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We show how relatively simple, non-imaging, microwave radars can be used to measure ocean

wave directional spectra from satellites. In the non-imaging radar measurement, the directional dis-

tribution of the ocean waves is obtained by scanning the radar in azimuth; the resolution of Fourier

component waves in any given azimuth direction is a result of a Bragg type of wave front matching

condition. The spectral distribution in wave number can in principle be measured using either short

pulse (SP) or dual frequency (DF) techniques.

In this paper, we analyze the SP and DF terh gtwrs :. t e frequency domain, in which is evi-

dent a common dependence on a generalized fourth -order statistical moment of the surface scatter

ing transfer function. A solution for the fourth-order moment is obtained using physical optics In

the high frequency limit appropriate to near-vertical, specular backscatter. The solution is expressed

as an asymptotic expansion valid to the second-order in Gaussian wave statistics and the first order

in non-Gaussian wave statistics. The moment solution gives, to the first order in wave steepness, an

intrinsic electromagnetic modulation spectrum that is proportional to the large wave directional

slope spectrum evaluated in the azimuth of radar look. The harmonic distortion inherent to the

specular scatter measurement of the sea slope spectrum is found to be small in the Incidence angle

range of 8 to 15 degrees.

Detailed consideration is given to the measurement signal -to-noise problems specific to SP and

DF techniques. It is shown that with suitable pulse integration, typical satellite measurement signal-

to-noise ratios of ca. 0 dB result for the narrowtmnd DF technique and +20 dB for the SP technique.

Thus, while satellite measurement feasibility with either technique is indicated, the SP technique

possesses a distinct advantage in terms of measurement signal -to-noise and contrast ratios.
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make the point that if these waves are visible to the naked eye, then surely they ought to be mew

urable by some remote sensing technique. In particular let us inquire if they cannot be measured by

microwave radars which, as remote sensors, possess the distinct advantages of (a) providing their own

source of illumination, (b) seeing through clouds and light rain and (c) being practically insensitive

to the ionosphere. We will show that indeed microwave radars can measure the waves; moreover we

show that the radars do not have to image the sea surface, if only statistical properties of the wave

field are desired. The most useful ..tatistical description of a random, homogeneous wave field is

given by the directional wave height spectrum. In terms of the spatial properties of the wave field

that are most easily observable from remote platforms, this is the two-dimensional, vector wave num-

ber spectrum of the two-dimensional height field.

Modern, numerical wave forecasting and analysis is based on wave spectral growth and propaga-

lion models that require as inputs initial sea state (i.e., directional wave spectra) and future wind

field specifications. Owing to inevitable model and specification errors, the wave forecasts will be

in error. Presently, there are no viable means, either in-situ or remote, of measuring directional ocean

wave spectra in any kind of routine or global sense. If routine remote observations were to become

available, we should be in a much better position to verify the wave forecasts currently being pro-

duced and to improve upon them. through both model improvement and improvement of the initial

state specification.

We shall be considering observations of the sea surface in the case where the radar is pointing

downward, away from the vertical, but not more than 15 degrees or so from the vertical. As is well

known (Barrick, 1968a, 1974; Valenzuela, 1978), near-vertical microwave backscatter from the sea

occurs by means of quasi-speeular retrorefiections from surface wave facets that are oriented normal

to the radar lino-of-sight. The hackscatter can be described to various levels of approximation by
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Traveling by air over the ocean, have you ever noticed how dearly vlsible wore th{pattaiis'ot

the ocean waves when direct sunlight illuminated the suri6? Y°ask the 'question beeause L want to
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YAM	 optics, physiexl optics, or A	 rOer h104Mquency appmximadons (Jackson, 1974x);

or alternatively, by composite surbe* theory (Brown,1978^ hasiqft, thougl4 the situation is one

of specoar reflection, and the Tadar baehacatter problem on be compared to that of sun t ob-

servation in the cue whom the sun is anti-parallel to the observer's line of eight.

I am concentrating here on small angle, specular backscatter for two rend t One is t. I be-

lieve that the p~ mechanisms involved in the reflectivity modulation by Marge waves are

simpler than in the case of largeangle Bragg diffraction backscstter. At large angles these is, in add}

tion to a purely geometrical tilting effect, a very strong sensitivity of the electmmagnetle (am) MO&

ulation to the datails of the hydrodynamic modulation of the centimetric Bragg-diffraetlng wavelets

by the atmospheric and large ocean wave flow fields, While the hydrodynamic contribution-to the

large-angle reflectivity modulation has been treated theoretically (Alpers and Homelmann,1978;

Valenzuela and Wright, 1979), theory is hard premed to deal with the hydrodynamic complexities

and actual field observations (Valenzuela and Wright, 1979; Wright et aL, 1980). In the specular

scatter regime, however, there is no special sensitivity to a particular small water wavelength. RMhOt,

the entire ensemble of water waves is contributing to the population of specularly reflecting facets,

(excluding of course those wavelets smaller than the diffraction limit). For this large ensemble of

waves, an assumption of Gaussian surface statistics seems to be a reasonable one, at least in the first

order of approximation.

The second reason for concentrating on the near-vertical is a more practical one. It is desirable

to make the nadir angle as small as posbible in order that the radius of the azimuth scan circle on the

ocean surface not exceed the distance over which the wave field can be expected to be homogeneous

(cf. Fig. 1).

We have said that the radars need Not actually image the surface to measure wave spectra. The

idea behind the non-imaging radar measurement is simple: we let the broad em phase front on the

surface (i.e., broad compared to the correlation scale of the waves) function to isolate or resolve

plane Fourier surface contrast waves travelling in (or contrary to) the direction of radar look. The
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principle is similar to that of Bragg scatter, which holds that backscatter occurs only from those water

waves having wave vectors "matched" to the em propagation vector. Specifically, the water wave	 -

propagation vector K must He in the plane of incidence and must have the magnitude

I K I = 2xdn9

where K is the em wave number and 6 is the angle of incidence. To illustrate the principle we con-

sider a simple tilting model of reflectivity variation in which the variation is directly proportional to

the large wave slope component in the plane of incidence. See Fig. 2. Then if Vf is the large wave

slope, the radar modulation spectrum will be proportional to the large wave directional slope spec-

trum evaluated in the azimuth of radar look, i.e.,
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where brackets ( ... ) denote ensemble average, p" is the unit horizontal vector, K/K, and F(K) is the

spectrum of wave height.

The actual detection of the range-travelling surface contrast waves can be accomplished using

either short pulse (SP) or dual frequency (DF) techniques. In the SP technique, very short pulses

are used to resolve the surface wave structure in range. The fast-time or range modulation: of the

backsc;attered pulse caused by the spatial reflectivity variation can be detected by spectrum analysis

of the backscattered signal envelope. (See Fig. 3.) The SP approach to possible satellite ocean wave

measurement was apparently first suggested in a note by Tomiyasu (1971). Apart from the work of

Jackson (1974b) and the present work, the SP approach has received no further consideration in the

literature.

The DF approach, first proposed by Ruck et at (1972) (and cf, also Ransone and Wright, 1972;

Hasselmann, 1972) has received considerably more attention (Plant, 1977; Alpers and Hasselmann,

1978; Schuler, 1978; Plant and Schuler, 1980). The DF technique was originally proposed as —

and is still generally understood to be — a narrowband technique. Quasi-monochromatic waveforms

that entirely fill the antenna beam spot on the surface are transmitted at two closely separated



microwave frequencies. An harmonic surface contrast modulation is detected through the interaction

of the em "beat wave" with the surface. Jackson (1974b) showed that the narrowband DF technique

has a poor measurement SNR (signal-to-noise ratio) compared to the SP technique. The reason for

the low SNR is that the contract modulation spectrum is relatively broadband, having a bandwidth

comparable to the bandwidth of the sea-slope spectrum (a bandwidth of the order of 30-100 percent

of the peak frequency). Ance the modulation spectrum P mod(K) is being detected only in a narrow

spectral band of width AK - 2w/ L. where L. is the range extent of illumination, the detected sib-nal

(the covariance of powers at the two frequencies) will be small compared to the background noise

level (the variance of backscattered power at either frequency), i.e., the SNR - Pmmi(K) AK << 1.

Jackson (1974b) showed that this low SNR problem inherent to a narrowband DF measurement could

be solved by using wideband signals - e.g., by using signals with bandwidths comparable to the sea-

spectrum bandwidth. An illustration of a wideband DF radar system is given in Fig. 3. We note that

the receiving system represented in Fig. 3b, consisting of a two channel receiver and cross-cotrelator,

was described some years ago by Parzen and Shiren (1956). Parzen and Shiren considered both the

SP and DF receiving systems from the viewpoint of detection theory. Independently of any particu-

lar transmitter, the SP and DF receiving systems were regarded simply as alternative systems for de-

tecting a modulation on a noisy carrier signal. In their analysis, Parzen and Shiren assumed that the

input to both detection systems was a weakly modulated Gaussian noise process. This is actually a

realistic model of the sea-return process we are considering, and indeed a performance comparison

of SP and DF systems can be made on the basis of such a model process (to be more specific, the

surface impulse response can be modelled as a weakly modulated complex Gaussian process).

Alpo rs and Hasseimann 0 978) (hereafter referred to as A-H) performed an extensive analysis

of the DF technique in its original narrowband (continuous wave) context. Their analysis dealt with

large-angle backscatter and included hydrodynamic modulation. Rather than using wideband signals

to improve the DF SNR as suggested by Jackson (I 974b), A-H instead introduced the idea of slow-

time filtering the DF signal D I ,(t) = E I (t)E; (t) where E t and F ` are the backscattered fields at the

two frequencies. The idea is that the modulation signal component of D t :(t) will appear as a strong
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line in the comparatively broad Doppler spectrum of D t2(t). A H showed that by fllteriny D 1 z(t) at

the appropriate platform-motion-induced Doppler frequency, satellite SNRs typically of 0 dB could

be obtained.

In this work, we apply the A H filtering scheme to the SP technique as well as to the DF tech-

nique. In the SP technique, the slow-time filtering can be realized simply by integrating pulse re-

turns in range bins (fast-time bins) that are adjusted so as to compensate for the apparent motion of

the target ocean scene due to the motion of the platform. A schematic illustration of this kind of

processing in a SP system is given in Fig. 4. (We remark that the integration, or filtering, is done to

reduce the level of the random signal fluctuation arising from waveform coherency effects (Rayleigh

fading).

Following, we present a frequency-domain analysis of the SP and DF systems illustrated in Fig.

3. This introduces the generalized fourth-order moment of the surface scattering transfer function.

,Using the scalar physical optics integral solution for the transfer function, we obtain, first, a time-

independent, far-zone solution for the moment in the high-frequency limit appropriate to near-

vertical backscatter (geometrical optics limit). We proceed then from the far-zone soluticn to the

more complicated time-dependent Fresnel zone moment solution that is required for an analysis of

the systems employing the A H slow-time filtering. We conclude with an SNR analysis of SP and

DF techniques which indicates the feasibility of measuring ocean wave directional spectra from low

earth-orbiting satellites. The analysis shows that the processing gain achieved with the A-H filtering

scheme is approximately the ratio of the microwave carrier frequency to the ocean-wave induced

modulation frequency of interest. For X or Ku band radars, :his ratio is on the order of +30 to +40

dB. With this processing gain, we arrive at typical satellite measurements SNRs of ca. -10 dB for the

nanrowband DF approach and ca. +20 dB for the SP approach.

2. Short-Pulse (SP) and Dual-Frequency (DF) Techniques

Figure 1 depicts a pencil beam of radiation incident on the sea surface. The antenna beam axis

makes an angle 8 to the vertical (z axis) and Ues at an azimuth 4) relative to some (x t , x 2 ) reference



axes in the horizontal plane. The unit vector 	 (cosO, sinO) is defined as pointing along the azimuth

ray, or in the direction of increasing surface range. The slant range from the radar to points on the sur-

face z - ['(x), x - (x t , x2 ), is denoted r, and the range to the center of the beam spot is denoted ro.

We shall be considering antenna beam widths typically of a few degrees and illuminated areas A.

typically of several kmAn lateral and range extents.

We consider the backscatter of any finite duration but otherwise arbitrary transmitted waveform

f(r). Here we user to denote "fast" signal .time, i.e., that time having a scale commensurate with the,

pulse duration, or reciprocal pulse bandw ;dth (typical scale of microseconds). Fast timer is to be

distinguished from "slow" time t, which scales with the interpulse period or reciprocal Doppler band-

width ( typical scale of milliseconds). The incident field at the surface is given by the spherical wave

ep10(r, x) = GVI Wf(r-r/c)/r, where G is the antenna power pattern on the surface. The Fourier

transform (FT) of the incident field is

Onc (k,x)- G% (xx) e-'kr E.W 	 (Ian -

where EOW is the waveform FT at the surface,

Eo(k) - (c/2x)J 
a—ikcr [ f(r)/ro ] dr	 (1 b)

where k - v/c is the wave number, v is the frequency and c the speed of light; and where in the de.

nominator we have set r - ra since, for the few degree beamwidths and large ranges we are consider-

ing, r varies only very little over the beam spot. The backscattered field e s(r,t) is a duration-limited

random process in fast time r (the duration being determined by the round -trip travel time Tr of an

impulse across the beam spot on the surface) and is assumed to be a stationary random process in

slow time t. Stationarity in t follows if wo assume that the radar is translating at a uniform velocity

over a homogeneous sea. For simplicity, we will ignore the effect of discrete pulsing and sampling

and treat es(r,t) as a continuous process in t. Let the FT of e. with respect to r be denoted as

1 s(k, t). Then 1^ is related to the incident wave form FT EOM as

E=(k,t) = S(k,t)EO(k)	 (2)



8

where S(k, t) is the surface scattering transfer function for backscatter at a frequency v - ke. In

principle, S(k,t) is the solution to the complex boundary va!ue problem for a unit amplitude har-

monic incident wave in the case when the scattering geometry is frozen at some time t. Note that

we are treating S as a scalar quantity; this is permissible since there ih only a very weak polarization

dependence in the specular backscatter regime (cf. Jackson, 1974a). Also note that the look angle

8,0 dependence is implicit in S.

A frequency-domain analysis of the SP and DF systems diagra ti. Ad in Fig. 3 is given in Appen-

dix A. The SP and DF systems of Fig. 3 will, for convenience of identification, be referred to as

"modulation noncouerent" systems, as they are insensitive to the phase of the signal modulation.

In contradistinction, those systems which are sensitive to the phase of the modulation, such as the

system of Figure 4. will be referred to as "modulation coherent." Since the idealized SP and DF

systems double detect using square law detectors, ths-ir outputs will depend on fourth-order products

of the surface transfer function S(k,t). From Eqs. A2 and AS. it is seen that the ensemble average

outputs of the SP and DF systems can be expressed in terms of different operation, on , the same

"generalized" fourth-order statistical moment of S(k,t), viz.,

M(k,k',K) - (S(k)S•(k-K)S•(k')S(k'-K))	 (3)

where (... ) denotes ensemble average and • complex conjugation. Note that in (3) we have omitted

the explicit time dependence in S(k,t). If the difference wave number Ak is defined as

Ak - k - k'
	

(3)

then M can also be expressed as a function of Ak, M - M(k, Ak.K). In the following, we will be work-

ing under the assumption that the pulse bandwidths(or discrete difference frequencies) are not exces-

sive; hence we require that

K/k << 1 and Ak/k << 1
	

(3 ")

In practice (3") will always be well satisfied; e.g.. a I percent bandwidth would represent quite a large

bandwidth.
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3. Spceular Scatter Solution for the Moment M(k,Ok,u)

The physical optics (PO) integral solution for the transfer function can be written as (cf. Beck-

trann and Spivdchino, 1963; Weissman, 1973)

S(k,t) a Umcef
C(x-Vt)exp(42kr(x.t)xdx 	 (4)

0

where G is the illumbutlia pattern; V is the platform velocity; x = (x I , x2 ) is the horizontal coordi-

nate vector of surface points in a surface-fixed reference frame; dx - dx t dx 2 is the element of hori-

zontal area; and where the integration extends over the illuminated area. The origin of the coordinate

system x = Q is taken to coincide with the center of the beam spot at t a 0. For small t, the Fresne4-

approximation to the phase is valid.

-2kr(x,t) z, -2kro + 2kcos0t(x) - 2ksin9 • (x - Vt)

+ Wro){) x- Vt 12 - sin 2 e ig • (x - Vt)l 2 + t2U1	 (s)

where again r(x) 6 the random wave height and j is the unit vector in the horizontal pointing in the

direction of increasing range. In the analysis of the modulation noncoherent systems of Fig. 3. we

find that a far zone approximation to the phase is adequate; the quadratic Fresnel term in (S) can be

dispensed with without sacrificing any of the essential physics of the problem. Thus, neglecting the

Fresnel term (and ignoring the time dependence which is now trivial without the Fresnel term), we

have for the far zone approximation to the PO integral:

-i2kro
SM - ike	 _G(x)exp{i2kicos0t(xx) - sin6 e -x)) dx	 (6)

2 w rocosO

We calculate the fourth moment. Eq. (3), in the geometricai optics (GO) limit appropriate to near

vertical, specular backscatter. The GO limit of the moment (3) can be calculated in a number of

different ways according to various methods that can be found in the literature dealing with the

second moment (IS(k)1 2 ) (average backscattered power). Of these methods. Barrick's (1968b) is

the most direct. Other methods that start with the PO integral include those of Beckmann and
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Spizzichino (1963) and Kodis (1 %6: cf. Weissman, 1973 ). Of course, it is possible to dispense with

PO altogether and start ub tnitlo with GO, e.g., using methods such as Lynch and Wagner% (1970).

But, as we still have to account for phase, there i3 rea"y no advantage to be gained in using GO. Pro-

ceeding according to Bar iek's (I %8b) method, we substitute the PO integral (6) into (3). Writing

the product as a fourfold integral, and interchanging t mere ble average and integration operationm

we have:

M(k,Ak,K) . may f ... Wit) ... G(X4)

o

• Cexpji2kcost[k(f I - r2 - r3 + t'4 ) + Ok(f3 - r4)

+ K(t2 - f4)11 • exp 1-2sinO e • [k(x t - x2

-x3 + x4 ) + Qk(x3 - 34 ) + K(32 - 14 )1} dx t ... d44	 (7)

where we have approximated the product of the wave numbers k(k-K) ... by 0 (which is permis-

sible in view of WA and where we have let r  . r(x t ), etc. For large k (i.e., for large rms phase

variation 2kcos9<r2>% ), it is apparent that appreciable contributions to the moment are made only

in the neighborhoods of two sets of stationary points, vit.,

St : x t a x2, x3 . x4

S2: X  R x3 , x2 = x4
	

(8)

Except w:-.em x  = x 2 = x3 = x4 , the sets St and S2 are distinct and yield distinct zontributiuns

to the moment; i.e., M - M t + M21 where Id t and M2 respectively derive from integrations over the

small volumes surrounding St and S3 . Consider the integration over the . plume containing S t . let

u s 2kcos9(x t - x2)

w 2kcoWB 3 - x4)

wax2-x4

xsx4
	

(9a)



Now expand the height differences in the neighborhoods of the stationary points

series.

2kcos#(rt - fl) - Vr2•jj + 0(u2/k)

2kcosO(f3 - r4 ) - Vi4. + 0(v2 /k)

where V n (6/X I, "x2 ). Then the contribution M t to M for large k becomes

M t N (2rocos29)"4 J A(w) exp(-12ksinO e•w)dw

X 1(2u)-'t 
J J 

(exp{i[ g2.. - VC4.1

+ 2acose(t2 - r4 ) + 0((u2 + v 2 )/k) + aAkkv/k)11)

	• exp { it tang Q • ( u - v-) + 0(Akv/k)) I du dv- }	 (10)

where in (10) we have already taken the large It limit in the products of the gains, i.e., G(x t ) ... G(X4)

G 2 (x)G2 (x + w), and where we hve integrated over the remaining space variable x, letting A(w)

represent the convolved two-wa! gain pattern,

A(w) - 
J-- G

2 (x)G2 (x + w)dx	 01)

(Since r(x) is a homogeneous random process in x, the average ( • • • ) is independent of *%e absolute

position vector x - x4 , so that the x integration only effects the gain function.)

Now consider the limit of the factor in braces as k -+ -. Lct j denote the random. six-vector,

I - (VrI . Vr4 . tz , r4 )	 ( 1231

and let t denote the associated six-dimensional characteristic vector,

t - (& -v, 2Kcose, - `KCObe)	 (12b)

Then, the characteristic function of j is defined as

	

0,q;w)- (cit•E)- f elf • - pE(I.w)dt	 (13)

uhr.rc pt is the pdf (probability d.•nsity function) of 1. Since r(x) (and hence t) is a stationary proe-

m,, tIV pdf and characteristic function depend only on the separation, or lag vector w = x •' - x4.
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From the definitions (12,13) we have for M l in the high-frequency, CO limit, at least formally,

lim Ml s M, (K) _ (2rocos8)-4 A(w) exp(-i2resin9 Q • w)dw
k-mo 	 i

X j(Zn)-4 ff *E(t,w) exp [-itan9 Q • ( u - v- )) du dv-	(14)

Since M 1 in the large k limit is a function of K only and the total moment M - M 1 + M2 , and since

by the definition (3) M is symmetric with respect to a K and Ak interchange, then we must have, in

the limit,

Um M(k, Ak,K) = M 1 (K) + M 1 (Ak)	 (15)
k-

Note that the limit does not have to be taken in order that (15) hold true, at least approximately.

The decomposition (15) will be valid in all cases provided that K and Ak are small compared to k

(condition (3")).

If we define the surface wave vector

K = 2KSinO Q	 (16)

and the specular slope vector

S= tang Q	 (17)

Then ( 14) can be written somewhat more compactly as

M 1 (K) _ (2rocos26)-4 
J 

A(w)exp(-iK- w)dw

X 1(2x)-4 J J ^r E (t; w)exp [-is- (u - v- )] du de- 1	 (18)

where now the characteristic vector t has the components

I = (u, -v-, Kcot®, -Kcot9)
	

(19)

Let us write the solution (18) as

Ml (K) _ (2r.cos2 9)-4
Ea

 A(w) Z(K ;w)exp(-iK • Iv)dw	 (20)

where Z represents the factor in braces, viz.,
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X(Kt w) a (2 w)-4 f w ^^(M. y, Kcote, -KcotO; w)
JJ-w

eXp [-4' (2 - y)1 dM 41
	

(21)

An alternative form of the solution may be obtained by using eq. ( 13) for 01 and integrating over g

and V.

R(K; w) ` J J-y pt (ir. I, 3 2 , 3 4 . w) exp j iKv'ote Q2 -14 )1 dt2 dr4 	(22)

We shall find the form ( 21) more convenient to deal with.

Except in one particular (to which shortly), the above derivation is essentially identical to Bar•

rick 's 0 968h) second -nunnent derivation, We have used Barrick 's method because of the several ap-

proaches available it is the most direct and to the point. Yet, the reader may feel that the dnrivaticm

lacks rigor; that certain steps require further justification. Rather than attempt this justification heat,

Hr offer instead in Appendix B an alternative, somewhat more rigorous derivation which sotdd. by

analogy to the present derivation, justify it.

The peculiar featun, of the fourth-moment solution alluded to (i.e„ the feature of the fourth-

moment solution that has no analogue in the second -moment problem) is this: the mathematical

object Maimed to he the solution does not exist. llte joint pdf p t is singular at the origin w w 0. and

the integral M t will — genrrally. it is supposed -- be divergent, Consider the second moment of back-

scattertid monochromatic power, i,c., consider

(IS(k)14 ) a M(k, 0, 0) 2M 1 (0)	 (23)

Setting K - 0 in ( 18) and ( 22), and in ( 22) integrating over r t and r 2 , we have

M t (0) _ (2r,)cos2e)-4 
J 

A( w) pet z,vr4 (5, s: w) dw	 (24)

where p`,t 2,v0 is the joint pdf of slopes alone. for example, consider a one-Jimensional scattering

situation, where ('( x) is the height profile and r x (x) the slope, If ;(xl is a statit*ary Gaussian process,

Own the joint pdf has a first -osier singularity at the origin, i.e„ as w-+ 0 the joint pdf.

l)tn,sA (s, S; W)	 (2tr)- ^, p;x(s) • (8Iw1Y 1	(25)
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where g ! (r2 ) is the tms curvature. Thus for Gaussian surfaces, the moment M t diverges logarith-

mically at the origin and consequently the variance of scattered power is infinite.

This singular behavior of the solution is a consequence of the point source approximation that

is implicit in the PO integral formulation (4). The failure of the point source approximation can be

understood in terms of the statistics of surface curvature. In the point sou rce approximation (to -6 ),

the power backscattered at a specular point is directly proportional to the product of the principal

radii of curvature, or the same, the reciprocal of Gaussian curvature. Longuet-Higgins (1956) has

derived the pdf of reciprocal Gaussian curvature g- 1  for normally distributed surfaces and shown

that the second moment of the distribution is infinite. We surmise that the unboundedness of the

second moment of $' t is not a property peculiar to Gaussian surfaces. Rather, we suppose that the

variance of g' t will be infinite for a large class of random surfaces. It can be shown that the singu-

larity can be removed by including the finite dimensions of the source, When the finite size of the

source is accounted for, th e "singularity" at the origin is so reduced that its contribution to M f (Q)

actually becomes quite small.

For reference, before concluding here, we write down the result for the second moment

(IS(k)1 2 ). From (4), using the same method we have used for the fourth -moment, we have for the

second-moment in the high-frequency limit

Aosee49
lim (ISM12)_ _____._ PVC (s)	 ('-6)

k♦^	 4r2

where the illuminated area Ao s fG 2dx. In terms of the conventional backscatter cross-section*

ok daf, (4trro/A,) (IS(k)1 2 )	 (27)

we have

op - WSCC4 0 Pvt (S)

In Practice, it is found that th,: GO limiting form (28) provides a good fit to near-vertical microwave

backscatter observations provided that sonic account is taken of the effects of diffraction for finite.
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k (Wentz, 1979). Diffraction can be accounted for by treating p ot as though it were the pdf of

slopes in a smoothed sea surface, in which waves smaller than the diffraction limit (e.g.,. capillary

waves) have been removed by a spatial filter (cf. Brown, 1978). Thus, in (28), it is just as well to

keep the finite frequency tag on e, as In practice, a k-dependent pdf is involved.

Following we will perform some calculations in which we assume a Gaussian pdf of orthogonal

slopes,

1	 )
pvt Ls) = (2sr)- t (detm)-K exp - 2 mQa S.	 (29)(29

where m is the covariance matrix of orthogonal slope components,

m-(mQa)= ^ax a a>' a= 1,2

and m; 1 are the elements of the inverse matrix. in (29) the Einstein summation convention is em-

ployed. A crude fitting of (28) with the Gaussian pdf to the 2 . 15 cm backscatter data of Jones etaL

(1977) gives a 2.15 cm radar -effective total mean-square surface slope mo that is approximately a

linear function of surface wind speed U,

mo ft 0.0025 U [ms- 1 1 +0.01	 (30)
(Ku-band)

where the slope variance mo a man . The eyeball-fitted result (30) is essentially the same as Wentz's

(1979) more thorough analysis of the Jones et at. data. Eq. (30) gives radar-effective slope variances

in the wind speed range 10 to 25 ms-1 that are approximately 60 percent of the optical values re-

ported by Cox and Munk ( 1954). The Ku-band radar-effective slope-variance thus lies between the

"clean" and "slick" surface observatiowof Cox and Munk (1954). Noteworthy is the agreement of

the 60 percent figure, here derived from active radar cross-section data, with the percentage slope

variancc inferred from passive radiometric measurements using a GO model of emissivity (Wilheit,

1979).

t
t
t
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4. Asymptcdc ihraluation of M 1 (K)

We are considering wind-driven seas in which there Is a continuous spectrum of roughness (i.e.

wave height) from the scale of the dominant wave (- 100 m) down to the scale of the diffraction

limit (- 0.1 m). If the incidence angle is not too large, there will always be a large population of

scatterers (i.e. specularly reflecting wave facets) existing on scales smaller than the dominant ocean

wavelength. The modulation of the backscatter by the large ocean wave (or spectral ensemble of

Urge waves) can then be considered to be in the form of a small perturbation, and an asymptotic

expansion of SM, w) about w = is appropriate. Let the large-wave steepness, or significant wave

slope, be defined by So = Koo where Ka is the wave number of the dominant wave and o is the rms

wave height. Then the expansion should be accurate if S o is small compared to the total rms slope,
i'

Mo. This will usually be the case. Thus if 6 0 = 0.05 (a value characteristic of ,fully developed seas)

and mo = 0.19 (wind speed of 10 ms -1 by (30)), then 6 0 Jmo = 0.26.

M 1 (K) (eq. 20) is expanded by first expanding E(K; w) (as given by eq, 21) and then term-by-

term Fourier transforming with inspect to w. F is expanded according to Longuet -Higgins' ( 1963)

method for generating the non-Gaussian pdf 's of variables in a non -linear Stokesian sea. Indeed, we

have chosen the form (2 1 ) for S in order that we could parallel Longuet-Higgins' (1963) development

Ind so lay the foundation for a theoretical model of M 1 (K) capable of entertaining non-Gaussian

wave statistics in a rational manner. 	 ! .^

As can be seen from (13) the coefficients in a Taylor series expansion of the characteristic funs- 	 ►

lion correspond to the moments of the distribution, i.e., if

i  2
40 (t^ w) : I + 1µi1) + i2, N() yj ...	 (3 1)

TVthen the µ coefficient of onicr n is the n-th order moment,

W (W) 
f

i 	 = (t11 ... tia) P4(J: w) dj	 (32)1 )



......._._.^. a ,	 .. ^-.,..-..^- .K.^^.,..n ^_,^-,.^.,.w - Q., .. ,	 nom,	 .,.,	 ^T..,s,,.'.r.-..•^-	 ,-,-n -+r.^-.,^.-.	 .

17

The cumulants of the distribution. by definition, correspond to the c coefficients in the expansion of

Cjj; W_)' In* JI; w_)

Z
a I cf i) ti + 2! c^) titj +...	 (33)

Lwiguet-Higgins (1963) shows how, in general, it is easier to calculate the cumulants (as opposed to

the moments) from the non-linear, Eulerian water wave equations. Further, an advantage in working

with the cumulants is that if I is nearly normally distributed, then the third and higher-order tears

in the C series will be small. (This is so since for I exactly normal, C is given exactly by the first two

terms of the expansion (33).) Considerable simplification of the problem is p3ssible if we restrict our

attention to statistics of the third -order or less. Thus, since I (cf. eq. 12a) has zero mean, co) = µ(t) a 0.

it follows that the second and third order moments and cumulants are identiaL as can be verified by

a term-by-term comparison of (31) and the expansion of Ot 
a exp(Ct ). Thus, if we restrict ourselves

to third-order statistics, t can be approximated by

Ot - exP(Ct ) " exp	 te(W)tttjl

3
X 1 + 1

! 
N^(w)tt tj tk 	(34)

All elements of the covariance matrix (2) - ((i (j ) can be expressed in terms of the wave height co-

variance function R(w),

	

R(10=t' q2r4) - (r(rx +w)r(X))	 (35)

or various derivatives thereof, as can be verified, for example. using methods outlined in Papoulis

( 1 965, p 314 fl):

mp p	 - R ,a o f 0	 -R,o

map	 i R.4

Mn	 l_

	

- _ r _.._	 (36)

ym
In

tti
c	 w
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where we have defined a2 - R(Q), R,a = 8 R(w)Jewa etc. and map = -R,ap(Q), and where a and Q

range from 1 to 2.

Let µ0) = d^t (2) + 0^t(2) where d and o denote the diagonal and off-diagonal blocks of gt 01. Since

d(2) = O(m2) and 0/l(2) = 0 (80) fo r w removed from the origin, i.e, on the order of wavelength, we

can then expand (34) for small 01A0),s

eXp \ 2 
dµ(?)1 x 

ll 
_ z 0 (2) ytj

_ 6 
N^ titjtk + 8°µ()0 42) tttj tk tt .. 

J	
(37)

where OJ2) and Ut (3) are functions of w, but dg(2) is not. Similarly to (36) we expect that the ele-

ments of a (3) are all derivable from a knowledge of the third-order mean lagged products of surface

height Q(r, s) _ (tLx + r) t (x + s)r(x)). Thus, the FT of E (3)(w) should be expressible as various

operations on the bispectrum, the FT of Q(r, s) (Hasselmann et of . ( 1963). In principle, the bi-

spectrum (and hence the elements of e (3) and the FT of E t3)) can be derived from the height of

spectrum F(K) = FT(R(w)) using a second-order Stokes type expansion of the nonlinear equations

for free gravity waves according to the theories of Hasselmann et aL (1963) and Longuet-Higgins

(1963).

We are thus proposing here that the appropriate model for the n ar-vertical wave -spectrum

measurement problem is one that (a) models scattering according to GO and (b) models the sea-

surface accordi .g to the Longuet -Higgins ( 1963) and Hasselmann et al. ( 1963) theories. That this is

a realistic model for near vertical backscatter is indicated, for one, by the success of such a model in

predicting the average impulse response of the sea surface to 3 cm radiation at vertical incidence

(Jackson, 1979). Moreover, regarding the appropriateness of the GO approximation: if there is

reason to suppce that GO is a good approximation in the average impulse response probi;m, then

there is even more reason to suppose that GO is a good approximation in the present problem. i.e.

that of modelling the spectrum of the impulse response. This is because in the present problem we

are only interested in the variation of the backscatter over the large wave profile, and not in the
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absolute power level. Thus, while the diffraction component may be small compared to the GO com-

ponent (cf. Brown, 1978), the variation of the diffraction component will be smaller still compared

to the GO component. This is because the diffracted fields are very diffuse, and can therefore con-

tribute only negligibly to the modulation via the geometrical tilting mechanism.

We shall be neglecting the non-Gaussian terms in g(3), although there is noreason to suppose

o priori that the g (3) terms are negligible compared to the second -order terms in Of (2). Thus, for

example, consider small values of tan0ho o . Then the °9 (2 ) terms such as R(w)K 2cot2 8 predominate.

Thus the linear term is 0(K 2 02 cot 28) - 0(6ocot2 8) and the second order 0 (2) term is 0(64cot48).

The corresponding V(3) term will be 0( a(V3 K3cot38) - 0(X83cot3 8) where X _ q3 )/03 is the height

skewness coefficient. In general, X and 6 0 are proportional to each other (Huang, 1980; Jackson,

1979). From Longuet -Higgins' ( 1963) theory, if one assumes a Phillips spectral-form, one gets

A a 460 . This relationship follows from Jackson ( 1979) if an apparent error of a factor of two in

the second-order height profile t'2 is corrected for; i .e. if ^2 4- r2 + 2 (D. E. Barrick, personal co%

munication, 1980). The ratio of e(3) terms to second-order Ie(2) terms is then of the order of

A/6acot8 - 4tan8 - 0.71 for 8 - 10 0 . Hence, a priori, the neglect of the E'(3) terms is not justified.

Proceeding nevertheless with a Gaussian surface model, using (36) and ( 19) (for the definition

of t), we have

Ot - 4, c[ (u) *oi (-v-) expl-(Kocoto)21

X { 1 + (KcotO) 2 R + KcotOR ,n (un - vn )

-R ,aQ un vQ + second-order terns in op(2)}	 (38)

where ^ v t(u) = exp(- i ni do un uQ ). lbe second-order terms are carried in Appendix C. Now making

use of the identities,

pvt(s) - _! f 0 V , (u)e-4 du

ap vr - 
_ _, U. v3

we^̀^ u du
	 (39)
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and so forth, we have for S (eq. 21)

S -. P2 (I) exp (- (Koeot9)2 I	 1 +

+ (Kcot9 )2 R + 2iKcot9 
pps 

Rya

p'p2.o R 	 second-order terms in 0 (2)	 (40)

where for short in the series part of (40) we have let p a p c;(s) and p ,Q $ ap/as., etc. The second-

order terms are carried in Appendix C.

The moment M t (K) as given by (20) is the FT of E as seen through the lag window A(w). if

A(w) is broad compared to the correlation scale of the waves (as will always be the case in satellite

measurements), then the effect of the finite window on the modulation spectrum can be igonred and

we can write M t as

M t (K) _ (sr/2rocos49 )2 p2 )exp 1-(Kocot9)2 )Vr

X [FT ( A(w)} + A(0) • Fr ( linear + higher-order terms in (40) }]	 (41)

where the two-dimensional Fourier transform,

FT (... } def. 
(2a)2

 J (... } e-i^'^ dw	 (42)

Let the reference axes x t and x2 be fixed in the antenna beam. that is let x t be the surface range

coordinate, parallel to Q and K, and let x2 be the orthogonal azimuthal coordinate. Assume a Gaus-

sian gain pattern,

	

G) = eXp L 2 (xt /Lo)2 2 (x 2 /Ld	 (43)

then (using (11) for A(w)),

FT (A(w)}=(2x)-2f
J
 A(wt,w2)exp(-iKwl)dwIdw2

=(Ao/2)cxp[- 2 (KLp )2]	 (44)
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lben, malting use of the second -moment result (2S), noting that A(Q) - A O /2 - wLO LO /2, we write

(41) in the farm

L
M t (K) - ^ l(IS(k)12)12 P e-K(KLo )2 + Ptuad (K)	 (45)

P	
- /^	 _

where the modulation spectrum, or spectrum of the impulse response, is

Pmod(K) - (v1_x/La )exp (-(Kacot9)2 1 • FTIlinear + higher-order terms in (40)}	 (46)

The directional height spectrum is defined by

F(K)V' FT 
IR(w)ti	 (47)

Then, since FT (R ;.) - M. F(K) and FT ( R,. ,I- -Ka Kp F(K), the expansion for Pmod becomes

Pmod(K) _ ^ e-(Kocote)2 . cot29 - 2cote p-'n • KaV
	 p

+ p '° p 's •
KGK 

K2 F(K)+...	 (48)
p2	 K2

or

Pmod (K) =mud
(K)° _^ e-(Kocote) 2 . (Coto- aasp)2OF(K)+...	 (49)— •

where 8 f p /as a ( Ka / K) • (p.Q /p) = Q • Vs p. The second-order term in the expansion of Pmod is

given in Appendix C.

Some features of the solution are noted. If the exponential factor (the square of 0, ) is

neglected ( which neglect is consistent with the neglect of the second -order terms) then the linear-

ized solution (49) yields the same result as the simple tilting model (Fig. 2). The dimensional pro-

portionality factor Lm t relating Pmod(K) 4 m to K 2 FM & m2 is the reciprocal of the azimuthal

Warn spot dimension. An L® t dependence will exist whenever Lo exceeds the lateral correlation

length scale (e.g. crest length) of the surface waves. Large Lm means small signal. This loss of modu-

lation signal power with increasing L m can bc: thought of as the price paid . or high directional reso-

lution: of the ensemble of Fourier conip-o gent surface waves contributing to a total modulation
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power, the radar is isolating only a small subset that are travelling in a small direction band. The L;l

dependence can also be interpreted as follows: in a real short-crested sea, the waves are running out-

of-step. Hence, modulation signal power adds r.oncoherently across the beamwidth resulting in an

Lip dependence. The total signal power on the other hand adds directly as Lv . Hence the relative

modulation power goes as L,'*, and the spectrum of power as W.

To gain some feel for the effect of the second-order terms, sample calculations are carried out

for a simplified two-dimensional scattering situation using eqs. 49 and CS of Appendix C. The results

shown in Fig. S indicate that there is a fairly good measurement fidelity to the wave slope spectrum

in the incidence angle range 8° to IS * for wind speeds > S ms-1 and significant wave slopes 8 0 < 0.1.

S. SNR Analysts: The Modulation Noncoherent Cm

Narrowband Dual•Fyequency (DF) Technique

The appropriate signal-to-noise ratio (SNR) in the narrowband DF technique is the DF correla-

tion coefficient (cf. Barrick, 1972; Plant, 1977). Thus, from (3), (15), and (45), we have

SNR 
deaf. M(k,K,0) _ 1

[(IS(k)12 )12

(VTW/Lp) Plod (K)

In (50), note that Pmod is the one-sided spectrum, i.e., we have let Plod 4- 2Pmod• Here, and in the

SNR calculations that follow, we use only the linear part of P lod with the exponential set equal to

unity. (This assumes that 8 ocotB << 1, and is consistent with the neglect of the second-order terms.)

Let the one-sided spectrum F(K) be given by the Phillips spectral form with a cos4 0 spreading

factor.

K > Ko , g/U2

F(K)=(0.005)(8/3x)cos4*K-4,	 1*14tr/2	 (51)

0 otherwise

This spectrum defines a sea with < steepness 6 0 a Koo = K0 (f F(K)dK1 % = 0.05. For upwind (up-

wave) looks 4► - 0, and F(K)= ij,0042K-4 . From (28) with s - tanO(1,0), we have aRnp/as -

9
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-tan®/m 10 ; hence,

Pm'W (K i or (%rd,a/Lo ) (Coto + tano/m 10 )2 (0.0042)K-2 	(52)

Let K - Ko - 2 sr1200 m, and corresponding to which, U ag Vigo -18 ms-I . if we use the Cox and

Munk ( 1955) upwind /crosswind slope variance ratio mol at .66 m l0 , then m10 a mo/1.66. From

(30), we have mg at 0.055 and so m10 at 0.033. Let o - 12.S° and LO - 2.5 km; then

Pmd = (10-3 m-1 ) (4.5 + 6.7)2 (43 m2 ) - 0.54 m
	

(S3)

If Lp - S km, then from (50), the SNR - -36 dB. in addition to the SNR, defined here as the ratio

of the modulation signal spectrum to the square of the average power (equals the self-clutter, or ran-

dom power fluctuation -ariance), we need a figure to express the signal strength relative to the aver-

age backscattered power. Cali this figure the contrast ratio,

CR d=' (Pmod (K) AK] % - (SNR)% - 1.6%	 (54)

where the last follows since AK - vTw-/L,,.

Short Pulse (SP) Technique

The frequency-domain analysis of the SP system of Fig. 3a is curried out in Appendix A. In the

transformation between frequency and wave number domains, we have the identities v - kc, w - Kc,

and AP - A kc. Since K a 2Ksino, etc., the moment result, eqs. (1 S) a::d (45) becomes in the fro-

quency domain

M(v,Or►,w) = M 1 (v,w)+41 1 (v,^v)	 (SS)

where

M 1 - (v'rw/TdV1S(v) 1 2 )1 2 {6(w) + Pmod(w,$)y	 (56)

and where Tr =' (2L,,/c)ain9 and where for large Tr we have let

6(w) - (T./ 20 exp; (wTr)2]

where 6(w) is the Dirac delta function.
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The backscatter of a short pulse (i.e. "short" compared to the ocean wavelength) condos of a

weak modulation m(r) riding in a broadband, exponential "self-clutter" proems we(r) of bandwidth

equal to the pulse bandwidth Pp . (The exponential statistics of we(r) follow from an assumption of

normal statistics for the unmodulated complex field.) Thus, the backscatter power is of the form

p(r) = p [ 1 + m(r)) we(r). Using either this simple time -domain model, or using the moment analysis

results of Appendix A. one finds that the spectrum of p(r) has the form (e,g , assuming a Gaussian-

shaped pulse):

PM Cr ^ 
((I So) I2>) 2 e-%(w /00= E(w) 

+ - I + Pmod(w^^)	 (57)
Tr 	 p

where the approximation is valid for small modulation, i.e. for f Pmad(AP)Av << 1. Eq. (57) is

sketched in Figure 6.

Note that, if we let Pp -+ go, then the transmitted pulse becomes an impulse. Thus Pmod is just

the normalized spectrum of the surface impulse response. The SNR appropriate to the SP technique

is the ratio of the signal spectrum to the self-clutter noise spectrum, i.e. the SNRppPmod

Now, some or all of P. may be used for range resolution. A minimum pulse bandwidth is required

to achieve a desired range resolution (e.g. 25 m on the surface). Bandwidth in excess of this mini-

mum serves to reduce the level of the self-clutter spectrum. if we define an equivalent range resolu-

tion cell Op such that if all the bandwidth were utilized for range resolution, i.e. o o s c/2SpsinO, then

we can express the SNR in a firm similar to (50). if we take as as example Qp a 5 m. then (again

using (53) for the estimate of ='mod)

SNR - WIW/4p) Pmod(K) _ -6 dB	 (59)

which is 30 dB above the narrowband DF SNR, i.e. grater by the factor L,," p. The contrast ratio

is defined as the ratio of the rms signal level to the sic level; from (52) we have

CRs
 J

Fm0d(K)dK s 13%	 (59)
^o
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Amd w SNR can always be impro#':.: 'by Pulse integration (as we alta0 shortly stow). the CR could

turn out to be the more important figure in design considerations. The 13 percent figure is quite

good; what is more, the CR will still be quite good for shorter waves since CR a Kay'. Thus. e.g.,

for a fully developed (3 0 a O.OS) sea wave of SO m in length, the CR is reduced by only a factor of

two from the 13 percent CR of the 200 m water wave we have used as an example.

Wfdebard DF Tech ae

The wideband DF technique can employ a variety of waveforms induding.SP waveforms.

(Thud, if we transmit pulses shorter than the dominant waves then, necessarily, all the required dif-

ference frequencies are carried by the pulse.) If the transmitted waveform FT is, for example, assumed

to be constant over the handpasses of the filters Hi and Hi of Figure 3b then, as shown in Appendix A,

the strength or the DF signal at the output of the correiator will be governed by the combined band-

width	 of the 1i; and Iii analyzing filters in each channel (cf. Figure 3b). Owing to the action of

the & blocking filter; and the fact that the self-clutter fluctuation power is uncorrelz!ed between

frequency bands Av > 2v/Tr, the expected value of the cutput of this DF system will conmin,neither

do nor self-clutter components.

So. what is the appropriate SNR for this system? And how should this system's performance

be compared to the SP system? Clearly. we have to look at the detection problem more carefully.

Parcen and Shiren (1956) went some distance toward this by establishing a detection criterion for

the SP system. Unfortunately, they stopped short of a like analysis of the DF system. Lacking a

rigorous analysis by Parun and Shiren, we will do with some back-of-th"nvelope 4;Jculations.

Assume that the signal levels are within the dynamic range and resolution capabilities of the instru-

ments. Assume further that we can ignore the sampling variability in the estimate of P m, compared

U) the variability in the self-clutter spectrum. Then, successful measurement depends only on the

strength of the signal relative to cite self4utter fluctuation levels about their expected values. Con-

sider the SP system. Ilse signal at a frequency wi appearing through a finite analysis Window of

bandwidth Qai is Qupmod(wl). The mean noise level is #, j /-.asp. The noise standard deviation in



P(w,t) _ 	 Es(v,t)Es (v - w,t)dv
J••

(63)
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r
	 a measurement of total time-bandwidth product TBP = NpTrpai /2r where N. is the total number of

independent pulses, is (%/rwpp)-1 (TBP) %. Hence, if we define the detectability D' as the ratio of

the signal to the noise standard deviation, then
1

Dip = (NP paiTr)y' Sp Pmod (wi o)	 (60)

In the DF system, the signal out is proportional to Pai1 Pmod(Ovb). Assume that the mean square

fluctuation of cross-correlated power as a percentage of the product of mean channel powers is simply

TBP-% where TBP = Np sailT,/2x. If this assumption is correct then the D* for the DF system is

DDF = (NpTd" S!W Pmod ('&Vil> 1̀')	 (61)

If the DF analysis bandwidth PaU is opened wide (i.e., made comparable to the Av b), then DDF is

comparable to the D$p. Any further analysis of SP and DF techniques must consider thermal noise,

antenna gain and other tradeoffs. This is beyond the scope of the present work and ir, after all,

academic, considering that the SNR can be improved immediately by making the detection coherent

with respect to the modulation signal.

6. A H Filtering: The Modulation Coherent Case

Alpers and Hasselmann (1978) showed how by filtering the complex DF signal

D(K, t) = S(k, t) S* (k - K. t)	 (62)

at the appropriate Doppler frequency SL = K - V. a dramatic increase in the narrowband DF SNR

could be had. We show how, if the same type of processing is applied to an SP system, the same

dramatic increase in SNR results. As the narrowband DF results follow immediately from the more

general moment results in the analysis of the wideband systems, we proceed directly with the wide-

band analysis problem.

Consider the SP system of Figure 4. The output of the square-law detector is p(r,t) = lea(7,t)12.

The FT of p with respect to fast time is denoted P(w,t),



27

where by (2) N(v, t) _ S(t+, t) Eo(v). The pulse spectrum is defined as P(w) _ (IP(w, t)1 2 ). The simple

filter in Figure 4 functions to integrate pulse returns in surfup -fixed range bins. The output of the

filter after an integration time Tint is

,r
i(r) a I
	 Tint p (r + T t, t) dt

Tint I
where r̀  = 2r/c. The spectrum of the filtered pulse return is P(w )_ ( I?1 (w,t)12 ) wtiere P(w}ts the

N
FT of p (r). The spectrum of the filtered pulse return can be expressed as

^(w) =	 W(n - K • V) P(w,n)dfl	 (65)

where the filter window W(SE)

sin(SETintJ2) 2

W(n)(nTint/2)	
(66)

and P(w,SZ) is the post-detection pulse-Doppler spectrum defined by

P(w,SZ) _	 (P(w,t) P"(w,t + At) ) ein ° t dOt	 (67)
2w

The Dopplk,r frequency n $ K • V = -wr. If* = 0 coincides with the velocity vector as in Figure 1,

then

St = K • V _ K Vcos O	 (68)

If the generalized moment is defined as

M(v,v',w ; 0t)=(S(v, t)S*(v-w , t)S*(v',t+ a t) S(v'-w, t+At))	 (69)

and the 1''T of M with respect to At,

(64)

N(v,v',w, 11) 
2a	

M(v,v',w; Ot) eisz°t dOt	 (70)
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then so

P(w.n) a ff N(v,v', w: n) %(v) E: (v -• w) Eo* (v) %(P'- w) dv dv'	 (71)

Now let us spin equate the fast frequencies v, v', and w with the wavenumbers k, k', and K, (by

P - ke, etc.), so that in terms of wavenumber M a M(k, k', K) sr M(k, Alt, K). We calculate M with

S(k,t) given by PO integral solution (4) in the Fresnel approximation to the phase (S), where we

neglect the term in height, 4 2 /ro. Proceeding exactly as we did before in the far-zone approxi-

mation, we form the moment as the four-fold integral over the dummy space variables & I ... x4 and

Interchange expectation and integration operations. Again we recognize that for large k, significant

contributions to the moment are made only in the vicinity of the "stationary" points defined by (8).

The moment M is thus decomposable as M *1 M t + M2 where M t and M2 represent the contributions

from S, and S2 . Again, we consider the integration over the volume surrounding the S t points.

Transforming to thr lag variables u, v_, and w as per (9), and taking the limit, we get for the eontribu-

tion from S,

lim M t a M	 t)t (K; A s (3rocos20-4 
ff 

G2 (x + w)G 2 (xx --V at)
k-►a

• S(K;w)expJAK -(w + VA01 exp{i(x/ro)

• (COS20(xI + Wt)2 - (xt -VI A t)2 +(x 2 +w2)2

-(xi -V2 At)2(?dx dw (72)

where we have taken the coordinates x, and x 2 of x to be radar-fixed coordinates (x t in the plane of

incidence). Let G be the separable Gaussian pattern given by (431. The integrating over x we get

M, (LC; A0 - Groeos2 9)-4 f N(K; w +VAO

• X(K; w) exnl-iK • ( w + V AM dw	 (73)	 4A
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and

b2 is by R L-2 +(KLp/2rosin8)tcos48

bi a b#1 '-Lm2 +(kL* /2rodn8)2	
r

A O a wL,. Lo /2	 (70)

and w.lere again the nuiamation convention is applied to repeated indices.

Since M - M t + M 2 , then N as given by (70) is Qimilariy composed, i.e., N = N t + N2 where Nt

and N2 an the respective FT's of M, and hie. From (70) we have

i	 Nl (K; Sl) _ (2rp-os29)- 4 dw R(K; w) exp(-iK- w)

X IC200-1 fdAtB(K.w+VAt )expji(n  - K- V)At] 	 (75)

Let W = (bl w l , b2 w2 ), V a (b l V l , b2 V2 ) and n. = n - K- V. Then integrating over At we got

(AO/2)
Nt(K;S2)=--	 - fdw(K;w)exp(-iK•w)

(2racos26)4	
_	 _

exp 2 (^^I F)2]	
1

^V 	•cxp1--2 W2^n2(^' W)^

	

• explikcos(FW)SI M IV)	 (76)

From (70) and the inverse FT relationship, it follows that

M t (K; 0) a f N J (K; SZ) do

_ (2r^cos2e)-4 f B(K; w) =(K; w) c-' K- •"_' d 	 (77)

whirls is the same as the Fiatinhofor solution ( 20), except that the Fresno! lag window B(K; w) re-

places the Hraunhofer tag window A(w). Since B is not significantly sharper than A and the window

can still be considered to be brow compaftil to the scale of variation in 3 (i.e„ broad compared to

t^-



30

the dominant wavelength 2a/K o), then M, (K; 0) can be regarded as identical to the Fraunhofer

moment M 1 (K). (Note that B(0; w) - MD and B(K;Q) a A(Q) - AO/2.) If the detailed twhavlor

of Nl (K; M near the origin K - 0 is ignored, then it is apparent from (76) and (77) that N l is well

approximated by

exp C M^/)^J2
N t(K; Q) M 1 (K) •	

VrW Q1e

Where M 1 is given by (46) at seq., and
..	 le.	 (?9)ppie t

 l- Y I - (b Vv )^ - (bp c.os2,@ + b2sin2#)%• Y

where 0 is the radar azimuth relative to the velocity vector V. to A H, only the lino-broaddning due

to wave-front curvature was considered; i.e., it was assumed that P = a rcLV/ro. However, to be ao-

curate, the broadening due to the finite footprint must be accounted for also. Thus, compare V/L

and aLV/ro for typical aircraft and satellite geometries and ocean wavelengths: both terms are

i-omparable.

The moment M(k, Ak, K; At) is not symmetric with respect to a K and Ak interchange, and so

the M2 component (deriving from the S 2 stationary points) cannot simply be equated to M 1 , as was

possible in the time-independent case. Rather than labor through a solution for M 2 in these pages,

we merely outline the key steps in the solution and indicate the appropriate assumptions and approx-

imations: lag variables appropriate to the S 2 integration are defined, and the k-+-* limit is taken in

the formation of 3; on account of the moderate bandwidth assumption (3"), the Fresnel phase terms

in K and Ak are neglected; assuming a large footprint area, we negl.-ct the variation of $ near the ori-

gin and let F(O,w) :x t(0,-) - pots) in the integration over w. Then, on taking the FT of M 2 , we

get

N2 = [ (I S(k)1 2 )1 2 exp L 2 (gOKLp )2,

exp 
L I(S „/pd) 2]

mad	
• exp(iEil A)	 (80)
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where

q' IsintI- [(LP /L0 )2cos2 fi +sin2ol a'

^d - (2kV/ro ) - [ Lacos48cos20 + Lmsin2.01 %

e - (2kV/ro )- AKLpcos2ecos@

and where AK a 2AMia6 $ 2(Av/c)sin@, and where again 11, =12 - K- V

have

(81)

As a check on (80) we

(82)
fA0 N

2d1l _ [(ISW1 2 )1 2 exp - Z (AKLP)2^

which is M, (A4) with the weak modulation contribution neglected.

7. Results: Narrowband DF Technique

The spectrum of the narrowband DF signal, eq. (62), is simply N with AK set equal to zerain

N2 . If a signal of finite record length Tint is passed to a spectrum analyzer or, equivalently, if a

Bartlett tag window is applied to a measured covariance function M in a Tukey analysis (Blackmann

and Tukey, 1958), then the measured spectrum will be (on the average)

P(K) = fW(11 -  K- V)N(k, K, 0;n)dn	 (8r3)

where the spectral window is given by (66). If Tint is chosen such that SresTint << 2A, then from

(78), (45), and (80) we have approximately

P(K) = Pt + P2 = W(0)f N 1 dSl + N2 (0) f Wdfl
J	 ,1

	

(1) ' 
2>r 

P mod (K) + (	
Gw

2

 
(84)

LP 	 `'rQd	 int

For example, let us set T int = (3-. Then the measurement signal-to-noise ratio is

SNR P t /P2 = (2tt)-3(2 

1Q d 
1. L 

g 
Pmod (1t )	 (85)

	

tCS J	 P

where we have let Pmod become the one -sided spectrum; i.e., we. have let Pmod 4- 2Pmod . With the

same parameter values used previously in do modulation noncoherent analysis, i.e., 0 = 12.5%
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Lp = S.0 km, Lm - 2.S km, I K1- 2u /200 m, U - 18 ms-t , we have as before (V1w/L, )Pm.d(K)

-36 dB. Now, if k = 2w/2 cm, ro = 700 km and V - 7 kms' t , then e.g, for broadside looks, 4-t90%

we have

a - [(V/Lm )2 + (KLm V/2rosin9)21

- [ 7.84 s-2 + 3.29 s-2) % - 3.34 s- t

Sd - 2kLO V/ro -1.57 X 104 s	 (86)

The filtering gain is (2w)-3/2(ad /sras) - 25 dB. Hence, the final measurement SNR is

SNRDF - -36 dB + 25 dB --11 dB	 (87)

Of course, this SNR figure can be improved upon by designing a spectral analysis having a better

"match" to the resonance peak (e.g., by using a matched filter). However, it is apparent that, at

best, given reasonable parameter values, the SNR will not much exceed 0 dB.

S. Results: SP Technique

Making use of the transformations (55) et seq., we express our results (78) and (80) in terms of

frequency. For I  I > 0 (i.e., ignoring the dc), we have N(v, AP, w; 12) - N 1 + N2,

SE 2

N1 - [(IS(v) 1 2 )1 2 exp - 2
	 +	 .1.	 Ir PmW(W"t)	

(88s)

rw	 r

S2 ^

N2 = [(IS(v) 1 2 >J 2 exp -	
-j	exp ^- 2 (gAvTr )2 ^ exp (88b)
d

If the pulse bandwidth is large compared to (qTd -t , then N 2 behaves as a delta function in dv- v-v'.

Hence, since (I S(v)12) is practically a constant over the 	 bandwidth, eq. (71) becomes

P(w, SE) E P t + P2

N,- I f Ea (v) Eo (v - w) &'^=

+[ f E 2 (P)Eo (v-w)^ivl • f N 2 dAv	 (89)



Eo (v) =
exp i. 2 Word2,

asp (92)
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Making use of the definitions (81) and the identity AKL,, s APT, we have for the N2 integration,

exp [- 2f(Say,/od)2]
N2dAv-(^/7•r)I(IS(v) 1 1 )1 2 •	 .AA

where (from 81),

qPd - (2kV/ro) Lm Isinh'^I

which is the Doppler spread due to azimuthal aspect variation alone.

Pulse waveforms are often Gaussian in shape, let E o(v) at baseband be given by

(90)

(91)

'then, computing the integrals in (87), we have

^/2a	
exp 

L 2 (w/pp)2J
P(w, SZ) = Pt + P2 =	 ( (1 S(v)1 2 )] 2

Tr	 4 a 02

exp I - (SZ* Ipra )2]	 exp I - 2 (n /qPd)2]

X —	 ' Pmod(c l 't) +	 L
2n q Sp Qd

The post-detection "pulse-Doppler" spectrum P(w. Q) is sketched in Figure 7.

Except for looks directly forward (b = 0°) or aft (^t = 180°), q/i d >> Q.. Hence, in the

vicinity of the resonance peak at S2 = K • V we can set 92, = 0 in P_. Again, if we assume short in-

tegmtion times, Tint, such that the resonance peak is entirely covered by the spectral window W,

i.e. ii. OmTint << 2n, the filtered pulse lepectrum becomes (cf. 65),

P (w) = Pt + P2 Mt W(0) f P t dSZ + P2 
f 

WdS2	 (94)

.Again, assuming Ttnt = i3', from (93) we have

SNRSP =P^; P2 =^(2rr) -3I=
(qpd

.Q	
2rr OP P.JWId')	 (95)

res

493)
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Again, we assume the same famillar parameter values (cf. Table I). Then, as before, we have

%/rw P,0Pmo4(w.0) s (VTW/'&p ) P,,A) _ -6 dB	 (96)

For broadside looks (0 = t 90* ), we have A. - 3.34 s- 1 (from 86a) and qPd - 1.57 X 104 C1 (from

86 and 91). Hence,

SNRSP =250 -60=+190 	 (97a)
(broadside)

For looks t 1 ° of forward or aft, Ora = 2.23 s i and qsd - 2.74 x 102 s-1 ; in this case,

SNRSP = 9 dB - 6 dB = +3 dB	 (97b)
(fore/aft)

9. Discussion

In the foregoing analysis, the backscattered signals were assumed to be continuous functions of

slow time t. Such an assumption will be valid only if the pulse repetition frequency (PRF) is greater

than or equal to the rate of the fastest signal fluctuation determined by the Doppler spread (i.e., de-

termined by Ad in the narrowband DF measurement (beam-limited illumination), or determined by

qsd in the SP measurement (pulse-limited illumination)). If the PRF is lower than the Doppler fad-

ing rate, then signal fluctuation power at frequencies greater than one-half the PRF (the Nyquist fre-

quency) must appear in the frequency band 0 - ^4 PRF. The pulse Doppler spectrum P(w, 92) at

multiples of the Nyquist frequency, will be folded over onto the interval 0 - 4i PRF kBlackman and

Tukey, 1958). This folding over will result in an increased measured signal fading spectrum, the in-

crease being roughly in proportion to the ratio of the Doppler spread to the PRF. Clearly, in the

case of the narrowband DF measurement, where the SNR is already poor in the continuously

sampled case, one cannot very well afford to undersample. In the SP measurement, on the other

hand, one starts with a generous SNR in the continuously sampled case, and one can easily afford to

lower the PRF. Qearly, the designer of an SP instrument will be able to select and trade off pulse

bandwidth, integration time, and PRF parameters with a fair degree of freedom; he will also have

some flexibility in terms of antenna gain and azimuth scan rate parameters.
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We have not undertaken to describe or analyze a possible modulation coherent wide :,and DF

system. Our experience with the modulation noncoherent wideband DF system, however, would

indicate that such a system would perform comparably to an 3P system.

We have not considered thermal noise in our analysis, mainly for the reason that thermal noise

will not be a limiti ft factor unless it equals or exceeds the average backscattered power level. Avail-

able transmitters (e.g., the one in the Seasat-1 altimeter (Townsend, 1980)) have enough power to

deliver a unity-or-better signal-to-thermal noise ratio when modest On antennas are used and the

nadir angle is about 10°.

We have not given any figures for directional resolution; some actual nuntbet3 May be enlight-

ening. These numbers can be derived from the Fresnel lag window B(K; w), eq. (74). If we consider

only the linear term in =(K; w) (in which the exponential factor is neglected), and if we assure

ti» ha , a= 1, 2, then it is apparent that the spectral window through which the slope spectrum

K 2 F(K) is seen is given approximately by the FT of B(K; w) with respect to w. The one-sigma val-

ues of the Gaussian-shaped window in range (a = 1) and azimuth (a = 2) are respectively given by ba.

Using the familiar parameter values of Table 1, and defining directional resolution as the half-power

window width in azimuth, we have

a0 = 2 2ett2 bur/K

- 2 2en2 1(KL00 + ( Lo /2rosinO)2(v'

= (2.36)- [1.6X 10-4 +1.3X 10-51'

= 0.031 rad = 1.8 deg.	 (98)

For the main reason that the diffraction fields in near-vertical backscatter are both small and

diffuse compared to the GO (geometrical optics) fields, I believe that the GO solution for the modu-

lation spectrum given here (or the same. the non-de portion of the spectrum of the impulse response)

is an accurate one, at least for incidence angles less than 15°. The expansion of =(K; w) to the first

order in non-Gaussian statistics (i.e.. !hird order moments) and to the second order in Gaussian

statistics is, 1 believe, a reasonable and consistent approach to take. By expanding = (asymptotically,
l
t.

r
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for large lap) one has immediately a linear term that is directly proportional to the directional wave

slope spectrum, with a proportionality factor that agrees with the simplest tilting model of reflectivity

modulation (cf. Fig. 2). Also, by using an expansion. technique, one has a method, in principle at

least, for solving the inverse problem: the raw observations can be used to give a first estimate of

the true directional height or slope spectrum which, in turn, can be used in a forward prediction of

the higher-order terms. Since those terms are small, one iteration would probably suffice. Still, a

means of handling the non-Gaussian terms in a theoretical sense and in a practical sense (i.e., in terms

of developing a viable algorithm) needs to be invented.

While the expansion of E(K; w) is certainly valid for large lags w, it does not follow that the

expansion of M t (K) is similarly valid, as stated in the abstract of this paper. Since 8 is not accurately

represented for small lags, then M t (K), as the FT of S with respect to w, will be uncertain in terms

of the absolute degree of whitening caused by the fine structure of 3 near the origin. Until this

representation problem has been solved, or at least until quantitative error bounds have been estab-

lished, the sample calculations given in Fig. S must be regarded as semi-quantitative.

10. Conclusion

We have shown, theoretically, how rather simple, scanning-beam, microwave radars can be used

to measure directional dcean wave spectra from satellite platforms. The theory indicates that:

(1) The short-pulse (SP) approach to the measurement is superior to the narrowband dual-frequency

(DF) approach in terms of measurement signal-to-noise ratio (SNR) and contrast ratio (CR), and in

terms of the added flexibility in overall design that the greater SNR and CR figures of the SP approach

afford. (2) Conceiv ably, wideband DF systems may be designed that perform comparably to wide-

band SP systems. (3) The radar-observed surface spectrum bears rather good fidelity to the direc-

tional slope spectrum in the incidence angle range 8° < 9 < 15' provided that the wind speed is not

to low (U > S ms-1 ) and provided that the large wave steepness is not too great (b o < 0.0. In

principle, based on the theoretical model presented here, algorithms can be written to remove the

small amount of harmonic distortion inherent in the specular scatter measurement of the sea slope
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spectrum. Such algorithms, it is believed, will have to take account of the effects of non-Gaussian

water wave statistics, as it appears that the effects of non-Gaussian wave statistics are comparable to

those existing in the second order of scattering from a normally distributed sea. A better understand-

ing of the measurement problem — to this level of detail — will clearly require mu6h additional analy-

sis work and experimentation.

In a companion paper (Jackson et al., 1980, in this issue); experimental aircraft data are pre-

sented that support the basic findings of the present theoretical investigation: namely, that direc-

tional wave slope spectra can be measured with rather good fidelity from near vertical measurements

of microwave backscatter, remotely, using a scanning beam, short-pulse radar system.
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APPENDIX A: Analysis of SP and DF Systems

Consider the SP system of Fig. 3a. If the FT of the beeltscattered field is given by Es(v)

S(v) Eo(v), then the FT of the squareaaw detected signal is

60
PM a	 S(v)S*(v - ai)Eo(V)Eo (v- w) dv	 (Al)

The ensemble average output of the spectrum analyzer is the pulse spectrum P(w) a (IP(w)12 ) as

seen through the N bandpass filter; i.e., P out(w,) - (2a)3 11 Hi(w)12 P(w)dw. if the analysis band.

width Pai of the Ht filter is small compared to the variation in PM, then P out(wt) a Pj(wf). From

(Al) we have

p
P(w) - ff-

M 
M (v, v', w) Eo (v) Eo (v - w) Eo (v') Eo(V'- w) dvdv'	 (A2)

where

M a (S(V) S* (V - w)S*(v')S(V' - w))	 (A9)

The moment M is given by (55) and (56)

M - (VTW-lTr) I(IS(v)1 2 )1 2 • {8(w) + 8 (AV) + Pmod (w) + Pmod(Av)I	 (A4)

where AV n v - V. For weak modulation, JPmod (U)dAv << 1, and we can neglect the contribution

Of Pmod (Av) to P(w); since ( IS(v)12 ) is practically a constant over the few percent pulse bandwidths

we are considering, we then have on substituting (A4) into (A2):

PM=(/Yw—/Tr) (ejS(v)I 2 )1 2 {IJEo(v)E,*,(v-w)dW

	

• I8((J) + Pmod (w)l + f Eo (V) Eo (V - w)dv}	 (A5)

Pulse waveforms are often Gaussian in sha, iet the FT of the envelope of the incident waveform

be given by

Eo(V) - exp - 2 (V/SA )2̂  •/rPP	 (A6)

r
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7ben P(w) has the form

exp 2 Mod
PM = (^/Tr) ((IS(v) I2 )) 2 •

4w ap

d(w)+ 
2Ra +Pmod (WI 4b)(A,7)

P

Now, consider the DF system diagrammed in Fig. 3b. The H i and iii are non-overlapping bandpass

filters with center frequencies vi and v,, respectively; the Ki and Kj are do blocking filters. The out-

put of the eorrelator can be written as

Pom(vi - vi ) _ (2W)3 J Ki(w) Kj (w) (PIPS) dw

(PiPj) _ (2n I 
ff 

M(v, v', w) H i(v) Eo(v) .

• Hi (v - w) Eo(v - w) Hj (v') Eo(v') [ j(v' - w) Eo(v' - w)dvdv'	 (AS)

where M is given by ( A4). Since the K filters block dc, K i(0) = Kj(n) = 0. let Ki = Ki = (20- 1 , for

w > 0. Then, assuming that the H -filters are non-overlapping and that the bandwidths 0 8i and Aai

are narrow compared to the variation in P mod , we have using (A4), approximately,

POu% = (2sr)s Pmod (vi - vj* ) • 
J 

Hihj dw	 (A9)

where Ili(w) = 
f Hj(v) Eo(v) Hi (v-w) Eo (v- w)dv (i -+ j). Two waveforms of interest are SP wave-

forms and it waveforms that are matched to the H-fdters. For SP waveforms. E o is constant over

the bandpasses of the Iii filters. If the filter functions are Gaussian with standard deviations Q,2i and

p,,, then

Pout 
a 0

8 4 P(AvU )
	

(A10)

where APU = v, - vi and Qaii = 
Qai P4i (2P2 + 2Qsi )- • A similar analysis may be carried out for the

case where the receiver filters are matched to the traiumitter waveform; e.g., if the DF wavefunn is

Eo a kui +Eoi then Hi = 
1"oi (' ♦ j)•
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APPENDIX B: Alternative Derivation of PO Limit

The fact'that Eq. (7) has the unique stationary points given by (8), of course, has to do with

the smoothness and extremal properties of the mathematical expectation, i.e., the factor in braces.

The following development may clarify this point. Consider the second moment of S(k) in the case

of backscatter in two dimensions only. Then, we must evaluate the following integral in the limit

k -r oo:	 c-

Ik = 2kcos9 J ^ (e i2kcose lt(w)-t(0)l ) e-42ksine w dw 	 (B1)

Let z = [ g(w) - r(0)] /w and let pz(z; w) be the pdf of z. Then
J

00

Ik = 2kcos9 
ff 

pz(z; w) ei2kcose(z-tane)w dzdw	 (82)
_a*

Since pz is a slowly varying function of z and w, we can apply the method of stationary phase. A

saddle point exists at z = tan9 and w = 0. Letting

u = (z - tan8 + 2kcos9w)/vfl

v = (z - tan8 - 2kcos9w)/vr:f

then since limz = rX where ^x is the surface slope and since lim pz = 
pr  

it follows that
W-0	 w-0

00

lint Ik = prx(tanO) . ff ei[(u2 -vz )/2l dudv
Go

= 2w prx(tan8)
	

(B3)

which result agrees with Barrick ( 1968b).

.s
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APPENDIX C: Second'order Terms In the Expansion of M t (K)

The second-order terms in the expansion of*,, sq. (38).m,

110,,(2) 
^tj

1
Z

'̂
0..(2) oµ19)ti 

titk tit"iUj

1
2 (KcotO)4 R2 + R ,QR Rats 'UG ua vpvt +

+ (Kcot8)2 R.Q R L (uQ ua - 2u, vp + vQ vp ) -

- 2(KcotO)2 R R ,Qp uQ vo + 2(Kcot@)3 R R'Q (uQ - va ) -

- 2(Kcota) R ,Q0 Rat uQ vp (ut - vt )1
	

(Cl)

Fourier transforming with respect to u and v- according to eq. (21) and making use of the identities

(39), we get for the second-order terms in the expansion of 2, eq. (40):

2 (Kcoto)4 RZ + 1 p,Q^ 

2 
o f R'Qa R,ta

P2

-(Kcot8 )2 
pP, 

+ p—Q	 R.Q R 10 -(KcotO ) 2 p' 2p- R R.Qp
LP,

p2	 p_

+
+ 2i(Kcot ©) 3 p•Q R R .Q - iKcotB

 P'. -
V p^ pt p- .-Q R'Qo R,y	 (C2)Z

From the definition of the height spectrum as the Fourier transform of the covariance function. v1",

	

F(K) a FT (9) r —^ ^ J R(w) C- K dw	 (0)

it Collows that the FT of the second -ordertternts in I is given by various convolutions involving the

Bright spectrum. e.g.,

ORIGINAL PAGE i.
OF POOR QUA1.M
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FT{R R ,a ) - FT{R) 0 FT{R,,)
4

- F(K) + [iKa F(K))

fF(K') [i(KQ - Ka ) F(K' - K)) dK'	 (C4)

If an overbar is used to distinguish a variable wavenumber entering into a convolution, then the

second-order terms in the expansion of Pmod , eq. (48), are written as
1	 A

+ I (Kcote)4 F M F+ 1 P,aa P.ny Ka 
KO 

F M Ky Ka 
F

2	 2	 p2

2 P
'ap	 P ia Pip	 ^• (Kcot6)	 +	 Ka F Ka F +
p	 p2

• (Kcot9 )2 
p'a 

'p F a Ka Kp F — 2(Kcot9)3 
ppa 

F'' Ka F
P 

2

— Kcot9 P'ay 
P IP P' py P,a K

a Kp F * Kr F
P 

2

i
S

F

i

i

}

(CS)
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FIGURE CAMON3

Fig. 1.	 Overall geometry and coordinate definition.

Fig. 2.	 Simple tilt model of reflectivity modulation.

Fig. 3. (a) Schematic of modulation noncoherent short pulse system. (b) Diagram of wideband

dual frequency system (after Parzen and Shiren, 1956)

Fig. 4.	 Possible realization of a modulation coherent short pulse system. v denotes fast signal

time and t slow signal time. The slow time filter can be realized by a sample-and-hold

that is triggered at successive delays given by it, followed by an accumulator. The spec-

trum analyzer can be realized by digitally fast Fourier transforming the slow time

filtered pulse return, and squaring the magnitude.

Fig. 5.	 Sample calculations of the spectrum Pmad(K) of backscattered impulses from a Gaussian

sea surface in two dimensions in the second order of scattering. (a, b) The surface slope

spectrum K 2 F(K) is the Phillips spectral form, 110, with an abrupt cutoff at K = Ko.

The slope spectrum and P mod are both normalized by their values at Ko. The calculations

are performed for a range of wave steepness 60 = Koa = B/2, incidence angle 9 and wind

speed U (which determines the total mean square slope according to eq. (30)). In all cal-

culations, the location of the peak at Ko is preserved; low frequency whitening — or inter-

modulation (IM) — is exhibited; and the frequency response (FR) at wavenumbers K> Ko

is in the form of a droop. Panels (c-e) show the variation of the IM at K = 0.5 Ko and the

FR at K = 2 Ko over the range of parameter values indicated.

Fig. 6.	 Spectrum of backscattered power when a short pulse of bandwidth Op is transmitted, and

definition of the SNR.

Fig. 7.	 Post-detection -`pulse-Doppler" spectrum.
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Table 1. Parameter Values Used in Sample Calculations

Incidence angle 8 = 12.5°

6	 Slant range
t

ro = 700 km

Satellite velocity V = 7 kms 1

Beam spot size* in range Lp = 5.0 km

f
Beam spot size* in azimuth Lm - 2.5 km

r
EM wavenumber k = 2 it/2cm

Water wevenumber K = 2x/200 m

Wind speed U = 18 ms-1

Pulse bandwidth parametert	 Pp = 1.4 X 108 s-1

Surface range resolution parameter	 Ap = 5 m

•Onesigma value of Gaussian, one-way power pattern

tOne4igma value of Gaussian envelope of field strength

F
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