NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
(81-10023) STRUCTURAL MAPPING FROM MSS-LANDSAT IMAGERY: A PROPOSED METHODOLOGY FOR INTERNATIONAL GEOLOGICAL CORRELATION STUDIES (Instituto de Pesquisas Espaciais, Sao Jose) 10 p HC A02/MF A01 CSCL 08B G3/43 00023
A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's et al. model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Lineament in Cameroon. Ongoing research to complete the methodological stages will include the mapping of the West African structural framework, reconstruction of the pre-drift puzzle and an analysis of the counterpart correlations.

ORIGINAL PAGE IS OF POOR QUALITY

STRUCTURAL MAPPING FROM MSS-LANDSAT IMAGERY: A PROPOSED METHODOLOGY FOR
INTERNATIONAL GEOLOGICAL CORRELATION STUDIES

EDISON V. SI
PAULO WOBO MARTINS

Institute for Space Research - INPE
National Council for Scientific and Technological Development - CNPq
São José dos Campos - SP - BRAZIL

ABSTRACT

A methodology is proposed for international geological correlation studies, based on LANDSAT-MSS imagery, Bullard's et al. model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megasutures that surround the West African craton; and the Pernambuco Lineament with the Maursuè Lineament in Cameroon. Ongoing research to complete the methodological stages will include the mapping of the West African structural framework, reconstruction of the pre-drift puzzle and an analysis of the counterpart correlations.

1. INTRODUCTION

Since 1972, the LANDSAT Multispectral Scanner System has been collecting repetitive data over global regions in the visible and near infrared spectral regions.

Global tectonics has shown that the geological evolution of distant regions of the world can be markedly similar. Since the general acceptance of a continental drift by the scientific community, geological 'correlations' have been made between selective drifted areas. Studies of this type can be supplemented by global LANDSAT scanning and image interpretation.

The Brazil–Africa Geological Correlation Project (Gondwana Project) developed by the Brazilian Institute for Space Research (INPE) intends to test the application of LANDSAT imagery for international correlation studies based on the theory of Continental Drift.

This paper presents the methodological approach that has been followed as well as some results already obtained and some preliminary conclusions.

2. DISCUSSION OF METHODOLOGY

The proposed methodology was based essentially on modern means of global data acquisition, as in the application of satellite technology to the study of continental drift and tectonics.

Orbital positioning of the LANDSAT type permits the collection of multispectral data of the most extreme areas of the planet. Geometric resolution is constant, while radiometric resolution can suffer variations, such as solar illumination with the latitude of the imaged area. In that sense, the study considered areas along roughly the same latitude, we assume from a radiometric point of view the basic data for correlation to be equivalent; providing for spectral response related only to natural targets, independent of atmospheric effects and different latitudes.
The areas studied are in regions classically correlated by researchers involved in continental drift. The physiography of the Atlantic Equatorial continental margin appears as pieces of a "jigsaw puzzle," lending a natural tendency for its contrasting the ancient continent. The similarity between the continental margins of Africa and Brazil was the initial point of mouth's hypothesis (Veit, 1955). Ballard, Everett and Smith (1984) proposed a fitting of the two continents based on the depths of the continental edge, considering it as the actual margin of the two continents. The scheme proposed by these authors will be the model used in this study, together with LANDSAT research to discriminate the structural frameworks of the Brazilian northeast and African northwest. The model has been applied to Precambrian geological correlations (Almeida, 1964) as well as to tectonic fabric correlations of the continental margins (Corini and Fryer, 1975).

The continental margins adjacent to the South Atlantic are commonly classified as Atlantic type (Hemen, 1974) as opposed to the Pacific type. While the first type advances deep oceanic zones of expansion, the margins of the Pacific type are adjacent to zones of coalescence and thrusting plates, as on the western margin of the South American continent. For the method proposed, it is fundamental that the continental margins be of the Atlantic type, whose tectonic processes were less intense than the Pacific type and did not evolve to disfigure the joining landward structures.

Following the criteria that the continental margin be of the Atlantic type, that a model for connecting the continents be applicable and that LANDSAT data be available, the visual interpretation of imagery and integration of tectonic and structural data could be pursued.

Proceeding the actual research stage, the larger lineaments, principal structural tendencies and different geological sequences of the Brazilian northeast were mapped. To support the visual interpretation, three geological profiles were developed: the first, SE, from Natal to Currais Novos (Rio Grande Do Norte), the second, NS, from Serra Talhada (Pernambuco) to Orius (Ceara) and, the third, from Diba (Ceara) to Barra, in a NW direction to Santa Cruz. The profiles permitted the lithological and structural characterization of the principal tectonic groups of the Brazilian Northeast.

The stage to follow would be the development of the same interpretative work for the African area, the aim being to restructure the Gondwana segment, using, preferentially, the geometry of the structural map of the african-Brazilian counterparts.

The last stage would be an analysis of continental correlation, several types of correlations to support the theory of continental drift could be tested, based on LANDSAT images, and reconstruction maps.

In summary, the various stages of the proposed methodology can be summarized as follows:
1 - Selection of LANDSAT-7S imagery, channels 5 and 7 at the 110,600 scale.
2 - Collection of available regional geological maps and regional maps from both sides of the Atlantic.
3 - Definiton of a dependable model for re-comporion of the continents.
4 - Recognition of the types of adjacent continental margins.
5 - Outline and elaboration of structural and tectonic frameworks of the correlation areas.
6 - Interpretation of the areas following the reconstruction model and principal lineaments super-drift puzzle.
7 - Interpretation of LANDSAT models.
8 - Analysis of correlation.
3. STRUCTURAL FRAMEWORK OF THE BRAZILIAN NORTHEAST

Visual interpretation of MSS imagery has allowed the mapping of 6 major lineaments striking regionally for hundreds of kilometers (Figure 1). These are other fracture lines not so apparent as the Cabuji lineament and Santa Quitéria lineament. For each extensive lineament, the regional tectonic behavior concerning the Precambrian geological scheme and the physiography of the adjoining continental margin will be described. These major lineaments are often strike-slip in nature but sometimes multiple slips are present (Helle et al., 1978).

Some lineaments are polycyclic and therefore older than 1,800 m.y. as are the Pernambuco and Patos lineaments. Cabuji lineament otherwise seems to be younger, its volcanism being 20-30 m.y. old (Santos, 1968; Ponte and Assunção, 1978).

3.1 SOBRAL-PEDO II LINEAMENT

This lineament extends northeastward over 300 kilometers from the Parnaíba Paleozoic Basin to the Barreirinha Cenozoic Basin close to the Atlantic margin. In the Parnaíba Basin, it appears as a normal faulting system following the Upper Valley of Poti River. Inside the Precambrian area, there are post-tectonic granitoids (450 m.y.) intruded along the lineament strike and some alignments of grabens. The enclosed volcanics of these grabens are 430 m.y. or Cambro-Ordovician age (Almeida et al., 1967).

At the submerged continental margin, this lineament bounds two different basin architectures. In the west, the basement is deep and dips seaward. In the east, the basement is shallow and dips seaward (Ponte and Assunção, 1978). Thus, the lineament shows some reactivation in Upper Cretaceous. Upper Cretaceous marks the beginning of Wealdenian reactivation of Brazilian Platform (Almeida, 1969).

3.2 NOVA RUSAS (TAUÁ) LINEAMENT

This lineament is a strike-slip fault extending over 300 kilometers, in a NE-SW trend. The predominant trend is WNW with a flexure along the trend of the Sobral-Pedo II Lineament (Figure 1). The south segment is aligned with the Senador Pompeu Lineament and controls the Cococci Graben filled with clastics of Cambro-Ordovician age (Almeida et al., 1967). The northern segment confines locally, the eastern border of Parnaíba Basin separating the Paleozoic basin from the granitic zone of Santa Quitéria (Santa Quitéria Median Massif). The structural trends of Curu-Independência Folded Belt (Brito Neves, 1975) are clearly aligned with the Nova Ruspas Lineament.

3.3 SENADOR POMPEU LINEAMENT

This lineament comprises several dextral transcurrent faults trending NNW along 300 kilometers, from Cococci, at Parnaíba Basin border, to the Potiguar Cretaceous Basin in the coast. Several granitoids and metasediments are present along this fault system. Granitoids are elongated to the NE following the lineament trend. Almeida (1967) suggests that granitoids are post-tectonic according to the radiometric ages (430 m.y.), supposing otherwise older age for the metamorphic (diorite) bodies. The southwestern segment of the lineament controls the southern fault of the Cococci Graben.

3.4 JAGUARIBE LINEAMENT

This structural feature extends over 400 kilometers from the Parnaíba Basin border to the Potiguar Basin on the coast line.

Three extensive faults conform to this lineament between Fortaleza (Ceará State) and Oriá (Ceará State) (Figure 1). These faults trend NNE, from Oriá to the coastline, the lineament is formed by two faults; one is the High fault that trends NNW, the other is the Jaguaribe fault that trends NNE. These several faults show multiple slips: strike-slip and thrust slipping. The prominent deformation
of this lineament, which abruptly changes the trend from NNE to ESE, is followed by all structural alignments between Patos Lineament and Jaguaribe Lineament. This deflection can be seen in the elongated forms of the granitoids, in contorted grabens, in the magnetite foliation and in the metasedimentary bending. The lineament was reactivated in Upper Cretaceous although confined to the western border of the Araripe Cretaceous Basin — a relevant feature related to the Northern Brazilian Continental Margin. Ponte and Asmus (1978) described some horizontal displacement in the block faulted system of the continental shelves caused by the reactivation of the Jaguaribe Lineament.

3.3 PATOS LINEAMENT AND PERNAMBUCO LINEAMENT

These lineaments are the most remarkable elements from the northeastern structural framework. They are confined to a wide zone of EW structural trending, known as the transversal belt of the Brazilian Platform. These broad lineaments can be drawn out over much of 500 kilometers from the Parnaiba Basin to the continental border.

The Patos Lineament has a final deflection to NE while the Pernambuco Lineament follows a strict EW trend. Both lineaments bound relevant tectonic elements of the Brasiliano NE sector. The Patos Lineament limits the Rio Piranhas Median Massif (older than 1,500 m.y.) from the Pianço Alto Brigade folded belt (younger than 1,000 m.y.).

The Pernambuco Lineament bounds partially the Pernambuco-Alagoas Median Massif from the adjoining Upper Protogine folded belt (Brito Neves, 1975).

Both lineaments were reactivated in the Early Cretaceous as can be drawn from the images. Patos Lineament confines the northern border of Araripe Basin, while Pernambuco Lineament confines the northern border of Jaguaribe Basin.

Some offshore features are aligned with these lineaments. The Paraíba escarpments are aligned along the 6°40’S parallel, the same latitude as the Patos onshore lineament (Ponte and Asmus, 1978). Two significant magnetic anomalies were drawn by Faúndes et al. (1975) offshore of Paraíba. The Pernambuco Seamounts and the Pernambuco Plateau are aligned with the Pernambuco Lineament. Faúndes et al. (1974) link significant magnetic anomalies with the Pernambuco Plateau. For a time, the alignment of these features were considered only coincidental by Ponte and Asmus (1978). The Cabo Serrat. Magnetic Province (Cohra, 1967) is replaced closely with the Pernambuco Lineament near Recife. Both basic volcanics and alkaline granites are the predominant rocks. According to Vanden Bos (Almeida et al. 1967) age determinations of Cabo Granite reveal values of 90 m.y. for the event. This suggests that Cabo Granite may be the youngest of the Brazilian Province, among other authors, suggest a genetic relationship between Cabo Province and Pernambuco Lineament.

4. FIRST CONCLUSIONS

Although the interpretation of LANDSAT images over Africa has not been developed, some preliminary conclusions can be made based on the reported results and available bibliography of Africa:

1. The structural frameworks displayed by the Pan-African Cycle in Western Africa (Torrance, 1926) and by the synchronous event of the Brazilian Cycle in northeastern Brazil, are the most secure parameters in the reconstruction of a paleo-continent, since they were not affected by younger orogenic cycles.

2. Four extensive fault zones can be correlated according to the proposed model. The Sobral-Pedro II Lineament can be correlated with the NS transcurrent faults that separate the metasediments of the West-African Craton (Almeida, 1964; Bertrand and Caby, 1975). Both lineaments limit cratonic areas partially, conditions post-tectonic granites and associated Cambro-Ordovician grabens. The Pernambuco Lineament can be
Correlated with the volcanic line of Cameroon and the Ngaurandere Lineament: The Pernambuco Lineament has a transcurrent character and conditions Cretaceous grabens, recent volcanism and young granites (Cabo Granite). According to Almeida (1966), Corina and Bryan (1975), the Ngaurandere Lineament is also transcurrent, has reactivated during the Cretaceous conditions grabens and is associated with young volcanism (Cameroon volcanism).

3 - The extensive oceanic transforming faults are not secure structural elements for correlations since their tectonic conditioning elements are different on both sides of the Atlantic. Ponte and Assis (1978) point out that the Atlantic fractured zones are tangent to the Brazilian coast and do not affect significantly the physiographic character of the continental margin. In equatorial Africa, on the other hand, they condition the limits of several Cretaceous basins (Togo-Dahomey, Abidjan, and the Ben. Trough) without affecting significantly the extensive African lineaments (Deluill et al., 1976; Corina and Bryan, 1975).

4 - The structural directions of Serido fold belt (NE) (Brito Netes, 1975) and of Dahomey fold belt (NE) (Cohen, 1966) are compatible when the continents are fitted.

5 - Geochemical data compiled from bibliographical sources show correlations that certify the continuity of the tectonic events between both continents. The Pan-African tectogenesis is correlative with the Brasiliano and the Eburnean tectogenesis with transafricanism (Cohen and Snelling, 1966; Clifford, 1970; Almeida et al. 1973). Two tectonic cycles affected the pre-cambrian rocks between Recife and Fortaleza, likewise, two cycles affected the pre-cambrian rocks between Cameroon and Ghana. The synchronism between events as well as the similarities between the structural tendencies when the pre-drift scheme is sketched indicate that the pre-drift hypothesis is a perfectly verifiable fact.

In that, continental drift is a verifiable fact, and the continental margin is of the Atlantic type, it appears to be feasible to develop studies of international geological correlations with LANDSAT images.

5. ONGOING RESEARCH

Ongoing research will complete the final stages proposed by the methodology. They can be drawn as follows:

1 - To map the structural framework of Western African between Cameroon and Ghana using MSS imagery, channel 4 and 7, 1:1,000,000 scale.
2 - To fit the counterparts based on their structural framework and on Ballard's fitting model.
3 - To fit the LANDSAT mosaics from the continental counterparts.
4 - To analyze the correlation supported by tectonic and lithological data.

6. ACKNOWLEDGMENTS

The authors are grateful to Dal Arthur Gottrell for the critical reading of the manuscript and Dr. Icaro Vittorelli and Sherry Chou Chen for revising the English translation.

BIBLIOGRAPHY


Voisey, A.H. 1958. Some comments on the hypothesis of continental drift.