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I. Introduction

The accuracy of very long baseline interferometry in

geodetic and astrometric applications is primarily limited by

the propagation delays through the troposphere. The part of

this delay that is most d'r`.icult to predict is due to

aLmospheric water vapor which can contribute up to about 40 cm

of excess propagation path at microwave frequencies. The water

e
	 vapor content in the atmosphere is variable and is not well

correlated with surface meterological variables. However, it

has been well known for at least 13 years (Waters, 1967, and

Shaper et al. 1970) that the brightness temperature measured

near the transition of water vapor at -1 2.2 GHz and the propagation

delay due to water vapor, or wet path length, are well correlated.

This correlation is not perfect because the absorption coefficient

and index of refraction do not have the same dependence on

temperature and pressure. However, the water vapor has a

scale height of only about 2 kilometers and the fractional

variation of temperature over this range is small. Hence, the

early theoretical studies showed that the wet path in the zenith

direction could be predicted to an accuracy of -1 cm from micro-

wave radiometry data.

Several important theoretical refinements have been made

in the last few years in establishing the best frequencies

for microwave observations. With observations at many frequencies

near the water line, estimates of the complete profile of water

vapor versus height can be made (Hogg, 1980). This requires
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more instrumentation than is necessary to just measure the

wet path. To estimate the wet path length, the integral of

the refractivity, observations at two frequencies are sufficient.

Observations exactly at the water line frequency are sensitive.

giving TB (°K) _ 2 x Path (cm), but are not recommended. The

opacity of the line is significant, up to 20 percent: at zenith

in some cases. This leads to saturation effects wherein thn

brightness temperature and path length are no longer linearly

related. The frequency of 20.6 GHz is generally agreed to be

a good choice because the absorption coefficient is independent

of pressure (Westwater, 1978). The absorption coefficient is

small enough, 1.6 GHz off the resonance, that saturation is not

a problem. Since the brightness temperature contribution of

clouds containing liquid water vapor is proportional to the

square of the frequency, both the liquid and vapor contributions

to the brightness temperature can be separated by using two

widely spaced frequencies. Wu (1979) has shown that the best

frequency to use, in addition to 20.6 GHz, is about 31.5 GHz.

With these frequencies, the coefficients relating the brightness

temperatures to wet path length are nearly independent of the

details of the water vapor profile.

II. Previous Work

The early work on this contract from 1975 to 1976 has

previously been reported by Moran and Penfield (1976). We

rebuilt two water vapor radiometers originally constructed by

It
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NRAO to measure brightness temperature at 19 and 22 GHz. We

mounted them on search light mounts and built an analog-to-digital

interface for data acquisition. We wrote computer programs

to estimate brightness temperatures at various frequencies and

the path length from radiosonde data using the equations of

radiative transfer and the refractivity of air. We conducted

a ten day experiment during which 45 radiosondes were launched

and brightness temperature measurements were made with the

radiometers at the Haystack Observatory. The rms deviation

about the mean wet path length was 5.6 cm. Using surface

meteorology, the wet path could be estimated to an accuracy

of 3.2 cm, and using the radiometer data it could be estimated

to an accuracy of 1.5 cm.

III. Current Work

We have kept the radiometers in operational order until

the untimely dealth of the radiometer engineer, Joseph Hayes.

Extensive data sets were obtained during most VLBI experiments

over the contract period.	 The radiometers were interfaced

to the Haystack Hewlett-Packard computer which controlled the

pointing aad received the data. Curt Knight wrote the software.

The reduced data, in terms of zenith brightness temperatures,

are available for analysis with the VLSI data. Unfortunately,

data was never acquired simultaneously at any other location.

We also made several attempts to improve the NRAO radiometers.

We replaced the noise tube calibration system with a load,



-5-

cooled to the temperature of liquid nitrogen, While this

calibration was more stable, tipping of the radiometers was

ackward with open dewars. This technique was not used in

routine operation.

We investigated the possibility of changing the frequencies

of the NRAO radiometers. Wu (1979) gives several combinations

of frequencies which produced flat weightinq functions and

therefore are insensitive to profile variations. The one

frequency pair which was possibly within range of our radiometers

was the one at 20.0/6.5 GHz. We measured the frequency

response of all the radiometer components - circulators, Gunn

oscillators, mixers, directional couplers, etc. The range of

most of the components was 18 to 25 GHz. Above 25 GHz the

responses of most components deteriorated rapidly. Since the

stability and reliability of the radiometer was poor at the high

frequency we decided not to retune the radiometers.

We reanalyzed our 1975 data, constraining the ratio of

the regression coefficients to equal 1.37, the ratio of the

observing frequencies. This constraint should tend to eliminate

the effect of clouds. With this constraint the rms resid,ials

increased from 1.5 to 2.4 cm, probably because of the decrease

in the number of degrees of freedom and also because the v2

dependence in only approximate when the opacity is large since

the opacities of the clouds and vapor do not add algebraically.

We have prepared a paper for publication in Radio Science

describing our results. A copy is attached to this report.
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I was greatly aided in this work by Joe Hayes who

built the radiometer pointing system, maintained the radio-

meters and did all the laboratory tests. Joe Hayes died in

December, 1979.
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