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THE AERONOMY OF VIHRATIONALLY ^` f1CITlD OZONE

Abstract

Theoretical calculations show that above 80 Ian in the earth's atmosphere the production of

vibrationally excited ozone by chemical processes leads to number densities which are usually larger

than those expected for local thermodynamic equilibrium. Quenching of highly excited molecules

produced in 0+0`+M -► 03 +M provides a significant source of the lower lying states above the

mesopause while the 9.6p emission of 0 3 (0,0,1) is a major sink. Analysis of available laboratory

results implies that reactions involving excited ozone play a significant role in the global ozone

balance despite the relatively small abundance of the molecule. However, this effect is implicit in

many of the rate coefficients currently used in stratospheric calculations. In the upper mesosphere

and lower themospherc, where the excited state populations differ from those for thermal equilibrium,

published reaction rate data are not necessarily applicable to aeronomic calculations.
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THE AERONOMY OF VIBRATIONALLY EXCITED OZONE

Introduction

The arsonomic importance of electronically excited species is well-known. Prominent examples

are reactions of the metastable oxygen atom, 0(1 D)+H2 O -+ OH+OH and 00 D)+N20 -► NO+NO,

which provide stratospheric sources of odd hydrogen and odd nitrogen, while excited states of

molecules such as 02 ( 1 A,) and OH(v' > 0) lead to airglow emissions that act as remote sensors of

conditions in the mesosphere and lower thermosphere iLlewellyn et al., 1973; Noxon, 1978;

Frederick et al., 1978; Frederick, 19 77 9). Cvetno^ic ( 19'74) has given an overview of the species

mentioned above and their role in upper atmospheric processes. Recently, attenr. on has focused

on the potential significance of electronically excited ozone even though there is doubt concerning

the very existence of bound excited states below the dissociation limit. (Hay e: al., 1973, 1975;

Wraight, 1977; Prasad and Burton, 1979). On the other hand, experimental evidence for the chem-

ical production of vibrationally excited ozone in the atmosphere appears definitive (von Rosenberg

and Trainor, 1974, 1975). Try raper combines the available data pertaining to production and

loss of vibrationally excited ozone so as to estimate its abundance ^.n the earth 's atmosphere. Given

this information, together with oublished laboratory results concerning the influence of vibrational

excitation on reaction rate coefficients (Gordon and Li, 1973; Kurylo et al., 1975), one can esti-

mate the potential significance of excited 0 3 in the chemical processes which occur in the upper

atmosphere.

Aeronomic Sig*uficance of Excited States

In a number of known cases, reactions involving excited species proceed more rapidly than

when the reactants are in the ground state. Specific examples are the processes:

OOP) + 03 -i 02 + 02	k 1	 (RI)

0( 1 D) + 03 - 0202 + 02	 k2a	 (R2a)

02 + 0( 3 P) + 0( 3 P) k2b	 (R2b)



where k1 = 1.5 x 10-11 exp(-2218(f) cm3 s 1 but k2 = k2a+ k2b = 2.4 x 10'10 cm3 s 1 , and

N(4S) + 02 ♦ NO + 02	 k3	 (R3)

N(2 D) + 02 -+ NO + 02	k4	 (R4)

with k3 = 4.4 x 10-12 exp(-3220M and k4 = 6 x 10-12. All rate coefficients listed above are as

given by the NASA Panel (1979) except for k 4 which is from Litt and Kaufman (1971). The extra

1.97 eV available in R2 over that in R1 leads to a gas kinetic rate ccefficient. In the case of R4, the

activation energy of R3 is absent but the pre-exponential term is essentially unaltered.

The efficiency of a reaction depends on details of molecular scale interactions and one can-

not necessarily assume that additional vibrational and electronic energy enhances the rate coefficient.

Nonetheless, the above reactions clearly show that there are cases where excited states are aero-

nomically relevant. A process of particular importance to the stratosphere is the reaction of nitric

oxide with ozone. Studies of the reaction:

NO + 03(0, 1,0) ♦ NO2 + OZ	 ks	 (RS)

by Gordon and Lin (1973) and Kurylo et al. (1974) show k 5 to be a factor of 22 larger than the

rate coefficient, k6 of:

NO + 03 (0,0,0) NO2 + O` k6 (R6)

at a temperature of 350°K. This is approximately the relationship one would expect of the vibra-

tional energy of 03 (0,1,0) were used to overcome the activation energy of R6, that is k 5 ^ k6

exp [hcv(010)JkT) where v is the term value of the excited state. In the presence of a Boltzmann

distribution of vibrational levels the exponential scaling of rate coefficients, which in this case has

empirical justification, then implies:

ks [ 03 (0.0.0)] [NO] k6 103 (0,1,0)] [NO]

The rate of odd oxygen loss in reactions of NO with ground state ozone is equal to that when the

excited (0. 1,0) state is involved. Hence, despite the small number densities, reactions involving ex-

cited vibrational states of ozone can play an important role in certain upper atmospheric chemical

processes. If the rate coefficients for the reaction of NO with 03 10,0,1) and 0 3 (1,00 scale as does
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that for 03 (0,1,0), then R5 is of minor importance compared to reactions involving excited ozone.

Similarly, studies of R 1 with 0 3 (0, 0,1) as a reactant indicate a room temperattuv rate coefficient

150 to 1500 times faster ttan when ground state ozone is involved provided the process proceeds

by reaction producing 02 rather than vibrational deactivation (West et al., 1976).

Given that reactions of excited ozone are significant in some circumstances, it becomes

important to consider that published rate coefficients refer to the particular vibrational distributions

present in the laboratory. If one considers the series of processes:

X+O^(i)-+XO+02	 ki

where i refers to a specific state, the rate coefficient determined in the laboratory, k, is:

[03(i)]
(03 1

Only a limited number of terms contribute to the sum since k i can increase with i to at most a gas

kinetic value while [03 (i)] / 103 1 decreases to a negligible value for sufficiently large i. If the

fractional population of the excited states are identical in the laboratory and atmosphere, then the

effects of the vibrational levels are implicit in the measured rate coefficient. A Boltzmann distribu-

tion of vibrational levels prevails at the pressures where most laboratory studies of aeronomic reac-

tions have bee i made. Yet, above some altitude in the mesosphere or lower &iermosphere, the

vibrational states of ozone display a non-thermal population. At these altitudes the use of published

rate coefficients, especially those invol ,: .ng appreciable activation energies, is likely to be incorrect.

Production and Loss Processes

Vibrationally excited ozone is formed in the atmosphere by the reaction

0+02 +M-03 +M	 k7	 (117)

k =Ely

where M is either 0 2 or N2 , and by excitation in collisions with molecules in the high energy tail of

the thermal distribution. The products of R7 have 1.08 eV, the dissociation energy of ozone, avail-

able for distribution among excitation and translation. The experiments of von Rosenberg and

Trainor (1974) imply that half of the exothermicity of R7 iies in vibrational modes of the ozone



molecule, where on the average, the v l and v3 modes combined receive 1.6 quanta of energy and

the y2 mode contains 3.7. Table 1 lists 19 vibrational states plus their wavenumbers and enesgks

which can be excited with a maximum of one quantum each in the v 1 and v3 modes and up to four

quanta in the v2 mode. For an average initial energy of 0.54 eV, states higher than those listed in

Table 1 are likely excited while collisional excitation preferentially populates the lowest lying states.

As will be evident, the available data do not merit a detailed treatment of all states and we therefore

adopt the simplified method described below to estimate the atmospheric abundance of vibrationally

excited ozone.

Little information is available concerning vibrational relaxation in 0 3 , however, the laboratory

results of Rosen and Cool (1975) allow one to divide the process into four classes which opera*s on

different time scales. The quenching of excited 0 3 proceeds via a rapid exchange of energy between

nearly resonant v l and v3 modes, a slower transfer from v l and v3 states into v2 , followed by a still

slower quenching of v2 modes to the ground state. The quenching of v l and v3 modes to 03 (0, 0, 0)

is much less efficient than that of v2 . The quenching rate kQ - 2.4 x 10' 14 cm-3 s-I appropriate

for an 02-N2 atmosphere has been reported by Rosen and Cool (1973) and is in good agreement

with the result of von Rosenberg and Trainor (1974). Analysis of relaxation mechanisms in ozone

by Rosen and Cool (1975) implies that this k Q value refers to the quenching:

03 (0,1,0)+M -+03 (0,0,0) +M 	 (R8)

Processes of the form:

03 (0,0, 1) + M -+ 0 3 (0,0,0) + M	 (R9)

and

03 (1, 0, 0) + M 03 (0, 0, 0) + M	 (R 10)

are much slower. We here adopt a rate coefficient of 0.1 k Q for R9 and R10, although this value is

very uncertain. Energy transfers of the form

03 (0,0,1)+M -+03(0,1,0)+M
	

(R11)

and
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03 (1, 0, 0) + M -+ 03 (01 110) + M	 (R 12)

proceed at an approximate rate 3 kQ while the near-resonant energy exchange

03(1,0,0)+M -► 03((,,0,1)+M	 (R13)

has a rate coefficient of at least 54 kQ (Rosen and Cool, 1975). Figure 1 summarizes the above dis•

cussion by giving a schematic representation of the coupling which exists between the three lowest

excited levels and the ground state. Table 2 lists the adopted rate coefficients for each of the four

classes of exothermic reaction. Rate coefficients of endothermic processes have the same pre-

exponential factors listed in Table 2 for the corresponding exothermic reaction plus an additional

attenuation of the form exp(—E /kT) where E is the energy difference between the upper and lower

states obtained from Table 1.

In the altitude region where a thermal distribution exists, the lowest lying states, 03 (0, 1,0),

03 (0, 0, 1), and 03 (1, 0, 0) account for essentially all of the vibrational excitation and we treat these

states explicitly in the calculation. The scarcity of data concerning rele gation of the highly excited

states produced in R7 makes it impossible to give a detailed treatment. We here divide all vibra-

tionally excited states higher than 0 3 (1, 0, 0) into two classes denoted by 03(v2) and 03 (v l , v3 ),

collectively denoted by 03 . Class 03 (v2 ) consists of ozone in the form 03 (O,v2 ,0) where v, > 1.

Based on the results of Rosen and Cool (1975) for 03 (0,1,0), we assume that rate coefficients for

reactions of 0 3 (v2 ) have the same pre-exponential factors as the corresponding process involving

03(0, 1,0) as defined in Table 2. Similarly, 0 3 (v l , v.t ) consists of all states, 03 (v l ,v2 ,v3 ), not

included above. The adopted rate coefficients are analogous to those of 03 (1, 0, 0) and 03 (0, 0, 1).

This division of 03 into two classes is based on the observed behavior of the lower states, that the

reactive properties of the v, excited mode differ from those of v l and v3 . in particular, energy

originally distributed into v l and v3 is preferentially channelled into v, and the final quenching to

the ground state occurs via a v ` mode.

The abundance of each class of vibrationally excited ozone is computed under ciiemical

equilibrium conditions in the following manner. We assume that R7 produces 0 3 (v,) and 03 (PP, v3 )

only, consistent with the large amount of energy stored in vibrational excitation (von Rosenberg and



Trainor, 1974). Based on the number of individual states contained in the two classes we assume

that one molecule in five is produced as 0 3 (y2 ) with the remainder in 0 3 (v l , P3 ). Each of the five

subsets of excited ozone is connected to all others and to the ground state by colliaional deactiva-

tion and excitation with the appropriate rate coefficient from Table 2. An additional process

included for each state is dissociation by solar visible and ultmviolet radiation based on the. cross

sections of Ackerman ( 1971) and irradiance from Nicolet ( 1975). In practice, the absorption cross

section for an excited molecule is shifted slightly in energy with respect to that for the Found state,

however, this has a negligible effect on the dissociation rate calculation. The only significant infrared

radiative process is the 9,6p emission by 030-0, 1) and the subsequent excitation of 0 3 (0,0,0) when

the photon is reabsorbed. The Einstein traneition frequency for the process:

03 (01011) — 03 (01 01 0) + by (9.61A)	 (R 14)

is A - 13 .47s' l (Yamamoto, 1977), To compute the absorption rate J, ins 1 , for:

03 (0,0,0)+ by (9.6µ)-+O3 (0,0,1)	 (R15)

we assume a blackbody radiation field, B,,(T), at frequency v and temperature T. The absorption

cross section v(y) is assumed concentrated at the single frequency y0 so that:

2
CF(P) me f 6(v—v0)

where 6 is the Dirac delta function and f - 1.915 x 10-5 is the band oscillator strength (Yamamoto,

1977). The absorption rate is then

J - 2wfdv o(y) B,(T)

2
a ^ 21r Le

\C/\me-

")
2

v0

exp(hy0 JkT)- i

Fumerical evaluation yields values in the range 1 . 1 x 10-3 - 1.1 x 10-2 s l between the mesopause

and stratopause. The 14 . lµ emission of 0 3 ( 0,1,0) is sufficiently weak to be negligible. Finallv,

transitions of the form:

03 (v l ,v,,v3) ' 03 (v l ,v2 ,v 3 -1) + h0,

6	 '



will have Einstein coefficients comparable to that for 03(0,0, 1). However, these merely transform

one member of the 03 class into another and are therefore not considered here.

Numerical Results

In altitude regions where the atmosphere is sufficiently dense, collisional excitation and de-

excitation of a given vibrational level balance to an excellent approximation and a Boltzmann

distribution is maintained. The processes which tend to destroy this local thermodynamic equi-

librium are the chemical formation of highly excited ozone in R7 and the emission and absorption

of 9.6p radiation. Figure 2 presents the computed production rates of 0 3* . Above 90 to 95 km

chemical formation of 03 in R7 is the most efficient process. This source exceeds that due to

collisional excitation of the gi-ound state above 70.75 km and, above 90.95 km is greater than that

due to further excitation of lower lying vibrational levels. Note that the source of 03 due to the

sum of processes

03(0,1,0)+M -+03 +M

03 (0,0,1)+M -+03 +M

03 (1,0,0) + M--P 03" +M

exceeds that due to:

03(0-0,0) + M—  03 + M

at all altitudes despite the small relative abundance of the excited states. This is due to the strong

coupling of 03(0,0, 1) and 03 (1,0,0) to 03 (P I ,P3 ) Lid of 03 (0, 1,0) to 0 3 (v2 ) where resonant

transfers of energy are possible. Figures 3 and 4 present the production and loss rates of 0 3 (0, 0, 1)

respectively. I-ormation of 0 3 (0,0,1) due to quenching of higher excited states and by collisional

excitation of 03(0, 1, 0) are the major sources at all altitudes. However, absorption of 9.6µ radiation

upwelling from below is of the same order of rr.:gnitude as these processes above 90-95 km.

Figure 4 shows that 9.6µ emission exceeds collisions as a loss mechanism for 03(0,0, 1) between

90 and 95 km. Once this occurs the assumption of a blackbody radiation field, used in computing
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the rate of R 1 S, becomes invalid. However, since R15 is never the major source of 0 3 (0,(1, 1),

the use of the Planck radiation function at all altitudes causes negligible error in comparison to the

other uncertainties inherent in the calculations.

The final results are given in Figure 5 as ratios of the number density of an excited state to that

which would exist if a Boltzmann distribution prevailed. Below 74 km the standard ozone profile

adopted was the rocket model of Krueger and Minzner ( 1976) and above 86 km ozone was derived

from the atomic oxygen profile of the U.S. Standard Atmosphere 1976 assuming a balance between

R7 and photodissociation. Between 74 and 86 km a smooth curve was drawn even though there

are indications of a secondary maximum in this region (Park and London, 1974). However, for the

pn:sent work, which considers only ratios of rxcited states, the details of ( 0 3 1 in the 74 to 86 km

region are not critical. Figure 5 shows that below 80 km all vibrational levels are populated accord-

ing to a Boltzmann distribution. The highly excited states, 0 3*, have the greatest deviation, due to

the increasing influence of chemical production with altitude. Between 95 and 110 km the popula-

tion of these vibrational levels exceeds that expected for collisions alone by a factor of three or

more. Quenching of these states tends to increase the abundance of the (0, 1,0), (0,0, 1), and

(1, 0, 0) levels, however, the 9.6p emission tends to counteract this. Above 95 km the abundance

of 03 (0,0, 1) is less than expected from collisions alone. The efficiency of the 9.6µ emission as a

loss process for excited ozone affects all vibrational levels such that above 105 km all ratios in

Figure 5 decrease with altitude despite the efficiency of chemical production of 0 1*. Note, however,

that below 110 km the abundances of 0 3k'0,1,0) and 03 remain larger than predicted by a

Boltzmann distribution.

Concluding Remarks

Laboratory studies show that each ozone m ..rule produced in the earth's atmosphere has an

average vibrational energy near 0.5 eV. Insufficient infocm..,ion exists with which to perform ac-

curate calculations of the vibrational relaxation, however. the Ferri-quantitative results obtained

here show that excited ozone deviates significantl y from a Boltzmann distribution 	 t'ie .!opermost



mesosphere and lower thermosphere. Sinca the rate coefficients of several aeronomically

important reactions vary with vibrational excitation, further laboratory studies of these processes

and of vibrational relaxation would be valuable in defining the role of excited ozone in the

upper atmosphere.
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Table 1

Vibrational States of Ozone, 0 3 (vI , v2 , v3)

Which Can Be Excited With vi, v3 < I and v2 < 4

O (v ,v ,v)3	 1	 2	 3
Wavenuipber

(cm-')
Energy
(ev)

010 701.42 .087
001 1042.10 .129
100 1103.16 .137
020 1402.84 .174
Oil 1743.52 .216
110 1804.58 .224
030 2104.26 .261
101 2145.25 .266
021 444.94 .303
120 2506.00 .311
040 2805.68 .348
111 2846.67 .353
031 3146.36 .390

130 3207.42 .398
121 3548.09 .440
041 3847.78 .477

140 3908.84 .485
131 4249.51 .527
141 4950.93 .614
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Table 2

Adopted Rate Coefficients for Exothermic Energy Exchange
Between Vibrational States of Ozone

Process
Type Description Example in

Text Rate Coefficient

I Quenching of v2 modes R8 kQ	 2.4 x 10-14 cm33-1
to the ground state

II Quenching of v 1 and v3 R9,R 10 0.1 kQ
modes to the ground
state

III Transfer to energy from RI I ,R 12 3 kQ
v 1 and v3 into v2 modes

IV Transfer of energy from R13 54 kQ
v 1 to v3
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Figure 1. Schematic of the coupling between the three lowest vibrationally excited levels of ozone

and the ground state. The thickness of the lines connecting the various levels indicates
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Curve b. Collisional excitation and quenching of all other excited states.

Curve c. Absorption of 9.611 radiation.

Figure 4. Loss rates of 03 (0,0, l)-

Curve a. Quenching and collisional excitation.

Curve b. Emission of 9.6µ radiation.

Figure 5. Ratio of computed number densities to those which would prevail in a Boltzmann

distribution.
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Figure 1. Schematic of the coupling between the three lowest vibrationally
excited levels of ozone and the ground state. The thickness of
the lines connecting the various levels indicates the magnitude

of the associated reaction rates.
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à UUU
ri

6^0

M
^ A

r

Q^

LU

O

0
0
O

18



O
r

•
O

1

II

I
1

c
0

^c

^o
V

O ^

RV̂

A V
O 00 0

^w co
c+1 U '^

O aw

q ^ ^
N

w

I
A

W

(n
N p
r

0

Jb09-
UM2

( WM) 3on.Lii-ly

19



a

0
3
rv
3

c

C

'v a

E
E ENr
G G

V	 ^_u ce

a C

O
G
W
O
O

OG

vi

w
r	 LOD

U.

.4 c

1 _.

'	 1

	

1	 1

1

	

1	 1

1	 p ^ 0
.^ O D

0000
1	 I	 1

1

	

-	 1
•

	

-	 r
r•

♦

•'^•	 ••0'
•^	 ^'.•

'^	 ^'

•
s /

yI"

( w* 30(111 !_Ib

20


	1981004168.pdf
	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF

	notice_poor quality MF.pdf
	0001A04.JPG
	0001A04.TIF
	0001A05.JPG
	0001A05.TIF
	0001A06.JPG
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A12a.JPG
	0001A12a.TIF
	0001B02.JPG
	0001B03.TIF
	0001B04.JPG
	0001B04.TIF
	0001B05.JPG
	0001B06.JPG
	0001B07.JPG
	0001B08.JPG
	0001B09.JPG
	0001B10.JPG
	0001B11.JPG
	0001B12.JPG
	0001B12a.JPG
	0001C02.JPG
	0001C03.JPG
	0001C04.JPG
	0001C05.JPG
	0001C06.JPG
	0001C07.JPG
	0001C08.JPG
	0001C09.JPG
	0001C10.JPG
	0001C11.JPG
	0001C12.JPG
	0001C12a.JPG
	0001E02.JPG
	0001E03.JPG
	0001E04.JPG
	0001E05.JPG
	0001E06.JPG




