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TURBULENT SOLUTION OF THE NAVIER-STOKES EQUATIONS
by R. G. Deissler
National Aeronautics and Space Administration

Lewis Research Center
Cleveland, Ohio 44135

To study the nonlinear physics of incompressible turbulent flow, the
unaveraged Navier-Stokes equations are solved numerically. Initial three-
dimensional cosine velocity fluctuations and periodic boundary conditions
are used. No mean gradients are present. The three components of the mean;
square velocity fluctuations are equal for thne initial conditions chosen.
The resulting solution shows characteristics of turbulence, suéh as the non-
Tinear excitation of small-scale f]uctuétions. For the higher Reynolds num-

bers the initially nonrandom flow develops into an apparently random tur-

buience.
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INTRODUCTION

Although much turbulence research has been done in recent years, there
does not appear to be a general deductive theory of high Reynolds number
turbulence. Most of the analytical theories depend on a closure assumption
for the hierarchy of averaged equations. This immediately calls into ques-
tion the appropriateness of referring to them asbdeductive,theories, éxcept
at Tow Reynolds numbers where nonlinear effects are sma]].l

One way in which a closure assumption can be avoided is by closure by
specification of initial conditions.2 That'method can successfully pre-
dict turbulent decay. However, in order to use it the initia] conditions
must be fully turbulent, and a large amount of initial data is required to
satisfactorily specify the initial turbulence. Moreover, the method appears
limited to decaying turbulence and does not seem capable of extension to |
turbulence maintained by mean gradients, where the effect of initial condi-
tions eventually becomes negligible.

In view of the foregoing comments it seems desirable to consider a
numerical solution of the Navier-Stokes equations which displays features ofi
turbulence. It might be pointed out that it is more appropriate to refer tor
a numerical solution of the unaveraged equations as deductive than it is to :
so refer to most of the analytical theories, where closure asﬁumptions are
required. - Several numerical solutions of the unaveraged equations have
appeared which use a spectrum of random initial conditions (e.g., Refs. 3
and 4). These studies appear to demonstrate the feasibility of carrying out
turbulent solutions with present-day computing eqdipment and certainly re-
present major advances.

Because of the difficulty of specifying realistic turbulent initial

conditions (experimentally or analyticaily), it may be more appropriate to



initially Specify a simple regular fluctuation (as actually occurs down-
stream of a grid). This should be better for studying the development of
smallscale fluctuations than would a spectrum of initial fluctuations, since
for the latter, small-scale fluctuations are already present in the initial
flow. - Taylor and Green5 and other56’7 have used a perturbation series

to calculate the nonlinear development of higher harmonics from 1ower'onés.
However, those studiés_were limited to short times or Tow Reynolds numbers,
Ors‘zag‘and‘Fateman8 have recently used Tay1or‘and Green's initial condi-
tions and obtained a numerical solution for higher Reynolds numbers and
Targer times. The inviscid (infinite Reynolds humber) case was 1nvestigatéd
in some detail by Betchov and Szewczyk.9

In the present paper we study the nonlinear physics of turbulence
numerically. The initial conditions are chosen to give a flow with tur-
bulentlike properties., Unlike the probiem of Taylor and Green, all three df
the directional components of the mean-square velocity fluctuations are
equal. This is a simpler type of flow than that considered previously, in
that it is only necessary to follow the evolutionlbf one velocity compo-
nent. We are assured that if one component has the desired turbuient or
turbulentlike characteristics, the overall flow will have them. That is not
the case fbr all initial conditions. For instance initial conditions tried
earlier gave two mean-square velocity components which were equal and
decayed rapidly like turbu1ehce, but the third decayed much more slowly.

One of the objectives is to study the nonlinear excitation of small-
“scale fluetuations (starting with only large-scale ones) for a range of
Reynolds numbers. This wi]lvbe done partly by calculating the evolution of
‘the microscaie of the fluctuations. It will be seen that although the ini-

tial conditions are nonrandom, the flow at higher Reynolds numbers breaks up

into an apparently random turbulence.



EQUATIONS AND METHODS
The Navier-Stokes and continuity equations for an incompressible fluid
‘can be written in dimensionless form as
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Note that the stars on dimensional quantities are omitted for corresponding
dimensionless quantities. The subscripts can take on the values 1, 2,
and 3, and a repeated subscript in a term indicates a summation. The quan-
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tity u. is an instantaneous velocity component, X

j is a space

coordinate, Xg s a characteristic length, t* is the time, p is the

density, v is the kinematic viscosity, and p* is the instantaneous

pressure. In order to obtain an explicit equation for the pressure, we take

the divergence of Eg. (1) and apply the continuity Eq. (2) to get
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In the remainder of the analysis it will be found convenient to use tne set
of Egs. (1) and (3), rather than Egs. (1) and (2).

The expression assumed for the initial disturbance is, in dimensionless
form

> > > > >
u, = a; cos ﬁ-x + bi cos X *+ ¢y cos 5%, (4)



a. =

X X X
0 * O ! * 0 * _ * _ * _ *
5 4 bi = 3"'b1’ Ci =7 Cys a = xOE , F= xo?, [ x0§ ﬁ

* .
The quantities a:, b:, and c; are initial velocity amplitudes or

. .. . >k >k >k 1
Fourier coefficients of the disturbance, and q , r, and § are initial

wave number vectors. The quantities a.i, etc. are dot products, so that
3.? = QX3 * dyxy * Q3x3, etc. In order to satisfy the continuity
condition, Eq. (2),

For the present work we set

a, = k(2,1,1), bo=k(1,2,1), ¢, =k(1,1,2),

(6)
qi = (‘]a]a])’ ri = (],"]s])5 and si = (]9]9'])9 ‘
where k s a quantity that fixes the Reynolds number. In addition to sat-

isfying continuity, Eqs. (6) give

at all times, where the overbars indicate values averaged over space. Thus;
Egs. (4) and (6) give a particularly simple type of flow, in that we need
specify only one component of the mean-square-veiocity.

In order to carry out the numerical solution of Eqs. (1) and (3) sub-
ject to initial conditions, Eqs. (4) and (6), we use a cubical grid with
faces at X; = 0 and 2«. For boundary conditions we set the values of
uj equal at corresponding positions on opposite faces (and in the vicin-

ity of those faces, as required for calculating numerical derivatives at the

faces). That is, we assume that the boundary conditions are periodic.



The spacial--and time-differencing schemes afe essentially those used
by Clark, et al.* That is, for the spatial derivatives in Egs. (1) and
(3) we use centered fourth-order difference expressions.10 Fér time-
differencing we use a predictor-correctqr method with a second-order (leap-
frog) predictor and a third-order (Adams-Moulton) corrector. ! The
Poisson equation for the pressure (Eq. (3)) is solved directiy (no itera-
tion) by a fast Fourier-transform method. This method of solution was found
to preserve continuity 07.3@0) except near the ends of some of the runs,
where the solutions began to deteriorate. (Another indication of incipient
solution deterioration near the ends of some of the runs was tnat Eqs? (7)
were no longer accurately satified.)

Some of the results will be extrapolated to zero mesh size in an effort

to obtain more accuracy. An expression for a corrected value of the mean .

square velocity fluctuation ui in terms of the uncorrected value

uﬁ, which is consistent with fourth-order spacial differencing, is

uE - ul s p(taxt Fcad ¢ L L, (8)
where ax is the distance between gria points. In a plot of u~ against
time t it may be desirable to correct the time for a given u2 rather
than u2 for a given time. For that purpose we have, instead of Eq. (8)

tc = tu + B(UZ)AX4 + C(;?)Ax6 ... (9)

In choosing between Egs. (8) and (9) we use the equation that gives the
smaller correction. Both expressions are accurate for an infinite number of
terms, but for a finite number of terms the expressisn that gives the
smaller correction should be more nearly converged in the sense that addi-

—

tional terms would not significantly change the relation between u® and t.:



The unknown values in Eq. (8) or (9) are obtained by calculating ul as a
function of t for several different grid-point spacings ax. For instance

by truncating Eq. (9) after terms of order'6, we calculate t, against

u? for three values of ax to obtain tc, B(uz) and C(u2) for each

u2. If the three values of ax differ successively by factors of two,
' 1024 16 1 ' ‘
temws b Ty Yt wm by (10)

where t], ty, and ts are calculated values of t for three values
of ax at a fixed :?. If only two ax's are used,

16 1

L= 4 -T3

t,. (17)

Similar equations are obtained for ui at a given time.

RESULTS AND DISCUSSION
Figure 1 shows the calculated evolution of velocity fluctuations at two
fixed points in space for a high Reynolds number (no correction for dis-
cretization error). In spite of the nonrandom initial conditions (Eqgs. (4)

and (6)) the velocity fluctuations have the appearance of those for a rando

—=l1/2 '
turbulence. The dashed curves of Uy ug are for initial condi-

tions perturbed ~0.1 percent. The perturbed curves follow the unperturbed
ones for a short time and then depart sharply. Thus a very small perturba-
tion of initial conditions causes a large change in the values of us
(except near t = 0). On the other hand, the root-mean-square values of the
velocities decrease smoothly and are unaffected by the perturbation of ini-
tial conditions, All of these features are characteristic of turbulence.
Another characteristic of turbulence is that the correlation between
velocities at two times should go to zero as the separation of the times

increases. Figure 2 shows that this occurs for the present high Reynolds



numbef calculations. For true turbulence the correlation should probably
decrease smoothly with time. Figure 2(b) shows that this is nearly the case
for the larger t0 (the time that is fixed as the other time increases).
At early times there is probably some nonrandom structure in the flow caused
by the nonrandom initial conditions (Fig. 2(a)).

As a further indication that the high Reynolds number flow breaks up
into turbulence, we calculate the evolution of the cross correlation
Uqu,.  Although :? = ;g = ;g at all times, the initial uju, given by |
Egs. (4) and (6) is not zero. However Fig. 3 shows that because of the ap-
parent randomization of the flow UIUE goes to zero as time increases.
The fluctuations in the curve at early times (as also in the curve of Fig.
‘2(6)), are probably caused by nonrandom structure in the flow at early
times. Figures 1 to 3 show that at later times we appear to get a reason-
able approximation to isotropic turbulence, although the initial conditions
are nonrandom. Calculated values of velocity-derivative skewness factor for
a high Reynolds number (Fig. 4) also appear to be comparable to those for
isotropic turbulence. The present calculations differ from earlier ones,
where turbulence was obtained by using random initial conditions. Our
calculations at lower Reynolds numbers give results that are less turbulent-
like. Thus the fluctuations develop apparent randomness only at the higher
Reynolds numbers.

A question remains as to the source of the randomness observed in
Fig. 1. Until recently it was generally assumed that randomness in a tur- |
bulent flow is due to randomness in the initial conditions, to random exter-
nal fluctuations, and/or to the presence of so many eddies or harmonic com-

ponents (or of so many degrees of freedom) that the identity of the individ-
12,13

ual eddies is lost. In the present results the first two of these



have already been e11minated, thus leaving only the proliferation of eddies
or harmonic components as a source of apparent randomness.6 However

Lorenz and otherslz‘l5

have shown that a system of nonlinear equations
with only a few degrees of freedom can develop an apparently random behavior
in time as a result of loss of stability of the solutions. This happens
because of the cccurrence of so-calied strange attractors, which are regions
in the phase space of the system to which solutions are attracted.
Randohness érises in those regions from a haphazard movement of the phase
point among the neighborhoods of various critical points in the phase space
(points of unstable equilibrium where the solution is steaay state).
Strange attractors can occur even with a small number of degrees of freedom
(two or three).

The system of spacially-differenced equations used here (disregard time"
differencing), which is obtained from the Navier-Stokes eqﬁations, consists
of ordinary differential equations of essentially the same form as those in

14,15 In particular, both systems have nonlinear alge-

the Lorenz system.
bréic terms that contain products of two dependent variables. Sincela
~strange attractor arising from thoée nonlinear terms is known to proddce
randomization in the Lorenz system, it appears that such attractors should
also produce randomization in the differenced Navier-Stokes system. For a
sufficiently fine grid there should be no significant difference between
results from the undifferenced and differenced versions of the Navier-Stokes
equations,'so that it seems reasonable to assume that strange attractors
pltay a role in Névier—Stokes turbulence. The same concliusion 1is réached if
the spectral rather than the differenced form of the Navief—Stokes equations
8

is used,” since those equations also have the same form as the Lorenz

equations.



In an actual turbulent f]ow,las in the model used here, there is a very
large numbér of eddies or degrees of freedom, so that a1though strange
attractors probably produce randomization, additional apparent randomization
will almost certainly be produced by proliferation of eddies or harmonic
components, It appears that no conclusions can be drawn as to the relative
importance of the two processes. The sensitivity of the flow to initial
conditions and the suddenness with which the effect of perturbation of ini-
tial conditions becomes manifest (Fig. 1) are results often associated with

strange attractors.12‘15

On the other hand those results could be caused
in large measure by the nonlinear production of harmonic components, since,
particu]ar1y_at higher Reynolds numbers, the 1atter>tends to be .explosive
(each harmonic component interacts with every other one).6‘

It might be thoughf that larger Reynolds numbers would favor randomiza-
“tion by proliferation of harmonic components, Ssince that process is stronger
at high than at low Reynolds numbers. However the larger number of degrees
of freedom at high Reynolds numbers will correspond to a greater number of
unstable equilibrium points in the phase space of the system (where the
solution is steady state). There will then be more opportunities for
randomization in Strange attractors. Thus at high Reynolds numbers there
are arguments for randomization both by proliferation of harmdnic components
and in strange attractors, and both will probably occur.

The presence of strange attractors may be fortunate from a numeriéal
standpoint, in that it should enable turbulent solutions that are qualita-
tively correct (at least insofar as they appear random in time) to be ob-
tained with a relatively coarse grid. A calculation which used a grid with
only 33 points gave results which appeared to be about as random as those

in Fig. 1, where 323 points were used. The use of a fine three-

dimensional grid, of course, requires a large amount of computer time.



In the results given so far, no correction for the discretization error
due to the finite numerical mesnh size was applied. The primary purpose of
the present work is to stuay the physics of turbulence rather than to obtain
highly accurate results (possibly unattainable at very hignh Reynolds num-
bers). For low Reynolds numbers Fig. 5 shows that surprisingly good results
can be obtained even with coarse grids. At higher Reynolds numbers the
results, although less accurate, should stj11 be qualitatively correct.
Their accuracy can be improved by extrapolating to zero mesh size by apply-
{ng fourth-order discretization corrections as explained in the last sec-
tion. This is done in lieu of subgrid modeling, which has been used in
previous work.4 The method is related to subgrid modeling in that it
assumes that the subgrid eddies are somewhat similar to the calculated
eddies, but does not require the introduction of a subgrid eddy viscosity.
In all of the remaining results the fourth-order discretization corrections
are applied. However the corrections are negligibly small except at the
highest Reynolds number. (An alternative (possibly more accurate) method of
extrapolating to zero mesh size would be to perform the extrapolation at
each time step (or for a group of steps) as the numerical calculation pro-
ceeds, rather than after all the calculations for the various mesh sizes are
completed. However that procedure would require a special program and Was
not used here.)

Figure 6 shows the calculated evolution of mean-square velocity fluc-
tuations for a series of initial Reynolds numbers. As the Reynolds number
increases (v and X0 held constant), the rate of decay of :§' in-
creases sharply, as in experimental turbulent Hows.2 This can be attri-
buted to the nonlinear excitation of smali-scale turbuientlike fluctuations
at the higher Reynolds numbers. The high shear stresses between the small .

eddies cause a rapid decay.

10



The development of the small-scale eddies is seen more clearly in

Fig. 7, where microscale i ca}éulated from

2 _low’
au /ot

(Ref. 16) is plotted against dimensioniess time. As the Reynolds number

A

incréases, the sma]i_sca1e structure becomes finer. The microscale de-
creases until the f1uctuation level (inertial effect) is Tow enough that
Viscous fortes prevent further decrease. After A decreases to a minimum,
it begins to grow. This increase of‘ A with time is due to the selective
annihilation of eddies by viscosity, the small eddies being the first to
decay. Thus at large times only the big eddies remain. It is this period
of increasing x that is generally observed experimentally in grid-
generated turbu]ence.l6 |
The early period, in which 2 decreases with time, is of interest as
illustrative of inter-wavenumber energy transfer. It is often pointed

outds>10

that turbulent energy is characteristically transferred from big
eddies to small ones. This is associated with the noniinear terms in the
Navier-Stokes equations and can be thought of as due to a breakup of big
eddies into smaller ones, or as a stretching of vortex filaments to smaller
diameters. In spite of this energy transfer to smaller eddies, the experi--

16 This is because those

mental results generally show a growth of scale.
results are usually for the later period shown in Fig. 7 where, although

energy is transferred to smaller eddies, the annihilation of small eddies by
viscous action eventually wins out. The early period shown in Fig., 7 1is of
particular interest, in that the nonlinear transfer effects are truly domi-

nant there; a sharp decrease in scale actually occurs as energy is trans-

ferred to smaller eddies.

11



Mean-square vorticity of dissiptation fluctuations are plotted in
Fig. 8, as calculated from Eq. (5.2.9) in Ref. 16, Although the curve for
zero Reynolds number, where nonlinear effects are absent, decreases mbno—
tonically to zero, the curvés for higher Reynolds numbers increase sharply
for a while and then decrease. Thus the nonlinear terms in the Navier-
Stokes equations are very effective vorticity generators and greatly enhance
the dissipation at small anu moderate times. For large times they appear to
have the opposite effect, evidently because the turoulence itself decays
rapidly to zero.

Figure 9 shows mean-square pressure f]uctuationé plotted against dimen-
sionless time. The enhancement of the pressure fluctuations, although not
as great as that of the vorticity and dissipation again appears to be due tol
nonlinear effects. In this case the nonlinear terms on the right side of
the Poisson equation for the pressure probably have the gfeater effect.

Three measures of the relative importance of inertial (nonlinear) and
viscous effects are shown for a moderately high initial Reynolds number in
Fig. 10. The microscale Reynolds number RA, the ratio of nonlinear
velocity term to viscous term, and the ratio of pressure to viscous term in
Eq. (1) are plotted against dimensionless time. The terms are root-mean-
square values., All of those measures show a variation from a réther iner—
tial to a weak fluctuating flow. For instance Rx varies from about Y0
to 0.7. This i1s a much greater variation than has been obtained experi-
mentally for a singie run. The curves for the term ratios lie somewhat
below that for RA. They indicate that except at early times the non-
1inear.1nertia1 effects associated with velocity and with pressure do not

differ greatly.



CONCLUDING REMARKS

The resuits show that, at least at higher Reynolds numbers, an
apparently random turbulence can develop from nonrandom initial conditions.
This is indicated by the appearance of the instantaneous velocity fluctua-
tions and by the sensitivity éf those fluctuations (and the insensitivity of
average values) to small perturbations in the instantaneous initial condi-
tions. Moreover, the two-time velocity correlation becomes small as the
time between the occurrence of the two velocities increases. In addition
the correlation befween two comporents of the velocity becomes small as the
time increases, as a result of the randomization. This correlation is not:
small initially, even though the three components of the mean square veloc-
ity fluctuation are equal at early as well as at late times for the initial
conditions chosen. Also the calculated velocity-derivative skewness factors
appear to be comparable to those for isotropic turbulence. Thus except in
the initial period we evidently obtain, at the higner Reynolds numbers, a
reasonably good approximation to isotropic turbulence.

The source of the observed randomness may lie in the presence of
strange attractors12 in the phase space of the system, as well as in the
occurrence of a very large number of eddies or harmonic components (large
number of degrees of freedom). However it appears that no conclusions can
be drawn as to the relative importance of the two processes. (A strange
attractor is a region in the phase space of the system to which solutions
are attracted and in which randomness arises from a haphazard movement of
the phase point among the neigborhoods of critical points (points of un-
stable equilibrium where the solution is steady state). It can occur even

with a small number of degrees of freedom. )

13



At early times the nonlinear transfer of energy from big eddies to
small ones 1§ almost completely dominant and causes a sharp decrease in the
size of the microscale. Tnis has not been generally observed experimentally
or analytically because the period usually studied is for later times, where
the anihilation of small eddies by viscous action causes the scale to grow,
even though energy is being transferred to smaller eddies. This later per-'
iod of scale growth is also observed in the present results.

The nontinear terms in the equations of motion are very effective vor-
ticity generators and increase the dissipation and the rate of decay. The
increased rate of decay is related to the nonlinear transfer of energy to
smaller eddies; the small eddies decay faster than the big ones because of
the higher shear stresses between the smail eddies. Calculation of terms in
the equations of motion shows, as might be expected, that the flow is domi-
nated by nonlinear inertial effects at early times and by viscous effects at
Tater times.

The accuracy of the numerical results can be improved somewhat by
extrapolating to zero mesh size. This is done by applying a fourth-order
correction for discretization which is consistent with the fourth-order
spacial differencing used in the ca]cu]atibns. This procedure is used in
1ieu of subgrid modeling and does not require the introduction of a subgrid
eddy viscosity.
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INITIAL CONDITIONS FROM EQS. (4) AND (6)
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J (@) xy * Xo = 9n/8, X3 = 3n/8 FOR UNAVERAGED
FLUCTUATIONS.
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{b) x; = x9 = x3 =  FOR UNAVERAGED FLUCTUATIONS,
Fig. 1 Calculated evolution of turbulent velocity fluctua-
tions (normalized by ir i}%al condition) for a high

Reynolds number u’2 v = 2217, Root-mean-
square fluctuations are spatially averaged. Ax; = w116,
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Fig. 2 Calculated correlation coefficient for velocities at
dimensionless times t and to plotted against t - tg,.

Xg/v = 2211, Ax; = 7/16,

Fig. 3 Calculated correlation coefficient for two velocity
components plotted against dimensionless time.
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Fig. 5 Effect of numerical mesh size on evolution of u?
at low and moderate Reynolds numbers.

Fig. 6 Calculated evolution of mean-square velocity
fluctuations (normalized by initial value) for various
initial Reynolds numbers.
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initial Reynolds numbers,
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Fig. 8 Calculated development of mean-square
vorticity fluctuations W or dissipation ¢
{normalized by initial value) for various inital
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Fig. 9 Calculated evolution of mean=-square pressure
fluctuation (normatized by initial value) for various
initial Reynolds numbers.
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