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INTRODUCTION

Calibrated strain gages have been extensively used to measure aircraft loads
in flight, particularly on lifting surfaces. The prevailing calibration method
(ref. 1) is based on the approach that although the stress in structural members
may not be a simple, direct function of shear, bending moment, or torque it is
possible to combine the responses of selected strain gages to provide a measure of
each parameter. This method, which was first used on aircraft in the 1940's, has
clearly withstood the tests of time. However, the method has most universally been
used on high aspect ratio structures, where load paths from the wing to the fuselage
are few, well defined, and minimally redundant. Aircraft designed for high speed
flight are characterized by lower aspect ratio structures with highly redundant,
multispar configurations. As shown in references 2 to 8 such configurations consid-
erably complicate the task of measuring flight loads with strain gages, because the
pertinence of any given load equation becomes more difficult to assess.

The approach usually taken with low aspect ratio, multispar structures is to
instrument the structure extensively with strain gages to insure that no crucial
load paths are missed. Consequently, a large array of strain sensors is available
for use i ions. One appr for selecting the strain gages to be
used in the load equations is referred to as the T-value method (refs. 2 to 4).

A special adaptation of the T-value method is introduced in this paper. The
adaptation involves the incorporation of three additional parameters in the process
used to determine the value of each strain gage bridge to the load equation. The new
adaptation, called the modified T-value method, is assessed by comparing the load-
measuring capabilities of the two methods. The methods are compared by examining
the deviation of the calculated load from the applied load for the two methods.
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The computer program used to implement the modified T-value method is des-
cribed in the appendix, which was written by Donald C. Black.

SYMBOLS

The physical quantities in this report are given in both the International System
of Units (SI) and U. S. Customary Units. Measurements were made in Customary
Units. Physical constants and conversion factors are given in reference 5.

BA

b

C

MT

i

bending arm (fig. 11)

wingspan, m (in.)

wing chord, m (in.)

generalized load; shear, bending moment, or torque
modified T-value

T-value

torque arm (fig. 11)

~ constant in load equation
T s

axis in chord direction

axis in span direction

e

correlation coefficient between strain bridge response with all
other strain gage bridge responses due to calibration loads

standard error of constant B in load equation
nondimensional strain gage bridge response

mean absolute magnitude of the nondimensional strain gage
bridge response due to calibration loads

correlation coefficient between the strain gage bridge response
and the calibration loads

‘Subscripts:

order of terms' appearance in load equation

discrete function



TEST STRUCTURE

Results from a large number of hypersonic cruise aircraft studies (including
refs. 6 to 8) led to the design and construction of the hypersonic wing test struc-
ture shown in figures 1 and 2. The test structure represents the primary wing box
of a multispar low aspect ratio wing typical of hypersonic (Mach 8) flight. The test
structure is primarily constructed of René 41 and has a planform area of 7.9 square
meters (85 square feet) . The six spars are spaced 50.8 centimeters (20 inches)
apart and are covered by spanwise-stiffened beaded panels and chordwise-stiffened
beaded heat shields. A more complete description of the hypersonic wing test
structure is given in references 8 and 9.

INSTRUMENTATION

The load measurement instrumentation consisted of 12 four-active-arm strain
gage bridges. The general locations of the strain gage bridges and the load points
are shown in figure 3.

A bending bridge was installed on the cap of each of the six spars, and a shear
bridge was installed on each of the respective spar webs. Typical installations of
each type are shown in figures 4(a) and 4(b).

MEASUREMENT ACCURACY

The strain gage bridges were calibrated for measuring shear, bending moment,
and torque by the point-by-point procedure described in reference 1. Tension
loads of 8896 newtons (2000 pounds) were applied at each of the 18 load points on the
hypersonic wing test structure shown in figure 3.

The accuracy of the data acquisition system for strain gage measurements was
estimated to be *4.88 microstrain, which represents 0.3 percent of the strain gage
calibrate output. A more complete description of the loading tests is given in
reference 9.

DATA REDUCTION

Load Equations

The multiple linear square regression method described in references 1, 10,

_and 11 was used to derive shear, bending moment, and torque equations for measur-
ing loads on the test structure. First all 12 strain gage bridges were used to relate

the applied calibration loads to the bridge responses. The resulting generalized
load equation is as follows:
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i=j
L= Z KiB; 1)
i=1

where L is the applied load, p is the nondimensional strain gage bridge response,
and B is the load equation constant. A detailed analysis of the load calibration is
given in reference 12.

T-Value Method

One method for reducing the number of terms in equation (1) is to use a value
known as a T-value as a measure of the relevance of the bridge. References 2 and 4
define T-value as follows:

T. =
i

(2)

where Ti is the T-value that indicates the relevance of the ith strain gage bridge, Bi is
the equation constant, and ¢, is the standard error of the associatgd gauation constant.
skt i - _

[ OO

The number of bridges in the load equation can be successively reduced by
eliminating the bridge with the smallest T-value. Each time a bridge is eliminated
a new equation is derived from the remaining bridges and new T-values are calcu-
lated. For purposes of comparison with the modified method proposed in this paper,
the procedure was repeated until a set of equations containing 12 to 2 strain gage
bridges was derived. The resulting equation constants for measuring shear,
bending moment, and torque are given in table 1.

Modified T-Value Method

The modified T-value method includes strain gage response magnitude, gage-
to-load correlation, and gage-to-gage intercorrelation factors in the process of
selecting the appropriate gages for the load equations. The modified T-values, or
MT-values, are defined as follows:

F.A:B
MT. = 111 (3)
iove
et et

where MTi indicates the relevance of the ith strain gage bridge, 'ﬁi is the mean abso-

lute magnitude of the nondimensional strain gage bridge response due to the calibra-
tion load, }”i is the coefficient of correlation between the strain gage bridge response

and the calibration load, Bi is the load equation constant, ' is the coefficient of cor-

relation between the strain gage bridge response and all the other bridge responses
due to the calibration load, and & is the standard error of the load equation constant.
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The MT-value method refines the selection of the strain gages by incorporating
the i, A, and vy terms in equation (3).

The absolute magnitude of the gage response, H, is important because the use
of a gage with a large value of fi in the load equation will cause the resolution error
of the reading to be less significant than it would be with a gage with a small value
of p.

On a multisparred structure with redundant load paths like the hypersonic wing
test structure (fig. 1), a strain gage bridge may be highly responsive to a load on
the spar to which the gage is attached but not to a load on a more remote spar. The
gage-to-load correlation coefficient, A, is introduced in the MT-value method for
this reason. A large value of A indicates that the gage is sensitive to most of the
applied calibration loads and thus should be retained in the load equation.

The size of the gage-to-gage correlation coefficient, v, reflects the redundancy
of a gage with respect to the remaining gages in the load equation. A small value
of vy is desirable, for it indicates that a gage is unique in measuring a load.

The terms 8, €, |, and A are calculated as part of the statistical information
that is generated in the multiple linear regression computer program used to derive
the load equation constants (see appendix). The gage-to-gage correlation coefficient
v is calculated from a gage intercorrelation matrix also generated by the computer
program. The method used to reduce the gage intercorrelation matrix to the
correlation coefficient y is described in reference 13.

In the MT method the number of gages in the load equation is reduced in the same
manner as in the T-value method described in the previous section. The resulting
shear, bending moment, and torque equation constants are given in table 2.

STRAIN GAGE BRIDGE INFLUENCE COEFFICIENTS

Influence coefficient plots which show the responses of individual strain gages
as a function of the spanwise and chordwise location of a unit load are useful in
assessing the effectiveness of a bridge for purposes of measuring shear, bending
moment, and torque. The ideal responses are illustrated in reference 14.

The influence coefficients of the 12 strain gage bridges are shown in figures 5(a)
and 5(). All six bending bridges (fig. 5(a)) respond not only to bending but also

to torque, as evidenced by the vertical spread of the data at any given span location.
Similarly, all six shear bridges (fig. 5(b)) respond not only to shear but also to
bending and torque. Hence, in order to measure shear, bending moment, and torque,
combinations of a number of strain gage bridges are required.

LOAD EQUATION INFLUENCE COEFFICIENTS

Influence coefficient plots of complete load equations, computed by the method
used in reference 15, illustrate the nature of the equations. .
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An ideal shear equation influence coefficient plot would appear as a line of zero
slope. The lack of response to spanwise variation would indicate no sensitivity to
bending, and at any given span location a lack of variation with changing chord lo-
cation would indicate insensitivity to torque. Similarly, the ideal bending moment
equation plot would be a straight line. And finally, the ideal torque equation plot
would assume the planform of the load points. Figures 6, 7, and 8 show influence
coefficient plots for the shear, bending moment, and torque equations derived by
eliminating bridges with both the T and the MT methods. In general, the deviation of

the equation influence coefficient plots from the ideal pattern increases as the number
of bridges in the equation decreases from 12 to 2.

“

PERFORMANCE OF LOAD EQUATIONS

Since the purpose of a load equation is to calculate flight loads, the performance
of the equations generated by the T and MT methods was evaluated using load dis-
tributions that were independent of the point-by-point calibration loads.

The three load distributions shown in figure 9 represent the aerodynamic loads
on a wing during subsonic, supersonic, and maneuvering flight. (The reasons for
believing the loads were representative of these flight conditions are given in
reference 14.)

Figure 10(a) shows the comparison between the values computed for shear with
the T and MT methods for the three load distributions., Reducing the number of _
‘pridges from 12 to 2 causes the computed shear to deviate from the applied load for
both sets of equations. However, the shear values computed with the MT method
are accurate more cons1stent1y than those computed with the T method. The improve-
ment in the measurement is most obvious in the equations that contain six bridges or
fewer. Figure 10(b) compares the performance of the T and MT methods in computing
bending moment. The same trend exists in bending as for shear; again, the improve-
ment in accuracy is greatest for equations containing six bridges or fewer.

The performance of the T and MT methods in computing torque is shown in
figure 10(c). Again, the performance of the MT method is better. The improvement
is greatest for equations containing five bridges or fewer. However, caution must
be exercised when examining torque data because the quantities are dependent on the
location of the torque reference axis.

A complete tabulation of the percentage of difference between the computed and
applied shear, bending moment, and torque for the T and MT methods is given in

table 3.
—4——————"“-‘_—.‘ e

CONCLUDING REMARKS

A new adaptation of the previously used T-value method for selecting and deter-
mining the relevance of strain gages for measurement was applied to a multispar
structure. The effect of the new approach, called the modified T-value method, was
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illustrated by reducing the number of strain gages used in a load equation from 12
to 2. The previously developed and modified methods were compared by calculating

loads from three applied load distributions. The modified T-value method proved to
be accurate more consistently than the T-value method.

Both the T-value method and the modified T-value method provide additional
systematic, formalized approaches to selecting strain gages for use in load equations
from the large array of gages typically found on multispar structures. The success
of the modified T-value method on this structure suggests that the approach should
be of value to engineers engaged in flight load measurement using strain gages.

PRS- C T S .
Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, January 8, 1980
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APPENDIX—A COMPUTER PROGRAM FOR DERIVING
LOAD EQUATION COEFFICIENTS USING REGRESSION TECHNIQUES

Donald C. Black
Dryden Flight Research Center

This appendix describes the results of a computer program which derives load
equation coefficients using regression techniques. The program was adapted to
implement the MT method theory. The program, which is known as the EQDE
(equation derivation) program, is run on a CDC Cyber computer and performs two
primary functions. First, it calculates strain gage influence coefficients for each
load condition selected by the user. An influence coefficient is the slope of the
linear least-squares fit of strain versus load data. Second, the program derives,
using a multiple linear regression technique, equation coefficients from independent
variables (strains) and a dependent variable (load). In calculating the coefficients,
related statistical analyses are performed, and the results are printed to assist the
user in selecting the appropriate gages for the load equation.

The EQDE program can operate from either of two data sources. The first is
a flight loads research laboratory engineering units data tape. The second is a:
user-created permanent data set which can contain as many as 2000 parameters per
file (a file normallg representing one time segment). In executing any single job,
the program can handle as many as 50 strain gages (40 of which may be included in
a single equation) and 50 load conditions. Each load condition must be defined by
at least three data points.

In addition to calculating influence and equation coefficients, the EQDE program
performs various mathematical analyses to aid the user in selecting the appropriate
gages for load equations. User interpretation of this analysis is relative to the

 load conditions selected for analysis. If particular equations appear more appropri-
ate than others, then they are so for the range of the load applied and the gage
locations in the load conditions selected. The program does not try to predict the
suitability of an equation for flight loads outside the specified range of load condi-
tions. However, the more suitable an equation for the load conditions selected, the
more likely it is that it will predict loads outside the specified load conditions range.

The terminology used in the EQDE program, which is described in more detail
below, is defined in figure 11. A load point is determined by a user-prescribed
bending arm (BA) and torque arm (TA). The bending arm is the shortest distance
from the bending axis to the load point, while the torque arm is the shortest distance
from the torque axis to the load point.

A load condition (a physical load that generates strain and load data) is defined
by the amount of loading at one or more points on the structure. In a load condition
that involves more than one load point, the mean bending arm is the shortest distance
from the bending axis to the center of pressure of the applied loads. The mean
torque arm is the shortest distance from the torque axis to the center of pressure of
the applied loads.



The EQDE program operates in the following manner:

1. All control data cards are read, stored on disc, and printed. A cursory
check is performed for correct format and sequence. The control data cards are
reread up through the data set identification card, and the validity of the parameters
and parameter values is checked.

2. A listing is created showing the processing statisties for the current job
execution. -

3. For each load condition, a load condition card and load cell cards are read,
and the corresponding data from tape (or disc) are read. These data are saved after
bending moment and torque values are computed (or read from the disc). Any data
with shear values less than 10 percent of the maximum shear, or less than a user-
supplied value, are deleted.

4. As each load condition is processed, the summations of the gage outputs and
the gage cross products are updated. The mean bending and torque arms, along
with their standard deviations, are computed for each load condition. After each
load condition is processed, the strain gage influence coefficients, correlation co-
efficients, and influence coefficient standard errors are calculated and printed.

5. For all the data saved, the sum of the cross products of the standard devia-
~_tions, the mean strain gage and load values (along with the standard deviations of
these), and the gage correlation coefficients are calculated. A table that contains ~
the intercorrelation values for all the gages selected is then printed.

6. After all load conditions have been processed, a table is printed that contains
a listing of strain gage influence coefficients, mean bending arms, and mean torque
arms for all load conditions.

7. Load equation definition and equation strain gage identification cards are
read. The validity of the parameters for the user-defined equation is checked, and
a subcase matrix is formed by combining the appropriate dependent and independent
intercorrelations. This matrix is inverted, and if it is singular, an appropriate
error message is printed and the program halts.

8. Beta weights, coefficients of determination, regression coefficients, multiple
correlation coefficients, equation intercepts, and standard errors of the estimate
(equation) are computed. Results of this multiple linear regression and strain/load
data analysis are printed.

9. A table of residuals is calculated based on the estimate found by using derived
coefficients and the originally applied load. The root mean square (rms) error of the
estimate is divided by the rms of the load, and the result is printed.

10. Steps 7 to 9 are repeated for each equation defined by the user.

The EQDE program provides the user with many types of information that facilitate
the selection of the appropriate strain gages. The following discussion details some
of the more important mathematical features of the program.
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1. A table of residuals shows the standard deviations of the bending arm and
torque arm data sets, the strain and load data sets, and the estimate versus applied
error data set. These calculations provide the user with an indication of the spread
of the data around the mean of the data set.

2. As indicated above, the program computes strain gage influence coefficients
and equation coefficients.

3. Correlations are computed for (1) gage output versus load for each load
condition, (2) gage output versus gage output for all load conditions, and (3) gage
output versus load for all selected load conditions. These correlations permit the user
to compare the linearity of various parameters.

4. To permit the accuracy of a load equation for a given load condition to be
evaluated, the standard error and then a table of residuals are computed for each load
equation. The table of residuals (errors) can be in either of two formats. The first
is the mean error (estimate minus actual load), together with the standard deviation
of the mean error, for each load condition. The second is the residual (error) for
each data point in the selected load condition.

5. An rms value is computed for (1) the (equation estimate minus applied
load) error value and (2) the applied load for all load conditions. The values of (1)
divided by (2) are then used to access the relative accuracy of the equation estimate
in predicting applied loads.

A sample p;iptout of the EQBE program” is presented as table 4, The items o

numbered in the printout are explained at the end of the listing.
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TABLE 3.—DIFFERENCE BETWEEN CALCULATED AND APPLIED LOADS

(a) Loads with forward center of pressure. Applied shear, 48,492 N (10,902 Ib);

applied bending, 20,616 m-N (802,058 in-1b); applied torque, 64,143 m-N (567,744 in-1b).

Number of T method MT method T method MT method T method MT method
strain gages
in equation Difference in shear, percent Difference in bending, percent Difference in torque, percent
12 0 0 0 0 -2 -2
11 0 -1 -1 -2 -2 -2
10 3 -1 1 -2 -1 -1
9 6 3 0 -3 1 0
8 5 2 6 -3 0 2
7 -4 1 5 4 -1 2
6 -22 0 13 3 -4 2
5 -27 1 14 0 -9 3
4 -34 -2 19 -2 -11 -6
3 -30 -2 24 -10 -20 -4
2 -42 -29 21 -20 -78 -35
v
e
(c) Loads with aft center of pressure. Applied shear, 48,252 N (10,848 1b);
applied bending, 95,818 m-N (848,108 in-1b); applied torque, 110,612 m-N (979,050 in-1b).
Number of T method MT method T method MT method T method MT method
strain gages
in equation Difference in shear, percent Difference in bending, percent Difference in torque, percent
12 -2 -2 -5 -5 -5 -5
11 -3 -3 -5 -6 -6 -5
10 0 -5 -4 -6 -5 -5
9 2 -2 -3 -6 -2 -4
8 -1 -3 0 -7 -2 -2
7 -6 -5 0 -2 -3 -1
6 -27 -6 4 -3 -4 -3
5 -28 -5 2 -2 -10 -1
4 -35 -10 8 -7 ~-12 -5
3 -32 -10 17 -11 -14 -3
2 -44 -36 6 -17 -48 -17
(b) Loads with midcenter of pressure. Applied shear, 88,182 N (19,825 1b);
applied bending, 173,136 m-N (1,532,457 in-1b); applied torque, 200,990 m-N (1,779,003 in-1b).
Number of T method MT method T method MT method T method MT method
strain gages
in equation Difference in shear, percent Difference in bending, percent Difference in torque, percent
12 0 0 -1 -1 0 0
11 -1 -1 -1 -1 0 0
10 1 -3 0 -1 0 (1]
9 4 0 0 -1 2 1
8 0 -2 5 -2 2 2
7 -4 -4 4 2 1 3
6 -26 -6 9 0 1 0
5 -28 -6 5 1 -6 3
4 -33 ~-11 12 -2 -8 0
3 -30 -12 20 -1 -10 2
2 -41 -36 8 -13 ~-44 -10
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HWTS LOADS EQNS RCOM TEMP CALIB (2000 LE PT {QAD)

axs¥¥¥¥2% f Q DE PR OCESSING INFORMATTICN *rervrexex

BATE JOB RUN ceseccscocscsnccacence 03/705/77
TIME JOB RUN seeacesceccssacceseccss 12.59.26,
TCTAL NO+ OF GAGES ccesccacccssoecss 12

TCTAL NOs CF LOAD CONDITIONS esescee 10

TOTAL NO. CF EQUATIONS ccscoevncseces 5

INPUT DATA SET cececccccccccccscceaTAFE
PRINT INFLUENCE COEFFICIENTS eeeceeYES

PRINT INTERCCRRELATION TABLE eceaesYES

PRINT INFLU. COEFFe SUMMATION <eeesYES

TAELE OF RESIDBUALS ececscecccncecee MEAN/STD
PUNCH INFLUENCE COEFFICIENTS aeeeaeNO

PUNCH EQUATION COEFFICIEANTS eeceessNO

@ 0 0 % X £ X 4 @ % @ 6 %X 6 kK X & 00 X0 X0 % O k &
£ 00 X & 06066 0 06 206 & & X0 00 OG0 x 00 x =

IR IR 22 R R R R R RS Y E R R E R R S R R R R R RS I R RS PR R SR R SRR R RS ALY A R S 2 2 R L
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All data control card input is listed in this printing. Error messages will

reference the card number, if that card is in error.

This message indicates that a preliminary form check has been performed on

the data control cards. Further checks are performed later in the program.

3| This page contains processing information concerning this job execution

and thus constitutes a permanent record for this run.

This section contains processing information concerning each load condition.

Load cells listed may be shear only, or may include bending and torque values if
they also reside on a user disc data set.

If bending and torque arm values are read from card, this section will

contain statistical analysis relating to same. Sixty-eight percent of the bending
(or torque) arm values will fall within the mean plus or minus the standard devia-
tion, assuming normal distribution of error terms.

@ Represents the correlation between the gage output and load. Plus or minus

one would indicate a perfect linear association. Zero would imply no linear associa-
tion. Usually the value will be close to 20.99 if the gage output is significant. The
square of the correlation coefficient (X 100) gives the percentage of change in load
due to a change in the gage output.

Equals the slope of the linear least-squares line (strain versus load).

The greater the slope (relative to other influence coefficients), the more significant
will be the gage if used in an equation involving that load condition.

Similar to a standard deviation. Gives the confidence interval for the

estimated influence coefficient. Sixty-eight percent of the measurements (strain
versus load) will fall within the least-squares line (strain versus load) plus or
minus the standard error, assuming normal distribution of error terms.

@ Represents a summary of the gage intercorrelations with respect to the in-

fluence coefficients for all load conditions. Plus or minus one would indicate a perfect
linear association. A zero would imply no linear association. Any two gages having
a correlation of one would imply that both gages should not be used in the same
equation. In like manner, one gage could be used for another if they have a
correlation of one.
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Represents a summary of the influence coefficients for all gages and every

load condition used in the job.

Computed using a multiple linear regression technique. The smaller the

coefficient (relative to the other coefficients), the less significant will be the gage on
the resultant load (if all gages used have similar means and variance).

Coefficient standard error. Gives a confidence interval for the estimated

coefficients predicted on the assumption of normally distributed errors. The popu-
lation coefficient is within the range (coefficient minus the standard error and
coefficient plus the standard error) with a 68 percent confidence.

The estimated coefficient divided by its standard error. In general, the

larger its value (relative to other T-values), the more significant the effect of the
gage on the resultant calculated load.

The mean of the summed gage output for all load conditions used.

The standard deviation of the gage output for all load conditions used.

Sixty-eight percent of the gage output will fall within the mean plus or minus the
standard deviation, assuming normal distribution of error terms.

Represents the correlation between the gage output and load for all load

conditions used. A plus or minus one would indicate a perfect linear association be-
tween all gage output and load, while a zero would imply no linear association. For
an equation derived using shear load, a high correlation indicates that the gage had
similar data magnitudes for each load condition with the same shear. For an equation
derived using bending moment or torque loads, a high positive (negative) correlation
indicates that the gage output is directly (inversely) proportional to the bending
moment or torque for each load condition.

The intercept of the equation. In general, the closer to zero the better

the equation (since one desires zero strain to produce zero load).

This number represents an error band if the equation is being used to

calculate a load. Sixty-eight percent of these calculated loads (for this equation)
would be within the applied load plus or minus the standard error, assuming normal
distribution of error terms.
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‘ The correlation for the equation in terms of the linearities of all output of

gages in the equation with respect to load. A plus or minus one would indicate a
perfect linear association. A zero would imply no linear association.

The table of residuals may take one of two forms. The first, as shown in

the sample run, is the computation of the mean error (equation estimate minus actual
applied load) for all data points in the load condition. The second form is the compu-
tation of the error (residual) for each data point of each load condition up to a max-
imum of 100 total data points. This table helps verify the accuracy of the equation
estimate for the load conditions selected.

The mean error is the mean of the errors (equation estimate minus actual

applied load) for all data points in the load condition.

The standard deviation of the errors (equation estimate minus actual

applied loads) for all data points in the load condition. Sixty-eight percent of these
differences will be within the mean error plus or minus the standard deviation,
assuming normal distribution of error terms.

This number is the rms of the (estimate. minus applied load) errors divid-

ed by the rms of the applied load for all load conditions. In general, the smaller
the number (and percentage) relative to other equations, the better the equation.
This value may also be used to estimate the efficiency of the equation for calcula-
ting loads which are not used in the selected calibration load conditions. For this
purpose it is best used in estimating minimum errors rather than maximum errors.
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Figure 1. Hypersonic research airplane and hypersonic wing test structure.

Figure 2. Hypersonic wing test structure.
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e Load point
o Strain gage

Y >, \/— Torque reference axis

Wing leading edge

20in.)

}

2.54m (100 in.)

3.63m(143in.)

Bending reference axis —\
X -

Wing root
T T 1
Figure 3. Strain gage bridge locations and calibration load points on
the hypersonic wing test structure.
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(a) Bending strain gage bridge.

Figure 4. Bending and shear strain gage bridges on hypersonic
wing test structure.
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(b) Shear strain gage bridge.

Figure 4. Concluded.
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“Figure 5. Strain gage bridge influence coefficients.
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Figure 5. Continued.
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Figure 5. Continued.
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Figure 5. Concluded.
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Figure 6. Shear equation influence coefficients.
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Figure 6. ‘Continued.
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Figure 7. Bending moment equation influence coefficients.
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(a) Loads with forward center of pressure.

Figure 9. Shear loads applied to compute performance of load equations.
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(b) Loads with mid center of pressure.

(c) Loads with aft center of pressure.

Figure 9, Concluded. —
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