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TURBULENTSOLUTIONOF THE NAVIER-STOKESEQUATIONS

by R. G. Deissler

National Aeronautics an_ Space Aamlnistration
Lewis Research Center
Cleveland, Ohio 44135

To study the nonlinear physics of incompressible turbulent flow, the

unaveraged Navier-Stokes equations are solved numerically. Initial three-

dimensional cosine velocity fluctuations and periodic boundary conaitions

are used. No mean gradients are present. The three components of the mean-

_, square velocity fluctuations are equal for the initial conditions chosen.

I
,,, The resulting solution shows cnaracterisLics of turbulence, such as the nor_-

linear excitation of small-scale fluctuations. For the higher Reynolds num-

bers the initially nonrandom flow develops into an apparently random tur-

bul ence.



INTRODUCTION

Although much turbulence research has been done in recent years, there

does not appear to be a general deductive theory of high Reynolds number

turbulence. Most of tne analytical theories depend on a closure assumption

for tl_e hierarcny of averaged equations. This immediately calls into ques-

tion the appropriateness of referring to them as deuuctive theories, except

1
at low Reynolds numbers where nonlinear effects are small.

One way in which a closure assumption can be avoided is by closure by

specification of initial conditions. 2 That method can successfully pre-

dict turbulent decay. However, in order to use it the initial conditions

must be fully turbulent, and a large amount of initial data is required to

satisfactorily specify the initial turbulence. Moreover, t_e method appears

limited to decaying turbulence and does not seem capable of extension to

turbulence maintained Dy mean gradients, where the effect of initial condi-

tions eventually becomes negligible.

In view of the foregoing comments it seems desirable to consider a

numerical solution of the Navier-Stokes equations which displays features of

turbulence. It might be pointed out that it is more appropriate to refer to

a numerical solution of the unaveraged equations as deductive than it is to

so refer to most of the analytical theories, where closure assumptions are

required. Several numerical solutions of the unaveraged equations have

appeared which use a spectrum of random initial conditions (e.g., Refs. 3

and 4). These studles appear so demonstrate the feasibility of carrying out

turbulent solutions with present-day computing equipment and certainly re-

present major advances.

Because of the difficulty of specifying realistic turbulent initial

conditions (experlmentally or analytically), it may De more appropriate to



initially specify a simple regular fluctuation (as actually occurs down-

stream of a grid). This should be better for studying the development of

smallscale fluctuations than would a spectrum of initial fluctuations, since

for" tile latter, small-scale fluctuations are already present in the initial

flow. Taylor and Green5 and others 6'7 have used a perturbation series

to calculate the nonlinear development of higher harmonics from lower ones.

However, those studies were l irnited to short times or low Reynolds numbers.

Orszag and Fateman8 nave recently used Taylor and Green's initial condi-

tions and obtained a numerical solution for higher Reynolds numbers ano

larger times. The inviscid (infinite Reynolds number) case was investigated

in some detail by Betchov and Szewczyk. 9

In the present paper we study the nonlinear physics of turbulence

numerically. The initial conditions are chosen to give a flow with tur-

Dulentlike properties. Unlike the problem of Taylor and Green, all three of

the directional components of the mean-square velocity fluctuations are

equal. This .is a simpler type of flow than that considered previously, in

that it is only necessary to follow the evolution of one velocity compo-

nent. Weare assured that if one component has the desired turbulent or

turbulentlike characteristics, the overall flow will nave them. That is not

the case for all initial conditions. For instance initial conditions tried

earlier gave two mean-square velocity components wnicn were equal and

decayed rapidly like turbulence, but the t_lird decayed much more slowly.

One of the objectives is to study t_le nonlinear excitation of small-

scale fluctuations (starting with only large-scale ones) for a range of

Reynolds numbers. This will be done partly by calculating the evolution of

the microscale of the fluctuations. It will De seen that although the ini-

tial conditions are nonrandom, the flow at nigher Reynolds numbers breaks up

into an apparently random turbulence.



EQUATIONSANDMETHODS

The Navier-Stokes and continuity equations for an incompressible fluid

can be written in dimensionless form as

a2u
aui a(uiuk) ap + i (I)
at_ = axk axi axkaxk

and

auk
- O, (2)

axk

where

2

x0 . xO . . x
= -- u p _ p t = -_ t , and x i 1ui _ i' 2 ' - x0P_ xO

Note that the stars on dimensional quantities are omitted for corresponding

dimensionless quantities. The subscripts can take on the values I, 2,

and 3, and a repeated subscript in a term indicates a summation• The quan-

tity ui is an instantaneous velocity component, x i is a space

coordinate, x0 is a characteristic length, t is the time, p is the

density, _ is the kinematic viscosity, and p is the instantaneous

pressure. In order to obtain an explicit equation for tne pressure, we take

the divergence of Eq. (I) and apply the continuity Eq• (2) to get

2 a2
a p (U_Uk) (3)

ax_ax_ ax_axk

In the remainder of tile analysis it will be found convenient to use the set

of Eqs. (I) and (3), rather than Eqs. (I) and (2).

The expression assumed for the initial disturbance is, in dimensionless

form

ui = ai cos _-_x + bi cos _r->x + c i cos _'_, (4)



where

x° _ x° * x° * _i _* _ Xo_*_ Xo_= a b = -- hi, c - c = x0ai _ i' 1 _ i - _ i' ' = ' =

* b* *The quantities ai, i' and c i are initial velocity amplitudes or

Fourier coefficients of the disturbance, and q , r , and s are initial

wave number vectors. The quantities q.x, etc. are dot products, so that

>>
q.x : qlXl + q2x2 + q3x3 , etc. In order to satisfy the continuity

condition, Eq. (2),

aiq i = biri = cis i = O. (5)

For the present work we set

ai = k(2,l,i), bi = k(l,2,1), c i = k{l,l,2),
(6)

qi = (-I,I,I), r i = (I,-I,I), and s i = (I,I,-I),

where k is a quantity that fixes tile Reynolds number. In aadition to sat-

isfying continuity, Eqs. (6) give

u#: u2: =7 (7)

at all times, where the overbars indicate values averaged over space. Thus,

Eqs. (4) and (6) give a particularly simple type of flow, in that we need

specify only one component of the mean-square-velocity.

In order to carry out the numerical solution of Eqs. (I) and (3) sub-

ject to initial conditions, Eqs. (4) and (6), we use a cubical grid with

faces at x i = 0 and 2_. For boundary conaitions we set the values of

ui equal at corresponding positions o_ opposite faces (and in the vicin-

ity of those faces, as requirea for calculating numerical derivatives at the

faces). That is, we assume tilat the boundary conditions are periodic.



The spacial- and time-differencing schemes are essentially those used

by Clark, et al. 4 That is, for the spatial derivatives in Eqs. (I) and

(3) we use centered fourth-order difference expressions. I0 For time-

differencing we use a predictor-corrector method with a second-order (leap-

frog) predictor and a thira-order (Adams-Moulton) corrector. 11 The

Poisson equation for the pressure (Eq. (3)) is solved directly (no itera-

tion) by a fast Fourier-transform method. This method of solution was found

to preserve continuity (V._O) except near the ends of some of the runs,

where the solutions began to deteriorate. (Another indication of incipient

solution deterioration near the enas of some of the runs was that Eqs. (7)

were no longer accurately satified.)

Someof the results will be extrapolated to zero mesh size in an effort

to obtain more accuracy. An expression for a corrected value of the mean

square velocity fluctuation u2 in terms of the uncorrected valueC

u_, which is consistent with fourth-order spacial differencing, is

2 2 6
uc = uu + B(t)Ax4 + C(t)ax + • ., (8)

where ax is the distance between gria points. In a plot of u2 against

time t it may be desirable to correct the time for a given "_ rather

than u2 for a given time. For that purpose we have, instead of Eq. (8)

= +B( )Ax4+ C( )Ax6+ . . (9)tc tu

In choosing between Eqs. (8) and (9) we use the equation that gives the

smaller correction. Both expressions are accurate for an infinite number of

terms, but for a finite number of terms tne expressisn that gives the

smaller correction should be more nearly converged in the sense that addi-

tional terms would not significantly cnange the relation between _ and t.



The unknown values in Eq. (8) or (9) are obtained by calculating u2 as a

function of t for several different grid-point spacings ax. For instance

by truncating Eq. (9) after terms of order 6, we calculate t u against

u2 for three values of ax to obtain t c, B(_) and C(u2) for each

-_-. If the three values of ax differ successively by factors of two,

1024 16 9T5t c = _ t I - _ t 2 + t 3, (I0)

where t I, t2, and t 3 are calculated values of t for three values

of AX at a fixed u--2". If only two Ax's are used,

16 1
tc - 15 tl - _ t2" (II)

Similar equations are obtained for u2 at a given time.c

RESULTSAND DISCUSSION

Figure 1 snows the calculated evolution of velocity fluctuations at two

fixed points in space for a high Reynolds number (no correction for dis-

cretization error). In spite of the nonrandom initial conditions (Eqs. (4)

and (6)) the velocity fluctuations have the appearance of those for a random

/7112
turbulence. The dashed curves of Ul!U 0 are for initial condi-

tions perturbed -0.1 percent. The perturbed curves follow the unperturbed

ones for a short time and then depart sharply. Thus a very small perturba-

tion of initial conditions causes a large change in the values of u.1

(except near t = 0). Oil the other hand, the root-mean-square values of the

velocities decrease smoothly and are unaffected by the perturbation of ini-

tial conditions. All of these features are characteristic of turbulence.

Another characteristic of turbulence is that the correlation between

velocities at two times should go to zero as the separation of the times

increases. Figure 2 shows that this occurs for the present high Reynolds



number calculations. For true turbulence the correlation should probably

decrease smoothly with time. Figure 2(b) shows that this is nearly the case

for the larger t O (the time that is fixed as the other time increases).

At early times there is probably some nonrandom structure in the flow caused

by the nonrandom initial conditions (Fig. 2(a)).

As a further inoicatio_ that the high Reynolds number flow breaks up

into turbulence, we calculate the evolution of the cross correlation

UlU2. Although u_= u_= u_ at all times, the initial UlU2 given Dy

Eqs. (4) and (6) is not zero. However Fig. 3 shows that because of the ap-

parent randomization of the flow UlU2 goes to zero as time increases.

The fluctuations in the curve at early times (as also in the curve of Fig.

2(a)), are probably caused by nonrandom structure in the flow at early

tlmes. Figures 1 to 3 show that at later times we appear to get a reason-

able approximation to isotropic turbuler_ce, although the initial conditions

are nonrandom. Calculatea values of velocity-derivative skewness factor for

a high Reynolds number (Fig. 4) also appear to be comparable to those for

isotropic turbulence. The present calculations differ from earlier ones,

where turbulence was obtained by using random initial conditions. Our

calculations at lower Reynolds numbers give results that are less turbulent-

like. Thus the fluctuations develop apparent randomness only at the higher

Reynolds numbers.

A question remains as to the source of the randomness observed in

Fig. i. Until recently it was generally assumed that randomness in a tur-

bulent flow is due to randomness in tile initial conditions, to random exter-

nal fluctuations, andior to the presence of so many eddies or harmonic com-

ponents (or of so many degrees of freedom) that the identity of the individ-

ual eddies is lost. 12,13 In the present results the first two of these



have aIirea(]_ Deen eliminate(i, thus leavTng only the proliferation of eddies

or harmonic components as a source of appareHt randomness. 6 However

Lorenz and others i2-15 nave ShOWnthat a system of nonlinear equations

with only a few aegrees of freedom can develop an apparently random behavior"

in time as a result of loss of stability of the solutions. This happens

because of the occurrence of so-calle_ strange attractors, which are regions

in tile phase space of the system to which solutions are attracted.

Randomness arises in those regions from a haphazaro movement of the phase

point among the neighborhoods of various critical points in the phase space

(points of unstable equilibrium where the solution is steaay state).

Strange attractors can occur even with a small number of degrees of freedom

(two or three).

Tile system of spacially-differenced equations used here (disregara time

differencing), which is obtained from the Navier-Stokes equations, consists

of orainary differential equations of essentially the same form as those in

the Lorenz system. 14,15 In particular, both systems have nonlinear alge-

braic terms tllat contain products of two dependent variables. Since a

strange attractor arisir]g from those nonlinear terms is known to produce

randonlization in the Lorenz system, it appears that such attractors should

also produce randomization in the differenced Navier-Stokes system. For a

sufficiently fine grid there should be no significant difference between

results from the undifferenced and differenced versions of tl_e Navier-Stokes

equations, so tl]at it seems reasonable to assume that strange attractors

play a role in Navier-Stokes turbulence. Tl_e same conclusion is reached if

the spectral rather than the differenced form Of the Navier-Stokes equatlons
8

is used, since tilose equations also have the same form as the Lorenz

equations.



In an actual turbulent flow, as in the model used here, there is a very

Ilarge number of eddies or degrees of freedom, so that although strange

attractors probably produce randomization, additional apparent randomization

will almost certainly be produced by proliferation of eddies or harmonic

components. It appears that no conclusions can be arawn as to the relative

importance of the two processes. The sensitivity of the flow to initial

conditions ano the suddenness with which the effect of perturbation of ini-

tial conditions becomes manifest (Fig. 1) are results often associated with

12-15
strange attractors. On the other hand those results could be caused

in large measure by the nonlinear production of harmonic components, since,

particularly at higher Reynolds numbers, the latter tends to De explosive

(each harmonic component interacts with every other one).6

It might be thought that larger Reynolds numbers would favor randomiza-

tion by proliferation of harmonic components, since that process is stronger

at nigh than at low Reynolds numbers. However the larger number of degrees

of freedom at i_ig_ Reynolds numbers will correspond to a greater number of

unstable equilibrium points in the phase space of the system (where the

solution is steady state). There will then De more opportunities for

randomization in strange attractors. Thus at high Reynolds numbers there

are arguments for randomization both by proliferation of harmonic components

and in strange attractors, and botl] will probably occur.

The presence of strange attractors may be fortunate from a numerical

standpoint, in that it should enable turbulent solutions that are qualita-

tively correct (at least insofar as they appear random in time) to De ob-

tained with a relatively coarse grid. A calculation which used a grid with

only 33 points gave results which appeared to be about as random as those

in Fig. i, where 323 points were used, The use of a fine three-

dimensional grid, of course, requ_res a large amount of computer time.



In the results given so far, no correction for the discretization error"

due to the finite numerical mesh size was applied. The primary purpose of

the present work is to stuay the physics of turbulence rather than to obtain

r_ighly accurate results (possibly unattainable at very hign Reynolds num-

bers). For low Reynolas numbers Fig. 5 snows that surprisingly goom results

can be obtained even wlth coarse grids. At higher Reynolas numbers the

results, although less accurate, snould still be qualitatively correct.

Their accuracy can be improved by extrapolating to zero mesh size Dy apply-

ing fourth-order discretization corrections as explained in the last sec-

tion. This is done in lieu of subgria modeling, which has been used in

previous work. 4 The method is related to subgrid modeling in that it

assumes that the subgrid eddies are somewhat similar to the calculated

eddies, but does not require tile introduction of a subgrid eddy viscosity.

In all of tlle remaining results the fourth-order discretization corrections

are applied. However the corrections are negligiDly small except at the

highest Reynolds number. (An alternative (possibly more accurate) method of

extrapolating to zero mesh size would be to perform the extrapolation at

eacn time step (or for a group of steps) as the numerical calculation pro-

ceeQs, rather than after all the calculations for the varlous mesh sizes are

completed. However that procedure would require a special program and was

not used here.)

Figure 6 shows the calculated evolution of mean-square velocity fluc-

tuations for a series of initial Reynolds numbers. As the Reynolds number

increases (v anG x0 held constant), the rate of decay of u'2 in-

creases sharply, as in experimental turbulent flows. 2 This can be attri-

butea to the nonlinear excitation of small-scale turDuientlike fluctuations

at the higher Reynolds numbers. The high shear stresses between the small

eddies cause a rapid aecay.

IO



The development of the small-scale eddies is seen more clearly in

Fig. 7, where mlcroscale x calculated from

*Z
x2 _ IO_u

T2 *
du /!_t

(Ref. 16) is plotted against dimensionless time. As the ReYnolds number

increases, the small-scale structure becomes finer. The microscale de-

creases until the fluctuation level (inertial effect) is low enough that

viscous forces prevent further decrease. After x decreases to a minimum,

it begins to grow. This increase of x with time is due to the selective

annihilation of eddies by viscosity, the small eddies being the first to

decay. Thus at large times only the big eddies remain. It is this period

of increasing x that is generally observed experimentally in grid-

16
generated turbulence.

The early period, in which x decreases with time, is of interest as

illustrative of inter-wavenumber energy transfer. It is often pointed

out 1'16 that turbulent energy is characteristically transferred from big

eddies to small ones. This is associated with the nonlinear terms in the

Navier-Stokes equations and can be thought of as due to a breakup of big

eddies into smaller ones, or as a stretching of vortex filaments to smaller

diameters. In spite of this energy transfer to smaller eddies, the experi-

mental results generally show a growth of scale. 16 This is because those

results are usually for the later period snown in Fig. 7 where, although

energy is transferred to smaller eddies, the annihilation of small eddies by

. viscous action eventually wins out. The early period shown in Fig. 7 is of

particular interest, in that the nonlinear transfer effects are truly domi-

nant there; a sharp decrease in scale actually occurs as energy is trans-

ferred to smaller eddies.

11



Mean-square vorticity or d ssiptation fluctuations are plotted in

Fig. _, as calculated trom Eq. b.Z._) in Ref. 16. Although the curve for

zero Reynolds number, where norflinear effects are ausent, decreases mono-

tonically to zero, tl_e curves for higher Reynolds numbers increase snarply

for a while ana then decrease. Thus the nonlinear terms in the Navier-

Stokes equations are very effective vorticity generators and greatly enhance

the dissipation at small anm moderate tlmes. For large times they appear to

have the opposite effect, evidently because the tur'_ulence itself decays

rapidly to zero.

Figure 9 shows mean-square pressure fluctuations plotted against dimen-

sionless time. The enhancement of the pressure fluctuations, although not

as great as that of the vorticity and missipation again appears to be due to

nonlinear effects. In this case the nonlinear terms on the right side of

the Poisson equation for the pressure proDably nave the greater' effect.

Three measures of the relative importance of inertial (nonlinear) aria

viscous effects are shown for a moderately high initial Reynolds number in

Fig. 10. The microscale Reynolds number R_, tlle ratio of nonlinear

velocity term to viscous term, and the ratio of pressure _o viscous term in

Eq. (1) are plotted against dimensionless time. The terms are root-mean-

square values, All of those measures show a variation from a rather iner-

tial to a weak fluctuating flow. For instance R_ varles from about 90

to 0.7. This is a much greater" variation than llas been obtained experi-

mentally for a single run. The curves for' the term ratios lie somewhat
e

below that for R_. They indicate that except at early times the non-

linear inertial effects associated with velocity and with pressure mo not

differ" greatly.

i2



CONCL.UDINUREMARKS

The results show that, at least at higher Reynolds numbers, an

apparently random turbulence can develop from nonrandom initial conditions.

This is indicated by the appearance of the instantaneous velocity fluctua-

tions arid by the sensitivity of those fluctuations (and the insensitivity of

average values) to small perturbations in the instantaneous initial condi-

tions. Moreover, the two-time velocity correlation becomes small as the

time between ti_e occurrence of the two velocities increases. In addition

t he cor re I at i on beitwee[I_ two component s of t ne ve l oc i ty become s smaI 1 as t he

time increases, as a result of the randomization. This correlation is not

small initially, even though the three components of the mean square veloc-

ity fluctuation are equal at early as well as at late times for the initial

conditions chosen. Also the calculated velocity-derivative skewness factors

appear to be comparable to those for isotropic turbulence. Thus except in

the initial period we evidently obtain, at the higi_er Reynolds numbers, a

reasonably good approximation to isotropic turbulence.

The source of the observed randomness may lie in the presence of

strange attractors i2 in the phase space of the system, as well as in the

occurrence of a very large number of eddies or harmonic components (large

number of degrees of freedom). However it appears that no conclusions can

be drawn as to the relative importance of the two processes. (A strange

attractor is a region in the phase space of the system to which solutions

are attracted and in which randomness arises from a haphazard movement of
e

the phase point among the neigborhoods of critical points (points of un-

stable equilibrium where the solution is steady state). It can occur even

with a small number of degrees of freedom.)

13



At early times the nonlinear transfer of energy from big eddies to

small ones is almost completely dominant and causes a sharp decrease in the

size of the microscale. Tnis has not been generally observed experlmentally

or analytically because the period usuaily studied is for later times, where

the anihilation of small eddies by viscous action causes the scale to grow,

o even though energy is being transferred to smaller eddies. This later per-

iod of scale growth is also observed irl the present results.

The nonlinear terms in the equations of motion are very effective vor-

ticity generators and increase the dissipation and the rate of uecay. The

increased rate of decay is related to the nonlinear transfer of energy to

smaller eddies; the small eddies decay faster than the big ones because of

the higher shear stresses between the small eddies. Calculation of terms in

the equations of motion snows, as might be expected, that the flow is domi-

nated by nonlinear inertial effects at early times and by viscous effects at

later times.

The accuracy of the numerical results can be improved somewhat by

extrapolating to zero mesh size. This is done by applying a fourth-order

correction for discretization which is consistent with the fourth-order

spacial differencing used in the calculations. This procedure is used in

lieu of subgrid modeling and does not require the introduction of a subgrid

eddy viscosity.
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