
 

 

 

 

N O T I C E 

 

THIS DOCUMENT HAS BEEN REPRODUCED FROM 
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT 

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED 
IN THE INTEREST OF MAKING AVAILABLE AS MUCH 

INFORMATION AS POSSIBLE 



t

1
(NASA —Tlt-82024) YECTOH ANALOGUES OF THE	 Nd1-12297
5AGGI—RUHINOWICZ THEORY OF EDGE DIFFRACTION
(NASA) 27 p UC AJ3/bF AJ1	 CSCL 209

URCI as
G3/32. 398u9

.,	 a

RVSA
Technical Memorandum 82024

Vector Analogues of the Maggi-
Rubinowicz Theory of Edge
Diffraction

Robert Meneghini, Peter Shu
and John Bay

OCTOBER 1980

National Aeronautics and	 c^
Space Administration
Goddard Space Flight center 	

`f0	
<

Greenbelt, Maryland 20771



VECTOR ANALOGUES OF THE MAGGI-RUBINOWICZ
THEORY OF EDGE DIFFRACTION

Robert Meneghini
Code 946

Peter Shu
Code 727

John Bay
Systems and Applied Science Corporation

Bladensburg, Maryland

October 1980

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland 20771



VECTOR ANALOGUES OF THE MAGGI-RUBINOWICZ
THEORY OF EDGE DIFFRACTION

Robert Meneghini, Peter Shu and John Bay

ABSTRACT

The Maggi-Rubinowicz technique for scalar and electromagnetic fields can be interpreted as a

transformation of an integral over an open surface to a line integral around its rim. Using this trans-

formation, Maggi-Rubinowicz analogues are found for several vector physical optics representations.

For diffraction from a circular aperture, a numerical comparison between these formulations shows

the two methods are in good agreement. To circumvent certain convergence difficulties in the Maggi-

Rubinowicz integrals that occur as the observer approaches the shadow boundary, a variable mesh

integration is used. For the examples considered, where the ratio of the aperture diameter to wave-

length is about ten, the Maggi-Rubinowicz formulation yields an 8 to 10 fold decrease in computa-

tion time relative to the physical optics formulation.



VECTOR ANALOGUES OF THE MAGGI-RUBINOWICZ
THEORY OF EDGE DIFFRACTION

Introduction

The theory of the edge diffraction wave originated with Thomas Young, who observed that

light diffracted through an aperture could be interpreted as an unperturbed incident wave com-

bined with a wave disturbance arising at the aperture rim [ 1, 21. Starting with the Helmholtz

representation, the idea was formulated in a mathematically rigorous way by Maggi and later by

Rubinwicz [3] . A comprehensive review article by Rubinowicz [ 1 ] traces the development of the

theory up through the work of Miyamoto and Wolf.

Although the approaches of Maggi and Rubinowicz are different 11, 2, 41, both lead to the

reduction of a surface integral to a line integral (usually corresponding to the physical .;dge of the

scatterer) plus geometrical optics terms. Miyamoto and Wolf [5] were the first to demonstrate

that such a transformation could be carried out exactly for an arbitrary incident field. Although

their work centered on the transformation of the Kircitnoff integral, it was later shown that a sim-

ilar procedure could be carried out for the Rayleigh and Sommerfeld integral representations [6).

In a more recent paper, expressions have been derived for the field behavior near the geometrical

optics shadow boundary [7].  Apart from the importance of the results themselves, they provide

information on the relationship of the Maggi-Rubinowicz technique to the geometrical theory of

diffraction (GTD) and to the Braunbek approximation [ g, 91.

Most of the papers cited above deal with the scalar formulation. For electromagnetic diffrac-

tion problems, vector analogues of the Maggi-Rubinowicz technique have been investigated by

several authors [ 1, 10, 111. The application of these ideas to antenna problems, however, does

not seem to have attracted much attention and most of the practical results [ 12-151 have been

presented for typical applications in optics. An exception is a paper by Gordon [ 16 ] , who ob-

tained scattered fields from a planar reflector. In this work, however, only scalar fields were

considered.
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In this paper we obtain the Maggi -Rubinowicz (M-R) analogues to three commonly used

physical optics (P. O.) formulations. Two of these have been derived previously by somewhat

different methods than the one given here [ 1, 11 [ . We next present some numerical examples

comparing one of the M-R formulations with the corresponding P. O. representation. For the

simple examples considered, we show that a variable mesh integration can be used to circumvent

errors that normally occur when the observer approaches the geometrical optics (g. o.) shadow

boundary.

Some Maggi-Rubinowicz Representations

Using an e-iwt time convention, we list below three P. O. representations for the scattered

field,

E  = vx I (n'x Ea ) G dS' - iwe ( vv - + k2) Js (n'x H a) G dS'	 (1)

E t = 2 Ox f (n' x Ea) G dS'	 (2)
s	 ^

	 I
E = - ? (vv - + k2 )  (n'x ~a ) G dS'	 (3)2	 HAM

where G is the free space Green's function

e ik i x —x' I

G=
4wix - x'I

and where x, x' denote the coordinates of the observation point and source point respectively. For

all three formulations, the surface of integration, S, is open. Denoting a closed surface S C as the

union of the surfaces S and S, where the respective integrands are assumed to be zero on S, we

choosen' to be the inward normal to S c . For the fields appearing in the integrands we have used a

subscript `a' to denote the approximate nature of the fields. To simplify the notation we will omit

the subscripts in the subsequent equations.

Equations (2) and (3) apply to the problem of diffraction through an aperture in a perfectly

conducting plane screen [ 17). The observer is limited to the shadow half space, i.e., the half space
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excluding the sources of the incident field. The relevant approximations are E^ = Eat Ha = Ho where

Eo , Ho are the incident fields with the surface of integration being taken over the aperture. The com-

plimentary problem of the screen can be found directly from E i , E 2 by Babinet's principle [171.

Equation (1) is often referred to as the Franz formulation [ 18, 19). It is identical to the ex-

pressions given by Stratton [20) and Kottler 121, 221 despite differences in appearance from these

•	 last two. For scattering from a perfectly conducting (and in general non-planar) object, n' x E - 0N

and n' x H a = 2(n' x Ho ) where the open surface S corresponds to the illuminated portion of the

scatterer.

To find the M-R analog to E F we first relate E F to the vector Kirchhoff representation, E K,

where [ 23, 24

E K =I E (n' • v'G) - G(n' • v') E dS'
	

(4)

the integrand can be rewritten as

2E (n' • V'G) -(n' • V) GE

Using V' • E - 0 and the vector identity

(b • V)a = V(a • b)-(a • V) b -ax(Vxb) - bx(Vxa)
N	 .1. ...	 N	 M M	 .•.	 .V	 ti

then

(n' - V) (GE) _ -G(n'x (V'x E)) - n 'x(V' Gx E) + n'(E • V'G) - I - n'

The quantity I is a dyad, the A component of which is

TO xi ' T ' xi = aji axi (GE ezj (GEi)

where bji is the Kronecker delta function.

Using the relationships

V'xE -WO

n'x(V'GxE )=(n' - E) V'G- (n' - V'G)E

and the identity [ 1

fs T • n' dS' _ f (GE x R') di!'
J ORI^',IN^►L PAGE 1g

OF 'VOOR 
QU A1.1'1'1^
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EF = x	 Wi• R'dQ'+
fc fc (W

• Q') dQ'

^

(7)

where R' is a unit vector along the closed contour C directed so that R' and n' are related via the right

hand rule, then (4) becomes

E K = f [(n'xE ) x VG + iwpG (n'x H) + (n' - E) VG] dS'	 (5)
S

+ fG(ExR')d2'
c

The surface integral in this equation is often referred to as the Stratton -Chu integral, which we de-

note by ES-C. It should be noted that the derivation of ES-, from E k is sometimes done under the

assumption of a closed surface, e.g.[24], so that E SQ = E k . The rim integration in (5) is therefore

a consequence of assuming the surface to be open.

The relationship between E S-C and E  is given by [ 171

E F =EBB - 1 V GH •2'dQ'
iwp fc

This equation has been derived by Stratton [ 201 and Kottler [ 21, 221 and is obviously equal to the

Franz representation, (1).

In order to express E F solely in terms of line integrals we first write equation (4) in the form

E k =z t f V 1 •n'dS'
s

where the implicit sum on i runs from 1 to 3 and where

V.(x') = E.(x') VG - G V' EA1)

Following Miyamoto and Wolf [5] we notice that since V' • V. = 0, a vector potential W. can

be defined such that Vi = V'xWP Assuming that W. has only a finite number of singularities that are

excluded from the region of integration, then Stokes theorem yields

(6)

where the notation Ek is used to distinguish the P. O. formulation of (4) from the corresponding

M-R formulation.
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The second term of (7) represents integrations around the singularities of W i. The unit vector

R' around the contour c j is directed in the opposite sense of P around the rim c. The vector poten-

tial Wi is given by 15]

0
Wi Q. x') _ -G	 eikjiP x v' Ei Q' -µfl1 dµ + W„

where, as before, x, x' are the vectors from the origin to the observer and source point respectively

andr = (x - x')/Ix - x 1 1. Miyamoto and Wolf have shown that W. is zero if the field satisfies the

Sommerfeld radiation condition. These authors have shown, moreover, that if each component of

the electric field can be written in the form E i - AielO , then Wi can be represented as an asymptotic

power series in the wavenumber k,

W=- G E 
r x 

r'A + 0(k-i )
^'i	 i - A.

with

F = V^^

rr=(x-,X')/IX -^11

For plane or spherical incidence waves all but the first term of the expansion for W i vanish.

Writing (7) in dyadic notation, with W = x i Wi,

&= f W • N2' +I
 fc W•i'dR'

c	 ji

then from (5) and (6), the M-R analogue of the Franz representation, EF, becomes,

EF-	 W • R' - GE J,+ 
1

fc	 twµ

	

VG(H • i') U P +I	 W • R ' dK'

	

j	 c^

(8)

A similar formula has been derived by Rubinowicz i l ] .

The M-R analogues of (2) and (3) can be obtained in a straightforward manner by using a method

described by Jones 117) . For an aperture in a perfectly conducting plane screen in the z=0 plane, we

can write the scattered field in the diffraction half space by means of ( 1), i.e., EF(x), with  = (x,y,z).

5
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For an observer at the image point, we employ the same formula obtaining E F (x I ), x t = (x,y; z)

where the Greens function in the integrand now becomes

eiktt
G(xl,x')=

4art

where rI - I x t - x' I is the distance from the source to the image point. Since the obs erver at the

image point is outside the original volume of integration then E F(x t ) = 0. Since the source points

are located in the z = 0 plane, then G(x, x') = G(x t , x), z • VG(x, x') = z • VG(x ^, x'), y • VG(x, x l )=

y • VG(x t , x'), z • VG(x, x') _ -z • VG(x t , x'). Using these facts it is not difficult to show (17) that

by adding the z components of E F (x) and E F (x i ) and subtracting the x, y components of E F (x 1)

from E F(x) we obtain equation (2). Equation (3) is obtained by adding the x, y components and

subtracting the z components. We can express these operations through the combinations

1 • E F(x) -(1 - 2zz) • E F(x t )	 (9)

I •EF(x)+(I -2zz) •E F(x i )	 (10)

1 =Xx+ yy +zz

where (9) yields (2) and (10) yields (3). Now by replacing E F by EFi n the above equations (where

EF is the M-R analogue of E F ) we directly obtain the M-R analogues of E t , E 2 that we denote by

E' E'

Ei = f le, • Q'-2iG(ExA') •z'df'+S 
f 

Dt • Q' dl''	 (11)
c	 `j C 

Ei	 (D2 •Q'+2G(I-zz) • (ExQ')+ I—VG(H - Q)I+I f
 )2

 •Q'dR'
c	 1u7µ	

c
1	 ^

where

21 = 1 • W- (1 - 222) • We

D 2 = 1 • W+L-2zz)W'	 (14)
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with

W a W(x,x')° " wj(x ► x')

a W(n' XI S kiwi

Equation (11) has been obtained by Karczewski (11) by generalizing the work by Marchand and

Wolf 161 to the vector case.

Results

To compare the M•R and the P. 0. formulations we numerically compute the field diffracted

from a circular aperture. To do this we use (2) for the P. 0. and (11) for the corresponding M-R

formulation. For plane and spherical wave incidence (the two cases that will be considered) the

vector potentials simplify to
A A

W =

	

-GEi X	
rxp

1-
A Ar xp

	

W' _G E- x	
A P

	

:	 i 1 1•:i.

Assuming the perfectly conducting plane screen to lie in the z = 0 plane with the sources of the

incident field located in the z < 0 half space, then for observation points z > 0, (11) can be written

&'I_	GIEt (A i • 2')+iEL ( 162 • R')- 2i(ExR')•ildg'+g. o.	 (1S)
c

where

Et = XEx +yEy

A A

	

= t rt xp	 rxp

	

AZ	
1 -?t • - i _^r p	

(16)

The term labeled S. o., which equals the second term of (11), is simply the vector geometrical optics

field. This is determined by tracing the incident rays through the aperture, keeping track of the phase

and amplitude, and preserving the vector nature of the incident field. That this term is a g. o. field

follows from the work of Miyamoto and Wolf (S 1 and the fact that W' has no singularities over the

aperture since l -r' • p is never zero there (6) .
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As the observation point approaches the S. o. shadow boundary the singularity of W approaches

the aperture rim. When the observer is directly on the shadow boundary a separation between the g.o.

term and the rim integration is no longer possible. However, for the numerical computation we can

use the fact that even with a high sampling rate in the observation space, it is highly improbable that

the obt°rver will lie so close to the shadow boundary that the value of the integrand will result in

computer overflow. To properly account for the contribution to the integral near this singular point,

the sampling rate alotig the rim must be increased. To accomplish this a variable sampling grid is used

for the integration along the aperture rim. The sampling rate is determined so that the integrand

changes by some small fraction of its value in moving from one point to the next. For the observer

near the shadow boundary this procedure yields a fine sampling grid for that section of the aperture

edge near the singularity and a more coarsely sampled grid along the remaining portion of the edge.

It is evident that this procedure circumvents rather than solves the underlying analytic problem.

To obtain uniformly valid expressions as the observer approaches the shadow boundary it would be

necessary to generalize the work of Otis, et al 171 to the vector case and to arbitrary aperture shape,

In figures 1-5 are shown comparisons between the M-R (solid line) and the P. O. formulation

M. We have chosen throughout a frequency of 4 GHz and an aperture radius of 0.4 m. The screen

and aperture are located in the z = 0 plane. The diffracted field has been computed for points in the

x > 0, z > 0 quadrant of the x-z plane. The absissa of the graphs corresponds to the angle, in radians,

measured from the z axis. The ordinate corresponds to the magnitude of a particular component of

the field which is given in units of volts/meter or millivolts/meter. For the M-R results, a variable

mesh integration around the aperture rim was used to generate all but the final figure.

For an incident monochromatic plane wave of the form

when.

=e"ei.

A = j(k • i) z - (k • x ► i)

k • z = cos(r/8)

A • z = sin(v/8)

8



we plot in figures 1 and 2 the magnitude of the E x , E. components of the field. The distance, ro,

from the center of the aperture to the observer is S m. It can be seen that the results from the P. O.

and M-R representations are in good agreement.

In figures 3 through S we assume an incident plane wave of the form

E i = ®' f(9') eikr/r

where r is the distance measured from the source poh.t. The distance from the S purce to the center

of the aperture is taken to be 3 m. The polar angle 8' is measured with respect to the z' axis where

A • z' = cos(rrJ8), y z' = 0 z - z' _ -sin(w/8) and where the unit vectors z, y correspond to the x, y

axes located in the plane of the aperture. The unit vector as'ociated with 9' is denoted by 9'. For

the numerical computations we have assumed an isotropic source so that f(8) = 1.

In figure 3, the magnitude of E x is plotted for a far field observer, r o = S m. A fixed sampling

grid was used to generate figure S. The two discontinuities that occur near the opposite points of

the shadow boundary in this figure are eliminated by using the variable mesh integration (figure 4).

The major advantage of the M-R relative to the P. O. representation is the smaller amount of

computer time needed to calculate the diffracted field. For the parameter:; chosen here, with a di-

ameter to wavelength ratio, D/a, of about 10, the time needed for the M-R calculation is about a

factor of 8 to 10 Its than that required for the P. O. calculation. This factor in savings would in-

crease for larger D/W. Foi more complicated geometries, e.g., non-planar reflectors, the computa-

tional savings is not expected to be as great since the calculation of the g. o. terms would be more

time consuming than in the simple aperture problems considered here.

It should be mentioned that for simple aperture shapes such as circular and rectangular, the

Frauenhofer approximation can be used to obtain closed form expression for the M-R and P. O.

representations (15) and (2). In particular, the results for a plane wave incident upon a circular aper-

tto re have been shown to be in good agreement for uN,.F,rvation points outside the geometrically illum-

inated region (Appendix A). The M-R solution. however, is discontinuous near the shadow boundary.

For this case the variable mesh integration is not at plicable since the inte gration is performed prior

to any numerical computation.

9



Applying the techniques used by Keller et al. 191 and hbyamoto and Wolf 151 to equations (2)

and 0 S), it can be shown that the first terms from the asymptotic expansions in k are in agreement.

This result hods for arbitrary aperture shapes and arbitrary fields of incidence. The expansions that

were used, however, are not valid near the shadow boundary or near a cacst.::
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Figure 1. M-R (solid line) and P. O. (x) solutions for IE x I , ro a Sm;
plane wave incidence.
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Figure 2. M-R (solid line) and P. O. (x) solutions for I E Z I , ro = 5m;
plane wave incidence.
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Figure 4. M-R (solid line) and P. O. (x) solutions for I E Z I , ro = Sm;
spherical wave incidence.
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Figure 5. M-R (solid line) and P. O. (x) solutions for I E Z I , ro - 5m;
spherical wave incidence. Uniform sampling mesh along the aperture
rim chosen for M-R solution.
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APPENDIX A

Comparison of P. O. and M-R in the Frauenhofer Region

For simple aperture shapes, closed form expressions can be obtained for the P. O. and M-R for-

mulations in the Frauenhofer zone. In particular, we compute E, E i and E k for the case of a plane

wave incident upon a circular aperture. We place the screen in the z = 0 plane with the sources of

the incident field in the z < 0 and the observer in the z > 0 half space. The incident electric field is

assumed to be,

Ei = e eik'!

where

A • z = cos(a/8)

A • x = sin (0)
k=kk

To compute E i from the formula

l = 2 Vx 
fS 

(7xE) G dS'
	

(Al)

we use the vector relations

VX[(ZxE)G] = VGxCzxE)+GVxiixE)

}	 VGx(zxE)=(VG • E)i-(VG • z)E

Noticing that Vx(zx E) = 0 since E is a function only of the primed coordinates then

1

Et=2 f Iz(VG 	 • E) - (VG • z)E,dS'

!	 Furthermore,

VG = r(ik - 1 /r)G ikio G
f

G— 
eikro 

e_ikx'A?
4ir, o

18



where to is the unit vector from the center of the aperture to the observer and r o is the associated

distance. For E in the integrand we substitute E i (Kirchhoff approximation) so that

E t 
a i 2 c 

r° f eik(k ro )•X' [(rro • e)$ - (ro • z)eJ dS'
o ,

Using the fact that (ro • 11 11 - (
ro • z)e = (exz)x ro = (k • z) (ro xy) then

•	 ikr	

fs

E t -	
Arc 

(k . z) (ro 	 xy)	 exp [ik(k - ro) • x'J dS'

From equation (4) of the text, we find by a similar procedure that,

ikr	 r
Fk 

a 4wro 
o 

[(k+roi ' zJ e
J 

expfik(k -ro) • x'J dS'	 (A2)
s

To solve the integrals, let

x' = (r' cos 0', r, sin 0', 0)ti

ro = (cos 0 sin 6, sin 0 sin 9, cos 8)

then

(k - ro) • x' = r' [(k • x)cos 	 0'- sin 9 (-os 0 sin 0'+ cos ¢' sin 0)J

Using the transformation O'= 0 + u, where u is chosen so that the coefficient of sin m' in the above

formula is zero, their

u = Tan- (-c/d)

c = sin 9 sin m

d=(k • z)-sin9coso

[(k • X)2 + ^o • y)2 +(ro • n)Z - 2(k •z) (% • it)J'A

	2s s	 2xa J  (kat)f eik(k r x' dS' _	 r eWrIcost r^ dr' dpi =
s	 0 JO	 kr

and

so
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Substituting this result into (Al) and (A2), then

ik r

E t = 
ia^ o 

(k • Z) J i (k at) (ro xY)	 (A3)
ro

_

E 2 = Z 

ikr

r 
0 (k t ro) • z (ka^) a	 (A4)

0

where a is the radius of the aperture, and J t is the Bessel function of order 1.

To find the M-R analogue of E we begin with equation (15) of the text,

E, _	 GJEJA t • Q')+z^EZ (A 2 • Q')-2z(ExI') • zidR'+g.o.
c

where

Et=u EX +yEy

	

rt xp	 rxp
A i =t-
~2	 l-rip	 1-r•p

We again make use of the Kirchhoff assumption

E t (x') = x(k • z)e'k'xl

EZ(x,)a-(k • x) eik 'x•

any the relations

p 

Q' = (-sin	 cos 0', 0)

(r p) • ^' -sin ^' ( (k • i) sin 8 cos m - (k • y) cos 8)

+cos tti'((k • z) cos 8 - (k • i) sin 8 cos m)

A • p - (k • z) sin 0 cos 0 + (k • z) cos 9

where the observation point (x, y, z) has been expressed in terms of a spherical coordinate system

so that x = cos 0 sin B, y = sin 0 sin 0, z - cos 9. The expressions for (il x p) • 1', r, • p follow from

the .+bove formulas by replacing cos 0 with -cos 0.

After the resulting integrand is simplified we encounter the integral,

^ 2S eWk k )cosm ' - cos(m-m')sine; (a i cos(o-0')+a1 cosm')dO'
j	 ru

s

0IT'tNTAL rt^t'l.
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Using the transformation O' s * + u, described above, the integral can be shown to reduce to

(at cos (m - u) + 42 cos u) 2wi J t (kat)

where at 142 are constants and 0, u are defined above.

After rearranging terms, E can be expressed by the complicated formula,

r
E-1 = i 

aro r
J t (ka!') [-x Ot +1(02 - (k • 1)0)1 +9' o•	 (AS)

where

iqt = ry (k • i) 6o • i)((^o • z)2 ((% • y)2 - o(rro • x)1 + (k • x)Val 

Q2 = (k • n)I(rro • i)2 (k • z) (k • x)o - a(k • i) [o(% • x) - (% • y)21}

a= i -(k • x)0,0

y = 0 - (k • x) 60 • z))2 - (ro • i)2	 (k . i)2

In figures Al, A2 we have plotted the magnitude of :;re Ex E. components of the field for both

the M-R (solid' line) and the P. O. (x ) formulations. The observer is taken to be at a distance of 10 km

from the center of the aperture. We assume, in addition, an incident plane wave identical to that con-

sidered in the text. Ali other parameters are the some as those given in the text: f = 4 GHs and an

aperture radius equal to 0 .4 m. The geometrical optics term of (AS) has not been included in the

numerical computation. In consequence, the M-R formulation, as plotted, is incorrect in the small

angular region at the center of the main lobe.

However, even if the S. o. term were added to the solution, the discontinuity at the shadow

boundary would persist. It therefore appears necessary to use a numerical integration with the vr.,i-

able grid method for those points within the g. o. illuminated region. For observation points outside

this region it can be seen from the figures that the two solutions yield nearly the same results.
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