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TECHNICAL MEMORANDUM

THEORETI CAL REGIME DIAGRAMS FOR THERMALLY DRIVEN
FLOWS IN A BETA-PLANE CHANNEL IN THE
PRESENCE OF VARIABLE GRAVITY

I. INTRODUCTION

It is generslly agreed that the wave-like disturbances seen in
rotating cylindrical geometry laboratory flow experiments are the result
of baroclinic instability of axially symmetric flow. This interpretation has
been given a good theoretical basis by the study of Barcilon [1]. in which
the Eady model of baroclinic instability was used to obtain stability criteria
for axially symmetric flows. These criteria are in reasonable agreement
with those observed in the laboratory for rotating annulus flows.

In the Earth's atmosphere, baroclinic instability is also an important
process for maintaining departures from axially symmetric flow. It has
long been believed that better simulation of atmospheric flow patterns, or
at least a better understanding of how and when baroclinic instability
vperates on the atmosphere, could be achieved if laboratory rotating fluid
experiments could be done in spherical geometry. Such experiments have
not been realizable because the dielectric body force for simulated radial
gravity cannot be made large enough to dominate the effect of ambient
terrestrial gravity in the laboratory. The low gravity environment aboard
orbiting laboratories such as Spacelab, to be operational in the ~arly
1980's, affords an opportunity for such an experiment.

In going from cylindrical geometry to spherical geometry in a rotating
fluid ecxperiment, one important new feature is the latitudinal variation of
the local vertical component of rotation. As is well known, the effect of
this on the dynamics of low-frequency geophysical motions can be tuken
into account by #-plane geometry. As one of the first steps in devcloping
a model for use in the design of a Spacelab experiment, Geisler and Fowlis
[?] extended the work of Barciloa [1]) to a f-plane channel. The princi-
pel result of thueir study was to document the changes in the shape and
location of the baroclinically unstable region of parameter space brought
about by the latitudinal dependence of the vertical component of rotation,

One consequence of using a dielectric body force to simulate gravity
js that the force fileld law is one of inverse fifth power {3]. This must
be taken into account in mathematical models of the proposed experiment
and, moreover, is potentially troublesome becuuse it does not simulate the
inverse square of terrestrial gravity.
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This report describes the extension of the baroclinic instability
model of Geisler and Fowlis {2] to include an inverse fifth power law of
gravity. The study shows that there is little difference beiween the sta-
bility information obtained from the two models, provided results are
plotted using a vertical average of gravity in the plotting parametera.
This result supports conclusions c“tained earlier by Giere and Fowlis [4).

II. FORMULATION

Baroclinic instability in the presence of constant gravity was treated
in Reference 2. We obtained growth rates and eigenfunctions for unstable
modes in both the Charney and Eady models of baroclinic instability with
and without Ekman damping at the boundaries. The normal modes were
assumed to have the functional form

wWx,y,z,t) = ¢(2) sin ('—'—hﬂ) exp [ik(x-ct)] (1)

where y is a stream function, h is the width of the channel, and n is a
positive integer. The equation solved there was

d fo2 d 5 2 , n’n?
?ﬁ;]Ta'i +m:é-)-k+72- ¢(z) =0 (2)

subject to the boundary conditions

2 1/2 22
d du N 2v 2 nn -
{ik [(U - ¢) az - a—;] 3 -2-{(;- (T;) (k + T)} ¢(z) =0

(3

where the plus sign applies at the upper boundary and the minus sign
applies at the Jower boundary.

In the preceding equations, U(z) is the basic state flow whose
stability is being examined. As in Reference 2, we assume that the part
of basic state temperature field T(y,z) associated with U(z) decreases
linearly with y and the basic state temperature field <T(z)> associated
with the static stability of the fluid increases linearly with 2. These
parameters enter the problem through the thermal wind equation
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and through the definition of N3

N? = ga ("—‘d-'g-i) : (5)

Here T is the zonally averaged temperature, <T> is the area averaged
temperature, o is the coefficient of thermal expansion of the fluid, and g
is gravity. In this report we assign to g the variation

- €o

= 9 (6)
(1 + z/a)P

where p is an integer, a is the inner radius of the laboratory device, and

g is the value of g at z = 0. Integration of (4) upward from z = 0
(where we teke U = 1) gives the basic state flow

_ 8Bo% 3 1 -p+l
U(Z)—"‘T;— wlG-D 1-(1+ z/a) . &)

If p =1, integration of (4) gives the logarithmic flow

ag . a .
V() = - 2 3—} [m (1+ z/a)] . (8)
[0}

The stability of the flow given by equation (8) was examined by Giere
and Fowlis [4]. In the present report we examine the stability of the

flow given by equation (7) with p = §, that is, an inverse fifth power
gravity.

In the case of U(z) more general than the linear variation with z.

used in Geisler and Fowlis [2], the parameter £ in equation (2) should
be replaced by

apacarn s =
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However, as can be seen from equations (4) and (5), the factor g cancels
out and the correction to § then vanishes when 3T/3y and d<T>/dg are
constant, as is the case here.

We introduce nondimensional quantities denoted by a prime as
follows :

x' = x/L k' = kL
y =y/L U' = U/AU (10)
2" = z/¢ ¢' = ¢/AU .

Here L is an arbitrary horizontal length scale taken to be 0.707a in
Reference 2, and d is the depth of the fluid. The quantity AU is U(d),
that is, the difference in the basic state flow between z = 0 and z = d.
Equations (2) and (3) then become

i 2 2 2.2
- __(_'l___ _ _9___ (Ing) d _ 2 .o n 1 L "o
(v c){dz.z dz' z s(k +T)} "B]¢(z)-0
L (11)
[ 2 2.2
(V' -ch a% ) g% * 1‘E'SR (%)1/2 (k'z + g s ) () =0 .
| o h (12)

The parameters in these equations are a static stability S, a {-parameter
B, and Ekman number E and a thermal Rossby number R . They are
defined as o

2,2 2
. Nd . _ BL
S—f—z'?- ; B--——-—AUS (13)
0
_ 2 . _ AU
E_f_? ; Ro—rr: . (14)
o o
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In the sequel, we refer to models with E = 0 {n equation (12) es

inviscid models. We refer to equations (11) and (12) a3 the Charne
model of baroclinic instability. We refer to the model obtained by setfing

en———

B = 0 in equation (11) as the Eady model.

In the inviscid Eady model it is customary to display the behavior
of ¢ (the imaginary part of the mode phase speed) in a diagram of

KS”zci' versus Ksl/ 2 Heresis given by equation (13) and

2 2.2
x=(k'2+“ L _)1/2 . (15)
h2

Giere and Fowlis [4] studied the unstable modes in the inviscid Eady model
using the log profile basic state flow given by equation (8). For the value
of AU in equation (10) that nondimensionalizes U and ¢, they used the

—nz
quautity obtained by replacing g with (gl in equation (4) and then
integrating this equation from 0 to 7. They found that the curve changed

very little over a wide range of the parameter d/a if Sm is used in the

plot instead of §1/2, where $'7% is the value of § obtained from using

in the definition of N [see equations (6) and (13)] the vertical averaged
value of g” 2 defined as

12 1/2 f 1 dz'

€ =g, d 1" ) (16)

0 gl + (a) z'
Unless otherwise stated, in the present study we have used

AU = U(d) to nondimensionalize U and ¢, and we have used instead of

Sm the quantity 51/2, where § is the value of S defined using the verti-
cal average of g rather than gll 2.

11I. INVISCID MODEL RESULTS

All results presented herce und in Section IV were obtained by solv-
ing cquation (11) subject to boundary conditions in equation (12) using
the numerical technigue briefly desceribed by Geisler and Fowlis {2). As
noted in Section 1I, the diffcrence between that and the present study is
that we here use gravity which varies with radial distance according to
the function

e e it e e =
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where a is the inner radius and d the depth of the fluid.

We consider first the case of p = 1 in the inviscid BEady model, the
case for which analytic solutions were obtained by Giere and Fowlis [4].

We show in Figure i a plot of K§” 2 4:'i for the runs with d/a = 0 (that

is, constant g), d/a = 1, and d/a = i0. The figure shows that inverse
first power gravity has little effect when the vertical average gravity is

used for the plot. When the vertical average of g“ 3 is used, as by
Giere and Fowlis [4]), the three curves for d/a = 0, 1 and 10 cannot be
distinguished from one another. This agreement with the analytic results
of Giere and Fowlis [4] indicates that the numerical routine is functioning

correctly and also confirms that the vertical average of g“ 3 rather than
g is optimum for that problem.

Figure 2 shows results for the inviscid Eady model when p = §
(inverse fifth power gravity). Runs shown are those for d/a = 0,
d/a =0.2 and d/a = 1, We huve not gone beyond d/a = 1 because we
anticipate that d/a will have to be <1 in any reasonable geophysical experi-
ment. Figure 3 shows results when we go to the inviscild Charney model
(adopting the value B = 2.35 used as a standard case by Geisler and
Fowlis [2}). Figures 2 and 3 support the conclusion that, for the range
of d/a of geophysical interest at least, such a plot is little affected by
inverse fifth power gravity if the vertical average gravity is used. If

the vertical average of 51/2 is used (together with the corresponding
change of definition of AU), the position of the curves relative to the
d/a = 0 case changes slightly. The results for the inviscid Eady model
and the inviscid Charney model are shown, respectively, in Figures 4

and 5. These show that the use of Slm rather than §1/2

is still pref-
erable in the Eady model, but not in the Charney model.

IV. REGIME DIAGRAMS

3uperimposed contour diagrams of o for several values of zonal
wave number k in the parameter space of S versus nozlszn constitute a
theoretical regime diagram. The construction of these diagrams for the
Eady model and the Charney model was the subject of the paper by Geisler
and Fowlis (2]. Figure 6 is taken from that paper and shows a theoret-
ical regime diagram for the Eady model when d = h = L. = 0,707a.
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(The parameter c¢“/§ = RozlszE.) The curve labelled (1) is the stability

boundary for zonal wave number (1) disturbances, outside (to the left)
of which ¢ < 0. The envelope of the curves shown in this figure

obviously separates the region of parameter space where the flow is
unstable from that where the flow is stable and, hence, axially symmetric.
Geophysical experiments must be such that the unstable regime can exist
in the apparatus, hence the utility of theoretical regime diagrams in
experimental design studies.

To illus’rate the results of our study of the effect of inverse fifth
power gravity on theoretical regime diagrams, we have selected zonal

al/2

wave number 3. Figure 7 shows contours of KS c'i for this wave num-

ber in the Eady model when g is constant. The second case, where

d/a = 0.2, is so close to this that it does not bear showing. Figure 8
shows the extreme (for a geophysical experiment) case for d/a = 1,
Comparison with Figure 7 shows that the difference is rather small. We
have run cases for other zonal wave numbers with the same result. The
conclusion is that for d/a < 1, the inverse fifth power gravity has only
a small effect on the shape and location of the unstable regime provided
vertically averaged g is used in drawing the diagram.

Figure 9 shows contours of K§1/ 2c'i for zonal wave number 3 in the

Charney mode’ when g is constant. Here we adopt the value B = 2,35
used as a staadard case by Geisler and Fowlis [2]). The case for

d/a = 0.z is again not much different and is not shown here. Figure 10
shows the case for d/a = 1, The change is somewhat greater than in the
corresponding Cady model runs, the most notable change occurring in the
region S < 0.i. However, there is very little change in the leftward
penetration of the nose located at about S = 0.2. We have ohtained similar
results for othe:r zonal wave numbers. We conclv ‘e that for d/a < 1 the
inverse fifth power gravity does not have significant effect on regime
diagrams in either the Charney model or the Eady model provided that
parameters based on a vertically averaged gravity are used.
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Figure 1. Imaginary part of phase speed in the inviscid Eady model
for the case of inverse first power gravity. Curves are labelied
by the value of d/a. The dashed curve is the case of
constant gravity.
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Figure 2. Imaginary part of phase speed in the inviscid Eady model
for the case of inverse fifth power gravity. Curves are labelled by
the value of d/a. The dashed curve is the case of
constant gravity.



Figure 3.

Imaginary puart of phase speed in the inviscid Charney

are labelled by the value of d/a.

model for the case of inverse fifth power gravity. Curves

The dashed curve is
the case of constant gravity.
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Same as Figure 2, but with Sm AS parameter.
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. Figure 6. Theoretical regime diagram for the Eady model with
/ d =h-= acoseo {from Geisler and Fowlis [2])). The curves

are stability boundaries labelled by zonal wave number.
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