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TECHNICAL MEMORANDUM 

THEORETI CAL REGIME DIAGRAMS FOR MERMALLY Dl? IVM 
FLOWS I N  A BETA-PLANE CHANNEL I N  ME 

PRESENCE OF VARIABLE GRAVITY 

I. INTRODUCTION 

It is pnerel ly  agreed thclt tho wave-like disturbances seen in 
rotating cylindrical geometry laboratory flow experiments are the result 
of barnclinic instability of nxi~l ly  symmetric flow. This interpretntion has 
brun given a pod theoretical basis by the study of Burcilon [ 11 . in which 
the Endy model of boroclinic instabllty was used to ob tdn  stnbility criteria 
for axially symmetric flows. These criteria are  in reasonable agreement 
with those observed in the laboratory for rotating annulus flows. 

In the Earth's atmosphere, bmclinic  instability is also an important 
process for maintaining departures f r o m   xia ally symmetric flow, It has 
long been believad thet better simulation of atmospheric flow patterns, or 
at least a better understanding of how and when bnroclinic instability 
operates on the utnlosyhere, could be achieved if laboratory rotnting fluid 
experiments could be done in spherical goometry. Such oxperiments have 
not been realizable because the dielectric body force for simulated radial 
gravity ctlnnot be made large enough to dominate the  effect of ambient 
terrestrial gravity in the laboratory. The low gravity environment aboard 
orbiting lnbratories such as  Spacelab, to be operational ir. the wrly 
1980's. affords un opportunity for such s n  experiment. 

In p i n g  from cylindrictil geomotry to spherical geometry in ri rotating 
fluid oxperinient, one inrportwnt new fetlturc is the ltttitudil~nl vt~riaation of 
the local verticnl component of rotation. As is well known, the effect of 
this on the dynamics of low-frequency geophysical motions cnn be twken 
into ticcount by $-plane geometry. A s  011c of the first stops in devcloping 
n model for use in the design of 41 Spwelub experiment, Ccislcr nnd Fowlis 
( 1 ' 1  oxtendeii the work of Bnrcilo.1 [ 11 to a $-plane channel. The princi- 
pal result of t h d r  study was to document the changes in the shape and 
loc~tion of the br~roclinically unstable region of parameter space brought 
about by the latitudinal dependence of the vertical component of rotation. 

One consequence of using a dielectric body force to simulate gravity 
is thet the force field l a w  is  ono of inverse fiflh power [ 91. 'l'his must 
be taken into account in nlathemntic~l models of the propoaed experiment 
and, moreover, ia potontially troublesome bectiusc it does not simulntc the 
invorso squarr of terrestricll gruvity . 



This report describes the extendon of the balrrolinic inatability 
model of Geisler and Fowlis 121 to include an inverse fifth power law of 
gravity. The study shows that there is  little difference Wtween the ata- 
bility information obtained fmm the two models, provided reeults aro 
plotted using a vertioal average of gravity in the plotting parameters. 
This result supportB condustons ohtained earlier by Oiere and Fowlis 141. 

11. FORMULATION 

Baroclinic instability in the presence of constant gravity was treated 
in Reference 2. We obtained growth rates and eigenfunctions for unstable 
modes in both the Charney and Eady models of baroclinic instability with 
and without Ekman damping at the boundaries. The normal modes were 
assumed to have the functional form 

where is a stream function, h is the width of the channel, and n is  a 
positive integer. The equation solved there was 

subject to the boundary conditions 

where the plus sign applies at the upper boundary and the minus sign 
applies at the lower boundary. 

In the preceding equations, U ( z )  is the basic state flow whose 
stability is being examined. As in Reference 2,  we assume that the part 
of basic state temperature field T(y,z) associated with U(e) decreases 
linearly with y and the basic atate tomperature Field <T( e l >  associated 
with the static stability of the fluid increases linearly with s. These 
parameters enter the problem through the thermal wind equation 



and through the definition of IUa 

Here T is the zonally averaged temperature, <T> is the area averaged 
temperature, cc is the coefficient of thermal expansion of the fluid, and g 
is gravity. In this report we assign to g the vuriation 

where p is an integer, 
go is the value of g at 

(where we tdce U = 3) 

a is the inner radius of the laboratory device, and , 
z = 0. Integration of ( 4 )  upward from z = 0 I 

gives the basic state flow 

If p = 1, integration of ( 4) gives the logarithmic flow 

The stability of the flow given by equation (8) was exmined by Gierc 
and FowUs [ 41. In the present report we examine the stability of the 
flow given by equation ( 7 )  with p = 5, that i s ,  un inverse fifth power 
gravity. 

In the case of U(z) more general t h m  thc linear variation with z .  
used in Ceisler and Fowlis ( 2 1 ,  the parameter P in equation ( 2 )  should 
be replaced by 



However, as can be seen from equations (4 )  and (S) ,  the faetor g cancel8 
out and the correction to I3 then vanishes when 3T /a y and d<T >Ida are 
constant, as is the case here. 

We introduce nondimensional q uantitiee denoted by a prfme as 
follow 8 : 

Here L is an arbitrary horizontal length scale taken to be 0.707a in 
Reference 2 ,  and d is the depth of the fluid. The quantity A U  is U(d), 
that is,  the difference in the basic state flow between z = 0 and z = d. 
Equations (2)  and (3) then become 

The parameters in these equations are a static stability S ,  a C-parameter 
8 ,  and Ekman number E and a thermal Rossby number Ro. They are 
defined as 



In the sequel, we refer to modela with E = 0 in equation (12) a8 
invisdd models. We refer to equations (11) and (12) a8 the Charne 
model of baroclinic instability. We refer to the model obtained y setting 
-0 in equation (11) as the Eady model. 

-6-r. 
In the inviardd Bady model it is cutornary to diaplay the behavior 

of ci (the imaginary part of the mode pb.H sped) in a dl.- of 
112 KS ci versus KS"~.  Hem 8 is given by equation (13) and 

Giere and Fowlis f 41 studied the unstable modes in the invisdd Eady model 
using the log profile badc state flow given by equation (8). For the value 
of AU in equation (10) that nondimensionalites U and c ,  they used the 

q u a d t y  obtained by replacing g with p2 in equation ( I )  and then 
integrating this equation from 0 to 6. They found that the curve changed 
very little over a wide range of the parameter d la  if ~""8 used in the 
plot instead of s1I2, where 5- is the value of S obtained fmn using 
in the dewt ion  of N [see equations ( 6 )  and (Is)] the vertical averaged 

Unless otherwise stated, in the present study we have used 
AU = U(d) to nondimensionalite U and c ,  and we have used instead of 
srrz the quanmy s " ~ ,  where S is the value of S defined using the verti- 

112 cal average of g rather than g . 
111. INVISCID MODEL RESULTS 

All msuito preeonted hem m t l  in  Section IV wore obtained by solv- 
ing cclurrtion ( 1 1 )  nubjoct to bc~unclt~ry ~!>llditiOtN in equution ( 1  2) uving 
tho rrui~wricul tcct~~~iquo bricfly tlcncril~ccl by (;~+slcr und Ihwl in  ( 2 ) .  AH 
noted in Section 11, thc dil'fcrunce bctwccn that c~nd the present etudy ie 
that we here use gravity which variee with radial distance according to 
the function 



where a is the inner rndiur and d the depth of the fluid. 

We mnsider flrst the ocue ef g = 1 In the inviaid Bady model, the 
case for which analytic solutions were obtained by Qiem and Fowls 141. - - - 

We show in Figure i a plot of K S " ~  cti for the runs with dla = 0 (that 
is, oonstant g), dla = 1, and dla = iO. The figure ahow8 that inverse 
Flrst power gravity has little effect when the vertical average gravity is - - 

u8ed for the plot. When the vertical avemge of is wd, u by 
Giere and Fowlia [ 41 , the th.ree curve8 for &/a = 0, 1 and 10 cannot be 
diotinguierhed from one mother. Thir agreement with the analytic m u l t s  
of Giere and Fowlis 141 indicates that the numerical routine fo functioning 
correctly ancl dm mnflms that the verticd average of g112 rather than 
g is optimum for that problem. 

Figure 2 shows reeults for the inviscio Eady model when p = 5 
(inverse fifth power gravity). Runs shown am those for dla = 0, 
dla = 0.2 and dla = 1. We b v e  not gone beyond dla = 1 bemaw we 
antidpate that dla will have to be <1 in any ~eamnab!e geophysical experi- 
ment. Figure 9 showr results when we go to the intrisold Charney model 
(adopting the value B = 2.35 u6ed ae a etandard cam by W e r  and 
Fowlis (21). Figures 2 and 3 support the amcluaion that, for the range 
of dla of geophysical interest at least, euch a plot is little affected by 
inverse fifth power gravity if the vertical average gravity b used. If 
the vertical average of g112 is uwd (together with the corresponding 
change of definition of AU), the position of the curves relative to the 
dla = 0 case changes slightly. The results for the inviacid Eady model 
and the inviscid Charney model are rrhown, respectively, in Figures 4 

and 5. These show that the use of S * rathw than ia still pref- 
erable in the Eady model, but not in the Charney model. 

IV. REQIME DIAGRAM8 

superimposed contour diagrams of ci for mveral values of tonal 
2 2 wave number k in the parameter epace of S versus Ro 18 E corutitute a 

theoretical regime diagram. The construction of the& diagram. for the 
Eady model and the Charney model war the rubjeot of the paper by Qdsler 
and Fowls (21. Figure 6 is taken from that paper and show. e theow- 
ical regime diagram for the Eady model when d = h = L = 0.707a. 



2 2 2 (The parameter r !J = Ro IS E.) The curve labelled (1) is the stability 
boundary for zonal wave number (1) disturbances, outside (to the left) 
of which ci c 0. The envelope of the curves shown in this fl y r e  
obviously separates the  region of parameter space where the flow is  
unstable from that where the flow is stable and, hence, axially symmetric, 
Geophysical experiments must be such that the unstable regime can exist 
in the apparatus, hence the utility of theoretical regime diagrams in 
experimental design studies, 

To illusrrate the results of our study of the effect of inverse fifth 
power gravity on theoretical regime diagrams, we have selected zonal 

wave number 3. Figure 7 shows contours of K S " ~ C ' ~  for thia wave nutn- 
ber in the Eady model when g is constant. The second case, where 
dla = 0.2 ,  is so close to this that it does not bear showing. Figure 8 
shows the extreme (for a geophysical experiment) case for d la = 1. 
Comparison with Figure 7 shows that the difference is rather small. We 
have run cases for other zonal wave numbers with the same r s u l t .  The 
conclusion is that for dla < 1, the inverse fifth power gravity hm only 
a small effect on the shape-and location of the unstable regime pmvided 
vertically averaged g is used in drawing the diagram. 

Figure 9 shows contours of K S ~ ~ ~ ~ ' ~  for zonal wave number 3 in the 

Charney mode' when g is constant. Here we adopt the value B = 2.35 
used as a sthldard case by Geisler and Fowlis [2 ] .  The case for 
d /a  = 0. 't i s  agah not much different and is not shown here. Figure 10 
shows the case for dla = 1. The change is somewhat greater than in the 
corresponding Eady model runs, the most notable change occ~rr ing in the 
region s .: 0.1, However, there is very little change in the leftward 
penetratiG' of the nose located at about 3 = 0.2. We have ohtained similar 
results for othe:. zonal wave numbers. We conclv~~e that for dla < 1 the 
inverse fifth power gravity does not have significant effect on reame 
diagrams in either the  Charney model or the Eady model provided that 
parameters based on a vertically averaged gravity are used. 
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Figure 2. Imaginary part of phase speed in the inviscid Eady model 
for the case of inverse fifth power gravity. Curves are labelled by 

the value of d /a. The dashed curve is the case of 
constant gravity. 
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Figure 1. Imaginary part of phase speed in the inviscid Eady model 
for the case of inverse first power gravity. Curves are  labelied 

by the value of dla.  The dashed curve is the case of 
constant gravity. 



Figure 3. Imaginary p ~ r t  of phase speed in the inviscid Charney 
model for the case of inverse fifth power gravity. Curves 

are labelled by the value of dla. The dashed curve is  
the case of constant gravity, 
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m Figure 4. Same ae Figure 2, but with S ar parameter. 



m Figure 5. Same as Figure 3,  but with S as parameter. 

Figure 6. Theoretical regime diagram for the Eady model with 
d = h = acts$ (from Geisler and Fowlis I 21 ) .  The curves 

are stability boundaries labelled by zonal wave number. 



- 112 Figure 7. Contours of imaginary part of phase speed KS cil 
in the Eady model with gravity constant. 

Figure 8. Contoura of imaginary part of phase speed K S " ~ C ~ ?  in 

the Eady model with irrverse fifth power gravity and 
dla = 1.  



-- 1/2c.' in Figure 9. Contours of imnginary part of phase speed KS , 
the Charney model with grnvity constant. 

Figure 10. Contours of imaginary part of phase speed KS in 

the Charney model with inverse fifth power gravity and 
d/a  = 1. 
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