NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
STRUCTURAL MAPPING FROM
Landsat Imagery: A Proposed Methodology
For International Geological Correlation
Studies (Instituto de Pesquisas Espaciais, Sao Jose) 10 p HC A02/MF A01 CSCL 08B G3/43 0023
A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's et al. model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Lineament in Cameroon. Ongoing research to complete the methodological stages will include the mapping of the West African structural framework, reconstruction of the pre-drift puzzle and an analysis of the counterpart correlations.
STRUCTURAL MAPPING FROM MSS-LANDSAT IMAGERY: A PROPOSED METHODOLOGY FOR INTERNATIONAL GEOLOGICAL CORRELATION STUDIES

EDISON R. SI
PAULO W. MARTINS

Institute for Space Research - INPE
National Council for Scientific and Technological Development - CNPq
São José dos Campos - SP - BRAZIL

ABSTRACT

A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's et al. model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African Craton; and the Pernambuco Lineament with the Muouso and Lineament in Cameroon. Ongoing research to complete the methodological stages will include the mapping of the West African structural framework, reconstruction of the pre-drift puzzle and an analysis of the counterpart correlations.

1. INTRODUCTION

Since 1972, the LANDSAT Multispectral Scanner System has been collecting repetitive data over global regions in the visible and near infrared spectral regions.

Global tectonics has shown that the geological evolution of distant regions of the world can be markedly similar. Since the general acceptance of continental drift by the scientific community, geological "corrections" have been made between selective drift areas. Studies of this type can be supplemented by global LANDSAT mapping and image interpretation.

The Brazil-Africa Geologic Correlation Project (Gondwana Project) developed by the Brazilian Institute for Space Research (INPE) intends to test the application of LANDSAT imagery for international correlation studies based on the theory of Continental Drift.

This paper presents the methodological approach that has been followed as well as some results already obtained and some preliminary conclusions.

2. DISCUSSION OF METHODOLOGY

The proposed methodology was based essentially on modern means of global data acquisition, as in the application of satellite technology to the study of continental drift and tectonics.

Orbital patterns of the LANDSAT type permit the collection of multispectral data of the most extreme areas of the planet. Geometric resolution is constant, while radiometric resolution can suffer variations, such as solar inclination, with the latitude of the imaged area. In that sense, the study considered areas along roughly the same latitude, we assumed from a radiometric point of view the basic data for correlation to be equivalent; providing for spectral patterns related only to natural targets, independent of atmospheric effects and different latitudes.

ORIGINАL PAGE IS OF POOR QUALITY
The areas studied are in regions classically correlated by researchers involved in continental drift. The physiography of the Atlantic Equatorial continental margin appears as pieces of a "jig-saw" puzzle, lending a natural tendency for the reconstruction of the ancient continent. The similarity between the continental margins of Africa and Brazil was the initial point of Wegener's hypothesis (Wegener, 1915). Ballard, Everett and Smith (1964) proposed a fitting of the two continents, based on the depths of the continental edge, considering it as the actual margin of the two continents. The scheme proposed by these authors will be the model used in this study, together with LANDSAT research to discriminate the structural frameworks of the Brazilian northeast and African northwest. The model has been applied to Precambrian geological correlations (Almeida, 1960) as well as to tectonic fabric correlations of the continental margins (Corini and Fryan, 1975).

The continental margins adjacent to the South Atlantic are commonly classified as Atlantic type (Heese, 1974) as opposed to the Pacific type. While the first type adjoins deep oceanic zones of expansion, the margins of the Pacific type are adjacent to zones of coalescence and thrusting plates, as on the western margin of the South American continent. For the method proposed, it is fundamental that the continental margins be of the Atlantic type, whose tectonic processes were less intense than the Pacific type and did not evolve to disfigure the adjoining landward structures.

Following the criteria that the continental margin be of the Atlantic type, that a model for connecting the continents be applicable and that LANDSAT data be available, the visual interpretation of imagery and integration of tectonic and structural data could be pursued.

Proceeding the actual research stage, the larger lineaments, principal structural tendencies, and different geological sequences of the Brazilian Northeast were mapped. To support the visual interpretation, three geological profiles were developed: the first, VS, from Natal to Currais Novos (Rio Grande do Norte), the second, NS, from Serra Talhada (Pernambuco) to Oris (Ceara) and, the third, from Diadema (Ceara) to Santa Barbara, in a NNW direction to Santa Barbara. The profiles permitted the lithological and structural characterization of the principal tectonic groups of the Brazilian Northeast.

The stage to follow would be the development of the same interpretative work for the African areas, the aim being to restructure the Gondwana segment, using, preferentially, the geometry of the structural map of the Brazilian-African counterparts.

The last stage would be an analysis of continental correlation. Several types of correlations to support the theory of continental drift could be tested, based on LANDSAT images, and reconstruction maps.

In summary, the various steps of the proposed methodology can be itemized as follows:

1. Selection of LANDSAT-MS imagery, channels 5 and 7 at the LISS, multispectral scale.
2. Collection of available regional geological maps and regional maps from both sides of the Atlantic.
3. Definition of a dependable model for reconstruction of the continents.
4. Recognition of the types of adjacent continental margins.
5. Outline and elaboration of structural and tectonic frameworks of the correlation areas.
6. Interpretation of the areas following the reconstruction model and principal lineaments interpreted puzzle.
7. Interpretation of the LANDSAT mosaic, as 1, 2, 3.
8. Analysis of correlation.
3. STRUCTURAL FRAMEWORK OF THE BRAZILIAN NORTHEAST

Visual interpretation of MSS imagery has allowed the mapping of 6 major lineaments striking regionally for hundreds of kilometers (Figure 1). There are other fracture lines not so apparent as the Cabuji lineament and Santa Quitéria lineament. For each extensive lineament, the regional tectonic behavior concerning the pre-cambrian geological scheme and the physiography of the adjoining continental margin will be described. These major lineaments are often strike-slip in nature but sometimes multiple slips are present (Mello et al., 1978).

Some lineaments are polycyclic and therefore older than 1,800 m.y. as are the Pernambuco and Patos Lineaments. Cabuji Lineament otherwise seems to be younger, its volcanism being 20-30 m.y. old (Santos, 1976; Ponte and Amor, 1978).

3.1 SOBRAL-PEDRO II LINEAMENT

This lineament extends northeastward over 300 kilometers from the Parnaiba Palaeozoic Basin to the Barreirinha Cenozoic Basin close to the Atlantic margin. In the Parnaiba Basin, it appears as a normal faulting system following the Upper Valley of Pote River. Inside the pre-cambrian area, there are post-tectonic granitoids (450 m.y.) intruded along the lineament strike and some alignments of grabens. The enclosed volcanics of these grabens are 430 m.y. or Cambro-Ardonian age (Almeida et al., 1967).

At theimmerged continental margin, this lineament bounds two different basin architectures. In the west, the basement is deep and dips landward. In the east, the basement is shallow and dips seaward (Ponte and Amor, 1978). Thus, the lineament shows some reactivation in Upper Cretaceous. Upper Cretaceous marks the beginning of Wealdian reactivation of Brazilian Platform (Almeida, 1969).

3.2 NOVA RUSSAS (IAUÁ) LINEAMENT

This lineament is a strike-slip fault extending over 300 kilometers, in a pre-cambrian domain. The predominant trend is NNW with a final trend following the trend of the Sobral-Pedro II Lineament (Figure 1). The south segment is aligned with the Senador Pompeu Lineament and controls the Cococci Graben filled with clastics of Cambro-Ardonian age (Almeida et al., 1967). The Northern segment confines locally, the eastern border of Parnaiba Basin separating the Palaeozoic basin from the granitic zone of Santa Quitéria (Santa Quitéria Median Massive). The structural trends of Curu-Indepenência Folded Belt (Bruto Novos, 1975) are clearly aligned with the Nova Russas Lineament.

3.3 SENADOR POMPEU LINEAMENT

This lineament comprises several dextral transcurrent faults trending NE along 300 kilometers, from Cococci, at Parnaiba Basin border, to the Potiguar Cretaceous Basin in the coast. Several granitoids and metavolcanics are present along this fault system. Granitoids are elongated to the NE following the lineament trend. Almeida (1967) suggests that granitoids are post-tectonic according to the radiometric ages (430 m.y.), supposing otherwise older age for the metavolcanic (diorite) bodies. The southeastern segment of the lineament controls the southern fault of the Cococci Graben.

3.4 JAGUARIIBE LINEAMENT

This structural feature extends over 400 kilometers from the Parnaiba Basin border to the Potiguar Basin in the coast line.

Three extensive faults conform to this lineament between Fortaleza (Ceará State) and Urua (Paraíba State) (Figure 1). These faults trend ENE from Urua to the coastline, the lineament is formed by two faults: one is the Urua fault that trends NNW; the other is the Jaguariibe fault that trends WNE. These several faults show multiple slips: strike-slip and thrust slipping. The prominent deflection
of this lineament, which abruptly changes the trend from NE to NNE, is followed by all structural alignments between Patos Lineament and Jaguaripe Lineament. This deflection can be seen in the elongated forms of the granitoids, in contorted grabens, in the magnetite foliation and in the metasedimentary bending. The lineament was reactivated in Upper Cretaceous although confined to the western border of the Araripe Cretaceous Basin—a relevant feature related to the Northern Brazilian Continental Margin. Ponte and Assunção (1978) described some horizontal displacement in the block faulted system of the continental shelves caused by the reactivation of the Jaguaripe Lineament.

3.5 PATOS LINEAMENT AND PERNAMBUCO LINEAMENT

These lineaments are the most remarkable elements from the northeastern structural framework. They are confined to a wide zone of EW structural trending, known as the transverse belt of the Brazilian Platform. These broad lineaments can be drawn out over much of 500 kilometers from the Pernambuco Basin to the continental border.

The Patos Lineament has a final deflection to NE while the Pernambuco Lineament follows a strict EW trend. Both lineaments bound relevant tectonic elements of the Brazilian Northeast. The Patos Lineament limits the Rio Pirahy Median Massif (older than 1,500 m.y.) from the Pianço Alto Britiga folded belt (younger than 1,400 m.y.).

The Pernambuco Lineament bounds partially to the Pernambuco-Alagoas Median Massif from the adjoining Upper Protogenez folded belt (Brito Neves, 1975).

Both lineaments were reactivated in the Early Cretaceous as can be drawn from the images. Patos Lineament confines the northern border of Araripe Basin while Pernambuco Lineament confines the northern border of Jacuíba Basin.

Some offshore features are aligned with these lineaments. The Paraíba escarpments are aligned along the 6°40'0 parallel, the same latitude as the Patos onshore lineament (Ponte and Assunção, 1978). Significant magnetic anomalies were drawn by Fainstein et al. (1975) offshore of Paraíba. The Pernambuco Seamounts and the Pernambuco Plateau are aligned with the Pernambuco Lineament. Fainstein et al. (1977) link significant magnetic anomalies with the Pernambuco Plateau.

For a time, the alignment of these features were considered only coincidental by Ponte and Assunção (1978). The Cabo Magmatic Province (Cohra, 1967) is emplaced closely with the Pernambuco Lineament near Recife. Both basic volcanics and alkali granites are the predominant rocks. According to Vanzo (Almeida et al., 1967) age determinations of Cabo Granite reveal values of 90 m.y. for the event. This suggests that Cabo Granite may be the youngest of the Brazilian Platform. Cortini and Bryon (1975), among other authors, suggest a genetic relationship between Cabo Province and Pernambuco Lineament.

4. FIRST CONCLUSIONS

Although the interpretation of LANDSAT images over Africa has not been developed, some preliminary conclusions can be made based on the reported results and available bibliography of Africa:

1. The structural frameworks displayed by the Pan-African Cycle in Western Africa (Torquato, 1966) and by the synchronous event of the Brazilian Cycle in northeastern Brazil, are the most secure parameters in the reconstruction of a paleocontinent, since they were not affected by younger orogenic cycles.

2. Four extensive fault zones can be correlated according to the proposed model. The Sobral-Pedro II Lineament can be correlated with the NS transcurrent faults that separate the metasediments of the West-African Craton (Almeida, 1966; Bertrand and Caby, 1976). Both lineaments limit cratonic areas partially, conditions post-tectonic granites and associated Cambro-Ordovician grabens. The Pernambuco Lineament can be
correlated with the volcanic line of Cameroon and the Ngaurandere Lineament. The Pernambuco Lineament has a transcurrent character and conditions Cretaceous grabens, recent volcanism and young granites (Cabo Granite). According to Almrida (1969), Corine and Bryan (1975), the Ngaurandere Lineament is also transcurrent, has reactivated during the Cretaceous conditions grabens and is associated with young volcanism (Cameroon volcanism).

- The extensive oceanic transforming faults are not secure structural elements for correlations since their tectonic conditioning elements are different on both sides of the Atlantic. Pontes and Asnes (1978) point out that the Atlantic fractured zones are tangent to the Brazilian coast and do not affect significantly the physiographic character of the continental margin. In equatorial Africa, on the other hand, they condition the limits of several Cretaceous basins (Togo-Dahoney, Abidjan, and the Ben. Trough) without affecting significantly the extensive African lineaments (Deltel et al., 1976; Corinii and Bryan, 1975).

- The structural directions of Serido fold belt (NE) (Brito Reves, 1975) and of Dahoney fold belt (NE) (Cohn, 1966) are compatible when the continents are fitted.

- Geochronological data compiled from bibliographical sources show correlations that certify the continuity of the tectonic events between both continents. The Pan-African tectogenesis is correlatable with the Brasiliano and the Eburnean tectogenesis with transamazonian (Cohn and Smelling, 1969; Clifford, 1970; Almrida et al. 1972). Two tectonic cycles affected the pre-cambrian rocks between Recife and Fortaleza, likewise, two cycles affected the pre-cambrian rocks between Cameroon and Ghana. The synchronism between events as well as the similarities between the structural tendencies when the pre-drift scheme is sketched indicate that the pre-drift hypothesis is a perfectly verifiable fact.

In that, continental drift is a verifiable fact, and the continental margin off the Atlantic type, it appears to be feasible to develop studies of international geological correlations with LANDSAT images.

5. ONGOING RESEARCH

Ongoing research will complete the final stages proposed by the methodology. They can be drawn as follows:

1. To map the structural framework of Western African between Cameroon and Ghana using MSS imagery, channel 4 and 7, 1:1,000,000 scale.
2. To fit the counterparts based on their structural framework and on Ballard’s fitting model.
3. To fit the LANDSAT mosaics from the continental counterparts.
4. To analyze the correlation supported tectonic and lithological data.

6. ACKNOWLEDGMENTS

The authors are grateful to Dal Arthur Guttrell for the critical reading of the manuscript and Dr. Iaco Vetorello and Sherry Chon Chin for revising the English translation.

BIBLIOGRAPHY


Santos, E.J. 1948. Contribuição à geologia da Quadrícula de Açu. Série Geologia Regional No 6. SUGNE, Recife, Brazil.

LEGEND OF FIGURE 1

Platform Covers

Post-Triassic Covers
Solution to Triassic Covers
Covers of the late PreCambrian

Lithologic Associations

Moissee

PreCambrian Foldings

Brazilian foldings and others of age between 1000 and 500 m.y.
Lower and middle PreCambrian complexes (>1800 m.y.)
Jaquell Complexes and others of age between 2600 and about 3000 m.y.

Intrusive Rocks

Syndactyl granitoïds and migmatites
Ultrabasic and locally basic
Late and post-tectonic granites
Aldine and al BELOW
Undivided granitoïds

Tectonic Structures

Structural trends
Undetermined fault
Transcurrent faults
Overthrust faults