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SUMMARY

The demand for higher performance levels of turbofan engines has re-
sulted in the development of increasingly more sophisticated air breathing
engine design configurations. As the performance demands become more re-
strictive, the number of manipulated inputs increase in correspondence with
the increase in the number of controlled outputs. Thus, from a control
system design viewpoint, the engine must be treated as a multi-input-multi-
output system. The control design may then proceed using modern design
methodologies in either the time domain or in the frequency domain.

Inherent to any successful control system design is the requirement to
accurately record on-~line engine performance and to reliably actuate the
control input signals. A failure of any sensor or actuator used by the
controller can lead to significantly reduced performance levels. The extent
of the performance reduction is determined by the source and type of failure
and the dependency of the design methodology on that information.

Traditionally, the problem of sensor/actuator failure has been resolved
through the utilization of redundant components. The failed component was
then easily detected using standard voting procedures. As turbofan engine
designs become more complex, hardware redundancy becomes more impractical.
With the introduction of on~board digital computers for flight control
(F100 and QCSEE) hardware redundancy may be replaced with analytical re-
dundancy.

For time domain control procedures requiring the full state vector for
control actuation the residuals of the Kalman-Bucy filter may be examined for
"whiteness." If the statistics associated with the residuals depart from
the white noise condition, then a failure is declared. Willsky and Jones [1]
use this concept to develop a procedure for sensor/actuator failure detection
using a Generalized Liklihood Ratio (GLR) hypothesis test. Since the sensor
data is used to generate state estimates which are then used to reconstruct
output estimates for detector evaluation, the number of failure modes con-
sidered by the detector is large. Thus, detection time increases in direct
proportion to the number of failure modes considered.
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If the feedback control design does not require an estimate of the
state vector, as in the case of the Multivariable Nyquist Array Method
(MNA) [2,3], the Kalman filter '"model" of the system is no longer required.
Thus, the "residuals'" can be generated by comparing the sensor outputs
with a similar set of outputs generated by an accurate non-linear simulation
model. The concept of the GLR can then be retained to provide a reliable
evaluation of sensor or actuator operation since sensor outputs are no longer
needed to provide data estimates. TFigure 1 diagrams the proposed failure
detection procedure using a simulation model.

The development of the proposed GLR detector using model residuals uti-
lizes the following assumptions:

A. The physical system may be non-~linear with outputs
contaminated by zero-mean additive white noise of
known intensity.

B. The on-board digital computer is of sufficient size for
storage of the noise~free nonlinear simulation of the
plant, the detection software and the feedback controller.

C. The residuals are zero mean when no failure exists.

D. Under a failed sensor or actuator the residuals have
non—-zero mean.

E. It is desirable to estimate which sensors or actuators
failed, the form of failure occurring and the time
the failure occurred.

F. An observation 'window" of finite dimension is to
be used for failure detection to reduce storage and
computational requirements.

G. The set of failure modes is finite and is known a
priori.

Utilizing these requirements a GLR detector was developed for hard-over
failure conditions of the following type:

1. Actuator step failures

2. Brief disturbances in actuator output

3. Sensor step failures

For each case a hypothesis test was established for comparison with
the null hypothesis (i.e., no failure condition). The GLR was formed, data

window widths selected for low probability of false alarms and cross de-
tection. Threshold levels are then established from these requirements.
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The performance of the proposed GLR method was evaluated by application
to the General Electric QCSEE turbofan engine [4]. Using the non-linear
simulation for the under~the-wing model of QCSEE developed by Mihaloew [5] the
output sensor measurements PS11, NL, NH, P12, P4, and T3 were corrupted by
white noise to represent the physical engine. The actuators considered
were those associated with the fuel metering valve position, fan nozzle area
position, and the fan pitch mechanism drive motor position. A duplicate
software program was used to represent the plant model as indicated in
Figure 1.

For the application considered here, the 62.5% of full power condition
was used. Tor the actuator and sensor failure conditions cited above, the
GLR detector accurately diagnosed the failure type and identified the failed
component correctly in every case. In addition, the GLR detector correctly
identified the time at which the failure occurred. A representative plot
of the GLR index is presented in Figure 2.

To obtain the data of Figure 2, the GLR index for each actuator and
sensor is computed for all assumed failure modes. A comparison of all
indices is made and the largest index is selected at each time step and
plotted. Prior to the actual induced failure (K = 10) the maximum GLR index
is non-definitive since no failure has occurred and the index remains below
the established threshold (e = 34). With an induced failure in PS11 (at
K = 10) the detector correctly identifies the sensor and the failure time.
The threshold of € = 34 is established prior to any test runs and is strictly
a function of the data window length, the pre-established probability of a
false alarm, and the covariance of the sensor noise.

REFERENCES

1. Willsky, A. S., and Jones, H. L., "A Gernalized Likelihood Ratio
Approach to the Detection and Estimation of Jumps in Linear Systems,"
IEEE Transactions on Automatic Control, Vol. 21, No. 1, February 1976.

2. Rosenbrock, H. H., Computer Aided Control System Design, Academic Press
(London), 1974.

3. Leininger, G. G., '"New Dominance Characteristics for the Multivariable
Nyquist Array,' Int. Journal of Control, Vol. 30, No. 3, pp. 459-475,
1979.

4. QCSEE-Under The Wing Engine Digital Control System Design Report,
General Electric Company, NASACR-134920, January 1978.

5. Mihaloew, J. R., and Hart, C. E., '"Real Time Digital Propulsion System
Simulation for Manned Simulators, NASATM-78959, 1979.

141



4]

Input

Output + Residuals

g
WMo TD P
TS P Y
4
@10 WL 0MO WL

GLR

D(Z & detection

Failure

K%

FcF- -~ "= -"=-"=-"=-=-==- 1
| c s {
| t )3 e t Output
! u 1 n t estimates
a - a 8 b
I
, t n o |
i o] t r
! r s .
I !
{ |
i !
{ |
! Plant model !
e e e e .-~ J

Figure 1. - Failure detection with plant model.
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Figure 2. -~ Maximum GLR index for sensor-step failure in PS1l1 as function of observation

number.



