known that the

following difference schemes

(1 - M2 )o xnxd + 7y A.^ = 0	 MOD 	 1	 (29a)

(1 - 
M?)` x` x^ + v

yAyp = 0	 MOD 	 1	 (29b)

are respectively suitable for the model elliptic (M m < 1) and the model

hyperbolic (M.	1) problems. The differencing (29b) is divergent if

Moo < 1 while that of (29a) is convergent for M . > 1 only if

lQx/((1 - M2).^y)j < 1, an impractical constraint for M m	1. Murman and

Cole,'' aware of these simple constraints, introduced their type

dependent different operators for the transonic small disturbance

egjation. In this approach the streamwise spatial difference operator is

switched from central to backward as the local Mach number is less or

; , eater than 1.

10



Various refinements to the Murman-Cole differencing have be-n

introduced, but apparently overlooked is the fact that Eq. (28) can also

be differenced as

axAX0 - M2V X , 0 + py6ym = 0	 M^ > 1	 (30)

without any need to switch difference operators. An extra boundary

condition is needed in the x-direction (which is also true of many higher

order difference schemes) and one must pay attention to the physics

because replacing M2ox7x0 by M2A 
Axe 

is also convergent for any Mme . The,10

differencing scheme given by Eq. (30) is also less accurate than Eq. (29a),

but, subject to the usual approximations such as use of periodic boundary

conditions, the authors can demonstrate the cor,vergenLe of Eq. (30).

Although apparently not recognized as suLA, the difference

schemes of Refs. (7-10), which are used when the local Mach number is	 1.

actually mimic the difte,crcing scheme represented by Eq. (30). The

same differencing is not used in subsonic regions because the pure

central differencing scheme is more accurate. The local linearization

process will now be used to clarify these remarks.

Consider the spatial derivative term a xP aX0. Use of the local

linearization, Eq. (23), with this term gives

aXC4X 
= d X [(v* X ) 0 + l-, X 	 + C T.)l o (0 - 4,o)]

a X [ao d xm - (s x P2-Y ) 0D t + a X l o a x + Cy l o ay )(c - 40)]

= a X [PO a XQ - (coax/a 2 ) o^+ ] - aX((P©X/a2)? s) - ^' X (( pmX ay/ a2 )e 4)

- 3 X fo (31)



The 
^xt 

and 
^xy 

terms of Eq. (31) are not crucial to our discussion,

and we can justify ignoring them by assuming steady (mall perturbation

flow. The bracket term )f Eq. (31) is clearly a type dependent term of

the form

a x No a x^ - a x po (uo /a o ) 2 a x o	 (32)

N

where the subtilda is used as a reminder tha', this operator is the	 -tor

used in the Bernoulli equation to form p. U..ing the differencing formula

of Refs. (7-10), the term 
axpOx 

of Eq. (1) i ,, always treated by central

difference formula, although in supersonic flow regions p is evaluated

shifted back to the previous point in x. That is, the term a x pax^ is

replaced by (see Ref. 8 or 9)

v = 0,(u/a) 2 < 1
(a x ra xfl = a x 1( 1 - ')) p + \'P) ax^	 2	 (33)

where p is a shifted backward (i.e. upwind) value of density. The

precise difference operators are treated in Appendix A; but, the crucial

point tc be made here is that when density 4,, shifted backwards, the

operator	 of Eq. (32) also is shifted backwards (upwind) as this
N

operator comes from the local linearization of the Bernoulli equation.

Thus the differencing Eq. (33) is equivalent to the differencing

6x PI- v)p + \) l1 6	
= 3 x po d x^ - d x po (uo/a 2 )3x 0 +	 (34)

central	 central v = 0

backwards v = 1

where S  are symbolic difference cpe rators. A rigorous discussion of

the actual difference operators is given in Appendix A.

A

I 

12



If the local linearization argument given above is indeed valid,

then the differencing represented by Eq. (34) with v = 1 should be

stable in subsonic as well as supersonic region so that switching is

unnecessary. This is indeed the case as reported in Ref. 8, and, with

the use of second order differencing, the unswitched differencing scheme

gives quite satisfactory results as we later demonstrate.

4. NUMERICAL .ALGORITHM

An implicit approximately factored (AF) finite difference scheme is

developed for Eq. (11) in conservation-law-foa l by using the local

linearization, discussed in the previous section. The advantages of an

implicit AF algorithm have been discussed before, see, for example

Refs. 1, Z, 8, and 13. The algorithm presented here is optionally first

or second order accurate in space and time, but the second order in

time option has not proved to be satisfactory.

An implicit finite difference scheme for Eq. (Ila) is given by

(here suppressing spatial indices for convenience)

4

w +l - pn ) + hd	̂ 2 N 
n+l d^^

n+l ] + hdn[(n2,)n+I-E n+ii

= (a/3)(^n _ pn-1 )	
(35)	 1

where	 = (o/J), h = 3 
3a 

" t and a = 0 for first order time accuracy

or a = 1 for second order time accu racy. The operators 8 & and do are

defined at each j, k point (x = jAx, y = kAy) by

I
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(36b)

li

py '
+1p^Xb^^) _ (^X/J) j+1/2 [(1 - vj+l )

	

+ vj+1	 ' 2	 —j-1(^ j+l -
 'j)

	

2	 pj + pj-1	 (1 + e)pj-1 + ( 1 - e)pj -2_

	

('x/J)j-1/2 [(1 - v j )	 2	 + V 	 2	 1 (4
,j - "j-1 )(36a)

P	 + p

	

0 (br,2T ) _ (ny/J)k^1, 2 	
k+12	

k (Q' k+l - mk)

(ny/J)k-1/2 p
k 2'k-1 

(dk 	 ^1-1)

here L^ = An = 1 and only the varying indices are indicated. The

parameter P = 2 for second order spatial accuracy in supersonic regions,

and 6 = 1 for first order accuracy. The switching parameter v is defined

in a way similar to Refs. 7-10 and

	

V = [1 - ( p/ p*) 2 ]c	 1 < c < 10

v - 0 if v < 0, i.e. subsonic

v - 1if v > 1, i.e. supersonic

The parameter v can be set to one throughout, but accuracy will be

impaired unless ? is also set to 2. The operators (36a) and (36b)

assume that the flow will be supersonic only in the positive x-direction

(see e.g. Ref. 9 for extensions). The density is found from the Bernoulli

equation with (ps = An = 1)

,I
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f

	

0 ^ I j	(0j+l	 11i-1)/2 = 6 
i	 (38a)

	

©n i k	 k+l	 ^k-1)/2 = 6nmk	
(38b)

	

^ T I n+1	 [(2 + a)(Q,n+l _ 
4n ) _ ,(S n _ ¢n-1)]/(2At) = 6 T^n+l	 (38c)

The metrics 
C  

and nv are obtained from

^X = 2/(x j+1	 x j _ 1 )	 (39a)

ny = 21(yk+1	 yk-1)	
(39b)

while the term (^2/J)j+l/2 of Eq. (36a) is formed either as

(=x/J)j+1/2 - 1(5X/ J ) j+l + (^ X/J)
i
]/2	 (40a)

or

( r 2 :/J) 	 = [(^X/ J )^ +l + (^X/J)^]/[2(x^+l - x j )]	 (40b)

The terms (~z/`1)j-1/2' (n2/J)k+1/2, and (n 2 /J) k _ 1/2 receive similar treatment.

If Eq. (40a) is used, it is essential to add

to the right-hand side of Eq. (35) to subtract out a numerical truncation

error due to incomplete metric cancellation (see also Refs. 14 and 15).

The term, relation (41), should equal 0 where ^ Q = M.Ox but this is not

obtained if Eq. (40a) is used and the error can be very appreciable on a

highly stretched grid. A similar correction in the Bernoulli equation

isn't needed due to the choice of difference operators and stretchings.

The local li ,iearization of Section 3 are now introduced. Using

Eq. (25) to both expand p
n+l 

about pn and to expand p n about pn-1 , the

terms pn+l - en of Eq. (35) are approximated

(41)

15



n+', _ ,n	 n n+1	 , n n+l	 -2 n+l n	 2 n+l n	 n+l	 n
a	 _ (1- /J	 - ka /J	 ) I QS T + (^,x )	 ^^^	 + 1>>y )	 O'ri T)	 - S )

(,n-l / ,n	 n-1	 n	 T	 (11 X ) nS -l d	(^y)nSri	
11^(dn _ Sn-1)
	

( 21(S	 /J )[S +	 + r	 4

where 
a 

of Eq. (25) is replaced by Eq. (23) and ;; = p2-Y . Here also the

coefficients ^, and 
'n 

are evaluated as indicated by Eq. (38), while SS T , d,., and 6

are the same operators defined by Eq. (38). Note both r ,n+l and p11 
are linearized

not just ',n+l, otherwise, conservation- law-form and second order accuracy is lost.

The operators 6 T , 6C and 5n were defined by Eq. (38) because their form is

dictated by the selection of difference operators used in the Bernoulli equation

for density. These operators work on any product of elements to their right.

The second derivative terms are rear. •anged into delta form and pn
+l

is eliminated as follows:

^S^(,,xn)n
+l^^Sn +1 =

	 ( '-2 r ) n+l ^E ( Sn+1 - S n ) + tsy(&) n+1d ^

br(`2/J)n+l^^n—, ( Sn+l -fin)
y

+
2 	 + a(cn _ pn-1 )IT n	 (43)

The n-term is treated in a similar fashion, and for a = 1 second order time

accurac y is maintained.

Applying Eqs. (42) and (43) to Eq. (35) gives the locally linearized

form of the implicitly differenced governing equation:

16
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n n+1	 2 n+1 n

^5	

2 n+1 n	 2	 n+1 n—(r /J	 ) [ 6 T + (`x)	
5 ^, 

+ ( T y,)	 S ri Ti ] - hb^( E; x / J )	 p 6^

- hcT
T1

( T1y/ J ) n+1 n6 ( 0n+l - Sn)

n-1 n	 2 n n-1	 2 n n-1.	 n	 n-1	 n	 „n-1
(B	 /J )[ 6 T + (fi x ) SE d^ + ( ray 	 n) S	 6n ](S - S	 ) + (1 - (a/3))(^ - D 	 )

+ h( Ts( 2 / J ) n+l [ pn + a(^,n _ 
pn-1

) ]T^Sn + 6 k 2 /J) n+l ( pn + ^
( ^n _ pn- 1 )IT 4,

n) (44)

where one must remember that the operators work on any product of terms to

their right, e.g.

( 6na6 r1 + 6
&
b6 )(c + d) = 6

T1
a,^ c + 6 n abnd + 6-b6^c + 6^b6 d

The operator 6T that appears in Eq. (44) is given ny Eq. (38c). As

it operates on AS, however, we chose to replace it by the operator

	

6T Sn+l 
_ (Sn+l - S

n )/(At) = (1/At)(I - E
- l)Sn+l
	

(45)

which agrees with Eq. (38c) only if a = 0. Eq. (45) is now substituted into

Eq. (44), rn/(J n+l a) = (02-))n/(dn+lAt) is divided through, and the left-hand

side is approximately factored into r and Tj operators:

{I + At(Tjy) n+1 Sn,S n - At(Jn+l/Sn)hT h2/J)n+lp^n}x

2 n+l n	 n+1 n	 2	 n+l - , n+1	 r,
{I + At(^ X )	 S^6r - At(,)	 /h )hT (f x/j)	 0 116

	

^,(^	 - a )

[I 
+ (,n-1/0n)(Jn+1/Jn)](Sn _ ,n-l

) _ ( ,n-1
/Bn )(J

n+1 /J n )(Sn-1 _ Sn-2)

+ r1t
(rn-l/.,n)(Jn+l/Jn)[(fx)n4,n-16^ + (T,2)y-16n](^,n - ,n-1)

r.

+ 1t(J n+l /dn ){[1 - (^/3)](i^n _ ^n-1
	 n ,) + hfi^(,2/J)n+l[^
	 a(pn _ ' n-1 ) 6^Sn

+ hA T-12/J)n+1[,,n + ,(pn _ pn-1)]l5nsn}	 (46)
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This equation has the form

LTIL ^ ( ,n}1 - ,fin ) = R	 (47)

and it is implemented as an algorithm as

L TI AQ * = R	 (48a)

L :AOn = AQ*	 (48b)

^n+l = S  + Afn	(48c)

The algorithm Eq. (48) requires only a series of scalar tridiagonal

inversions and it is therefore very efficiently implemented. Computer

storage equivalent to fo l ;r levels of ^ have to be supplied with v computed

from the Bernoulli equation as needed. Alternately three levels of 0 and

one level of p can be used, although in our test program two levels of p

where stored for convenience in progrvirning 	 computer code that changed from

day to day. All exponential functions were eliminated by using binomial

expansions of the form:

P = 1 + r C ( 1 +	 E(1 + 4,12— E(1 + 4 '-3 c)))	 (49)

where

(Y - 1)(M2 - 2^_ X02 - TI2 2)/2
OD	 T

0 = 1/() - 1)

and

g = B*(1 +	 (1 + k--
 
E(1 +	 ))1	 (50)
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where the constant a* = (p*) 2-y is evaluated using the nondimensional	 I

critical density, and

E = (P/P * ) - 1

^=2--y

The expansion for density gives at least four-place accuracy in the flow

regime of interest. The expansion for g need not be so accurate as it is a

linearization coefficient. On the CDC 7600 a run time of 90 seconds was

reduced to 60 seccnds because of the use of the expansions. In this example

the solution was advanced 400 times steps on a 50 x 62 grid.

Implementation of Boundar y Conditions

The thin-airfoil body-boundary tangency condition, Eq. (12), was

directly buiit into the implicit algorithm. 	 Indeed, it was in order to

satisfy this boundary condition that n-tridiagonals are formed before the

c tridiagonals in Eq. (46) or (47). The difference equation (+/- indicate

upper or lower surface)

h - Q- (+ Mw d ,+ + dt )i(ny)k	 (51)

is implemented into the numerical algorithm as follows: Eq. (48a) is

first formed just as before ignoring the boundary. Then for points

immediately above and below the airfoil chord -- which is centered in

between, see Fig. 1 -- Eq. (51) is used to correctly overload the tridiagonal

elements as sketched it Fig. 2. Likewise, in forming the ^-tridiagonals

adjacent to the body-boundary, elements are first loaded as usual and then

those elements corresponding to points just above or below the body are

overloaded as sketched in Fig. 3. This approach insures that AQ above and

19



below the airfoil are unaltered by the XI-inversions, yet come in implicitly

for XI-derivatives just ahead and behind the airfoil leading edge and

trailing edge.

Adjustments to the difference equations and numerical algorithm

must also be made for points just above and below the cut indicated in Fig. 1.

For these points, Q
n 

is altered as follows (see Appendix B)

Qn^k - ( "k+l - mk - 1 - 1)1
2 + [J/(16ony )IT& (,FX1J)6 E r	 ;52)

where this change effects the calculation of density as well as coefficients

in Eq. (46). As indicated by Eq. (21), the difference formula for

an̂rlya r^^ must also be adjusted for points adjacent to the cut. For points

above the cut (see the derivation in Appendix B)

d n ^^ny^n Q = (ny/J) k+1/2 k—^ ^ k (4' k+l	 irk)

- (ny /J) k-1/2 pk 2pk 1 (^	 ^k-1 - r) - 1/8 y P&2/ J ) T^r	 (53)

while for points below the cut

d n ^'nyTr) = (^2/J)k+l/2 k+lT--- ( Q k+1	 Qk	 r)

p + p
(riy/J)k-1/2 

k 2 k-1 

(` k 	mk-1 ) + 1/8 TC
(P^2My	 (54)

For simplicity the term 1/8 TF p,XE F is lagged at time level n and it thus

only enters into the right-hand side of Eq. (46).

At the end of each update of the field for ^, new values of r are

obtained along the cut by solving Eq. (16). This equation is differenced as

rn+l	 , n
rJ _,i + ^2 I (j.n - i , n	 + Qn +l - ^n +l)(1'n+1 - Fn +l)= ^2 (rn - rn } 2 /2 (55)

At	 xlj	 J	 J - 1	 J	 J - 1	 j - i	 xlj	 J	 J - 1
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with initial data in x supplied from the known value of 0  - m k at the
airfoil trailing edge just upstream of the cut.

5. RESULTS

Calculations to verify the accuracy of the numerical algorithm are 	 I
shown in Figs. 4 to 7. The C  distribution for steady-state flow about a

6 percent thick biconvex airfoil is shown in Fig. 4 for M W = 0.857 and

a = 1° angle of attack. The conservative full potential result obtained

using the second order option, N = 2, is compared to experiment and a small

disturbance nonconservative result. The conservatively captured shock is,

of course, downstream of the nonconservative result. In this case the

vertical far field boundar i es are placed at 20 chord lengths away from the

body, although equivalent results are obtained if these boundaries are as 	 '

close as 12 chords.

As shown by the results of Fig. 5, essentially the same steady-state

solution is obtained if the switching parameter v is always set equal to 1

(i.e., no switching), provided the second order differencing 0 = 2 is

used. Slight differences in the two solutions are observed at the leading

edge singularity and at the shock wave. The unswitched scheme, 	 = 1, 8 = 2.

gives a more pleasing shock wave result

Unsteady solution accuracy is demonstrated by a comparison with a

small disturbance low frequ?ncy result obtained by Ballhaus and Steger.,

In this test case, the airfoil is a biconvex profile which varies in time

from zero thickness to 10 percent thick, and then thins back to zero. A

shock initially forms past mid-chord, and then moves back to the trailing

edge as the airfoil thickens. As the airfoil then thins, the backward

motion of the shock stops, and then the shock propagates upstream. Fig. 6

shows a trace of mid-chord pressure fcr such a case with a comparison to
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the low frequency sma11 disturbance result. The small discrepancy between

the theories is about what one would expect for this case, and similar

results are obtained with the full potential schemes of Goorjian.5

As a final test case the unsteady flow about an impulsively plunged

flat plate was computed with M., = 0.8 and a plunge velocity equivalent to

a = 1`. Linear theory is valid for this case and good a g reement with linear

theory is obtained by Chipman and Jameson 4 who solved the full potential,

as well as by Beam and Warming 15 who solve the Euler equations. Good

agreement with linear theory is also obtained with the present code as

I	 the load distributions plotted in Fig. 7 illustrate.

6. CONCLUDING REMARKS

An implicit finite difference procedure was developed to solve the

unsteady full potential equation in conservation- law-form. Local

linearizations were successfully used to derive a correct time diffFrencing,

avoid iterative between time levels, and to correctly analyzl- the spatial

differencing. An unsteady circulation model was developed and various

test cases were done to verify the accuracy of the numerical algorithm.
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APPENDIX A

Details are given in this appendix to show, to first approximation,

the equivalence of Eq. (31) for the actual difference operators used in

the Hoi,t-Ballhaus delayed density scheme. Holst and Ballhaus have

prev 4 ously shown the equivalence of their scheme to the artificial

viscosity method of Jameson' and of Hafez, South, and Murman. "

To make the steps clear, the analys$:, will be detailed here for the

fully delayed case, v = 1 in Eq. (33), in one-dimensional steady flow.

Then to first approximation it will be shown that

pj- 1/2 ( ^j 4 l - 0j )_ Pj-3/2(Qj - S
j-1 ) _ p ( oj+l - 2o  + 4'j-1)

(,fix)	 Lx

—2-Y	 1mj	 2 mj-2 + 0j- 2)- p	 Q	 (A.1)

0x

where t  in the Bernoulli equation is computed with the midpoint rule,

e.g. 
S x	 dxpj

_	 _ ^j+1/2	 IJ - 1/2	 (A.2)
^x

TG verify Eq. (A.l) the terms are expanded as follows:

j +1

	

pj-112	 Ax	 - pj-112dxQj+112

Co + (pj-112	 p )]b x (S + 0j+112	 ^)

pa x + 
	

x i j+112	 m)

+ (pj-112 " 
P)a xm + D(A2)

= od xm
j+l/2 + mx(pj-1/2	

p ) + 0(02 )	 (A.3)

where d and p are from a known nearby solution and T. = dXQ.
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From the steady one-dimensional Bernoulli equat'lon

1

and via Taylor series

P n P - o -y^ x a x (0 - T) + O( A2 )	 (A.5)

Using (A.5) to eliminate ;,j-1/2 - o from (A.3) gives

Pj-1/2	
Q ^) = Pdxtj+l/2
	

P 2-1 ixdx('j-1/2	
x) + O(A2 )	 (A.G)

where the midpoint rule Eq. (h 2) is again used to approximate derivatives.

Likewise

Gj-3/2 (aJ Axles— P6
	

2-),

 
P 2-) m x d x (Q

j-3/2 -	 + O(A2) (A.7)

Subtracting (6) from (1) and dividing by Ax gives Eq. (A.l) plus a term

of [O(_^2 ) - O(A2 )]/Ax = O(A2).

Other ways of shifting the density function give the first

approximations:

(centered)

^^2_j+l	 ^ j ) ^^ 1/1 03 tj-I 	 _ 4̀-y 2)(^•+1 - 2^• + tj_1) (A.a)

Ax	 Ax

(centered - upwind)

3/2 )( mi+1 - S•) - (2c•_312	 v _51 /2)(^^_@ i - 1)

Ax

s o (0j4.1	 + 
4̂
j - 1 ) - r 2-y2 (20 j	 50 j-1 — 

4
^-2 + 0J-3)

S x	 ?	
(A.9)

11x	 (Ax)

both of which are second order accurate approximations.
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The difference schemes used in Section 4 do not use the mid-point

rule to evaluate 
^x 

in the Bernoulli equation. Rather pj_112 is

approximated by ( pj + pj _ 1 )12 and mx is approximated with the three point

relation, Eq. (38a). This gives the first approximation

( P
i 

+p 
J
- 1 )	 (r'.

_1 +p

J

_2)

2	 (P +1 - ^) -	 2 	 (^ - m _1)

Ax

_ (0j+l - 20i + Oj-1 )	—2-y--2 (^j+1 - 20J- 1 + ^•_3)

Ax	 (2oX)

Unlike Eq. (A.l) a pure upwind formula is not used with the negative

coefficient, -p 2-Y m 2 . The resulting formula, however, is sufficiently

biased to obtain the same effect. In fact, the combined differencing

can be more upwind than (A.1) since the coefficient to the j+l point is

p(1 - u2 /(4a 2 )) rather than p.
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APPENDIX B

The derivation of Eq. (53) is sketched below using the notation

indicated in Fig. B.I. The derivative a y 0y@ is first approximated as

(ok+l + Ok )( @k+l - @k ) - (pk + "k-1 )( ^	 k-1/2)^Y

a	
ay4^ayslk	 --	 - + 0 ( .̂ Y)	 (B-1 )

2(.v)2(.v)

Now

2

	

@k	
@ u +	

@Ylu + 
112 ( . T̂, @YYIu

	

@ k-1	 ^e	 1,y1 z
 + 1/` (T 	 OYY I i

or

4'ylk- 1 /2 = @yIu = @yIQ 
is found to be

2

Tylk-1/2 - (v^k - @k-1) - 
1. - (:1 - 

(Qyy l u	 @YYIQ) /Ay

or

2

	

Ay^ylk-1/2	 (@ k	 `^k-1	 r) - (	 Qsyy^	 (6.2)

App roximating Eq. (21) as

I	 k +^`'k-1 QS D = - T ^k + ^'k-1 F r	 (B.3)

	

L	 yy	 x _  —^ x

I1

and substituting Eq. (B.2) and Eq. (B.3) into Eq. (B.1) gives

(vk+l - Pk )(@k+l - @k)	
( ''k + "k-1)(4 - ^k -1 - 1 )ay ^3yS I k = ---

2(Ay )4

+ 1 7-f+ `^k -1 f r

9 x ^— 'x (B.4)
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Eq. (53) differs from (B.4) only in the addition of metrics.

The derivation of Eqs. (52) and (54) proceed in a similar way where

in deriving Eq. (52) one starts with (for k above the cut)

wk+l	 ^k
^nik ' 112	

_
 0^	 ^njk-1/2 ' jn = 1
	 (B.5)
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,^ r

I.

U.

b
	 U. or (per MAX)	 C

Poll

/	 2Pt +2-px rx+1'x2=0

Y = U^ 
dX + Y

0, +-   x M ,^ C)^ = M 2

v = U `ly +	 IDEALIZED SHEAR
U. dx y	 LAYER

a

a)

POO

ACTUAL SHEAR LAYER

b)

Fig. 1. Schematic showing boundary conditions
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B C	 ,	 R2 -
L

ABC	
^3	

R3

A B C	 A	 SM- 1 	 =	 RM-1

A B C	 SM	 R 

A B C	 *N	 RN

A B C	
sN+l	 RN+1

(a) Tridiagonal L TIA * = R before tangency

boundary conaition

(- B C

IABC

ABC

-I I

1	 42
^3

A	
^M-

SM

I -I	
^N

A d C	
SN+.

R2 - AM)I	 I

R3

RM-1

-AYM ,IYe - 
OM - `)M-1

AYM,,Yu - 4,N + SN+I

RN+I

(b) Tridiagonal L nA1 * = R with body tangency

Note:	 Indices on A, B, C, and * on Al * are deleted;

here M = k lower' N	 kupper

Fig. 2. Adjustment of n-tridiagonal to implicitly include
the thin-airfoil body-boundary condition
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ABC

A 6 C	

1^ n M*

A R C

(a) Tridiagonal LrA4 n = AO  before adjustment
for tangency boundary condition.

ABC

A B C

1

Ain=AS*

.1

A B C

(b) Tridiagonal adjustment if and only if

k = klower 
or 

klower

Fig. 3. Adjustment of E-tridiagonal along k = klower

or k = kupper'
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CIRCULAR ARC PROFILE, r = 0.06
M. = 0.857, a = 1°

-.4

-.6

-.8

V EXPERIMENT, NASA TN D-15
u ^u n^u 1+r M% i A T.% #r [ft AAI 1 f ICTl IM r)A "10E

t

-.2

Cp 0

.2

4

6

0	 1.0
x/c

Fig. 4	 Steady state flow about biconvex airfoil
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I	 a = 1°, M^ = 0.857

4
SWITCHED CENTRAL-UPWIND

---UNSWITCHED UPWIND

.6

7`
•	 0 .2 .4 1.D

X/C

Fig. S.	 Comparison of solutions obtained with 6 = 1.8 in Eq. J-6a.
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LOW FREQ, BALLHAUS-STEGER CODE, AF2

FULL POTENTIAL

IFig. 6. Mid-chord value of C 
p 

as airfoil thickens then thins
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M." = 0.8
FLAT PLATE

LINEAR SOLUTION NACA REP. 1077, 1952
12	 -- — CURRENT POTENTIAL SOLUTION

O BEAM-WARMING EULER SOLUTION
NASA TN [)-7f05 1974
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11	 -

8

ACp/a

6

4

2

0

of

(a) Solution at 0.2 chords of travel from
impulsive plunge = V of a

Fig. 7. Load distributions along plate for various nondimensionai times
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(b) Solution at 0.8 chords of travel

Fig. 7. Continued
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(c) Solution at 2.4 chords of travel
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f'. g. 7.	 Continued
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