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1.1 GENERAL 

SECTION 1 

INTRODUCTION AND SUMMARY 

This final report describes the activities performed by Raytheon 

Company from February 1972 to December 1978 under NASA Contract 

NAS8-28424 for the modification, construction, test and operation of 
-;,~,<",.,,----•. ,.~ 

an advanced airborne CO2 laser Doppler system for detecting clear air 

turbulence (CAT). The earlier instrument, which established the 

current program, was developed by Raytheon under NAS8-24742, 6 June 1969, 

and is fully described in Raytheon Publication ER72-4243, May 1972. 

This report covers the second-generation CAT program and those auxiliary 

activities required to support and verify such a first-of-a-kind system: 

aircraft interface, ground and flight verification tests, data analyses, 

and laboratory examinations. Study efforts which were contributions 

to the state-of-the-art of CAT technology or which are of special 

interest to those working in CAT-related technologies have been made a 

part of this report. 

1.2 THE CAT SYSTEM 

1.2.1 THE PROTOTYPE SYSTEM 

Using laser Doppler heterodyne techniques, Raytheon developed a 

research system (see Figure 1-1) which detected and measured the range 

and intensity of CAT events. This prototype instrumentation, described 

in Raytheon Publication ER72-4243, can be described in terms of its two 

major subsystems - transmitter and receiver. The transmitter is com­

posed of a CO 2 laser oscillator, modulator, folded laser amplifier, 

heterodyne recombination optics, and external optics. The receiver 

consists of a detector, signal processors, and signal display and 

recording apparatus. The system operates by measuring the Doppler 

spectrum of laser light backscattered from naturally suspended 

aerosols in the atmosphere. If the atmospheric velocity is uniform, 

all aerosols move at the same velocity, resulting in a narrow spectrum; 

while in the case of a turbulent atmosphere, a variety of different 

velocity components are encountered and a broad Doppler spectrum is 

1-1 
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observed. The Dopp~er spectrum is obtained by heterodyning with a 
stable CW reference laser. The spectra, thus obtained, are displayed 

in real time and recorded on digital tape. This system is described 

in Section 2.1. 

1.2.2 THE OFFSET SYSTEM 

As originally configured, the CAT system employed a master 

oscillator-power amplifier design with the CW master oscillator 

serving as the local oscillator. In order to provide directional 

sense in ground test operations and to simulate flight conditions, the 

system was modified by installing a second'CW laser oscillator offset 

by 10 MHz (see Figures 1-2 and 1-3). Reconfiguration was accomplished 

by remounting optical components and injecting a variable electronic 

mixing signal to control the Doppler signal within a specific IF band. 

This offset system is described in Section 2.2. 

1.3 ORGANIZATION OF THIS REPORT 

This report is organized in such a way as to reflect the evolu­

tion of the CAT system to its present configuration. 

The system was designed in 1970 and tested in 1972 and 1973. 

Subsequently, modifications were made, of which the most significant 

was the addition of an offset local oscillator. During the modifica­

tions, many tests, measurements, and analyses were performed in order 

to establish the final configuration. To provide a self-contained 

system description, both the initial and final configurations are 

addressed in Section 2 with 2.1 describing the original system and 

2.2 the additions and modifications. 

Section 2 of this report describes the instrumentation of the 

CAT system - the modules, interrelation of components, operational 

modes and performance characteristics. Section 3 describes the 

system test and evaluation programs in laboratory measurements which 
led to the final configuration. Other sections detail specific 

contractual tasks: Section 4, signal processing and atmospheric 

analyses; Section 5, aircraft interface; Section 6, site selection 

activities; Section 7, ground verification tests; Section 8, field 

~3 



F
o
R
C
~
 -
-
-

b
~
H
R
O
N
I
~
_
 

1 I I I I I 
I 

I 
I
L

 
L

-
i 

TO
 

A
 

I 

}
TO

 
B

 
I 

M
O

D
E

--
--

oI
 

W
"
V

'
"
 

, 
.
.
 
'
-
-

_ 
J 

-
T

O
 T

R
A

N
S

M
IT

 A
N

D
 R

E
C

E
iV

E
 O

P
T

IC
S

 

*F
IL

T
E

R
/A

M
P

L
. 

F
IL

T
E

R
 B

A
N

D
W

ID
TH

 
TH

R
E

S
H

O
LD

 A
D

J.
 

-
-
-
-
-
l
 

] 
1 

: 
!'

8
ii
 /I

 L
Jo

 
~
 4

T
O

I 
I 

IX
II

-4
) 

I
I
 

1 
I
I
 

, 

r
-

-
-
-
1

-
1

-
1

-
-
-
-
-
,
 

I 
I 

I 
I 

I 
I 

.
-
:
 

S
A

M
E

 
A

S
 

A
B

O
V

E
 

I 
I 

I 
I 

I 
I 

I 
L 

_
_

_
 1_

1_
1 
_

_
_

_
_

 -
--

.J
 

I
~
 

I I I I I 

I
I
 

1 

-
1

-
1

-
-
-
-

10
 " 

~
 

TO
 C

H
A

N
N

E
L

S
 2

-5
 

M
U

L
T

IP
L

E
X

E
R

 

IV
O

-4
1 

4
T

O
I 

I I 
_

_
_

_
_

 ,J 
M

U
L

T
IP

L
E

X
E

R
 

I 
I 

I 
I 

,
-
-
i-

i-
i-

-
-
-
-
-
-
-
I
l 

I I I I L
_

 -
1

-
1

-
1

-
-

-
-

-
-

-
_

1
..

.1
 

1 
I
I
 

1 

,
-
-
-
1

-
1

-
1 -

-
-

-
-

-
-

-
I
l
 

I 
I 

I 
I 

I 
I 

I 
I 

L
-_

H
_

1
 _

_
_

_
_

_
_

_
_

 IJ
 

1 

4 
T

O
 I

 

M
U

L
T

IP
L

E
X

E
R

 

4 
T

O
 I

 

M
U

L
'T

IP
L

E
X

E
R

 

----
----

B
 

TO
 C

H
A

N
N

E
L

S
 2

-5
 

~
 

f6
1N

P
U

T
S

 Y
 

FR
O

M
 

C
H

A
N

N
E

L
S

 
2

-5
 

E
O

A
-7

46
 

F
ig

u
re

 
1

-2
. 

U
p

d
a
te

d
 

S
y

st
e
m

 
B

lo
c
k

 
D

ia
g

ra
m

 

1
-4

 



.....
. I U

1 

M
O

D
U

LA
T

O
R

 

M
AS

TE
R

 
O

S
C

IL
LA

TO
R

 

T
R

A
N

S
IT

IO
N

 
S

TA
B

IL
IZ

E
R

 

IS
O

LA
TO

R
 

LO
C

A
L 

O
S

C
IL

LA
TO

R
 

r I 

BE
AM

 
E

X
P

A
N

D
E

R
 

LA
SE

R
 

A
M

P
LI

FI
E

R
 

BE
AM

 
E

X
P

A
N

D
E

R
 

O
FF

SE
T 

S
TA

B
IL

IZ
E

R
 

L
 _

_
_

_
_

 L
 _

_
_

_
_

_
_

_
 ~
 

O
P

T
IC

A
L 

A
N

A
LY

Z
E

R
 

P
R

O
C

E
S

S
IN

G
 

C
O

M
P

U
TE

R
 

D
IS

P
LA

Y
 A

N
D

 
R

E
C

O
R

D
IN

G
 

F
ig

u
re

 
1

-3
. 

O
ff

s
e
t 

C
A

T 
In

s
tr

u
m

e
n

t 
O

p
ti

c
a
l 

S
c
h

e
m

a
ti

c
 

S
E

C
O

N
D

A
R

Y
 

P
R

IM
A

R
Y

 

E
O

A
-3

59
A

 



tests - offset system; Section 9, flight tests and verification; and 

Section 10, flight data analyses. 

Volume II of this report contains as appendices the studies 

referenced in this volume and descriptions of studies and investigations 

of significance to those in CAT-related areas. One appendix also 

contains an abbreviated set of ground operating instructions and 

alignment procedures for the offset system. These appendices are 

not essential to an understanding of the system operating principles 

or concepts, but are intended as complete documentation of topics 

discussed briefly or incompletely in Volume I. 
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SECTION 2 

SYSTEM DESCRIPTIONS 

2.1 INTRODUCTION 

This section is presented in two parts. The first briefly 

describes the earlier CAT system designed in 1970 and flight-tested 

in 1972 and 1973. It is presented as a basis for understanding the 

current configuration developed in 1976 and identified as the CAT 

System with offset local oscillator. It is discussed in Section 2.3. 

Because the CAT program is an ongoing effort, a detailed discussion 

of the programs, tests, experiments, and examinations leading to 

this configuration of the system is postponed until Section 3. 

2.2 THE BASIC SYSTEM 

2.2.1 CAT SYSTEM OPERATION 

The basic CAT system transmitter can be considered in a master­

oscillator power-amplifier (MOPA) configuration (Figure 2-1) wherein 

coaxial transmit and receive optics are used for homodyne detection 

of optical backscatter from atmospheric aerosols. In operation, the 

output of a CW master oscillator is passed through a switch operating 

on the transverse electro-optical effect. The output of this switch 

is a series of pulses with widths ranging from 2 to 10 microseconds 

at repetition rates up to 200 pulses per second. This pulsed beam is 

expanded in diameter to approximately 1.5 centimeters and directed 

into a pulsed CO2 amplifier. The pulses are amplified by more than 

30 dB within the amplifier. Exiting from the amplifier, the beam 

passes through a germanium Brewster plate set to pass the pulses, 

through a cadmium-sulphide quarter-wave plate which converts the 

linear polarization of the pulsed beam to circular, and into the 

atmosphere by way of a 12 inch diameter telescope. The returning 

signals follow the reverse path through the telescope, and through 

the quarter-wave plate which linearly polarizes the beam making it' 

orthogonal to the amplifier output beam. The signal beam is then 

reflected from the Brewster plate and down to the recombining beam­

splitter where the signal and the local oscillator beam (derived from 

the master oscillator beam) are combined and focused on the detector. 

2-1 
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The homodyned electrical output of the detector is amplified and 

heterodyned to an intermediate frequency (IF). The IF signal is then 

amplified and analyzed by a filter bank appropriately matched to the 

pulse length. The output of each filter is individually detected and 

displayed. This display is in the form of a range velocity indication 

(RVI) where velocity is plotted as a function of range, and a record 

channel display which indicates the velocity information in a single 
range cell. 

The basic system components are described below. 

2.2.2 TRANSMITTER COMPONENTS 

2.2.2.1 'Master Oscillator 

The master oscillator in the basic system is a Honeywell CO 2 laser, 

later modified by Raytheon to permit user replacement of the fill gas. 

The unit features an adjustable rear reflector and ZnSe intra-cavity 

Brewster's angle polarizer. The output beam is in the TEMOO mode. The 

unit operates on several P-lines as well as R-lines with the specific 

signature depending upon the condition of the gas fill. Output power 

is in the range of 7 to 8 watts. Problems with and improvements to 

this original master oscillator are discussed in Section 3.3.7. 

2.2.2.2 Optical Modulators 

The two optical modulators each consist of two voltage controlled 

electro-optic crystals of gallium arsenide, 7 x 7 x 40 mm, located 

between two polarizing elements. The beam diameter of this point is 

about 7 mm, so that truncation occurs at the 1/e2 diameter. When a 

voltage is applied to the gallium arsenide, the relative phase of the 

two polarization components of light passing through the crystal is 

changed. If a sufficiently high voltage is applied, the phase differ­

ence becomes equal to 1800 and the polarization of the light passing 

through the crystal is altered by 900
• Since the two polarizing 

elements in the first modulator are crossed under the zero voltage con­

dition, no energy is passed; while under the 1800 o"r half-wave condi­

tion, all the energy is passed. Under operation, a 2 to 10 microsecond 

2-3 



high voltage pulse is applied to the modulator crystal which results 

in an optical pulse of the same length. The second modulator is 

normally transmissive and is switched off at the end of the pulse to 

suppress ringing effects associated with switching the first one. 

2.2.2.3 Beam Expander 

An off-axis parabolic beam expander is used in the basic system 

to increase the laser beam diameter to the 1.5 centimeters required 

for the amplifier. An off-axis design was used to reduce scattering 

back into the amplifier. The beam expander is provided with a carrier 

for a spatial filter if necessary for very high gain conditions. 

2.2.2.4 CO2 Amplifier 

The amplifier consists of six tubes, each containing 3/4 meter 

of discharge in a C02 flowing gas mix. The discharge, driven by a 

high-voltage DC power supply fed to the amplifier through a high­

voltage modulator, is longitudinal and split into two portions of 

3/8 of a meter each in order to reduce the high voltage requirements. 

The discharge tubes provide a gain of approximately 6 dB per tube or 

a total of approximately 36 dB of small-signal gain. 

2.2.2.5 Output Telescope (Beam Expander) 

The output telescope is a l2-inch (30.5 cm) diameter f/3 afocal 

Newtonian-Cassegrain telescope configuration. It features Invar con­

struction to minimize focus variations due to temperature changes, 
and Cer-Vit optical elements. 

2.2.2.6 Heterodyne Detector 

In the course of the CAT program, several types of infrared detectors 

were used. The original detector was a copper-doped germanium detector 

requiring helium cooling. The second detector was a SAT HgCdTe photo­

voltaic detector using nitrogen cooling; PbSnTe detectors were evaluated. 

Laboratory measurements on these detectors showed that with the doped 

germanium detector a coherent quantum efficiency of 10% was achieved. 

Abbreviated measurements of the SAT HgCdTe detector indicated a quantum 

efficiency on the order of 25 - 30% which, together with the expected 

3 dB improvement in noise characteristics, would have resulted in a 

7 dB improvement over the germanium. The HgCdTe detectors have been 

the most consistently employed in both systems. The characteristics 

of the currently used detector are discussed in detail in Section 3.3.6. 
2~ 



2.2.3 RECEIVER COMPONENTS 

2.2.3.1 IF Amplifier and Sensitivity Time Control 

The IF amplifier consists of a voltage controlled attenuator 

followed by five stages, each stage providing a 10 dB gain. A step 

attenuator precedes the amplifier so that signals larger than the 

6 to 22 dB range used may be accommodated. 

The sensitivity time control varies signal attenuation as a func­

tion of time, or equivalently, range. This attenuation compensates 

for the change in strength of the collected optical signal as a function 

of range so that the average signal intensity is range (time) independent. 

The sensitivity time control is a function generator, which approximates 

a function with ten straight lines, with the slope of each line segment 

adjustable. 

2.2.3.2 Filter Bank 

The filter bank consists of five prefilter amplifiers, mixers, 

local oscillators, and driver amplifiers feeding to five groups of 

sixteen comb filter amplifiers and detectors (see Figure 2-2). Briefly, 

the 5 - 15 MHz signal bandwidth is divided into five 2 MHz channels 

by the prefilters with each 2 MHz section of the original signal 

spectrum heterodyned to a common 2 - 4 MHz spectrum. The narrow band 

comb filters then divide each of these 2 MHz bands into the proper 

number of channels depending on the transmitted pulse width; i.e., 

sixteen 125 kHz bands; eight 250 kHz bands; or four 500 kHz bands. 

Thus, the entire 5 to 15 MHz band is divided into 80, 40 or 20 narrow 

bands. 

2.2.3.3 RVI Display 

Each filter in the filter bank can be sampled'at time intervals 

equal to the reciprocal of the filter's bandwidth. The signal from 

successive samples, taken at time intervals 6 T arises from portions 

of the atmosphere located at distances displayed by c 6 T/2. A series 

of samples gives the velocity distribution over all ranges within the 

system detection capability. Thus, all the data required to present 

the velocity distribution in the path of the aircraft at all ranges are 

available. 
2-5 
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The function of the RVI is to display the data from the filter 

bank. The vertical axis represents velocity, the horizontal axis -

range. (In other words, each individual filter corresponds to a 

specific y coordinate while each time sample is represented by an x 

coordinate.) Within a time 6 r, equal to liB, all of the filters in 

the bank are sampled and displayed on a vertical line on the RVI. The 

filters are sampled again during the next 6 r interval and portrayed 

on an adjacent vertical line. This procedure continues from the 

minimum range, determined by switching transients to the maximum, 

limited by the minimum detectable signal. 

The RVI is a Tektronix R453, with a long-persistence phosphor. 

The phosphor decay time is significantly longer than the time between 

pulses, so the effects of several pulses (~ 60) are integrated on the 

RVI screen. 

2.2.3.4 Record Channel 

The 80 filter bank outputs are sampled at a time corresponding 

to a specific range in front of the aircraft. These 80 signals are 

then multiplexed onto one line. Five 16:1 multiplexers and a 5:1 

multiplexer comprise the 80:1 mUltiplexer. The multiplexed output is 

converted to digital format and fed to a digital video integrator 

where the 80 signals are integrated for 50 periods. The integrated 

samples are dumped into a buffer which, reads them onto the tape 

during the next fifty periods. The digital data are recorded in PCM 

format on one track with other tracks free for analog signals. 

A Tektronix R422 scope is included to monitor the output of the 

record channel with viewing capability before or after integration, 

and a 14 track Ampex tape recorder is employed for recording the 

integrated data in PCM format along with time codes and auxiliary 

aircraft data. 

2.3 THE CAT SYSTEM WITH FREQUENCY OFFSET 

The modifications made in 1976 to the basic system described in 

2.2 can be seen from Figure 2-3. These modifications are the net gain 

from the tests, evaluations, and examinations described in Section 3, 

Evaluation and Redesign Program. 
2-7 
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2.3.1 OFFSET LOCAL OSCILLATOR 

The purpose of the offset local oscillator is to provide a means 

of determining the directional sense of the Doppler target with respect 

to a ground operated CAT system. Such a capability is especially 

important in measurements of complex storm structures in which both 

receding and advancing components are present, and in addition, in 

giving the ground based system the opportunity to evaluate phenomena 

under system conditions simulating aircraft forward motion. The off­

set local oscillator is a separate local oscillator laser installed 

in the system and locked to a frequency offset from the transmitter 

by a fixed amount. This scheme requires a 'second laser in the 

system, a locking detector, an interferometer designed to provide a 

local oscillator and a means of comparing oscillator frequencies, and 

a locking loop. 

The laser will be discussed followed by the interferometer, 

locking detector, and locking loop. 

2.3.1.1 Local Oscillator Laser 

The local oscillator used in the offset system is a Sylvania 

Model 941 CO2 laser with a PZT adjustable cavity. The first laser 

when first received had the following characteristics: 

output Power 

Signature 

Power Stability 

,Beam Parameters 

Beam Steering 

2.2 - 3.1 watts depending upon transition~ 
Maximum power on P(20) 

00 0 1 - 100 0, R(20) - 10.25 ~m 
R(24) - 10.22 ~m 
R(26) - 10.21 ~m 
P(18) - 10.57 ~m 
P(20) - 10.59 ~m 
P(22) - 10.61 ~m 

Better than 3% over one hour after 30 minute 
warm-up period 

Diameter (1/e2) = 3.8 mm 
Divergence (1/e2) = 3.8 mrad 

Not detectable. Estimated to be less than 
10% of beam divergence. 
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2.3.1.2 Offset Laser Interferometer 

The offset laser interferometer has two functions: first, it 

provides a local oscillator for the receiver~ and secondly, it combines 
a portion of the master oscillator and a portion of the local oscillator 

beams for detection by the locking detector whose output is used to 

drive the locking loop which stabilizes the offset frequency at 10 MHz. 

An important component in the interferometer is the local 

oscillator attenuator which is located in front of the local oscillator 

beam expander in a position such that both the master oscillator LO and 

the offset LO passes through it before entering the beam expander. This 
attenuator consists of a half-wave plate ahd a wire-grid polarizer. 

Rotation of the half-wave plate rotates the polarization of the beam 
entering the polarizer, thus varying the attenuation of the local 

oscillator beam without altering its polarization. 

2.3.1.3 Locking Detector 

The locking detector is used to detect the beat frequency between 

the local oscillator and the master oscillator and provide this signal 

to the locking loop. Because of the relatively large powers of both 

beams available to this detector, it is not necessary that it be as 

sensitive as the receiver detector materials tested for use in this 

detector. A pyroelectric detector was chosen for this component 

because of its large power handling capability which relates directly 

to heterodyne sensitivity. 

2.3.1.4 Locking Loop 

This section briefly describes the principle of a locking loop. 

A block diagram of the locking loop incorporating the lasers and 

locking detector is shown in Figure 2-4. 

The transmitter laser (Laser #1) is the frequency reference which 

the loop tracks. The local oscillator (Laser #2) is the tuned element. 

Since the two lasers are offset in frequency in the RF range, an 

optical detector is used to detect the heterodyned outputs of the 

lasers. The output of this device is the beat frequency of the two 

lasers. 

2-10 
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The RF signal is amplified and fed into an AGC and then a dis­

criminator. The AGC holds the amplitude approximately constant while 

the discriminator converts the RF signal to a DC level proportional 

to the frequency of the latter. 

The reference is a DC voltage corresponding to the frequency at 

which the two lasers are to lock. Point A should have 0 volts when 

the system is locked. When there is drift or some other frequency 

change on either laser, a voltage proportional to the frequency error 

is generated. The phase switch exchanges the reference and the dis­

criminator outputs to the differential amplifier and they are sub­

tracted by the differential amplifier. In one position, an increase 

in the discriminator results in an increasing error voltage at 

point A. In the other, an increasing discriminator decreases the 

error voltage at point A. 

The error voltage is amplified by the gain amplifier (K ) and g 
enters the sweep switch. When locked, the error voltage passes into 

the integrator. When sweeping, a sweep current is injected into the 

integrator which produces a sweeping voltage output. When locked, 

the error voltage appears across a resistor producing an error cur­

rent which is integrated. The integrator feeds integrated error 

voltage to the output buffer. This produces a low-impedance ou~put 

to drive a high-voltage amplifier. The high-voltage amplifier drives 

the PZT of laser 2. This adjusts the frequency of laser 2 and, 

therefore, its heterodyne frequency relative to laser 1. This forms 

a frequency locked loop similar to a "tracker" in which the frequency 

generating elements are lasers instead of electronic oscillators. 

The logic circuits control lock, unlock and sweep functions. 

2.3.2 ELECTRO-OPTIC MODULATOR 

The principal problem with the basic system electro-optic GaAs 

modulator was the high reflection value of the AR coatings and the 

truncation of the beam by the seven-millimeter crystal aperture. 
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Difficulties were also found in using a four crystal modulator in the 

flight B CAT test flights where the primary problems appeared to be 

of correct orientation of all four crystals, or with residual 

birefringence in some of the crystals. The improved electro-optic 

modulator includes increased aperture size, better AR coatings on the 

crystal faces, and modification of the modulator to operate with only 

two crystals rather than four (see Section 3.3.9.1). 

2.3.3 HALF-WAVE PLATE 

In the course of tests on the transmitter (Section 3.1) it 

becomes obvious that it would be advantageous to be able to align 

the system with a CW C02 laser beam. This had been done in some cases 

by rotating the output polarizer of the electro-optical modulator or 

by removing the input polarizer and placing a half-wave plate before 

the modulator to rotate the laser polarization to match the output 

polarizer. In returning the system to its operating configuration, 

however, both of these methods resulted in misalignment. To overcome 

this problem, a half-wave plate was incorporated in a carrier which 

could be slid into the modulator housing between the input polarizer 

and the first modulator crystal and which rotated the polarization of 

the laser beam so that it passed through the modulator with the correct 

polarization when the modulator was not being pulsed. 

2.3.4 BEAM EXPANDERS 

The first beam expanders were designed before the characteristics 

of the master oscillator could be checked. Using information provided 

by the master oscillator vendor, the original expander design called 

for 2.5 times expansion using a 4.0 cm focal length mirror at the 

location of Mlshown in Figure 2-5. This design was based on a 6 rom 
diameter MO beam. As it turned out, the beam was actually 8 rom diameter, 

forcing the use of a 5 cm Ml to maintain the correct output diameter. 

The holes bored in the body of the beam expander were located for the 

geometry of 2.5 times expansion. Changing the focal length of Ml 

forced the entering beam to strike Ml lower, closer to the edge,. in 

order for the reflection to reach M2 • To adjust for this, the body 
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17.5 mm offset 

57 mm diameter 

22 mm diameter 

x .25 
)' 

1 inch 
EOA-751 . 

Figure 2-5. Beam Expander Mirror Geometry 
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had to be bored out with a hole 9 rnm in diameter closer to the mounting 

surface than the original hole. 

The Gaussian beam on entry into the entrance bore had a measured 

diameter of 8.5 rnm at its 12 points. This means that the beam was 
e 

clipped at points slightly larger than this diameter when the beam 

travels exactly on center down the bore. However, it was discovered 

that in order for the axes of both mirrors to be cammon and have the 

exiting beam leave on its proper axis, the entering beam had to be 

sent in 1.61 rnm below the axis, closer to the mounting surface. No 

elongation of the expanded beam was noticed. 

When the beam is expanded 

diameter was derived at the 12 
e 

two times, an output beam of 17 rnm 

points, while the output bore had a 

diameter of 16.6 rnm which contributed to the beam clipping and 

degradation. Ml had about 3.9 mm clearance from its edge to the 

axis of the incoming beam and this was not enough for unclipped 

reflectance of the beam; therefore, the new Ml was increased in 

diameter, a new mounting made, and a new input mirror installed to 

correct the problems in the transmitter beam expander. 

2.3.5 MIRRORS 

It was found in lab tests that the mirrors external to the ampli­

fier showed signs of corrosion to the degree that the gold reflecting 

surface had been perforated in many places. Mirrors internal to the 

amplifier showed signs of degradation in areas masked by the mount. 

This'could be due to optical erosion by the beam, by charged particles 

in the discharge, or by the ultra-violet discharge. It was also 

found that in the case of mirrors contaminated by oil or dust particles, 

effective cleaning was not possible on soft gold reflective coatings •. 

As a result, new types of mirrors were specified in all locations 

within the redesigned system. These mirrors used multi-layer dielectric 

enhanced metallic coatings on silicon substrates. Considerable 

experience in the last several years with this type of mirror under 

field conditions has shown no measurable coating degradation. To the 

degree possible, these mirrors approach military standards for adhesion 
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abrasion and water exposure, but at this time no manufacturer has 

met these abrasion and water exposure specifications. 

2.3.6, DETECTOR/RECElVER 

2.3.6.1 Detector 

A HgCdTe detector manufactured by Honeywell, Electro-optics 
Center, replaces the photoconductive copper-doped germanium detector 

used in the early tests. The detector specifications are: 

Material 

Operating Wavelength 

Quantum Efficiency 

Bandwidth 

D* ( 10 • 6 I-l) 

Shunt Resistance 

Series Resistance 

Dimension of Active Area 

Contact 

Window 

Photovoltaic HgCdTe 

10.6 I-l 

:;;: 40% 

:;;: 80 MHz 

:;;: 5 x 109 cm Hz 1/2 Watt 
:;;: 100 ('2 

~ 20 ('2 

0.25 rom x 0.25 mm ± 10% 
Cryogenic Associates IR-13 with 
SMA bulkhead connector 
BaF2 

With the increased quantum efficiency -and lower noise figure, 

this detector provides a 7 dB increase in performance over the CuGe 

detector at low frequencies and a slightly greater increase at fre­

quencies above the 8 MHz cut-off frequency of the. CuGe detector. 

2.3.6.2 Receiver Electronics 

The receiver for the offset system is designed around the 

characteristics of the HgCdTe detector and provides shot noise limited 

operation for maximum useful sensitivity and dynamic range for the 

signal processor. The offset system has two modes of operation (base-­

band and offset) selectable by switching filters. Figure 2-6 is a 

block diagram of the receiver system. 

The HgCdTe photovoltaic detector has an impedance of approximately 

200 - 1000 ('2 matched to the receiver input by a bias circuit which 
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also supplies the optimum bias current and voltage for the range of 

local oscillator power used. These parameters vary fram detector 

to detector and must be properly set to produce maximum signa1-to­

noise ratio. 

The first amplifier is important both for SIN ratio and dynamic 

range. A low noise high-dynamic range amplifier is used. here with 

a gain adequate to raise the detector shot noise above Johnson and 

amplifier noise, but small enough that large spurious signals do not 

cause it to saturate. The bandwidth is approximately from 200 kHz to 
100 MHz to accommodate both modes. 

The second amplifier provides most of the gain, since the filters 

following the first amplifier attenuate out-of-band interference. 

The two coax switches select the appropriate filter for the mode 

by using either the translate filter or the zero offset filter. The 

translate filter combines a bandpass function with a stopband function 

around the modulator frequency to remove feed through and harmonic 
products. This is used whether the acousto-optic modulator or the 

offset locking loop is used. The high pass filter rejects the l/f 

noise which becomes significant below 1 MHz~ while the stopband 
filter attenuates scattering and feedthrough around the modulator 

drive frequency. 

The zero offset filter is a simple 100 kHz high-pass filter for 

eliminating as much l/f and supply ripple noise as practical while 
keeping the low frequency response adequate. 

2.3.7 TELESCOPE ~ODIFlCATION 

A significant problem resulted fram the backscatter of radiation 

by the telescope secondary mirror into the amplifier. This feedback 

caused the amplifier to behave somewhat as an independent oscillator 

and spontaneously emit optical pulses prior to modulator switching. 
In the original telescope design, an attempt was made to prevent this 

problem by boring a hole in the center of the 450 plane mirror which 
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directs the beam to the secondary mirror. It has since been deter­
mined that because of the small size of this hole, the optical field 

filled in and the feedback factor was not significantly affected by 

the bored hole. 

It was found experimentally, however, that a small blackened 

ball located in front of the secondary mirror would reduce the 

backscatter by an order of magnitude. This approach was used and 

found to provide sufficient reduction when combined with the isolator 

and master oscillator frequency chirper. 

2.3.8 PZT HV POWER SUPPLY 

The PZT HV power supply provides a linear voltage control from 
o to 2000 V to the PZT crystal. This control enables an operator to 
manually tune the PZT over its entire range, and set the CAT las'er 

to a desired operating point. The voltage is adjustable by means of 

a front panel potentiometer connected to a digital counting dial 

displaying the operating voltage. The HV control network is shown 
in Figure 2-7. 

The manner in which the control circuit operates is to regulate 

the DC input voltage at + 24 VDC to reduce the effects of source 

voltage irregularities. After this the + 24 VDC passes to a transistor 

control network that linearly adjusts the DC input voltage to a small 

modular HV power supply. The power supply is connected to the PZT and 
to a fixed resistive load for better overall performance. As the 

input to ,the HV power supply is varied, its output voltage changes in 

a linearly proportional manner. In other words, Eout is equal to a 
constant times E. • This drives the PZT crystal directly for the 

~n 

desired HV control tuning. 

2.3.9 OFFSET SYSTEM OPTO-MECHANICAL DESIGN 

The design and fabrication of the offset system has been completed. 

The opto-mechanical design is shown in Figures 2-8 and 2-9. A Sylvania 
941S-PZT laser provides the local oscillator beam through an attenuator 

which can be varied over a 100:1 range. A portion of the laser output 

is mixed with an attenuated beam from the Honeywell master oscillator 
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VOLTAGE CONTROL HV TO PZT ... . - POWER REGULATOR CIRCUITS .. ~ 

SUPPLY 

J~ J~ 

,if ,if 
+28 VDC 

GND 
MANUAL FIXED' 
INPUT LOAD 

EOA-753 

Figure 2-7. PZT HV Control - Block Diagram 
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by the offset locking detector and the difference frequency is sensed 

by an offset frequency locking loop which adjusts the Sylvania laser 

to maintain a 10 MHz offset. The master oscillator is stabilized 
to the center of various possible transitions by dithering its cavity 
length and sampling its output power variations with the master 
oscillator locking detector. 
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SECTION 3 

SYSTEM TEST AND EVALUATION PROGRAMS 

3.1 INTRODUCTION 

Following the 1971-72 flight test and ground test programs, it 

was determined that a sUbstantial system performance improvement was 

required to achieve meaningful detection ranges at the operational 

altitudes of jet transports. This determination is detailed in Section 

10 and Appendix F. The first step toward tbis improvement was a 

detailed evaluation of the system performance in laboratory measurements. 

A series of measurements were developed which sought to determine the 

level of performance and the practical possibilities for improvement 

in the following areas: 

1. Output power 

2. Coherence of output beam 

3. Receiver heterodyne efficiency 

4. Detector and receiver electronic efficiencies 

5. Oscillation characteristics 

The results of the measurement program are described in 

Section 3.2. 

On the basis of the measurement program, the following were 

identified as areas in which SUbstantial improvements should be made. 

1. Isolator 

2. Telescope 

3. Beam expanders 

4. Detector and receiver 

5. Modulator 
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In addition, it was decided that in order to facilitate ground 

testing and to make the system useful for ground based measurements 

of storms and fronts, a frequency offset system was necessary to 

provide vector-velocity direction sense. This required the addition of 

a separate local oscillator laser and the implementation of a frequency 

offset stabilization loop together with room temperature detectors 

to drive it. In order to facilitate atmospheric probing, the processor 

was modified to allow automatic range sequencing and variable 

integration. The modifications are detailed in Section 3.3. 

3.2 TRANSMITTER MEASUREMENT PROGRAM 

3.2.1 VISUAL EXAMINATION OF OPTICAL SURFACES 

All optical surfaces were periodically examined. On first 

examination, it was found that a number of surfaces had degenerated 

due to what appeared to be etching of the coatings by particles which 

had settled on them. The tenaciousness of these particles and the 

softness of many of the gOld-coated mirror surfaces made cleaning 

difficult. In some cases, mirror surfaces were perforated and mirrors 

in the amplifier appeared to have been etched by exposure to charged 

particles or UV radiation in the discharge. Beamsplitters were 

generally in good condition except that AR coatings were not effective 

in some cases as indicated by power losses and secondary reflected 

beams. Periodic maintenance procedures were instituted which 

eliminated most of these problems. 

3.2.2 POWER LOSSES IN OPTICAL COMPONENTS 

Beam power was periodically measured at several points through 

the transmitter. For these CW measurements, a half-wave plate was 

used before the modulator to rotate the plane of polarization passing 

through the modulator. Typical measurement results are shown in 

Figure 3-1. Major losses have been incurred with the degraded mirrors 

Ml and M2, the beamsplitter BSI (poor AR coating) and the modulator 

whose 7 rom aperture is smaller than the 8 rom beam. Amplifier optical 

loss is considered reasonable for the degree of beam spread and 
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aperturing in the amplifier. Procedures for measuring these losses 

are detailed in Appendix G. 

3.2.3 MEASUREMENT OF BEAM PROFILES 

During transmitter realignment, beam patterns were observed 

visually on liquid crystal and fluorescent infrared sensitive materials 

and a PbSnTe detector was scanned horizontally through the beam to 

generate intensity profiles following each of the major optical 

elements in the system. Two techniques were used to obtain large 

signal-to-noise ratios. At points in front of the electro-optic 

modulator, a synchronous amplifier was used in conjunction with a 

beam chopper to reduce the effective noise bandwidth. At points 

following the modulator, where the average power is one milliwatt or 

less, a sample-and-hold circuit synchronized with the modulator 

driver was used to improve the SIN ratios. The detector size used 

was 100 ~m prior to the beam expander and 400 ~m following the beam 

expander. Figures 3-2 tnrough 3-8, explained below, are typical beam 

profiles obtained at the major optical element test points. 

Figure 3-2 shows the master oscillator output beam profile before 

it has reached any of the optical elements. It has the Gaussian 

shape expected of a single mode laser. The diameter at the 1/e2 

intensity points is 6.28 mm. 

Figure 3-3 shows the profile of the local oscillator beam after 

it emerges from the beam expander. The fluctuations are circular 

patterns resulting from the slight overfilling of an aperture in the 
beam expander by the laser beam. The diameter at the 1/e2 intensity 

points is approximately 14 rom which compares well with the 15 mm 

design diameter. It is to be expected that fringes will somewhat 

degrade the heterodyne efficiency of the system. 

Figure 3-4 shows the effect on the local oscillator beam of 

interference within the recombining beamsplitter. The fringes are 

straight and nearly vertical indicating a wedge near the horizontal 

plane. The depth of the fringes indicates that the AR coating on 

the beamsplitter has degraded. 
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Figure 3-5 shows the transmitter beam after passing through the 

electro-optic modulator. It shows that the large 7 rnrn x 7 rnrn crystals 

permit the beam to pass with minor clipping of the beam. 

Figure 3-6 shows the transmitter beam following the beam 

expander and demonstrates the same fringe pattern seen in the local 

oscillator leg. 

Figure 3-7 shows the transmitted beam after it passes through 

the six unexcited amplifier tubes. The precise pattern is very 

sensitive to the beam alignment and appears to be due to reflections 

off the walls of the discharge tubes. WaJ,.l bounces with power loss 

at the tube ends are also consistent with the approximately 10 dB 

of optical loss seen in the amplifier. 

Figure 3-8 shows what appears to be preferential amplification 

of the axial portions of the beam structure with the amplifier excited. 

(The small scale structure ~ 0.1 rom on the profile is due to inter­

ference from the amplifier driver and should be ignored.) 

3.2.4 INTERFEROMETRIC TESTING OF FLAT MIRRORS 

Several of the mirrors were tested in their mountings to deter­

mine if the mounts were stressing the mirrors. This proved to be so 

with both the steering mirrors and the mirrors mounted in the amplifier 

turn-around blocks. Figure 3-9 demonstrates the improvement achieved 

by improving the mirror mounting geometry. This is typical of the 
mountings. 

3.2.5 DETECTOR AND PREAMPLIFIER MEASUREMENTS 

Efficiency measurements of the flight test CuGe detector/receiver 

were made and the signal (S), noise (N), preamplifier noise (NTH) and 

SIN frequency characteristics were determined. The receiver efficiency 

at 10 MHz was determined to be l~~. The frequency dependence of the 

various parameters is shown in Figure 3-10. These curves show that 

despite the limited detector frequency response, the receiver sensi­

tivity should be 13% ± 0.5 dB in the 20 - 30 MHz frequency range. 

3-8 
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Double Pass Interferogram of Turn-Around Block 

Before Remounting - )j40 @ 10. 6 ~m 1 Div = 2 mm 

Doubl e Pass Interferogram of Turn-Around Block 
After Remounting 

EO-4S1 

Figure 3-9. Distortion of Mirrors in Turn-Around Blocks 
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3.2.6 SYSTEM HETERODYNE EFFICIENCY MEASUREMENTS 

Far field system heterodyne efficiency measurements were made 

using the arrangement and relationship in Figure 3-11. This measure­

ment combined the coherence losses of the transmitter beam, the 
signal beam and the local oscillator beam. The method is dependent 

upon the values of the calibrated Doppler target backscatter coefficient 

and the responsivity of the calibrated CuGe detector. 

The measurement is a far-field measurement by virtue of being 

performed in the focal plane of the focusing lens. These measurements 

have consistently yielded a value for ~op' of -17 dB with the amplifier 

off, and -22 to -23 dB with the amplifier on, when suitable efforts 

were made to prevent spontaneous oscillation of the amplifier. The 

electronic arrangement shown in the block diagram of Figure 3-12 was 

used for the pulsed measurements. 

In order to separate the transmitter efficiency from the receiver 

efficiency, separate measurements were made of the receiver efficiency 

utilizing a second laser as a signal source as shown in Figure 3-13. 

These measurements, which included an in situ detector responsivity 

and resistance measurement, showed the system loss due to the trans­

mitter alone. 

Losses associated with the transmitter are assumed to arise from 

the annular structure indicated by the output beam profile shown 

earlier. The primary cause of this structure is the reflection of 

the "wings" of the beam by the amplifier tube walls. Clipping this 

oblique radiation to clear up the output and increase the gain of 
the amplifier is discussed in Section 3. 

3.2.7 BEAM EXPANDER ALIGNMENT 

The beam expander geometry was examined to determine the reason 

for beam degradation. It was found that the entrance bore in the 

expander body was not placed correctly: its diameter and the diameter 

of the exit bore were clipping the beam at their 1/e2 points and the 

secondary mirror was slightly undersized for full accommodation of 

the unexpanded beam. By directing the beam through the expander 
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slightly askew, a reasonable output could be had, but with aberration. 

Calculations determined the optimum Gaussian beam waist diameter 

for the output of the beam expander. The diameter is plotted as a 

function of Wo in Figure 3-14 for z = 10 m, the length of the ampli­

fier, and shows that the present 15 rom output diameter results in a 

diameter of 17.2 rom at the end of the 19 rom diameter amplifier tubes. 

To clean up the amplifier output beam, a program was directed toward 

controlling the expander ratio to produce a 12 rom waist and a 16.4 rom 

beam at 10 m (see Section 3.3.3). 

3.2.8 MEASUREMENTS OF OUTPUT POWER CYCLING 

Figure 3-15 shows part of a record made during the power cycling 

after the system had warmed up and the output pulse shape at peak 

power output and at minimum output during the cycling. In the upper 

photo a large part of the power is in a sharp peak with a wide band­

width making it less suitable for CAT heterodyne measurements than 

the pulse shape in the lower photo. 

Calculations were made to determine the cycling rate which 

would be expected if the cause were the thermal expansion of a cavity 

having a length equal to the distance between the amplifier output 

window and the master oscillator output coupler. The length of this 

cavity subject to expansion by heating of the aluminum frame is 

985 cm. The remainder is Invar which has a much smaller expansion 

coefficient. Using an expansion coefficient of 24 x 10-6 K-l for 

aluminum, a 2 K temperature change would cause a length change equal 

to 89 half wavelengths. The number of power output cycles measur.ed 

during a 2 K frame temperature rise was 90 ± 10, with the error being 

due to temperature reading inaccuracies. This strongly supported 

the theory that the amplifier acted as a resonant cavity with the 

sources of feedback located at the ends. 
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3.2.9 FREQUENCY-TIME CHARACTERISTICS 

Because of the possible application of the system to nearby, 

low frequency targets, receiver measurements were made in the 0 - 10 MHz 

spectral range immediately following the output pulse. It was found 

that the most severe problem would b~that of etalon switching of the 

modulator. This emphasized the need for low reflectivityAR coatings 

on the crystals. 

The upper trace in Figure 3-16 shows the gated detector signal 

with modulator ring plus any scattered signals from the receiver optics. 

The gate passed a signal for 110 ~s start~ng on the falling edge of the 

synchronizer pulse. This signal is also passed through a spectrum 

analyzer and displayed below the signal trace (Figure 3-l7). The 

spectrum analyzer is used as a 100 kHz bandpass filter set at fre­

quencies of 0.7, 1 and 1.5 MHz. The downward pulses at the beginning 

and end of each trace in the five pictures are the result of the 

switching transients whose characteristics are dependent on the rise 

and fall times of the switching pulse. In order to make close-range 

low frequency heterodyne measurements, the transient problem will have 

to be solved. Efforts are underway to do this by optical means, 

isolating the modulator, thus removing the need for a switch, as well 

as reducing the ringing. 

3.2.10 RECEIVER SATURATION CHARACTERISTICS 

Using an injected signal, measurements were made of the saturation 

characteristics of the receiver electronics to determine the amplifier 

dynamic range (40 dB). During these tests, it was found that the 

modulator caused the master oscillator to shift by 150 kHz, which 

normally caused no problem~ however, when this shift resulted in the 

oscillator jumping to another P-line, the amplifier fluctuation in 

the local oscillator would be enough to saturate the amplifier and 

result in a sensitivity loss of nearly 20 dB as well as the generation 

of a large number of spurious frequencies in the 0 - 50 MHz band. 
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Figure 3-16. Frequency-Time Characteristics of CAT 
System Modulator and Switching Transients 
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3.2.11 MEASUREMENT OF SYSTEM BACKSCATTER 

Measurements were made at the detector location in order to 

determine the magnitude of the backscatter and validate the numerical 

analysis of the telescope in Section 3.3.2. 

There are two paths by which backscatter can reach the detector. 

The first is directly. through the optical front end and is the dominant 

mode. The second is back through the amplifier and along the local 

oscillator path and includes amplifier gain and polarization considera­

tions. 

A series of measurements were made uSing the chopped local 

oscillator beam as a calibration source. In the case of pulses 

arriving via the local oscillator path, the backscattering coefficient 

is subject to error due to the problem of accurately measuring a pulse 

with a peak power near that of the local oscillator. The results for 
the local oscillator path must be reduced by any attenuation used to 

reduce the detector local oscillator power. In the case of a photo­

voltaic detecto~ this reduction is 10 dB. 

Measurements were made with and without the telescope mounted. 

In both cases, the power amplifier was on and the output beam was 

directed into a water-filled dump. In the absence of the telescope, 

it was found that the major contribution was from the quarter-wave plate 

holder because of the small size of the holder (15 rom diameter) com­

pared to the output beam. This scatter was polarized so that most of 

it re-entered the amplifier, and even with the attenuation losses in 

the LO path, it exceeded the power arriving at the detector via the 

direct, but incorrectly polarized, receiver path. 

With the telescope mounted, the secondary becomes the dominant 

source of scatter. Because the secondary follows the quarter-wave 

plate, the direct receiver path now dominates slightly. The results 

of these measurements (made with a 20 mw LO power) are presented 

in Table 3-1 along with the calculated secondary scatter value obtained 

in Section 3.13 after being reduced by 30% for beamsplitter losses. 
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TABLE 3-1 

SCATTERING COEFFICIENTS 
-_. 

WITHOUT TELESCOPE WITH TELESCOPE 

ON LO ON RECEIVER ON LO ON RECEIVER 

10- 6 -7 10-4 -4 
6.5 x 4.4 x 10 3.2 x 7.0 x 10 

CALCULATED VALUE FOR TELESCOPE 

SECONDARY ON RECEIVER 

7.6 x 10- 4 

Table 3-1 shows that with a 10 kw output pulse, the peak power 

at the detector may reach 7 W with the present telescope design: 

whereas, without the telescope, the level would be 65 row. A planned 

increase in the wave plate size (to 22 rom) is expected to reduce the 

scattered pulse peak power to less than 1 roW in the absence of the 

telescope. These measurements established the importance of telescope 

design changes directed toward reduction of secondary backscatter. 

The close agreement between the measured value of 7 x 10-4 and the 

calculated value of 7.6 x 10-4 for the telescope secondary supported 

the validity of the analysis in Section 3.2.11. 

3.3 REDESIGN AND EVALUATION 

3.3.1 FREE CARRIE.R FARADAY ISOLATOR DESIGN PROGRAM 

3.3.1.1 Introduction 

A 10.6 ~ roam temperature optical isolator was designed to 

prevent backscattered radiation from entering the amplifier sections 

of the laser transmitter. The optical isolator was based on the 

free-carrier Faraday effect and consisted of an indium antimonide 

(InSb) Faraday rotator placed between two linear polarizers whose 

principal axes were orientated 450 with respect to each other. 
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A beam of linearly polarized light derived from the master oscillator 
passed through the front polarizer, was rotated 4So and transmitted 

through the rear polarizer. Maintaining its original polarization, 

backscattered radiation from optical components re-entered the 

isolator through the rear polarizer, was rotated an additional 4So 

and subsequently blocked by the front polarizer which was at right 

angles to the plane of polarization. The degree of isolation achieved 

depended on the material characteristics of InSb, the uniformity of the 

.;tpplied magnetic field, and the extinction ratio of the polarizing 

elements. Of the three, the material characteristics.of the InSb 

limit the figure of isolation. 

3.3.1.2 Material Considerati~:>ns 

The free-carrier Faraday effect exhibited by semiconductor 

materials, such as InSb, is a function of operating temperature, 

donor concentration, sample thickness, and magnetic field strength. 

All these parameters ,had to be balanced to minimize absorption losses 

and maximize isolator performance. 

W. T. BOO~d, et aliI made a study on the interdependence of 

these various parameters for isolation applications. Choosing 

300 K as our operating temperature, data were extrapolated from 

their results and replotted to establish the tradeoffs for our 

design. Figures 3-18 and 3-19 illustrate the tradeoffs involved 

between field requirements and absorption losses for various donor 

concentrations (ND) and sample thicknesses (t). These plots imply 

that a reasonable room temperature isolator could be designed with 

InSb wafers 0.02" (0.OS08 cm) or 0.03" (0.076 cm) thick having 

donor concentrations in the range of 1.0 - 2.0 x 1017/cm3. Ideally, 

the best compromise of parameters for our application would be a 

0.02" (0.0508 cm) wafer with ND = 1. S x 1017/ cm3. Under these 
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conditions, the absorption losses would be as low as 1.6 dB with a 

field requirement of 8.5 kG. It has been shown that 10.6 ~ isolators 

employing InSb wafers with these specifications have produced over 

30 dB isolation. 

Unfortunately, we were limited by the crystal manufacturers' 
ability to grow wafers. State-of-the-art techniques are still 
limited to trial and error to achieve donor concentrations within 
1.0 x 1017/cm3 of specified values. Also, manufacturers will not 

guarantee better than ± 15% donor doping uniformity across the 

aperture of a 1 cm wafer. This becomes a problem when high figures 

of isolation are required since non-unifor.mities in doping lead to 

phase variations, non-uniform rotation and differences in free-carrier 

absorption. Figure 3-20 indicates that a 15% change in doping 

concentration leads to a 40 change in Faraday rotation. Assuming 

perfect polarizers, Figure 3-21 further illustrates what effect this 

has on the isolation figure. We see that a 15% change in doping 

uniformity leads to a 2% leakage transmission through the polarizers 

due to the additional rotation of the plane of polarization. It 

should be pointed out that these numbers represent worst-case values 

since leakage would not occur over the entire aperture. 

3.3.1.3 Magnet Design 

In order to accommodate the variety of wafers purchased, a 

magnet had to be designed capable of supplying a uniform magnetic 
field over a 1 cm aperture for magnetic field strengths varying 

between 3.5 kG and 11.0 kG. Due to size limitations in the present 
CAT system, this magnet must be small and compact. Samarium cobalt, 

which has high and uniform fields, compact size, and lightweight, 
was chosen as the magnet material. The magnet design shown conceptually 

in Figure 3-22 and in detail in Figure 3-23 was done u.sing a computer 

program developed at Raytheon. Adjustable pole pieces were used to 

vary the magnetic field strengths across the 1 em aperture in the 

center of the magnet. The size of the entire magnet assembly was 

limited to a 5-inch cube and had virtually no leakage field. 
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3.3.1.4 Thermal Characteristics 

A thermal analysis was performed of the thermal properties of 

edge-cooled InSb in a CO2 laser beam. It was determined that for the 

CAT master oscillator beam parameters, beam powers in excess of one 

watt would lead to thermal runaway. This would make the insertion 

loss of the material exceed 5 dB and induce strong refractive errors 

in the material. It was concluded that the isolator should be placed 

at a position between the modulator and beam expander where the average 

power level is less than 10 mW. 

3.3.1.5 Laboratory Tests 

Tests were conducted on the two wafers that were polished and 

anti-reflection coated, when the magnet was assembled and delivered. 

The field strength of the magnet was less than the computer prediction; 

however, it was enough to produce 450 rotation of the polarization enter­

ing wafer 1 when the poles of the magnet were shunted. This means that 

the thinner wafer, 2, would also be usable in this magnet by unshunting 

the poles. Measurement of the rejection of the ZnSe tent polarizers 

yielded 12 dB which is the expected amount. (With the input and output 

polarizers set at 450
, wafer 1 installed, and the magnetic field applied, 

transmission losses of about 2 dB were measured in the correct direction.) 

Transmission in the reverse direction yielded 12 dB. This gives an 

actual isolation of 10 dB, which is less than the expected 12 dB. 

Examination of the beam quality leaving the isolator shows a 

strongly divergent ring-shaped beam (see Figure 3-24A). A set-up was 

constructed to image the wafer on a pyroelectric vidicon to make an 

examination of material uniformity. At this point, it became obvious 

that the material had an inclusion causing refraction of the beam. The 

inclusion appeared to be a region possessing a different index of 

refraction. The manufacturer would not speculate on the crystal non­

uniformity but expressed concern with the Te concentration. An effort 

was made to determine, by imaging, if the remaining unpolished wafers 
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i mage d at Py rocon . 

CO- 454 

F i gure 3- 24 . E::am i na t 10 n 0 f Beam Qua li ty 
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had inclusions. In all but 2, inclusions could be seen. Two wafers 

without inclusions were polished in-house. Polishing proved exteme1y 

difficult because of thinness and a tendency to creep after polishing. 

To achieve flatness, they were polished too thin. Because of the lack 

of AR coatings on these wafers, fringes were generated between the two 

surfaces of the wafer (Figure 3-24B) showing the warping of the wafer 

(they should be straight lines) and in the region of tightest warping 

and bunching, the location of the inclusion (Figure 3-24C). Based on 

observations, the difficulty of polishing may be greatly reduced with 

uniform material. 

When the wafer was mounted, there was a small amount of scatter 

from saw lines as shown in Figure 3-24D, which was not significantly 

detrimental to the operation of the isolator. 

The isolator was assembled with each wafer in turn and measurements 

made of insertion loss and maximum rejection with the addition of another 

polarizer. The following are the results of optical tests on the 

isolator using an external wire grid polarizer (WGP): 

Wafer 1 Wafer 2 

Insertion loss -1.8 dB -1.7 dB 
Isolation -18.6 dB -18.3 dB 

Rejection of WGP -19.8 dB -19.6 dB 

Difference between -1.2 dB -1.3 dB 
isolator in beam 
and out 

A test of the totally assembled isolator with Wafer 2 using 

built-in ZnSe tent po1arizers and wave plate guides gave the following 

results; 

Insertion loss 

Isolation 

-1.9 dB 

-12 dB 

Since the maximum rejection of a tent polarizer of ZnSe would be 

-12 dB, the above isolation figure is what would be" expected. These 

tests concluded that the isolator was operating as well as could be 

expected and that no change to the magnet would be required. 
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It was also noted that the entrance angle of the beam into the 

isolator polarizer was important because of the compactness of the 

polarizer assembly. Internal reflections, despite the inner blackened 
surfaces, would emerge with the same polarization as the entering beam. 

This would cause a variation in isolation depending on the angle of the 

entering beam. For this reason, care is demanded in mounting the 

isolator in the system. 

3.3.1.6 Field Tests 

The major problem with backscattered energy in the CAT system was 
identified as frequency pulling of the master oscillator. This could be 

viewed as a periodic frequency shift for stationary targets between 

± 2 MHz. The periodicity is due to slow changes of the system tempera­

ture, which covers the length of the resonant cavity between the master 

oscillator and the telescopic secondary mirror. This scatter could be 

minimized but not eliminated by placing a ball obscuration in front of 

the secondary. The effects of this pulling could be directly observed 

by viewing the 10 MHz beat frequency between the two offset locked lasers 

on the spectrum analyzer IIA II scope. A frequency sh~.ft would cause the 

10 MHz signal to move out of the analyzer bandpass filter and could be 

displayed by viewing the vertical output of the analyzer on a scope 
triggered by the modulator signal. There was also an effect on the 

output pulse shape at the time of the frequency pulling which came to 

be called breakup. The output became very spiked and had no decay tail. 

This would cause a mismatch of the return pulse shape in the processor 

filter bank and subsequent loss of detected signal strength. 

Before the installation of the isolator, photos of the "A II scope 

display were taken. Figures 3-25A and 3-25B shoW the breakup b§fore the 
system was modified with the isolator. Figure 3-25A is a worst-case 

photo with the ball removed from in front of the secondary. Figure 3-25B 

is a tweeked case where the ball has been carefully positioned in front 

of the secondary. The frequency pulling realized, even in the best 

case above, was more than the system could tolerate for proper operation. 



A) "A" Scope display of 
10 MHz beat frequency 
worst case of pulling 
with ball removed and 
no isolator .. 

B) Best case of pulling 
with ball positioned 
and no isolator. 

c) IsolQtor installed 
and no ball positioned. 

EO-455 

Figur e 3-25. Eff e ct o f Isolator on System Stability 
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The isolator was installed and complete realignment was required of 

the optical path from the modulator on through to the amplifier output. 

The side stepping mirrors were moved forward as well to make room. 

System alignment had to be made with the InSb wafer removed so that 

visual alignment could be made with the cathetometer. The isolator 

was mounted against hard stops so that it could be removed and 

replaced, after wafer replacement, to the exact same alignment. With 

the isolator installe~ there did not appear to be any degradation of 

toe output beam. Power was about 12 mJ at 2 ~s pulse length. Figure 

3-25C shows the "A" scope display after the isolator was installed 

w~th the ball obscuration still in the same location as for Figure 

3-2SB of the best case with no isolator. The improvement was 

remarkable. 

Several plots were made of the first 'moment on the computer 

to determine the frequency stab~lity of the system as the computer 

and processor saw it. Figure 3-26 is a plot of the first moment 

with the ball tweeked and all other system adjustment optimum. Fre­

quency deviation was minimal, plotted as meters per second on the 

vertical axis and elapsed time in seconds on the horizontal axis. The 

target was the stationary sandpaper target on Madkin mountain. 

3.3.2 TELESCOPE INVESTIGATIONS 

The first telescope design proved less than optimum because of 

the large amount of power which was backscattered from the secondary 

mirror. This backscatter was a leading cause of high power levels 

at the detector and led to receiver saturation. It als~ caused 

premature oscillation of the amplifier and pulse leading edge 

sharpening, resulting in decreased effective system output. To 

reduce these problems, an effort was devoted to the evaluation of 

alternate secondary mirror designs. 



F
 • 1 R
 

,.. ~
 T
 M
 

w
 

0 
I: 

M
 

~
 ,... 

E
 

Ii
 T
 

ST
AR

T 
TI

M
-
~
~
T
C
 
c
~
~
-

i.e
 

1
,1

 .
..

. i 
I 

~·
 .. l 

, 
cO

 
1.

...
. 

~
,
 

• 
~
 
-
j
.
.
.
 

.
..

..
..

..
..

 

2;
- , i I I I , I I i 1~
 i I 

c;.-
: 

;:-;
 /' 

.... 
"""

 ...
.. ;
~
,
 

'.
 

AZ
lf"

lU
TH

 
o 

PI
TC

H o 
NT

HR
S o 

#I
NT

G 
25

 

PU
LS

E 2 

-21
 

RA
NG

E 
I ~~

:-
~~
~~
 __ L

-_
_

 l-
~~
 __

 ~ _
_

 ~ _
_

 ~ _
_

 ~40
50 

e 
se

 
18

8 
1S

t 
at

e 
25

0 
30

e 
35

0 
~
e
0
 

E
tA

 P
 S

E
D

 
T

IM
 E

 
~
s
e
 

50
0 

F
ig

u
re

 
3

-2
6

. 
v

a
ri

a
ti

o
n

 
In

 A
p

p
a
re

n
t 

V
e
lo

c
it

y
 

O
f 

s
ta

ti
o

n
a
ry

 
T

a
rg

e
t 

w
it

h
 
Is

o
la

to
r 

In
s
ta

ll
e
d

 

E
O

A
-7

76
 

,,
':

 

",
.. 

~ 
k:':

.' 



A computer analysis was performed to determine the backscatter 

coefficient of both the present design and a Raytheon design which 

effectively increases the size of the central obscuration whose func­

tion it is to reduce the on-axis backscatter power. No obscuration 

can be totally effective in eliminating the backscatter power be­

cause of the tendency of the geometric shadow to fill in due to 

diffraction. Thus, calculation of the backscatter coefficient for 

a particular design requires solution of the appropriate diffraction 
integral. This is a relatively simple task in the case of on-axis 

diffraction intensities, but requires the use of numerical calcula­

tions for the general case. 

Following the analysis of Webb2 the intensity of a diffrac­
tion pattern may be written as: 

I (ro'z) 
2P (~r (8

2 
+ c2

) = 
'lTw2 ( 1) 

where: 

-(:1 r 7b Jo(krro) sin S =J e (er12
) rldrl 

a 

(2) 

.b 
e -(:1 r c =( (kr r ) (er12 

) rldrl J o ~ 0 cos 
J 

a 
( 3) 



and 

with: 

a = radius of obscuration 

b = radius of truncation 

Z = position of plane of observation 

ro = observation coordinate 

r l = aperture coordinate 

p = laser power 

R = radius of curvature of laser beam 
(>0 for diverging beams) 

w = beam radius 

t.. = wavelength 

k = 21T/t.. 

3.3.2.1 Present Telescope Design 

The afocal Newtonian-Cassegrain modified telescope presently 

incorporated into the CAT system consists of a parabolic primary (12 in. 

or 30.5 em in diameter) and a parabolic secondary (1 in .. or 2.54 em 

in diameter). The beam entering the telescope barrel is directed 

towards the secondary via a 450 mirror and is expanded and collimated 

by the telescope optics. In this configuration, a portion of the 

transmitted laser beam located close to the optical axis will reflect 

off the secondary mirror and be backscattered along the incoming path 

of the laser beam. To alleviate this problem, a 3/32 in. (.24 em) hole 

was centered on the 45 0 mirror to obstruct the central portion of the 

transmitted beam. In order to make the analysis manageable, the geometry 

was modified to place the obscuration on the secondary rather than 

the diagonal mirror. Since the secondary is in the near-field of the 

obscuration, no significant error should be expected. 
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For the present system we have: 

a = .0468 11 (1.189 mm) R = 2.25 11 (5.715 cm) 

b = .5 11 (12.7 mm) w = .295 11 (.749 cm) 

A = 4.17 x 10-411 (10.59 -4 ) x 10 mm Z = 20 II (50.8 cm) 

Given these values, the Sand C integrals were evaluated using 

a numerical analysis computer program. The backscatter intensity 

distribution was then calculated and plotted as a function of 

position off axis (Figure 3-27). Since the intensity distribution 

is circularly symmetric around the optic axis, the intensity 

function was weighted and then integrated using a polar planimeter 

to determine the backscattered power collected by a I-inch (2.54 ern) 

aperture in the observation plane. It was assumed that all the 

power collected in this plane is seen by the detector. 

The dimensionless quantity Pdet/Pout is used as a figure of 
merit in comparing the various designs. This quantity represents 

the ratio of the backscattered power detected in the plane of obser­

vation to the output power supplied by the laser amplifier. By 

integrating the backscattered intensity distribution over the l-inch 

(2.54 cm) aperture in the plane of observation, the backscatter 

power ratio was found to be: 

Pdet 
-P--
out 

= 1.08 x 10-3 

To weigh the advantages of the presence of the obscuration, 

the intensity distribution in the same observation plane was cal­

culated without the obstruction. This intensity distribution is 

simply an expanded Gaussian beam and is given by: 

2P I (r ,Z) = ----2 e 
o 1TW' 

2 2 -2r /w' o 

where w' is the expanded Gaussian beam radius in the plane of observa­

tion. In the present design, Wi = 2.95 11 (7.49 cm) at Z = 20 11 (50.8 ern). 
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-1 
.155 x 10 

-2 .155xlO 
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Figure 3-27. Backscatter Intensity Distribution for Present 
Telescope (A) with Obscuration, (B) without 
Obscuration 
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This distribution is plotted in Figure 3-27. Integration of this 

function over the area of the I-inch aperture produced a backscatter 

power ratio of: 

Pdet 2 ---- = 5.58 x 10-
Pout 

Therefore, the backscatter due to the telescope secondary is 

reduced by approximately 17 dB with the obscuration present. 

3.3.2.2 Modified Telescope Design 

The intention of the modified design is to expand the Gaussian 

beam before it strikes the central obscuration in order to reduce the 

intensity of the beam close to the optic axis, thereby reducing the 

magnitude of the diffracted light. At the same time, this allows us 

to use a larger obscuration which brings the detector further into 

the geometric shadow. 

For the modified design, the backscatter coefficient is 

determined by integra~ing over a diffraction distribution in a 

plane near the qUgrter-wave plate location. This distribution is 

shown in Figure 3-28. Integrating over the l-inch diameter of the 

collecting aperture leads to a backscatter power ratio of 

Pdet 10-4 p--- = 5.66 x 
out 

For comparison, the backscatter intensity distribution for 

the unobstructed Gauss~an beam was also calculated at Z = 20 in. (50.8 cm) 

and is plotted in Figure 3-28. The backscattered power ratio for this 

distribution is 

Pdet 2 
~~ = 4.4 x 10-
Pout 
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Figure 3-28. Backscatter Intensity Distribution for Modified 

Design (A) with Obscuration, (B) without 
Obscuration 
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3.3.2.3 Results 

Table 3-2 summarizes the backscatter power ratios due to the 

secondary for each design in units of watts detected/watts output. 

TABLE 3-2 

BACKSCATTER POWER RATIOS DUE TO SECONDARY MIRROR 

WITHOUT WITH 
OBSCURATION OBSCURATION 

PRESENT DESIGN 5.58 x 10-2 
10.8 x 10 -4 

PROPOSED MODIFIED 
4.50 x 10-2 -4 DESIGN 5.66 x 10 

We see that in comparing the two designs without their obscurations 

the backscatter power ratios are essentially equal. This is an 

expected result since the geometry of the backscattered beam remains 

constant regardless of the shape or focal length of the telescope 

secondary. The intention of the modified design was to illumi­

nate the obscuration with an expanded Gaussian beam, thereby 

reducing the backscattered radiation due to diffraction. In prin­

ciple this workS; but for the present application, the tradeoffs 

involved did not allow us to take advantage of highly diverging 

Gaussian beams or large central obscurations. Results show that 

the modified design would only be capable of reducing the back- ' 

scattered power by 2.8 dB over the present design. This slight 

reduction did not seem sufficient to warrant modification of the 

existing design. 

3.3.3 REDESIGN OF BEAM EXPANDERS 

The goals of the beam expander redesign program were to in­

crease the output aperture diameter, remove an off-axis alignment 

built into the present expander, simplify the focusing adjustment, 

and consider modifications in the expansion ratio. 



3.3.3.1 Beam Expander Analysis 

As the transmitter beam propagates through the power amplifier, 

it expands (due to diffraction) to the point where the wings of the 
intensity distribution are reflected by the walls of the amplifier 

tubes and apparently scattered back towards the oscillator by the 

edges of the various apertures in the system. A smaller beam could 

be used within the amplifier either with the present collimated beam 

or by focusing the transmitter beam expander so that a waist occurred 
within or beyond the amplifier. 

The effect of varying the size of the collimated amplifier 

entrance beam was evaluated and the results are shown in Figure 3-29. 

It can be seen that with the present entrance beam waist diameter of 

16 rom, the amplifier exit beam in the absence of wall reflections or 

truncations would be 18 rom. This exit diameter could be reduced to 

16 rom by using an entrance beam diameter of 12 rom with a change in 

the be.am expansion ratio from 2x to 1.5x. Figure 3-29 suggests that 

a non-expanded entrance beam diameter of 8 rom would also result in 

an 18 mm exit beam diameter7 however, it do~s not mean that the 

expander could be dispensed with. Figure 3-29 assumed that the 

Gaussian beam waist was located at the amplifier entrance, whereas 
in the absence of the expander, the waist is located near the output 

coupler of the local oscillator, 193 cm from the amplifier. In the 

absence of the beam expander, the exit beam diameter would be approxi­

mately twice the diameter of the amplifier tube bore. 

A second approach to reducing the exit beam diameter is to focus 

the beam expander so that the beam waist occurs near the output end 

of the amplifier. This technique is limited by diffraction to waist 
locations which are within the amplifier. It can be shown that a 

Gaussian beam cannot be focused to a waist at a distance greater than 

half the far field of the focused beam. The far field distance is 

given by 

n2 
d -.IlId.... ff - 4). 

3-49 



26 

24 

22 

20 

18 

-E 
.s 16 
0:: w 
I-w 14 ~ 
~ 
c 
~ 12 
« w 
co 
!:::: 
x 10 
w 

8 

6 

4 

2 

0 
0 2 4 6 8 10 12 14 16 18 20 22 

ENTRANCE BEAM DIAMETER (mm) 
EOA-779 
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where 

D = diameter of 1/e2 intensity point 

A. = wavelength 

For the present beam expander, the maximum distance dff/2 is about 
8.5 m and the waist diameter at this point is 11 rom. No appreciable 

expansion occurs between the waist and the amplifier exit window. 

The focusing approach offers several advantages: 

1) It requires no modification to the present values 
of the beam expander focal lengths. 

2) The amplifier exit beam is a collimated beam which 

matches the wavefront requirement of the telescope. 

3) The exit beam is smaller in diameter and suffers less 

scattering. 

4) The local oscillator beam expander wavefront can be 

collimated and readily checked by shearing interferometry. 

For these reasons the expander design work detailed below has been 

directed toward a 2X expansion ratio with focusing capability. 

3.3.3.2 The Redesigned Beam Expanders 

The beam expanders now in system use have the fol10wing 

characteristics: 

Local Oscillator Transmitter 
Offset L.O. MOPA 

Input Aperture 6.5 rom 6.5 rom 15 rom 
Output Aperture 22 rom 22 rom 22 rom 
Expansion Ratio 3.5:1 3.5:1 2:1 
Axis Offset 22.5 rom 22.5 rom 26.5 rom 
Design Inputs ( 1/e2) 4.4 rom 8 rom 8 rom 
Design Outputs (1/e2) 15.4 rom 28 rom 16 rom 
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As d~~cribed, the transmitter beam expander is designed to be 

focused so that the beam has a waist diameter of approximately 

14 rom at the exit of the last amplifier tube. This reduces the 
amount of amplifier wall scattering and results in a substantially 
cleaner output beam. with the l6x expansion of the tel~scope, this 

produces an output beam of 176 rom diameter or 64% of the telescope 
diameter. A shorter focal length secondary would bring this value 
close to the 80% optimum. 

The local oscillator beam expander is designed so that it pro-
.-

duces a somewhat larger beam than the transmitter beam when used with 

the Sylvania local oscillator to permit returning to the non-offset 

configuration, if desired. Local oscillator diameters less than 

the transmitter beam size result in rapidly decreasing signals, 

while larger diameters with truncation do not significantly affect 

signal levels. If it is desired to return to the collimated 

amplifier input, the local oscillator will nearly match the trans­

mitter. In any event, the change in diameter will not affect the 

signal by more than 0.3 dB. 

3.3.4 LOCKING LOOP 

3.3.4.1 Introduction 

The offset system was an analog control system which lock~d one 

laser at a fixed offset frequency with respect to another as long as the 

first laser was on a transition l:ine that the second, or controlled, 

laser could tune to. A transition line stabilizer was available to 

hold the first laser on a useful line (usually P20), although it was 

oft~n found to be unnecessary. 

Acquisition of lock was automatic, once the proper line was 

tuned by the first laser. Control logic in the stabilizer would 

sweep the controlled laser until the correct frequency waS tuned, 

and lock automatically. 

The design used a straightforward frequency locking loop with a 

discriminator, reference and integrator. While this design was stable 

with respect to oscillation, a novel discriminator and reference design 

was required to reduce the effects of thermal drift. 
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3.3.4.2 Basic Principles 

The operating principles of the locking loop were described in 

Section 2.2.1.4 with a block diagram in Figure 2-4 which is reproduced 

here as Figure 3-30. 

3.3.4.3 Operational Considerations 

3.3.4.3.1 Introduction 

Although the loop description seems simple, it must be remembered 

that this unit is really a servo or feedback system. All phase delays 

and nonlinearities within the loop bandwidth must be known and com­

pensated for if the loop is to be stable. It must be realized, also, 

that as long as there is to be any suppression of frequency modulation, 

there must be an open loop gain greater than unity at that frequency 

and that the suppression is a function of the magnitude of this gain. 

Furthermore, thermal drift of components may produce variations in the 

offset frequency. 

3.3.4.3 0 2 Stability 

Figure 3-31 shows a linear approximation of the component transfer 

functions which are significant for stability. The transfer function 

is: 

H(s) = £1& 
R(s) = K(s + a) 

s(s + b) + K(s + a) 

It is desirable to have the zero and pole coincided exactly 

(a = b). This causes the phase and gain effects to precisely cancel. 

If they are close (say 10% apart), the phase error will be small (So). 

The reason for the compensation mentioned previously is that a 

phase lag of greater than 1800 will cause the servo loop to be unstable. 

Eaph R-C frequency cut at fo produces a phase lag of frequency f as 

follows: 

= ARCTAN f 

fo 

Two R-C cuts will eventually produce close to 1800 phase lag. 
o 

A phase lag of 180 causes negative feedback to become positive, 
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which causes instability. Any other phase lags in the loop will add 

to this, so it can be seen that it is desirable to have a single pole 

roll-off for stabilizing. If all phase shifts are known and fixed, 

which is not always true in an electro-mechanical system, and are 

compensatable, it may be desirable to have a two-pole roll-off. In 

this system, mechanical resonances may be present, so a single pole 

roll-off has been chosen. 

The transfer function becomes: 

H(s) = (S + K.r) 

for a = b 

This is unconditionally stable as long as there is less than 90 0 phase 

shift due to nonlinearities, mechanical resonances or high frequency 

roll-offs. 

This limit is presently set by the high voltage amplifier which 

has two R-C frequency roll-offs around 100 Hz. This limits the gain­

bandwidth of the system to 100 - 150 Hz before instability occurs. 

The next limitation is the mechanical resonance effects in 

laser 2 or its PZT which may produce high phase shift. This occurs 

in the 5 - 20 kHz range. The PZT also presents a large capacitance 

(10 - 60 nf) which must be driven by the high voltage amplifier. The 

slew rate or maximum number of MHz/second the unit can change is 

limited by the output current capability of the high voltage amplifier. 

3.3.4.3.3 Thermal Drift 

The error introduced into the frequency offset loop by thermal 

drift of a typical discriminator circuit was measured to be between 

15 and 18 kHz per Kelvin. This was not considered satisfactory for 

operation of the CAT system. Analysis of all other components of the 

loop· indicated a thermal drift of 0.55 kHz for a temperature change 

of 50 K. Thus, a substantial improvement could be' realized with an 

improved discriminator design. 
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A novel approach using a frequency counter and two 12 bit digital­

to-analog converters was adopted. Figure 3-32 s'hows·the discriminator 
design. The output of the AGC was coupled to the Schmitt trigger. 

This resulted in a pulse train entering the synchronizer. The syn­

chronizer allowed the pulses into the counter only when the flip-flop 

was high. The flip-flop was included to ensure pulse width stability 

in the clock circuitry, since it changed state once for each period 

of the clock. The counters counted the input train for one clock 
period. Their outputs were then sampled by the latches and converted 

to an analog signal. The analog signal was subtracted from a reference 

D/A to generate an error current, which was averaged by the filter, 

amplified, and added to the discriminator output, causing a correction 

to be applied to the integrator. 

To prevent sudden pulses from causing the system to unlock, the 

filter was shorted when the circuit was unlocked. 

3.3.5 CAT HYBRID LASER OFFSET LOCKING SYSTEM 

3.3.5.1 Program Overview 

The CAT Hybrid-TEA Laser Offset Locking System (OLS) stabilizes 

(via cavity length control) transmitter laser frequency at a 10 MHz 

offset from the frequency of the local oscillator (LO) laser. It 

can perform this function under operating conditions peculiar to 

Hybrid-TEA laser transmitters, mainly brief periodic loss of OW power 

output. Furthermore, the OLS encompasses certain timing functions 
which facilitate Hybrid-TEA laser operation. 

This task proceeded from specifying design goals, through 

initial studies, completion of design, fabrication, and evaluation. 

The design goals settled upon after a discussion of the technology 

limitations and program needs are as follows: 
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Center Frequency Range 10 MHz to 30 MHz 

Hold Time 3 to 300 ms 
Capture Range 5 MHz 

Locked System FM Error ~ ± 100 kHz 

Pull-in Time ~ 3 ms 

SIN Ratio ;;::: 30 dB 

3.3.5.2 Preliminary Technical Studies 

Two studies were performed. One investigated the possibility 

of using a phase detector and phase locking the offset frequency to 
a stable crystal oscillator reference. The second investigated the 

possible effects of the TEA laser on a lock-in stabilizer. 

3.3.5.2.1 Use of Phase Locked Offset Loo~ 

The question of whether a phase detector should be used in the 

OLS rather than a frequency detector is discussed here. 

3.3.5.2.1.1 Phase Locked LoOps (PLL) 

A phase locked loop has the general configuration of Figure 3-33. 

The main components are a phase detector {PD}, loop filter and voltage 

controlled oscillator (VCO). The operation of the loop can be 

determined by servo theory, because the PLL is a negative feedback 
system - although nonlinear. 

REFEREN CE 
PHASE {PD} LOOP 
DETECTOR ,. 

ey FILTER FREQUEN 

~ 

veo ""-

EOA ... 781 

Figure 3-33. General PLL 
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The reference frequency and phase are compared with that of the 

veo. If they are close enough together, an error signal is produceq 
which causes the veo voltage to change to correct the error. If the 
loop filter contains a high gain integrator, the steady state error 
signal will be zero, resulting in perfect phase locking. 

The equivalent system utilizing lasers as the veo is shown in 

Figure 3-34. The only difference is that the veo is the frequency 
difference of the two lasers, and is controlled by the high voltage 

PZT drive. 

The laser version is, like the analog version, a nonlinear 

approximation to a linear system. The two main sources of non-' 
linearity are the phase detector and the veo. The veo may have 

hysteresis or a nonlinear transfer characteristic which results 
in changing gain and servo bandwidth. 

3.3.5.2.1.2 PLL Lock Acsuisition 

The characteristics of the PLL are mainly dependent on the 
phase detector and the loop filter. The loop filter does control 

most of the loop parameters, other things being fixed. 

To acquire lock, a PLL must be in one of two frequency II zones •• , 

The first zone is immediately around the reference frequency and is 

called the IIlock-inll frequency (6wL = TT6 f L). If the veo is closer 

than this to the reference frequency, acquisition is very rapid. I~ 

it is outside this zone, but within the next limit (6wp)' and the 
loop is at least a second order or two integrator loop, the frequen9Y 
will IIpull ll toward the lock--in pOint where it will lock. The time 
necessary for pull-in to occur can be large, but is dependent on 
the distance from the reference frequency and the servo loop band­

width (BL). 

There are a number of approximate formulas derived for the 

time necessary for pull-in and the pull-in and lock-in bandwidths. 
They depend on the PD used. Here are given equations for a multi-
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plier type PD. They are also "high gain" second order loops (using 
operational integrators with very high DC gain) • 

KV = DC loop gain , = damping factor 

W = natural frequency or loop bandwidth = 2 TIBL n 

Tp Rj 

{{:,W} 2 (not accurate for {:,w "'" Awp or for {:,w "'" (:,wL) 

2'w 
3 

n 

Tp is the pull-in time 

{:,w is the difference frequency of the vco and the reference 

{:,WL is the IIlock-inll frequency 

,n:\ 11 For: {:,w = 2TI X 5 MHz, , = 1/v2, Kv Rj 10 ,wn = 
{:,wL~ 9 x 103 rad/sec {:,wp ~ 40 MHz 

Tp Rj 2.8 x 103 sec 

For: as above but W = 2TI X 5 kHz n 

Tp Rj 22 sec {:,w L Rj 44 x 103 rad/sec 

2TI X 1 kHz 

(1) 

(2) 

(3) 

To make Tp ~ 1 ms, wn must be raised. 'can be increased some, 

but wn is by far the dominant parameter. 

For: , = 1, Tp ~ 1 ms 

J 
1/3 

W " [''''WI2 
Pd 800 kHz n . 2, T 

P 
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3.3.5.2.1.3 Conclusion 

Although a phase locked system will result in less error than 

the Frequency Discriminator type system described in the previous 

section, it is too difficult to lock up between pulses in a pulsed 

system. The servo bandwidth must be very wide, whereas the bandwidth 

available is presently limited by the PZT response. To increase 

the speed of response of the system, an electro-optic modulator is 

required in the laser cavity. This could extend the loop bandwidth 

to several hundred kilohertz, which would be required by the phase 

locked system. The SIN ratio also might limit the loop bandwidth 

because the loop bandwidth would sample more noise. 

3.3.5.2.2 Operation of Transition Line Stabilizer in a Hybrid-TEA 
System 

The question of how the transition line stabilizer's phase sensi­

tive detector operates is resolved here. The effects of gating it 

and rapid short dropouts are also discussed. It may be desirable to 

use a lock-in amplifier which can operate at 'other frequencies. This 

is also discussed. 

NOTE: For a better understanding, Section IV of the Lansing 
Model 80.214 manual may be read before reading this section. 

3.3.5.2.2.1 Phase Sensitive Detector 

The phase detector used in the Lansing transition line stabilizer 

as well as most lock-in amplifiers is called a "phase sensitive 

detector. II The operation of this type of phase detector depends on 

commutation of the input signal polarity, as shown in Figure 3-35. 

A phase sensitive detector, abbreviated PSD, may depend on a 

differential amplifier, as in Figure 3-35. Other methods of signal 

inversion may be used, such as the signal transformer used in the 

Lansing unit. The switch may be a diode bridge, FET's or even 

transistors. 

The input signal is chopped by the commutator and either fed 

directly through to the output or inverted. This performs a 
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rectification of the input which is synchronous to the reference. 

The output components of the input which are synchronous with the 

reference (including odd harmonics) will produce either positive 

or negative error signals dependent on the amplitude and phase of 

the components. The polarity retains the "sense" or phase information. 

3.3.5.2.2.2 PSD and Stabilization 

The manuals for the Lansing Models 80.210 or 80.214 describe 

how the reference signal is used to frequency modulate, or dither, 

the laser on a transition line and encode the resulting laser output 

power with amplitude modulation. 

This modulation has two frequency components. One is at the 

fundamental reference frequency, wo ' while the second is at two times 

this, 2 w • The first component is zero at line center because of o 
symmetry, while the second is zero when the laser does not hit line 

center. 

The phase sensitive detector output is integrated, so that only 

the components which have average values other than zero will produce 

a correction voltage to change the laser frequency. The 2 Wo com­

ponent will, therefore, have no effect; whereas, if there is a 

component present at wo ' a correction voltage will result. This 

voltage can be used to maximize or minimize this component. In our 

case, it is minimized. The polarity of the component tells the 

integrator which way to go to correct for any error present. 

It can be shown, by a symmetry argument, that the even harmonic, 

such as 2 Wo components of the signal can be ignored. Only the 

odd harmonic components, such as wo ' are of importance. 

Gating and Transition Stabilization 

To gate the lock-in system, the integrator input should be 

opened and the dither removed from the PZT of the controlled laser. 

Dither should also be removed from any offset loop' being used. 

The integrator input should be gated to eliminate transient 

charging or discharging. This is easily done with an FET gate 
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(analog switch). This is a standard technique. The integrator 

is tolerant of noise because its bandwidth is very low as is its input 

impedance. It would take a very large amount of energy to cause 

significant errors in it. 

The dither is removed from the PZT to place the laser on line 

center for measurements, transmission, etc. This is also done by 

opening an analog switch, as is the removal of dither from the offse~ 

system. The integrator capacitor should be a good quality, low 

dielectric absorption type, such as polystyrene. 

Two gating cases are to be considered. The first is a short 

high PRF gating pulse. The second is a gating pulse of many cycles 

and high duty cycle with high dither frequency. 

Figure 3-36 shows the first case. Two signals are shown: the 

input to the discriminator and the output of the discriminator. The 

output shows that the laser is off line center. If it were on line 

center, the AC signal would be essentially zero with a symmetric laser 

transition line curve. The effect of the dropouts is to reduce the 

rate of change of the integrator output by an amount depending on th~ 

duty cycle of the dropouts. It reduces the charge injected into the 

integrator. This will effectively reduce the loop gain and bandwidth of 

the servo system and, therefore, the response time. It may require 

an increase in the FM modulation of the laser to make up for the decreas~d 

sensitivity. 

In the first case, it is unlikely that the loop will help the 

recovery time of a TEA laser frequency chirp. It will strive to keep 

it on line center on the average as long as the TEA laser recovers to 

the same line during the blanking interval. 

If this assumption does hold, then the amplitude of the sine waves 

will actually be larger immediately after the pulse and decay. The 

decay time constant will be determined by the frequency recovery time 

characteristic of the laser as long as the laser frequency recovers 

before the next time it fires, which must occur for proper laser 

operation. 
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FUNDAMENTAL COMPONENT OF 
DETECTOR OUTPUT WITH GATING 

DISCRIMINATOR OUTPUT 

a) High PRF, Short Gate Pulse 

FUNDAMENTAL COMPONENT OF 
DETECTOR OUTPUT WITH GATING 

-D ~ f\!l (')1\ f) ------- ,-\TV U\TU LTVl 

DISCRIMINATOR OUTPUT 

I 
I I 
(ffi'C('(YyYYyy 

b) High Duty Cycle, Long Gate Pulse, High Dither Rate 

EOA-784 
Figure 3-36. Modulation Gating 
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The second case gives the servo loop opportunity to aid the 

frequency recovery time. This will be limited by the servo loop 

bandwidth which can be no greater than the Nyquist rate, or half the 
! 

dither rate. This is an upper bound, and not a realizable bandwidth. 
i 

The design of the lock-in unit should determine the bandwidth achie1-

able. This will be limited by either signal-to-noise ratio or phase 
I 

shifts in the lock-in unit due to bandwidth limiting of filters. T~e 

signal-to-noise ratio (SIN) should be high enough, for this type 

system, that the bandwidth should be limited by the filters of the 

lock-in unit. 

3.3.5.2.2.4 Conclusion 

Dropout or gate effects on the synchronous detector should 

result in sensitivity reduction, but should not affect the laser 

stability significantly as long as they do not produce significant 

harmonic components at the lock-in frequency. 

The high PRF with short blanking pulse situation depicted here 

should not be a problem if the laser recovers quickly. The high du~y 

cycle, high dither rate system depicted should help recovery of the 

laser frequency if the bandwidth of the servo is adequate and the 

SIN ratio is high enough to allow this bandwidth. 

3.3.5.3 Design Description 

Definitions 

The following definitions will clarify succeeding discussions: 

DITHER - Intentional frequency modulation of the reference laser 
I 

which consequently appears in the heterodyne signal. 

This signal feature is simulated during testing by 

applying the sine-wave output of the function generator 
I 

to the FM input of the VCO (see Figure 3-38). ' 

DRIFT - Slow signal frequency changes (< .1 MHz/ms), typically 

of an aperiodic nature. 
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DROPOUT - Loss of signal during a TEA laser pulse simulated by 

a "blanking" pulse applied to the AM input of the VCO. 

ERROR 

FIND 

- The desired signal frequency of 10 MHz minus the actual 

signal frequency. 

- An action by the OLS in changing from a logic state of 

Search to a logic state of Lock. 

FM - In this discussion, FM will refer to undesired and un-

HOLD 

LOCK 

MODE 

expected signal frequency excursions caused by mechanisms 

not under direct control of the OLS (e.g., vibrations). 

This is simulated in a manner similar to Dither. 

- A substate of Lock during which loss of signal is 

expected and the low-level control voltage is held 

constant by the OLS. 

- An OLS logic state during which Error is low enough 

to allow closing of the feedback loop and the lock-in 

point is on the desired side of the reference frequency. 

- During actual operation, cavity length, and hence, the 

CW laser frequency, is controlled by voltage applied to 

a piezoelectric transducer (PZT). The Mode is the sign 

of the change in frequency vs. change in voltage response 

of the cavity. Modes will be referred to as A and B 

for + and - response, respectively. 

PRF - Pulse Repetition Frequency. 

RECOVERY- The time period following Hold during which Error is 

reduced to less than 100 kHz. 

SEARCH - A logic state of the OLS during which the signal frequency 

(via control voltage) is swept methodically in order to 

locate an operating point that satisfies Lock state 

criteria. 
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SIDE - The sign of loop gain required to reduce Error. Sides 

will be referred to as 1 and 2 for + and - gains, 

respectively. 

SIGNAL - An RF output of a detector resulting from optical 

heterodyne of the transmitter and the LO, which is 

simulated for test purposes by the VCO. 

The Signal is applied to the Input Amplifier of the OLS where 

it is amplified and digitized. This digitized heterodyne signal is 

counted by the Digital Discriminator and Digital-to-Analog converteq 
! 

to an equivalent voltage level delivered to the Analog Board and 

Lock/Sweep Board. The Digital Discriminator also supplies a voltag~ 

equivalent of 10 MHz (the desired offset) to the Analog Board for 

nulling the actual signal frequency in Lock state. 

The function of Find logic on the Lock/Sweep Board is to ensur~ , 
that Lock state is entered only when the loop gain has the proper 

polarity, Side, so that Error will be actively reduced during Lock 

instead of increased. Side is selectable on the front panel becaus~ 
1 

changing the side should change the sign of the frequency offset, 

that is, whether the CW laser frequency is above or below the 

reference, as explained with the aid of Figure 3-37. 

During Search, the control voltage produced by the OLS on the 

Analog Board is linearly swept periodically in both directions, to ~road 

limits. But for the sake of circuit simplicity, Find is allowed only 
i 

on that portion of the sweep cycle when the control voltage is decr~as-

ing. Two scenarios of interest are shown in Figure 3-37. In each, f 

I 

circumstances pertinent to proper locking are located on a graph of I 
I 

transmitter frequency as it appears in the signal frequency domain, 

that is, unsigned, relative to the LO frequency. In Case 1, as the 

sweep progresses, the transmitter frequency perchance moves into the 
j 

same P-line as the DO laser. As indicated on the Figure, if the : 

signal frequency decreases for decreasing voltage, + gain is required 
1 

to reduce error if Lock state is entered, since the feedback loop h~s 
1 

the behavior, 

Change in Control Voltage ~ Gain X Error. 
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SIDE 2 

Increasing Signal 

~ Frequency 

- Error 1+ Error 

Gain 1- Gain 
Required Required 

SIDJ!~ 1 

Dt'.(':'~:l'"easing Signal 

< Frequency 

+ Error 

+ Gain 
Hequired 

- Error 

+ Gain 
Required 

10 0 10 Signal Frequency (MHz) 
., 

< Control Voltage Decrease 

( Laser Frequency Decrease 
Case 1: Mode A Cavity Response 

SIDE 1 

Decreasing Signal 

- Error 

+ Gain 
Required 

. F.requEll cy~ 

I + Error 
1 

I + Gain 
I Required 

SIDE 2 

Increasing Signal 

Frequency. > 

+ Error. 

-.Gain 
Recluired 

Error 

Gain 
Required 

.. 

10 o 10 Signal Frequency (MHz) 

Control Voltage Decrease ) 

Laser Frequency Increase ) 

Case 2: Mode B Cavity Response 

EOA-785 

Figure 3-37.Locking Circumstances 
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By definition then, Find should be allowed only if SIDE 1 were 

selected on the front panel. Similarly, by inspection of Figure 3-37, 
if the signal frequency is increasing, Find should be allowed only 

if SIDE 2 were selected. Case 2 is interpreted in like manner and 

the resulting locking criteria are summarized in Table 3-3. 

Thus, changing the Side selection will move the lock point to 

the opposite side of the reference laser frequency. 

The Injection Board accepts a sine wave of frequency identical 

to the, Dither generated by the Transition-Line Stabilizer of the 

LO laser (or transmitter laser if that is the one locked to the 

transition). Using front panel controls, the phase and amplitude of 

this sine wave can be adjusted and added to the voltage controlling 

the offset laser, thus dithering that laser in such a fashion as to 

maintain an undithered 10 MHz offset between the two lasers in 

LOCK state. 

TABLE 3-3 

CORRECT LOCKING CRITERIA 

'0 'tJ 
Q) Q) 
~ +' .... U 
==' Q) 
0' ,..., 

Cavity Signal Q) Q) 
~ til 

('0 

~ ~ '0 .... I=: 

~ 
.... .,..f 
til ~ 

Frequency Increasing 1 No - 2 Yes 
Mode A 

~es 
Fr~quency Decreasing + 

1 
2 No 

• 1 No 
Frequency Increasing - 2 Mode B Yes 

1 Yes 
Frequency Decreasing + 

2 No 

3-72 



3.3.5.3.1 Input Amplifier 

This module consists of an amplifier and buffered outputs to 

the limit amplifier, the signal detector and the RF monitor. The 

purpose of this unit is to amplify the low level input from the 

heterodyne detector module and drive the limit amplifier and signal 

detector. 

The amplifier provides gain of approximately 40 dB. Two transis­

tors buffer the outputs of the amplifier and drive an RF monitor and 

a high-pass filter network. 

Two additional emitter follower buffers drive the limit amplifier 

module and the signal detector module. 

The filter is a high-pass filter with a cut-off frequency of 

slightly less than 5 MHz. The cut-off is very sharp and deep. This 

filter is necessary to eliminate harmonics in the signal detector, 

which would cause the signal detector to react as if a true signal 

were present. 

The amplifier is shielded from the higher level circuitry to 

prevent oscillation from occurring. The circuit is constructed on a 

ground plane printed circuit board within a shielded box. The RF 

inputs and outputs are SMA connectors while the ± 15 volt inputs are 

through feed through chess men. 

3.3.5.3.2 Digital Discriminator 

The digital discriminator is a frequency-to-voltage conversion 

circuit. It converts the square wave output of the limit amplifier 

or LA to a DC voltage level. This is accomplished by counting cycles 

of the square wave for a preset period and converting the result with 

a digital-to-analog converter. The counting interval is controlled 

by a 10 MHz clock oscillator, the output of which is divided to pro­

duce a 22.4 ~sec counting interval. Also, a preset binary number is 

converted to an analog voltage for a reference. This voltage is 
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multipliea by a gain of -1 so that when the loop is lockea the sum 

of the voltages is zero. 

3.3.5.3.3 Analog Boara 

The analog board provides most of the signal processing of the 

loop. It takes the signal and reference outputs from the dis­

criminator, sums them, and adds them to a reference voltage which 

is used for frequency trimming, amplifies this voltage, integrates it 

and drives the high voltage amplifier. This forms the low voltage 

section of the feedback loop. 

A dither signal is fed from the injection board to the analog 

board. A sample and hold maintains the instantaneous dither value 

whenever the hold command occurs. Phase and gain adjustments on 

the dither signal are available. 

The high voltage amplifier is a board made by Burleigh Instruments 

and is identified as Model PZ70. 

3.3.5.3.4 Injection Board 

The injection board receives a dither signal from a stabilization 

unit. It adjusts the gain and phase of this signal and feeds it into 

the analog board. It includes a buffer amplifier and low-pass filter 

which passes signals lower than approximately 10 kHz. This is to 

reduce high frequency noise components that may be present. The 

output voltage is sampled to generate a control signal which forms 

an AGC. 

3.3.5.3.5 Lock/Sweep Circuit 

The lock/sweep circuit consists of two circuits, the lock circuit 

and the sweep circuit. 

The lock circuit senses the discriminator output voltage to 

determine when the discriminator output voltage is greater than one 

corresponding to one set frequency, and when it is below that 

corresponding to a second frequency set independently. This informa­

tion feeds through a latch into a dual flip-flop which senses whether 
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the frequency is increasing from a low value to a high value or 
decreasing from a high value to a low value. This information, 

together with the sweep direction information and the lock side 

information, provides enough data to determine when to close the 

servo loop. 

3.3.5.4 Evaluation of Performance 

An electronic apparatus, diagrammed in Figure 3-38, which simu­

lates .the main features of laser operation, was devised to close the 
feedback loop around the OLS during testing. Its major. components 

are: 

1) Voltage Controlled Oscillator (VCO) to provide an RF signal 

at about -50 dBm which is normally generated in a detector by an 
optical heterodyne signal. The VCO accepts an FM voltage and is 

properly adjusted to allow the OLS to vary signal frequency over the 

range 0 - 50 Maz; 

2) Function Generator, whose output added to the control voltage 

output of the OLS, generates programmed Frequency Modulation of the 
RF· signal; 

3) Pulse Generator with output adjusted to the proper amplitude 

and polarity to "blank" the RF signal when the TEA laser would b~ 

fired in actual operation; 

4) Noise Generator followed by discrete attenuation for 

discrete selection of signal-to-noise ratio (SNR); 

5) The Offset Locking System (shown in Figure 3-39). 

3.3.5.4.1 Lock Stability vs. SNR 

In all experiments reported here, signal level is -50 dBm 

as measured on the HP l4lT Spectrum Analyzer with HP 8552 and HP 8553 

plug-ins. SNR is varied by varying the noise source attenuation and 

measured by the Spectrum Analyzer using 100 kHz bandwidth. SNR meas­

urements reported here include the noise level correction indicated 

in Hewlett Packard's Applications Note #150-4. 

3-75 



w
 

I -...
.J 

(
j\

 

A
tt

e
n

u
a
ti

o
n

 
S

e
le

c
ta

b
le

 
in

 
1 

dB
 
S

te
p

s
 

O
ff

s
e
t 

L
o

d
k

in
g

 
S
y
~
t
e
m
 

P
u

ls
e
d

 
L

a
se

r 
T

ri
g

g
e
r 

, 
""

J 
L

i 
• 

I 
a

l 
.....

.. 
1=

 
., 

H
V

 
4 

r
v
 

N
o

is
e
 

S
o

u
rc

e
 

~
 

~
 

M
a
jo

r 
F

e
e
d

b
a
c
k

 
P

a
th

 

A
u

x
il

li
a
ry

 
S

ig
n

a
ls

 

D
ig

it
a
l 

F
re

q
u

e
n

c
y

 
D

is
p

la
y

 
--~ 

• 
@

 
S

p
e
c
tr

u
m

 
A

n
a
ly

z
e
r 

I 
-J 

1 

V
o

lt
a
g

e
 

C
o

n
tr

o
ll

e
d

 
O

s
c
il

la
to

r 

R
F

 
In

p
u

t 

5 

L
o

w
-L

ev
el

 
C

o
n

tr
o

l 
V

o
lt

a
g

e
 

FM
 
~
 

~
 

AM
 
~
 

I"
" 

D
it

h
e
r 

In
p

u
t 

"t 
H

V
 
C

o
n

tr
o

l 
II 

(N
o

t 
U

se
d

) 

I~
 

• 
(/

"'
./

' 
\ 
~
 )
~ 

/'
V

'V
'-

..
 , 

2 

"Y
 

':-
-5

 
:1

 I 
F

u
n

c
ti

o
n

 
G

e
n

e
ra

to
r 

I i I 1 , j ! 
P

u
ls

e
 

G
e
n

e
ra

to
r·

 
E

x
t 

I 
I 

Tr
ig

g~
)·

--
-1

 
3 

E
O

A
-7

86
 

F
ig

u
re

 
3

-3
8

. 
T

e
s
t 

E
q

u
ip

m
en

t 
B

lo
c
k

 D
ia

g
ra

m
 



L
-

w
 

I -..
J 

-..
J 

LA
SE

R
 O

FF
S

E
T 

LO
C

K
IN

G
 S

YS
TE

M
 

F
ig

u
re

 
3

-
3

9
. 

L
a
s

e
r 

O
ff

s
e
t 

L
o

c
k

in
g

 
S

y
s
te

m
 



A. Without FM 

Referring to Figure 3-38, the Function and Pulse generators were 

not used for this test. In this Section and Section B, gain was 

adjusted on the front panel for the smoothest locked signal frequency. 

SNR was varied and signal frequency observed in Lock state. These 

observations are graphed in Figure 3-40. 

Also indicated on the graph are three special SNR limits: the 

lowest ·SNR at which Find happens7 the lowest SNR at which Error 

remains less than 100 kHz (as long as OLS is not intentionally 

removed from Lock state); the lowest SNR at which OLS remains in 

Lock state. 

B. With FM 

In this test, the Function Generator was adjusted to cause FM 

at 120 Hz, with 100 kHz amplitude, in the unlocked signal. SNR was 

varied and the spectral width of the locked signal was observed on 

the Spectrum Analyzer. These observations are graphed in Figure 3-41. 

Again, pertinent limits are noted on the graph. 

c. FM Suppression 

It may be useful in the future to know the maximum FM in the un­

locked signal which can be suffered while still maintaining Error 

~ ± 100 kHz. As one might expect, this varies with SNR and the 

observed values of this parameter are graphed in Figure 3-42. However, 

this parameter also depends on the feedback loop gain, adjustable 

from the front panel. Gain may be adjusted during normal operation to 

some value between a lower limit, below which Error will not be 

actively reduced, and an upper limit, above which the loop breaks into 

sustained oscillation. In the OLS, the lower limit is also approxi­

mately the value which yields the smoothest signal frequency when no 

FM is applied to the unlocked signal. Two curves appear in Figure 3-42, 

one for each of these two gain values. 
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3.3.5.4.2 Recovery Capability 

A study of recovery capability requires use of all the simulation 

equipment to model Hybrid-TEA laser operation. The particular features 

of interest are: 

1) loss of signal during the pulse, 

2) possible change in frequency when the signal returns, 

3} recovery to a low-Error condition. 

The equipment parameters selected for this test are listed below. 

Some are adjustments on the simulation equipment, some are on the 

OLS front panel, and some internal to the OLS. 

Signal level: 

SNR: 

Hold Time: 

Signal Dropout Time: 

PRF: 

Gain: 

Function Generator: 

-50 dBm 

35 dB {30 and 40 were also tried 
with no significant differences} 

18 ms 

10 ms 
13 Hz 

Adjusted for smoothest Signal 
Frequency 

(Read below) 

In this test, the function generator provided a triangular 

waveform (~ ) with slope variable between 0 and 50 V/sec 
with a period of .2 sec; that is, during the 18 ms hold time, the 

frequency of the VCO will drift from 10 MHz as much as 4.5 MHz (the 

VCO has 5 MHz/Volt FM transfer function). By the nature of the set-up, 
the drift is continuous, even through recovery. Hence, recovery 

will take longer than if the initial recovery condition were a plain 

offset with zero drift. This can be accounted for in determining 

recovery time by application of the formula 

x 
R = c+d 
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where 

R = recovery time 

x = initial offset 

c = observed correction rate 

d = selected drift rate 

Observations of the time required for the Error analog voltage 

(internal to OLS) to return to its steady-state value were used to 

determine "C , II and then "R. II Figure 3-43 graphs the results for 

initia,l offsets of 1/4,1,2,3 and 4 MHz. 

3.3.5.4.3 Dither Suppression 

The OLS incorporates a circuit which, when supplied with a 

sine wave of the same frequency as the dither of the reference, can 

be adjusted from the front panel to apply an equal but opposite 

modulation to the control voltage, thus nulling the effect of the 

dither. To test the extent of this nulling, the function generator 

is adjusted to supply dither to both the signal, and the DITHER 

INPUT of the OLS. The front panel PHASE and LEVEL controls must be' 

adjusted to offset the dither applied to the veo. This adjustment 

is correct when the waveform at-the FM input to the veo is as flat 

as possible. Any non-linearity in the handling of the dither in 

the OLS leads to perturbations in the FM input to the veo and .. , 
consequently to some spectral width in the signal. The handling of 

various dither amplitudes as indicated by spectral width is graphed 

in Figure 3-44 .. 

3.3.5.4.4 Dlermal Drift 

During an 8 hour test period beginning with OLS turn-on, 

locked signal frequency varied no more than ± 6 kHz from 10 MHz. 
This test was run'with no FM, no dither, and no dropouts, at about 

40 dB SNR. No adjustments were made during the test period. 
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3.3.5.4.5 Conclusions 

The OLS meets performance specifications for normal operating 

conditions. Following these performance tests, the ability to lock 

two CW lasers at a 10 MHz offset was verified on an actual Hybrid-TEA 

laser set-up. 

3.3.6 DETECTOR/RECEIVER TESTS 

During this program, a number of detectors of various types were 

evaluated and used in the system. Each of these had to be tested and 

measured to determine the operating conditions for optimum system 

performance. Specific tes~s are presented in the program progress 

reports. The following description typifies this continuing activity. 

HgCdTe Detector No. LKl46E9, Serial T-2, was received and tested 

with the receiver. Detector and receiver measurements were: 

Operating Point 

Local Oscillator 

Bias Voltage 

Bias Current 

Performance 

Quantum Efficiency 

F~equency Response (-3 dB) 

Dynamic Impedance 

I mW 

50 mV 

5.6 rnA 

59% 

56 MHz 

92 (2 

The I-V characteristics of the detector are shown in Figure 3-45. 

It can be seen that the detector exhibits a soft breakdown characteristic 

and a slowly saturating current responsivity. To determine the best 

operating point, the detector was connected to the receiver and the 

SiN ratio from a Doppler target was measured as a function of local 

oscillator power and bias voltage. The results of this measuremeIlt, 

shown in Figure 3-46, indicate an optimum operation point of 0.5 - ImW 
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a'c 50 mV bias. The loss in SiN ratio at higher bias voltages is due 

to excess detector noise associated with the soft breakdown. The output 

noise spectrum of the receiver and detector is shown in Figure 3-47and 

demonstrates that the detector noise exceeds the receiver noise by 5 dB 

or more at frequencies up to 55 MHz. The response characteristics of 

the receiver near the notch filter are shown in Figure 3-48 with 1 kHz 

resolution. The notch is seen to have a depth of 60 dB at 10 MHz and a 

3 dB width of ± 160 kHz. 

3.3.7 ·MASTER OSCILLATOR 

The master oscillator used is the original Honeywell CO2 laser. 
Because of long term degradation of the laser, it was sent to 

Honeywell for refurbishment. In the course of this work, the tube 

was damaged. A completely new laser tube assembly was then built at· 

Raytheon and installed in the original Honeywell frame. This laser 

has shown good operating characteristics with typical operating 

times of 200 - 300 hours between gas refills and a maximum output 
power of 10 watts. 

Two significant changes were made in the frequency control of the 

laser as a result of the implementation of the offset system. It was 

first necessary to use a stabilization loop to keep the master oscilla­

tor on a transition common to the local oscillator. To do this, a 

commercial stabilization loop was purchased from Lansing Research 

Corporation. This system places a dither on the laser frequency by 

driving the laser's PZT with a sine wave. The small amplitude fluctuation 

which this causes is detected by a pyroelectric detector. The output 

signal is used by the loop to drive the average laser frequency to the 

center of whatever transition it is operating on. 

A second frequency control modification was necessary to prevent 

feed-through into the detector at the 10 MHz offset frequency. This 

feed-through occurs after the pulse when leakage of the modulator 

allows optical power at the master oscillator frequency to be reflected 

by the output optics back into the receiver. In the non-offset homodyne 
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system, this leakage causes a signal to occur at baseband and the var­

iations in the amplitude of this feed-through interferes with the low 

frequency signals. 

occurs at 10 MHz. 

In the offset configuration, this feed-through 

It was found that it was not possible to adequately 

remove the modulation sidebands fram the frequency regions of interest 

by normal filtering techniques, and a master oscillator frequency 

chirping technique was used to solve the problem. In this technique, 

a large voltage pulse is applied immediately after the output pulse 

to the· PZT of the master oscillator which causes the frequency of the 

feed-through to change rapidly. In a time of about 18 ~seconds, the 

master oscillator frequency has changed so that the feed-through 

signal is no longer within the 5 to 15 MHz bandpass of the receiver, 

and the sensitivity of the system is no longer degraded by modulation 

effects. 

3.3.8 LOCAL OSCILLATOR 

The local oscillator used in the system was a Model 941 CO2 laser 

with a PZT adjustable cavity. This laser was received in October, 1976, 

and a series of measurements were made of its characteristics. The 

results were: 

Output Power: 

Signature: 

Power Stability: 

Beam Parameters: 

Beam Steering: 

2.2 - 3.1 watts depending upon transition; 
Maximum power on P(20) 

00
0

1 - 10
0
0, R(20) - 10.25 ~m 

R(24) - 10.22 ~m 
R(26) - 10.21 ~m 
P(18) - 10.57 ~m 
P(20) - 10.59 ~m 
P(22) - 10.61 ~m 

Better than 3% over one hour after 
30 minute warm-up period. 

Diameter (1/e 2) = 3.8 rom 
Divergence = 3.8 mrad 

Not detectable. Estimated to be less 
than 10% of beam divergence. 
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Visual examination of the laser showed a faint hazy appearance 

at the output coupler and a near field beam distribution indicating 

the laser might be slightly out of alignment. Attempts to remove the 

haze .by clearing with degreasers were not successful. Sylvania rep­

resentatives told us that the increasing tendency of the laser to 

operate on transitions other than P(20) was probably due to mis­

alignment as the O-ring takes a set and that realignment should 

correct this tendency. 

Long term operation of the laser has led to the following 

observations: 

1) The alignment of the cavity mirror must be adjusted occasionally 

as the O-ring takes a set. 

2) Inadequate cooling of the laser results in heating of one 

side of the laser tube which misaligns the cavity. The solution to 

this problem is better air flow through the" laser head. 

3) Fluctuations in coolant pressure caused the cavity to change 

its length with a corresponding change in frequency. Operation on 

tap water was unsatisfactory with normal pressure regulators. No 

problem has occurred with the transmitter cooling system. 

4) The output power steadily declined to about two watts after 

250 hours. 

5) Current ripple of the laser power supply was excessive. The 

laser did not meet its frequency stability specification when run on 

this s~pply. When it was controlled by the offset loop, however, the 

FM devia.tion was reduced to less than 100 kHz, which is adequate for 

the system. Two more Sylvania power supplies were tested with the 

laser with no appreciable improvement in performance. 

A number of problems were encountered, and the laser tube was 

replaced twice. Finally, a new tube produced about 3.1 watts of out­

put power. It was determined that reducing the tube current to 6 rna 

resulted in little power degradation, but a considerable increase in 

lifetime. The local oscillator laser was operated successfully in 

this mode. 
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3.3.9 CAT MODULATOR RINGING TESTS 

When high voltages are applied to a modulator crystal in a pulsed 

mode of operation, mechanical shock waves are produced which resonate 

throughout the crystal. These resonance frequencies impose a ringing 

structure on the tail end of the optical pulse. The amplitude and 

duration of the ringing is a function of how the modulator crystal is 

mounted into its housing. Ringing will be minimized if the shock wave 

can be coupled out of the crystal, i.e., the crystal and its mount are 

acoustically matched. An initial set of tests were performed on a 
single modulator crystal to find a suitable. conductive adhesive which 

would bond the modulator crystal to its housing and reduce ringing. 

Ringing is further reduced by placing a second modulator crystal in 

series with the first which cuts off the tail end of the optical pulse 

propagating through the first crystal. The double crystal modulator 

was installed into the CAT system and a series of tests were made to 

check the performance of the "tailbiter" in reducing the ringing. 

3.3.9.1 Single Crystal Mpdulator Tests 

Tests were made in a laboratory setup using a CO2 laser source 

and a Ge:Cu detector. Two Northeast power supplies were connected 

in series to provide the drive voltage to the modulator. Electrical 

pulses were proy-ided by an Intercontinental International, Inc. pulse 

generator. Half-wave voltage could not be achieved due to breakdown 

in the drive circuitry; therefore, relative measurements were used in 

comparing ringing performance. In each test, the laser was attenuated 

to prevent detector saturation. The detected signal was amplified by 

an ADYU amplifier and displayed on an oscilloscope. 

An 8 rom x 8 rom x 52 mm CdTe modulator crystal was cemented into 

the modulator housing using a rubber caulking cement with silver 

particles. This silastic bond material grounds the crystal to the 

housing and is used to dampen the mechanical shock waves. Figure 3-49 

illustrates the results of the test made on the modulator crystal. 

The ringing is characterized by the pulse height to ringing ratio P/R. 
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CdTe IDDULATOR - SILASTIC BOND 

PULSE HEIGHT: 

TOP - 2 VOLTS/DIV. 

BOT - .5 VOLTS/DIV. 

5 \-Ls/DIV. 

RINGING AMPLITUDE: 

.02 VOLTS/DIV. 

10 \J.s/DIV. 

RINGING DURATION: 

.02 VOLTS/DIV. 

200 \-Ls/DIV. 

EO-456 

Figu r e 3- 49 . Ringing Characteristics Of A 
Single Modulator Crystal 
(Silastic Bond Material) 
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From the photos, this is found to be PIR ~ 47. The magnitude and 

duration of the ringing was not acceptable since better ratios have 

been achieved with different materials; therefore, the crystal was 

removed from the housing and was reinstalled using crystal cement. 

The cement was allowed to dry over a 24-hour period and similar tests 

were performed. From Figure 3-50, we find plR ~ 59. Crystal cement 

needs between 48 and 72 hours to dry completely; therefore, the modu­

lator was retested one week later to see if the ringing characteristics 

would change. Figure 3-51 shows that under identical test conditions 

the pulse height to ringing ratio is now P/R ~ 208. This reduction in 

ringing amplitude is satisfactory for our application; therefore, the 

second modulator crystal was mounted into the modulator housing using 

crystal cement. 

3.3.9.2 Double Crystal Modulator 

The modulator assembly which consists of two CdTe modulator 

crystals and three Brewster plate polarizers was installed into the 

CAT system. The drive electronics provided a half-wave voltage of 

8.2 kV to each crystal at a pulse repetition rate of 140 pps. Tests 

were made to measure the ringing on the optical pulse exiting from 

the modulator. A CO2 laser beam passes through the modulator and is 

detected by a Ge:Cu detector. The signal was amplified by a C-COR 3567 

amplifier and a Hewlett-Packard 450A amplifier, and then displayed on 

a Tektronix 453 oscilloscope. A Krohn-Hite 3202 filter was also 

employed in the circuit as a low pass filter (1 MHz cutoff) to reduce 

high frequency interference. 

The ringing on the optical pulse was measured for two drive 

conditions: (I) with only the first crystalqriven, and (2) with 

both crystals driven. Figures 3-52 through 3-55 represent measurements 

taken under these two conditions for 2 ~s, 4 ~s, and 8 ~s pulse lengths. 

In each case, results show that the ringing on the optical pulse is 

greatly reduced when the second crystal is turned on g Due to the limited 

dynamic range of the detector, the amplitude of the ringing could not 

be measured. In fact, the ringing was so' low that it was in the noise 
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CdTe MODULATOR - CRYSTAL CEMENT (24 Hrs.) 

PULSE HEIGHT: 

TOP - 1 VOLT/DIV. 

BO~ - 5 VOLTS/DIV. 

5 ~s/DIVo 

RINGING AMPLITUDE: 

. 02 VOLTS/DIV. 

10 \J.s/DIV. 

RINGING DURATION: 

.02 VOLTS/DIV. 

50 ~s/DIV. 

E0-457 

Figure 3-50. Ringing Characteristics Of A 
Single Modulator Crystal 

(Crystal Cement: 24 hr. dry time) 
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CdTe MODULATOR - CRYSTAL CEMENT (7 Days) 

PULSE HEIGHT: 

TOP - 2 VOLTS/DIV. 

BOT. - 2 VOLTS/DIV. 

5 IJs/DIV. 

RINGING AMPLITUDE: 

001 VOLT/DIV. 

10 \.ls/DIV. 

RINGING DURATION: 

.01 VOLT/DIV. 

50 \.ls/DIV. 

EO- 4 58 

Figure 3-51 . Ringing Characteristics Of A 
Single Modulator Crystal 

(Crystal Cement: 7 day dry time) 
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CdTe MODULATOR - 2 ~ s PULSE LENGTH 

PULSE HEIGHT: 

TOP - 2 VOLTS/DIV. 

BOT.- 5 VOLTS/DIV. 

2 ~ s/DIV. 

RI NGING: SINGLE CRYSTAL 

.1 VOLT/DIV. 

5 ~s/DIV. 

RINGING: DOUBLE CRYSTAL 

.1 VOLT/DIV. 

5 ~ s/DIV. 

EO-459 

Figure 3- 52 . Comparison of the Ringing Cha r acteristics 
With The Sfcond Crystal Off and Then On. 
(2 ~s pulse length). 
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CdTe IDDULATOR - 4 ~s PULSE LENGTH 

PULSE HEIGHT: 

TOP - 2 VOLTS/DIV. 

BOT.- 5 VOLTS/DIV. 

5 IJs/DIV. 

RINGING: SINGLE CRYSTAL 

.1 VOLT/DIV. 

5 IJs/DIV. 

RINGING: DOUBLE CRYSTAL 

.1 VOLT/DIV. 

5 ~ s/DIV. 

EO-460 

F igure 3-53 . Comparison of the Ringing Character i stics 
With The Second Crystal Off and Then On. 
(4 ~s Pulse Length) 
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CdTe MODULATOR - 8 ~ s PULSE LENGTH 

,... 

~ ~-~ 
II1""""'II II!"!'!I!!'::! -... iiiIII 

-.r- ~ i 

--
Ut 

-
"::" 

.~---. 

-, 

PULSE HEIGHT: 

TOP - 2 VOLTS/DIV. 

BO~ - 5 VOLTS/DIV. 

10 \J.s/DIV. 

RINGING: SINGLE CRYSTAL 

.1 VOLT/DIV. 

5 \J.s/DIV. 

RINGING: DOUBLE CRYSTAL 

.1 VOLT/DIV. 

5 \J.s/DIV. 

EO-461 

F ig ure 3-54 . Comparison of the Ringing Characteristics 
With The Second Crystal Off and Then On. 

(8 \J. s Pulse Length) 
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CdTe MODULATOR - VARIABLE PULSE LENGTH 
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PULSE HEIGHT: 

2 VOLTS/DIV. 

10 !Js/DIV. 

RINGING: SINGLE CRYSTAL 

20 MV/DIV. 

10 !Js/DIV. 

RINGING: DOUBLE CRYSTAL 

20 MV/DIV. 

10 !J s/DIV. 

EO- 462 

Figure 3-55 . Comparison of the Ring ing Characteristics 
With The Secor!d Crys t al Off and Then On. 

(Pulse length set t o minimi ze r inging) 
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of the amplifiers (Figure 3-56) and could not be determined accurately. 

Under these test conditions, the pulse height to ringing ratio was 

measured to be P/R ~ 650 at all pulse lengths. 

In Figure 3-55, the ringing was minimized by varying the pulse 

length to the point that amplifier noise became predominant; therefore, 

little change was noticed when the second crystal was turned on. 

3.3.9.3 Summary 

The results of the ringing tests made on the CAT modulator can 

be summarized as follows: 

(I) Crystal cement was shown to offer a distinct advantage over 

the silastic bond adhesive in reducing the ringing associated with a 

single modulator crystal. 

(2) The use of a second modulator crys~al reduces the ringing 

on the optical pulse to P/R ~ 650. 
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Figure 3- 56 . 

AMPLIFIER NOISE: 

20 MV/DIV. 

10 \.ls/DIV. 

EO-46 3 

Noise of the Amplifier Used 
In Ringing Experiments. 
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SECTION 4 

SIGNAL PROCESSING AND ATMOSPHERIC ANALYSES 

4.1 INTRODUCTION 

The effects of atmospheric propagation of 10.6 micron radiation 

on system performance may be divided into three categories: 

1. Gaussian beam propagation theory (i.e., vacuum propagation), 

2. Atmospheric-turbulence-induced effects on wavefront 

characteristics, and 

3. Absorption of radiation by the atmosphere. 

The first effect is described by well-known solutions to Maxwell's 

equations, resulting in a beam divergence inversely related to the 

effective output aperture diameter, and leading to an inverse square 

law for the signal power in a heterodyne system viewing a large 

diffuse target .. 

The second and third categories are more complicated because 

of their variability and complicated effects on SNR. The second 

effect results in random signal fluctuations over a short time due to 

variations in the atmosphere, while the third effect results in a 

more predictable signal variation with temperature and humidity. 

The signal fluctuations suggest use of processing techniques involving 

several pulses to enhance the detection probability or reduce the 

probability of false alarms. Atmospheric attenuation is dependent 

on the transition line, but this also affects output power, making 

appropriate line choices more difficult. 

Section 4.2 discusses various schemes for using several pulses 

in detection decisions, while section 4.3 describes the atmospheric 

attenuation and its dependence on wavelength, temperature and 

humidity. 
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4.2 SIGNAL DETECTION PROBABILITY 

The probability of detecting a signal depends upon several 

factors, including signal-to-noise rati~ probability of false 

alarm, and the statistics of the signal. Signal fluctu~~ions can be 
\""'-.. 

caused by the interaction of the radiation with the target or the 

atmosphere. The case of a Rayleigh-distributed signal has been 

analyzed in the literature. However, the signals from the CAT 

detection system appear to be log-normally distributed. An analysis 

was performed to compare the effects of integrating N returns of a 

log normal signal or looking for a single return above threshold 

from N signals. 

For N independent pulses, the total probability of a missed 

detection equals the Nth power of the probability of missing a single 

pulse: 

where PD- T = total detection probability 

PD-P = individual pulse detection probability 

Table 4-1 lists some values of the single pulse detection probability 

for various values of the total detection probability and the number 

of pulses observed. 

The relationship between detection probability, signal-to-noise 

ratio, and false alarm rate have been evaluated and are documented 

in a Raytheon memo by Dr. H. Groginsky wherein signal-to-noise ratios 

as a function of the number of pulses for various detection probabili­

ties are shown. Curves are drawn both for the case of integration 

and for detection of one of N pulses. Figures 4-1 through 4-3 

correspond to a log-normal distribution whose ratio of mean to median, 

p, equals 2, while Figures 4-4 through 4-6 have p = 3. 
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TOTAL DETECTION 
PROBABILITY 

0.9 

0.9 

0.;9 

0.9 

0.9 

0.9 

0.7 

0.7 

0.7 

0.7 

0.7 

0.7 

0.5 

0.5 

0.5 

0.5 

0.5 

0.5 

TABLE 4-1 

SINGLE PULSE DETECTION PROBABILITIES 

NUMBER OF 
PULSES 

10 

20 

30 

50 

70 

150 

,10 

20 

30 \"';', 
. '., 

:""'." , " 

50 

70 

100 

10 

20 

30 

50 

70 

100 

SINGLE PHASE 
DETECTION 

PROBABILITY 

0.21 

0.11 

0.074 

0.045 

0.032 

0.023 

0.11 

0.058 

0.039 

0.024 

0.017 

0.012 

0.067 

0.034 

0.023 

0.014 

0.0099 

0.0069 

1--.....--____________________ ..... _ .. _._._ .. _ .... _. ___ ._" .. ___ - __ . 
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, 
4.3 ATMOSPHERIC ATTENUATION 

Various researchers have measured the attenuation of CO2 laser 

radiation in clear weather. McCoy, Rensch and Long3 measured . 

specifically the attenuation due to water vapor which is the attenua­

tor of most interest for this analysis, but the measurements of 
4 Shumate et al are more recent and appear to have been made under 

more carefully controlled conditions. Therefore, the data of the 

latter were used for the attenuation due to water vapor. For the 
5 CO 2 att·enuation, the values presented by S. Murty based upon the 

6 
measurements of P. Yin and R. Long were included. Finally, the 

aerosol attenuation values were taken from McClatchey's data7 

extrapolated to a visibility of 12 krn. 

The relationship of water vapor pressure to temperature and 

humidity is shown in Figure 4-7. It is apparent that the water 

vapor pressure during the summer is often above the highest pressure 

of the Shumate measurement, which was 15 Torr (20.0 millibars). For 

example,a temperature of 950 F (350 C) and a relative humidity of 

95 percent produces a water vapor pressure of 40 Torr (53.3 millibars). 

Therefore, the dat~ had to be extrapolated to the pressures of interest; 

but in order to do it accurately, the relationship between attenuation 

and pressure must be known. The relationship is assumed to be quadratic. 

( 1) 

where ~ is the attenuation coefficient, p is the water vapor partial 

. pressure and the coefficients A and B depend upon the total pressure. 

The atmospheric attenuation coefficients were determined for 

selected emission lines of the CO2 laser in clear weather as a 

function of temperature and relative humidity at sea level. The lines 

of specific interest for this analysis are the P(16), P(l8), P(20), 

P(22),. P(24) and P(26) lines of the 10.4 micron branch, but other 

lines were also briefly examined. 

The conclusions of the analysis are: 
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1. Attenuation coefficients for the P(18), P(20), P(22), P(24) 

and P(26) lines are generally within 0.5 dB/km (each way) of each other, 

with the P(20) line the worst and the P(26) line the best of this group. 

The P(16) line, however, attenuates by a ~omewhat greater amount -

0.5 to 2 dB/km more depending upon humidity - and should be avoided. 

Figures 4-8 and 4-9 compare the attenuation for different P-lines. 

2. Typical attenuation values vary from 1 dB/km each way in an 

11 Torr (14.7 mbar) water vapor pressure atmosphere (e.g., T = 700 F 
(21oC), . R.H. = 60%) to 6 dB/km each way in a 40 Torr (53.3 mbar) 

atmosphere (e.g., T = 950 F (350 C), R.H. = 95%). For a 5 km path, the 

corresponding atmospheric losses range from 10 to 60 dB round trip. 

Figure 4-10 shows the variation of atmospheric attenuation with range. 
Figures 4-11 and 4-12 show the variation with temperature and humidity 

for two specific P-1ines, P(20) and P(26), which bracket the attenuation 

for the five lines from P (18) to P (26). 

3. Under humid conditions, water vapor is the dominant attenuator. 

In a clear dry atmosphere, CO2 is the dominantattenuator. Finally, 

under foggy conditions, the aerosol scatter becomes dominant, but note 

that the fog must b.e fairly dense in order for the aerosol extinction 

to exceed the water vapor attenuation at warm temperatures. A 40 Torr 

(53.3 mbar) clear atmosphere (e.g., T = 950 F (350 C) and R.H. = 95%) 

produces roughly the same attenuation as a 150 meter visibility fog. 

4. The 9.4 micron branch and selected R lines of the 10.4 micron 

branch .suffer substantially less attenuation under hot and humid con­

ditions than the P lines of the 10.4 micron branch. Differences may 

reach 5 to 10 dB/km round trip. Thus, laser operation on these other 

lines should be considered for hot, humid environments even though 

the efficiency is lower and the laser is more complex. 
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SECTION 5 

AIRCRAFT INTERFACE PROGRAM 

5.1 SYSTEM INSTALLATION 

To make the CAT system an airborne instrument, a program was 

defined to investigate aircraft fli.ght parameters and configure the 

CAT instrumentation for optimum performance with respect to the 

NASA' Convair 990 test aircraft. The Airborne Science Office at the 

AMES Research Center had indicated that a pod fairing at Station 728 

(Figure 5-1') would be required for the optical scanner assembly in 

order for the signal beam to radiate from a point outside the air­

craft's boundary turbulence zone (7-8 inches at Station 728). The 

system configuration shown in Figure 5-1 was arrived at after flight 

noise, vibration, shock, and safety analyses were performed. These 

analyses are 'presented in Appendices A and B, Volume II of this 

report. The arrangement within the aircraft, as shown in Figure 5-1, 

has blocks A and C as "lowboy"-type equipment racks supporting the 

CAT transmitter assembly. Block D is a standard equipment rack 

(Figure 5-2) containing the transmitter electronics and system 

synchronizer, Block G,(Figure 5-3) is the receiver/processor rack, 

and Block E, (Figure 5-4) contains support and backup instrumentation 

for the system. Figures 5-5 and 5-6 show the shock-mounted trans­

mitter assembly being installed on its two supporting lowboy racks, 

and a view of the CAT telescope projecting into the CAT fairing, 

through what used to be the aircraft port escape hatch. 

The CAT fairing (Figure 5-7) was attached to the CV990 in a 

manner compensating for the nominal 1.50 nose-up flight altitude. 

Incorporated within the fairing is a pair of motor-driven clamshell 

doors, shown closed in Figure 5-8, to protect the CAT window from 

particle damage during takeoffs and landings. A, television camera 
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Figure 5-2. Transmitter Rack in CV-990 

EO-467 

Figure 5-3. Receiver Processor in CV-990 
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Figure 5-4. Backup Instrumentation Rack, 
During Installation 
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Fiqure 5-5. CAT Transmitter Assembly Being Installed in CV-990 

EO- 46 5 

Figure 5-6. CAT Telescope, Shown Centered on the CAT 
Fairing Input Aperture 
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Figur e 5-7. CAT Fairing on CV990 
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Figure 5- 8 . "Cl amshell" Doors in CAT Fairing. 
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installation was planned for follow-on programs to be boresightea with 

the CAT systems output beam axis for evaluation of system performance 

against discrete terrain features or clouds. This camera location was 

planned to be within the CAT pod. 

5.2 AIRCRAFT INSTRUMENTATION 

The following instrumentation was installed in the aircraft in 

order to record relevant aircraft performance with respect to CAT 

instrumentation data for use in the several data analyses programs 

(see Appendices E and F). 

Ampex Model CP-lOO 
14 Channel Recorder 

Precision Instruments Model 
7-Channel Recorder 

35-MM Sequence Camera 

Hewlett Packard Model 197A 
Oscilloscope Camera 

Tektronix Model C-30-A 
Polaroid Backed Oscilloscope 
Camera 

To record the receiver/processor 
multiplexed PCM format containing 
synchronization, run and frame numbers, 
data status, sampling range, and filter 
bank output data as well as aircraft 
XYZ accelerometer ouputs, IRIG-B time 
code, and aircraft intercom, on 
separate channels. 

To record the swept HP analyzer display 
and sweep, WWV time (audio), sequence 
camera pulses and aircraft intercom. 

To photograph the RVI and "A" scope 
displays, usually at a I frame/second 
rate. Incorporates a data box, con­
taining a WWV synchronized clock, frame 
counter, and flight information card. 

For in-flight sampling of "A" scope 
displays. Incorporated a clock 
synchronized with WWV. 

For in-flight sampling of RVI and IVI 
data at the receiver processor station. 
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SECTION 6 

SITE EXAMINATION AND SELECTION PROGRAM 

6.1 GENERAL 

As described in Raytheon pUblication ER72-4243 propagation tests 

and experiments are necessary for various system evaluations and 

system alignment. These tests required stable transmission platforms 

and targets and were considered most desirable if they could be 

located near the airfield and the contractor's facilities. Airfield 

sites evaluated at the AMES Research Center were: 

The Systems Engineering Facility (Bldg N-244) 

The Space Sciences Laboratory (Bldg N-245) 

The Life Sciences Research Laboratory (Bldg N-279) 

with site N-244 being selected. 

Test sites evaluated near the contractor's plant were: 

Plum Island, Ipswich, Mass. 

Springhill Beach, Sandwich, Mass. 

South Beach, Martha's Vineyard, Mass. 

Coatue Beach, Nantucket, Mass. 

Monomoy Island, Chatham, Mass. 

Great Island,Wellfleet, Mass. 

The evaluations of the latter included examinations of USGS 

surveys, local ordinances, property rights, acceptability of local 

weather conditio~s, . range availabilities, accessibility of power, 

and equipment protection considerations. Specific ground test pro­

grams and results are described in Section 7. 

6.2 THE MARTHA'S VINEYARD SITE 

Evaluation of the possible contractor test sites led to the selec­

tion of the Martha's Vineyard location (Figure 6-I) for field tests 
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using a van as a base station after arrangements were worked out for 

site rental and access rights. The following is the preliminary CAT 

ground test outline: 

1. Reestablish system parameters achieved at Moffett Field: 

20 + mJ output at 160 Hz, 8 ~sec PW. (P under these avg 
conditions is ~3.5 watts.) 

2. Set up target at 6800 ft.(2,073 m)(Moffett situation) and perform 

total system alignment, including the telescope, with a 

'HeNe source. 

a. Take SiN measurements of belt target signals at 6 MHz 

and higher, if possible. 

b. Take SiN measurements at a variety of ranges along 

the beach with the "as flown" alignment conditions. At 

each range, the following data were monitored and recorded: 

Transmitter parameters, i.e., PRF, P 
avg 

PW, etc. 

"Ringing" waveforms 

Beam diameter measurements at the target sites 

Weather parameters (temp., RH, wind velocity 

and wind direction) 

c. Perform steps 2a and b with the 7 x 7 x 100 rom GaAs 

modulator flown in August-September '72 with both CAT 

detectors. 

3. Focusing Tests - When the beam diameter measurements made 

in 2b above have established that the transmitter is colli­

mated, the following focusing activities were performed. 

Realign the telescope from a HeNe source at 

some other range 
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Realign the telescope at some given range at 10.6 ~ to 

correct for measured discrepancies. 

Varying the focus of the internal beam expanders to 

maximize SIN at discrete ranges and determine what 

these focusing parameters are. 

4. Additional system evaluations: 

Master Oscillator tests. Thermal/Acoustical 

evaluation, P-( ) line characteristics; beam 

shape, etc. 

Modulator Ringing. Comparison of both units­

Measurement of backscattered energy on detector. 

Avantek Amplifier tests. Response vs. back­

scatter level. 

Cooling system evaluations. 

Receiver/Processor tests. "Ringing" effects on 

processor - calibration of effect of integration, 

record system, and IVI. Comparison of "A" Scope; 

RVI and· IVI. 

Window Tests. 

The feasibility of using a van as a base site and as a long 

range pointing platform was successfully demonstrated through HeNe 

laser tests, where the laser/telescope combination was set up in the 

van and focused on a target screen 6,800 feet (2,073 meters) away. 

Beamsteering attributable to wind effects on the van were on the order 

of 12 IJ,radians, ±l.O inch (2.54 cm) around some central mean. Winds 

were SW 15 - 22 miles per hour (6.7 to 9.8 m/sec) (broadside to the 

van) and generally along the beam axis. Personnel moving about within 

the van had a greater effect on beam motion, with a ±3.0 inches (7.6 ern) 

vertical displacement at 6,800 feet (2,073 meters) resulting from a 

single individual walking the full length of the van. Van stability 

was considered excellent, particularly with regard to wind effect~ and 
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tests of the CAT system against the beltsander target in winds in 

excess of 30 miles per hour (13.4 m/sec) were conducted with no 

difficulty (Test Plan - AC-73-l6 and Huntsville recommendations 

AC-73-l7). 

6.3 THE AMES RESEARCH CENTER SITE - BLDG 244 

The CAT system was set in the penthouse of the Systems Engi­

neering Facility building as shown in Figure 6-2. The ground test 

range was over a nominal 7,000 foot (2,134 m) range, as shown in 

Figure 6-3, to a tower structure (Figure 6-4) owned by the Lockheed 

Company in Sunnyvale. The belt sander (Figure 6-5) was located on 

the platform of this building, and preliminary system alignment to 

the target was accomplished with the aid of a HeNe laser propagating 

into the system. The system was operated against the belt sander 

target to determine that the required optical alignment of the CAT 

transmitter assembly mated with the telescope assembly as well as 

optimum SiN ratios were achieved before the system was turned over 

for aircraft applications. 
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Figure 6-2. CAT System in AMES Test Site 
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Figure 6-3. CAT Ground Test Range, Moffett Field 

6-6 



- ---_._----- - --

- ... ----.---

.- - ------. ------~--.-- --- ------, 

EO-486 

EO- 4 8 7 

6 - 7 

Figure 6-4. Lockheed Target 
Building 

Figure 6-5. Belt Sander Target 
Enclosure 

_.-. ----- ---



SECTION 7 

GROUND TESTS/FIELD TESTS 

7.1 BASELINE TESTS 

In order to establish a common data base during the ground test 

phase of this program, identical system parameters were established 

for the Moffett and Martha's Vineyard site tests. This section de­

scribes the Martha's Vineyard test plan. 

7.1.1 FOCUSING THE CAT TELESCOPE 

The focus variable was tested by means of a HeNe source located 

6,875 feet (2,096 m) from the system and aligned with the input 

aperture of the telescope. The HeNe energy collected by the tele­

scope was coupled out of the telescope and projected to the front 

of the van, ~ 30 feet (9.15 m) away. By varying the distance between 

the telescope primary and secondary mirrors, the HeNe beam projected 

from the telescope was adjusted for minimum divergence or convergence. 

7.1.2 OUTPUT BEAM COLLIMATION AT 10.6 .~ 

The output beam profile, energy distribution, and degree of 

collimation were probed with a mechanically scanned pyroelectric 

detector device, fabricated especially for these tests (see Figure 

7-1). The test apparatus consisted of a motor-driven carriage having 

a linear travel of 23.5 inches (60 cm) in ~ 2.5 seconds. Attached to 

the carriage was a battery powered Harshaw P43 pyroelectric detector, 

at the focus of a 1.25-4 diameter, f/3.5 a lens. The lens was combined 

with an adjustable iris and could be stopped down to ~ 0.1 inch (2.54 mm). 

7.1.3 DOPPLER MEASUREMENTS - SiN VERSUS RANGE TESTS 

The target for the data points in these tests was a belt sander 

producing a Doppler signal in the 9 MHz region. To achieve internal 

parameters identical to those at Moffett Field the following steps 

were taken before each test program: 
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EO-492 

Figure 7-1. Beam Profile Apparatus at 2 nmi. (3.7 km) 
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Realign the internal beam expanders in exactly the 

same manner used in all previous tests. 

Establish the output power levels achieved at Moffett 

Field. 

Recheck CAT telescope alignment from a HeNe source 

~ 6,800 feet (2,073 m) distant, as at Moffett Field. 

Recheck electro-optical waveshapes (pulse shapes, 

ringing levels, etc) to verify the stability of various 

system elements. 

Perform an optical alignment within the transmitter 

assembly, with particular emphasis on the LO/recom­

bination,optics. 

Make a sensitivity test of Avantek amplifiers under 

static and fully operational .90nditions to insure 

sensitivity at ~10 MHz was -115 dBm. 

Check the output collimation of the CAT telescope 

directly at 10.6 ~ by means of a set of beam profile 

measurements taken with the mechanically scanned 

pyroelectric detector. 

Weather conditions were then monitored and recorded for each 

series of SIN tests. Table 7-1 gives a weather summary for a set 

of tests at Martha's Vineyard and Figure 7-2 is a plot of data from 

these tests. 

All points plotted in Figure 7-2 are from data photographs, with 

the exceptio~of the 11/6/73 ¢lata, which was read off directly from 

the "A" scope display. Pulse-to-pulse signal amplitude fluctuations 

were also monitored and recorded as SIN measurements were made. The 

photographic data were taken by compressing the "A" scope sweep dis­

play so that ~80 consecutive signal pulses were recorded on a single 

photograph. Fluctuations as high as 20 dB were observed on adjacent 
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pulses (~6.5 ros), although the average was closer to 2 to 4 dB. The 

overall amplitude fluctuations often exhibited longer term periodicity, 

in the 100 to 200 ms range, as shown in Figure 7-3. 

7.2 SYSTEM GROUND TESTS 

System ground tests were per~ormed to determine the optimum 

means of operating the system. Ground test operating procedures 

were established - presented. as Appendix G of this report - for 

determining and correcting timing problems in the system's synchron­

izer, for measuring filter bank frequency responses, and for deter­

mining overall system performance before installation in the aircraft. 

Representative system performance using the procedures given in 

Appendix G is illustrated in Figures 7-4 through 7-7 which show the 

HP spectrum analyzer display (with telescope open and blanked), the 

RVI display, IVI displays and a "range-gated" display utilizing the 

HP spectrum analyzer (non-sweeping) as a receiver tuned to the Doppler 

frequency with selectable IF bandwidths. In this mode of operation, 

the recovered signal pulse from the belt can be displayed directly 

as a function of range and direct SIN readings taken. The IVI display 

of a relatively bro?d Doppler spectrum (Figure 7-6) can be seen to 

be indistinguishable from that produced by a pure sine wave input. 

SIN ratios of 35 dB were commonly noted during the ground test phase, 

with readings in excess of 40 dB noted under rare solid-overcast, low­

humidity weather conditions. 

As a means of comparing various system displays with marginal 

SIN signals, the DC bias on the detector would be reduced almost to 

zero, with the result that the beltsander SIN ratios were reduced to 

~10 dB, as noted on the HP spectrum analyzer displays (see Figures 

7-8 and 7-9). Under these conditions, the receiver processor RVI 

display would display the beltsander signal (shown circled in Figure 

7-10) quite steadily, albeit on a noisy raster. Two consecutive 

samples of the IVI display under these conditions are shown in 

Figure 7-11. (Under conditions where one may be varying the LO 
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EO-SOl 

Figure 7-3. An Example of "A" Scope Signal Fluctuations 
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EO-502 

Figure 7-4. Belt Sander Display on HP 141 Spectrum Analyzer 

EO-503 

Figure 7-5 • RVI Display, 0-10 Mile Range, Showing Belt Sander Signal 
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EO-504 

Figure 7-6. IVI Display of Belt Sander Signal; SIN >35 dB 

EO-50S 

Figure 7-7. " Range-Gated " Display -- Sweep: 
10 ~sec/Div ; Vert: 10 dB/Dive 
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(mixer) to track the spectrum into the filter bank, or where the 

Doppler frequency may be changing due to aircraft velocity and/or 

altitude changes, it would be difficult to identify the desired 

frequency in such a presentation.) Here again, if it were possible 

to recalibrate the filter bank response to +0.25 dB, one might 

essentially eliminate many of the extraneous "humps" shown in Figure 

7-11 and display the true signal without ambiguity. 

It should also be noted that system integration was set at 0.25 

seconds. for the IVI photos shown in Figure 7-11, and that the display 

was virtually unchanged for all other integration settings through 

4.0 second after allowing each setting to "settle out" for an appro­

priate period of time. 

7.3 AIRCRAFT GROUND TESTS 

In orqer to preflight test the overall system from the CV990, 

it was necessary to first point the aircraft by "eyeball" in the 

direction of the beltsander target. The aircraft was then jacked 

to a nominal 1.50 nose-up attitude because the· CAT pod is installed 

at a -1.50 orientation relative to the aircraft waterline. Fine 

system steering wa~ accomplished by using a HeNe laser located at 

the target site and directing its beam into the output aperture of 

the CAT fairing. The HeNe laser energy thus collected by the CAT 

telescope "Tas combined with the 10.6 micron LO beam in the usual 

manner and fine system steering accomplished by X and Y loading of 

the transmitter system within its shock mount frame. 

The aircraft was jacked at the nose only, and essentially rotated 

on its main landing gear. Aircraft stability with a 5-10 mph (8-16 km/hr) 

wind and people moving about within the cabin was adequate for optimizing 

internal system alignment but not stable enough to permit system sensi­

tivity checks. 
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7.4 FIELD TESTS OF THE CAT SYSTEM WITH THE FREQUENCY OFFSET LOOP 

Field tests were performed on the offset system to demonstrate 

its capability and to gain experience for anticipated flight tests to 

further demonstrate the capabilities of the CAT system. Several 

field tests took place during this programi the test at Kennedy Space 

Center is described here to show the type of activity involved in the 

several field exercises. 

The testing at KSC was designed to coincide with TRIP 77 (Thunder­

storm Research International Program) run by KSC with the involvement 

of a large number of researchers and having a great deal of cooperative 

instrumentation available (instrumented towers, several types of 

weather radars, radiosondes, etc.). In fact, the weather proved to 

be uncooperative and no significant storm activity occurred within 

the operating range of the system. As a result the measurements per­

formed were limited principallY to calibration measurements under high 

turbulence and humidity conditions, and to atmospheric signal range 

dependence under moderate humidity conditions. 

The calibration measurements were made with the targets located 

near the instrumented weather tower at UC-16 with the van located at 

UC-4 near the ocean. These locations are indicated on the map in 

Figure 7-12. The range between these locations is 3.4 km on a path 

which is never more than about 10 meters above the ground. The water 

vapor partial pressure was generally in the range of 20-30 Torr 

(26.7-39.9 mbar). The high humidity resulted in much greater water 

vapor attenuation values than had been encountered at the MSFC test 

and restricted the range of the instrument to a maximum observed value 

of 5to 6 km. On many humid days, signals could not be obtained from 
~ 

the 3 km minimum range of the instrument. This was in spite of typical 

measured values of ~(TI) of 10-7 to 10-6 m- l which match the values 

obtained at MSFC. Comparison of signal-to-noise ratios after water 

vapor attenuation and range correction showed that the calibration 

SIN ratios were approximately 10 dB lower at KSC than at MSFC. Much 

of this loss could be accounted for by a C 2 value of 10-12 without 
n 

considering the losses due to the beam missing the target. 
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An attempt was made to determine if any lag angle effect could 

be observed by scanning the laser beam rapidly past the VAB building. 

The maximum rate of scan was limited by the integration time of the 

processor. This requires that all the pulses transmitted during the 

integration period fallon the target. In order to be certain that 

this is the case, the scan rate must be slow enough so that at least 

two integration periods are required to complete the scan across the 

target. With scanning rates up to twenty degrees per second, the 

variations in signal did not exceed the experimental accuracy. Since 

the maximum scanning rate corresponded to a lag position error of 

only 0.1 meter, the theoretically expected loss with the beam diameter 

of 0.5 meter is 4%, which is in agreement with the experimental re­

sults. A range of nearly 25 km would be required to have a 3 dB loss 

at twenty degrees per second. 

Attempts to measure signal loss during rainy weather were in­

conclusive. Signals from the VAB were observed in a heavy rainstorm 

during which the building could no longer be seen. The sudden drop 

out and reappearance of the signal suggests that wetting of the 

building or wander of the beam off the target due to atmospheric 

steering was the cause rather than attenuation by the rain itself. 

Occasional light and.localized showers were not observed to increase 

the losses beyond those due to water vapor. 

Work was performed on comparison of the calibrated target signal 

losses with published water vapor attenuation data {see Appendix C}. 

This work was complicated by the difference in water vapor content 

between the van and target site and by the loss of much of the tower 

site humidity data due to a dry wet-bulb. These comparisons are made 

by doing a best quadratic fit to the calibration signal vs vapor 

pressure data and by comparison of the signal range dependence of the 

expected exponential behavior'. 
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A number of system parameters were characterized during the tests 

and a few problems located and corrected. These included the 

following: calibration of the zero moment calculation with respect 

to input power, location and understanding of a register overflow 

problem in the processor, restoration of a dropped bit in the com­

puter, alignment of the scanner with respect to the compass points, 

and minor system repairs. 

The feedback phenomenon caused more problems at KSC than at MSFC. 

At MSFC, the feedback from the telescope caused a slow fluctuation in 

the signal amplitude but the master-oscillator frequency pulling could 

be eliminated by fine tuning the system's optics. At KSC it was not 

possible to do this without reducing the amplifier drive power and 

this resulted in a lower output power and a signal loss of 8 dB. A 

loss of this magnitude has a severe impact on the performance against 

the atmosphere. It was found that a 9 dB optical attenuator placed 

in the future iS,olator position eliminated the frequency pulling but 

not the amplitude fluctuations. For the retained polarization which 

was probably the dominant cause of the pulling, the isolator provided 

greater than 20 dB reduction in backscatter. This with suppression 

of the amplitude fluctuations will reduce the sensitivity of the 

system to alignment with respect to the backscatter problem. 

Tables 7-2 through 7-5 present a summary of the calibration arid 

atmospheric data from the MSFC and KSC tests. Except as noted, the 

atmospheric data is entered as signal-pIus-noise with noise noted 

separately to facilitate data analysis. 

7.5 SYSTEM SENSITIVITY ANALYSES AND PERFORMANCE PROJECTIONS 

7.5.1 SENSITIVITY ANALYSES 

System sensitivity analyses were performed to obtain indications 

of system performance. These analyses were carried out using the 

following general procedure: 
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TABLE 7-2. Calibration Data - 1977 MSFC Tests 
(Sheet 1 of 2) 

CALIBRATION DATA MSFC Madkin Mt Martin Rd 
~. 

~--.-~ --~~-,.. 

DATE 
CIYr 

TIME TGT SNR Ep mJ LINE Tl HI T2 H2 

5/26 1150 Sander 34 8.85 750 80% 770 55% 

" 1150 Cube 64 8.85 750 80% 770 55% 

" 144<: !=:;:o,.,Aor 32 pl221 

" .144" ~;:ln;l<>r ·29 
" 1458 Sander 35 

" 14"~ Sannpr 35 
" 1!?15 Sander 39 
" 1530· Cube 63 76v 72% 800 52% 

-
" 1530_ Sannpr 39 

5/27 1500 Sander 39 11.5 P (20) 740 90% 760 60% 

" 1500 Cubp 63 11 5 p (20' 740 90% 

5/31 1500 Sander 20 - P{201 850 44~ 870 30% 

" 1500 Sander 32 .-
" 1500 Sander 38 -

6/2 1800 Sander 40 p(201 780 46% 820 28% 
" lQ,n ~;:lnn ... r 40 . 1 <;1.1 800 47"~ 

" Cube 68 

" 2020 - - - - 740 48% 720 60% 

6/3 1830 Cube 65 P(20) 820 3.2% 850 18% 

6/7 1720 Cube 73 7~0 23% 750 14% 

" 1720 Sander 39 

'6/8 1910 Board .. 36 5.4 P1201 710 3Y"{' 74CY "'24% 

" l"'l1hp 70 5 4 P(20) 710 33% 

" , 'O? <: Sander 33 5.4 P120} 710 33% 

" 1930 Sanrlpr 34 885 P (20) 

" Board 38 
" 2010 Board .35· 

" Cnhl!> 70 

6/10 1900 Sander 36 .7tjO 35'70 830 33'7'0 
Cube 62 

.. - --19.l " 
l"'llhp 7t; 

1923 Sander 35 
1 Q'?,O_ _B.o.ard . ~R 780 36% 790 40% 
1 Q4('1 >In,,,.,,.A 40 
"Q4S .JiO.ard 42 
1956 CUb.e 75 
200Q= Sander 37 
?-JUO Sannp.r 38 10 P(20' 760 36% 740 2.2% __ 

. - -'-' 
. 

1----- .-----. 
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TABLE 7-2. Calibration Data - 1977 MSFC Tests 
(Sheet 2 of 2) 

CALIBRATION DATA MSFC Madkin Mt Martin Rd. 
, - ~ '- . -- -

DATE 
eDT TGT SNR Ep mJ TRAN T, ~, T2 H2 TIME 

6/13 1355 Board 36 Q40 40"/0 900 - 36% 
1402 Board 38 960 38% 
1AnR R.oard 3q 

'4'~ C"h"" 69 
1415 Cube 69 
1420 Cllbp hq 
~4.2~ ~ant'lp,.. 38 lnno 32% 800 400" 
1431 Sant'l.,.,.. 38 7.2-. of?e;, 

6/15 1440 B_oard 37 13 P(2Q} 730 l.QQ26 740 100% .. Board 37 .. 1 c)02 ~ .. nt'lA'" 2q 12 Pl20\ 
.. 1C:?C ~ .. nrlo ... 38. - 740 100% 76,0 QOo" 

6/17 1430 Cube 68 12.1 P(20) 840 60% 840 54% .. 144n B "cu.:.d 30 

" 14.4.5 Sann~r 28 .. 1454 Board· 32 

" 1500 Rt"\a~~ 2Q .. 1515 Sander 28 

" 1530 Sande'r 30 800 91% 820 70% 

6/21 1428 Cube 67 14.3 P (20) 860 50"/0 
" 1505 Cube 70, 14.3 p(26) 870 ._49% 900 3SO'{; 

" 153~_ ~-gn~ _33 870 50% 
" 1540 Sander 34 .. 1545 Board 35 .. lRl? c.ub.e .7R .. 1815 Board 35 
" 1823 Sander 34 850 51% 890 46% 
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TABLE 7-4. Calibration Target Data - 1977 KSC Tests 
(Sheet 1 of 3) 

-- ~ " .. _ ... I.e -
CALIBRATION DATA - KSC Van (USC4) 150M Tower 

T~~~ 
·.I:rans]. 

TGT SNR Ep mJ T1 H, 'T H 
1-: ion -~ 2 

1136 Cube 67 13 P(201 920 7ZO~ 

13~9. S~nnF!'I" 23 '-3 p (20\ Rt; .... 7A~ 
Boa-;'c:i- 30 , '".\ P(20l 

1237. Cube 60 P (20) 
1? C;7 1'\n"' ... t'I ?C; P(2.°t 
1312 Board 30 P(20 890 90% 860 44% 

. 170&; Dp~r 35 C2:Zj.ls P(20) 920 69"t6 
1720 Dewar 32 
1724 JJewar -4-2 

VAB 33(44us 
17dn 32 
1741 32 
'7 AA 3S 
18.i5 - - - - 960 52"A> 

1224 Cube 71 13 930 . 60% 860 ,(23%) 
, ? .14 1'\1"\::>-;'t'I ?A 1":i 
1? A~ 1'\n"' ... t'I '".\n 1~ 
1 ? t;R 1'\n"' ... t'I ?R 1'".\ 
1311 Sandel: 70 1~ 

1317 22 13 
1.1 00 .. , 930 ·60% 860 (23%) -
142C:; .1 '".\ P (20\ 

VAB ?~ 

,.1 40 . 
1 c:; , n P (20\ 860 30% 

1100 Pl20) 870 75% ' 
11 17 890 (25%f 
11 ?Q Cube 74 P 20) 

Cllhp 72 pj 20) 
1141 1'\N\rd 24 PI 20) 

23 
1146 Board 29 

" A7 1'\1"\::> ... n 2Q 
1153 Cube 72 
12 ?? Board ::\.1 
,? ?~ 1'\1"\::> -... n U 
1245 Cube 75 ., 
11 An Cnhp 72 

1501 Board 30 840 100% 
1C:;n? ji) 
1516 Sandel 26 

1 c:; 27 ,-f-Ft~h"" 
26 
7A. 

1528 75 8~O 

1607 
84~ 920 72_~ 

120R Board 26 720 71% 880 (29%) 
('"h.,. 71 --
Sandel: 18 
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TABLE 7-4. Calibration Target Data - 1977 KSC Tests 
(Sheet 2 of 3) 

CALIBRATION TARGET DATA - KSC . Van Tower 
-"", ~±:"" .. =. 

T~~ 
TJU\N:->· -

DATE TARGET SNR Ep roJ Tl HI T· H2 TION 2 

77I3 l200 VAH l2 P l2U} H~v_ lO_O% s""3v 72% 

7/l4 1136 VAB 20 P (20) 90 0 84% 
VAB 23 P (2Q) . VAB 20 P(20) 

1145 UAR ,~ t) (?.o} C)20 Q~OL. 

7/l5 _YJ.\l3 22 l2 P(20 8~'" ~~ 
VAB 22 12 P (20) 870 ~.~ ~.-. 

1416 Cube 70 2 P (20) 870 98')0 
Board 15 2 P 20 
Belt 12 2 P 20 

7/1R 1 "0 Board 29 13 P 20 880 80% 
1230 Cube 72 13 P 20 880 7SO/o 850 71% 

Sande 23 13 P 20} 
7/18 12i4 VAB 22 17 P(20) 900 82% 

15">"> ·C""h"" 70 17 p20' 
1621 Board 30 17 P 20) . 
1",33 Sande 19 17 P 20) 900 70% 

7/20 1238 Board 30 17 P 20) 890 80% 
Cube 73 17 P 2_0) 

1253 Sande 25 17 P(20) . 880 7SO/o '. 

~.::J.L21 Cube 75 17 p (2_0\ 89_0 8~ 910 £5~ 
1243 Board 33 17 P (20) 

Sande 29 17 P(21l1 
7/22 1600 Board 30 16 P(20) 

1(:07 Q"h"" '7' 1'" p(,O' Q"'o E;..1OL. 
Sande 26 16 P (20) 

_7/23 1030 Cube 73 19 P(20) 760 100% 
Board 10 'lq p (20\ 760 100~ 
!=:::Inr'l"", 27 19 P(20) 760 1~ 

7/25 1309. Cube 70 . P(20 890 85% 890 73% 
- Board 33 P (20\ 

Sande 24 .p (20\ 
7/26 1155 Board 31 P(20) ,920 58% 860 72% 

- Cube 72 P(20\ 920 58% 860 7~~ 
Sande 24 P (20) 920 5SO/o .860 72% 
UAR 21 7 p'20 q2° 5 SOh 860 72~ 

.VAB 24 12 P 20 920 5SO/o 860 
71l= 7/27 1200 Cube 70 16 P 20 900 80% 900 73°0 

Cube 71 16 P 20 C)oo 80~ C)oo 73% 
__ ~ard 34 16 P 20 900 80% 900 73% 

P (20 . 900 80% 900 .. ----:7--
Board ·30 7.5 73% 
!=:::Inn"" 24 7 5 p (20) C)oo 80~ C)oo 73% 

-iL28 ~30 C""h"" 73 1", P (20) .880 ~ 900 71% 
. __ ._- I-J}oard 2q Ib P (20' C)1° 7S.2i 

Board -ll. 16 p(20 -~ 
Sandp· 27 Pl20 

712q 1410 Cube 74 15 P(20 910 77%_ 890 .-J'i9y~ 
Board . ::14 15 P (20\ --Sande 29 15 P(20 

--
iI.. 
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TABLE 7-4. Calibration Target Data - 1977KSC Tests 
(Sheet 3 of 3) 

CALIBRATION TARGET DATA - KSC Van TOIIITer .. " . .. .. - ... -- -
~:DATE T~WE TARGET SNR Ep mJ T~fI-T' N Tl Hl T2 H2 

87i 1140 C~~b~ 70 Pt?,O\ 880 72% 
Rn;=I"':", 3~ p(20\ 
Belt 31 P-(2Q) 

120 92° 70% .agO 70% . 
-
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Expressing the SIN equation as 

where: 

SIN :::= 
no nSYS nAT11 

32 hvB [R2 + 

no = detector quantum efficiency 

n
SYS 

= system efficiency 

n
ATM 

= atmospheric transmission efficiency 

a = target cross section 

h = Planck's Constant 

v = transmitter frequency 
" 

B = bandwidth matched to pulse length 

A. = system wavelength 

AB = beam area at target 

And determining transmitter pulse energy by 

= P T 
ET KB 

where: 

ET = transmitter pulse energy 

PT = transmitter power 

B = liT 

K = ratio of signal bandwidth filter to B 

And substituting, 

2 
no nSYSnATM ET D a 

32 hvK [R2 + (~~2)2]~ 
SIN = 

We could determine using gathered measurements (see, for example, 

Figure 7-13) the system theoretical SIN Figure. 
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BEDFORD 

TEMPERATURE 71° 
DEW POINT 41% 

---- -- ---

TEST DATA 5/23/72 

HUMIDITY 30° 
WINDS @ 220° - 6 KNOTS 

PULSE ENERGY AVG. P T 
OUT 

PRF SiN (PEAK) BANDWIDTH 

4.2 mj 0.8 W 
8.2 mj 1.15W 
4.3 mj 0.6 W 
3.2 mj 0.45W 

DETECTOR CURRENT 
L. O. PCWER 
LASER PCWER 

31. 5 MA 
20 MW 

5 WATTS 

21-ls PULSE 140 PPS 
20l-ls/cm 

lOI-lS PULSE 140 PPS 
20 I-ls/cm 

10l-ls 
lOI-lS 

41-l s 
21-ls 

190 
140 
140 
140 

25 dB 300 kHz 
26 dB 300 kHz 
25 dB 300 kHz 
20 dB 300 kHz 

41-ls PULSE 140 PPS 
20l-ls/cm 

lOI-lS PULSE 190 PPS 
20l-ls/cm 

Figure 7-13. Pulse Test Data Management 
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K 

= 4.3 mj (measured) 

= 0.15 (measured) 

nATM = 0.45 (evaluated) 

D = 

(J = 

1 Ft. (30 • 5 cm) 

0.54 AT 

(measured) 

(measured) 

2 = 1/4 sq. ft.(1.61 cm ). (measured) 

hv = 1.9 x 10-20 (constant) 

K = electronic bandwidth mismatch = 1 (evaluated) 

R = 

= 

nSYS = 

SiN = 

10,400 Ft. (3.17 km) (measured) 

18" = 1.8 sq. ft. (17 m2 ) ,(measured) 

0.2 (optics, 2 dB; target depolarization, 2 dB; 
heterodyne eff., 3 dB; Net: -7 dB) (estimated) 

39.5 dB 

Actual measured 25 dB 

Unaccounted loss 14.5 dB 

7.5.2 SYSTEM PERFORMANCE PROJECTIONS 

When CAT system efficiency losses were determined by the analyses 

and examinations described above, system evaluation graphs were com­

piled to summarize system performance and .give an indication of what 

factors should be considered for CAT system improvement. Figure 7-14 

is an example showing overall system ~mprovement factors. In Figure 

7-14 the flight test results on the lower curve assume.the trans­

mitter to be focused to infinity, the receiver focused to 6,000 feet, 

(1.8 km), and at 10,000 foot (3.0 km) altitude, and a signal-to-noise 

ratio of a few decibels. Additionally, the system is assumed to have 

a system loss of approximately 18 dB with 11 dB of the system losses 

basically unaccounted for. The curve above the flight test curve is 
that expected from a system focused to infinity and a total system loss 
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100 

10 

ao dB SYSTEM IMPROVEMENTS 

I. UNACCTD SYSTEM 
LOSSES IIdB 

2. TRANS AND FcECVR 
FOCUSED TO CD 

3. 10 dB MIN. TRANS 
IMPROVEMI:NT 
220 MJ TO 1 JOULE 

4. IMPROVED ELEC­
TRONIC SIGNAL 
INrEGRATION 
MORE: QUANTI­
ZATION) 

THEORETICAL EXPECTED RESULTS 

I. TRANS AND RECVR 
F'OCUSED TO CD 

2. IId8UNACCTD 
SVSTEM LOSSES 

IfUGHT TEST RESUL 15 

I. Wlnt .. dB UNACCTD 
SYSTEM LOSSES 

2. TRANS FOCUSED TO CD 
RECVR FOCUSED TO 6 KFT 

.10-2~---'----r---~--'----r---'~--r---'---~--~----r---~--'---., 

20,000 ft. 40,000 ft. 60,000 ft. 80,000 ft. 100,000 ft. 120,000 ft. 140,000 ft. 
(6.1 km) (12.2 km) (18.3 km) (24.4 km) (30.5 km) (36.6 km) (42.7 km) 

RANGE EOA-932 

Figure 7-14. System Improvement Factors 
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of 18 dB. The top curve indicates that with 20 dB improvements, the 

system would have a SiN ratio of 10 at a range of 100,000 feet (30 km). 

Under optimum conditions, this would indicate a system range in excess 

of 15 nautical miles (27.8 km) at all altitudes. 
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8.1 GENERAL 

SECTION 8 

FLIGHT TESTS 

Two series of flight tests were conducted: the A flights in 

August and September of 1972 and the B flights in January of 1973. 

Detailed analyses of each of these tests are presen~ed in Appendices 

E and F. Both tests demonstrated that the CAT system operated con­

sisten~ly and reliably under all types of flight conditions within 

2 dB of theoretical system performance and that the system detected 

and measured turbulence in front of the aircraft. Conclusions from 

examination of flight test data (see Section 9.3) indicated how and 

to'what degree the system should be improved. 

8.2 FLIGHT A TESTS (See Appendix E for a detailed analysis of flight 
A data) 

This series of flights was ' conducted out of the NASA Flight 

Research Center at Edwards Air Force Base. The CV990 was at Edwards 

for a series of flights to evaluate the Space Shuttle Guidance and 

Control System (SSG+C) and operation of the CAT system during these 

flights was allowed. The basic SSG+C flight profiles consisted of 

a series of steep (6-8 0 nose-down), power-off glide approaches from 

17,000 (5,183 m) and 39,000 feet (11,890 m) to touchdown. A total 

of 23 descents in 4 separate flights was made from 17,000 ft. (5,182 m) 

and one from 39,000 feet (11,890 m) during the SSG+C flight phases. 

This phase of the flight test program proved extremely useful both 

as a means of gaining operator training in the flight environment 

and as a means of establishing operational constraints on the 

system hardware over a range of operational conditions. The system 

operated reliably over the whole flight profile which included high 

noise/vibration descents, hard landings, takeoffs, etc. High voltage 
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arc-overs were noted in the GaAs modulator and in the PA driver 

chassis whenever cabin altitude reached 8,000 to 9,500 feet (2.44 km 

to 2.90 km), but reducing B+ voltages slightly eliminated the 

problem. 

A number of data runs were taken at a series of altitudes in 

the San Joaquin Valley and over the Carson Sink, Nevada, area. Some 

of the data are presented in Tables 8-1 and 8-2. The total volume of 

data are analyzed in Appendix E. Figures 8-1 through 8-4 are repre­

sentative examples of in-flight data and the displays utilized. Most 

of the engineering data were taken using the "A-Scope" display. 

The CAT System proved to be extremely r~liable under virtually 

all flight conditions including the full altitude capability of the 

CV990. The following log from the monthly progress reports supporting 

this program is of CAT Flight 13, 6 September 1972, and is typical 

of the reporting conducted during this program. 

Flown under control of the CAT program. Consisted of a series 

of five runs over the Carson Sink, Nevada, area at a range of 

altitudes between 4,000 ft. (1.2 km) and 10,000 ft. (3 km) AGL 

(above ground level). Weak clear air signals were detected to 

8,500 ft. (2.6 km) during this series. This was followed by a 

series of five steep (6 0 N.D.) descents from 20,000' ft. (6 km) 

to approximately 200 ft. (60 m) AGL to determine system sensi­

tivity using the ground as a target. During these runs, the 

ground was repeatedly detected at a range of 14 plus n. miles 

(26 plus km). Peak power during this series was 450 watts 

(3.6 mJ) with 8 ~sec pulses at 140 Hz PRF. 

Figure 8~5 shows two consecutive camera frames taken during 

Run 9. The RVI (A) display shows both air and ground targets, 

the latter at 2.8 n miles (5.19 km), (14 n. miles or 26 km 

full scale). The two signals are separated by approximately 

350 kHz. The lower "A" scope trace is centered on the ground 

signal, and shows the pulse return at ~35 ~sec, the horizontal 
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Table 8-1. San Joaquin Valley Area-Runs 

PRF = 150 Hz ALL RUNS 

APPROX. 
PEAK SiN ABOVE GROUND APPROX. MAX. 

FLIGHT RUN P.W. (dB) ALTITUDE RANGE INTO NOISE 

7 1 8 '" 10 1500 ft. ( • 5 kIn) 2.2 nrni (4.1 krn) 
4 - 9 1500 ft. (.5 kIn) 1.25 nrni (2.3 krn) 
2 9 1500 ft. (. 5 krn) 1.1 nrni (2.0 kIn) 

2 8 10-11 2000 ft. ( • 6 krn) 3.5 nrni (6.5 krn) 
4 12 2000 ft. ( • 6 krn) 4.0 nrni (7.4 krn) 
2 11-12 2000 ft. ( .6 krn) 3.0 nrni (5.6 krn) 

3 8 10 2500 ft. (.8 krn) 2.4 nrni (4.4 krn) 
4 10 2500 ft .• ( • 8 krn) 3.0 nrni (5.6 krn) 
2 10 2500 ft. ( • 8 krn) 2.0 nrni (3. 7 krn) 

4 8 10 3000 ft. ( .9 krn) 2.0 nrni (3.7 krn) 
4 8 3000 ft •. (.9 kIn) 2.0 nrni (3.7 krn) 
2 8 3000 ft. (.9 krn) 1.5 nrni (2.8 krn) 

5 8 9 3500 ft. (1.1 krn) 2.2 nrni (4.1 krn) 
4 6 3500 ft. (1.1 krn) 1.4 nrni (2.6 kIn) 
2 7 3500 ft. (1..1 krn) 1.6 nrni ( 2 • 9 krn) 

6 8 5 4000 ft. (1. 2 krn) 1.5 nrni ( 2 .8 krn) 
4 4 4000 ft. (1.2 krn) 1.3 nrni (2.4 krn) 
2 2 4000 ft. (1.2 kIn) 0.9 nrni (1.7·krn) 

7 8 - 4500 ft. (1.4 kIn) -
4 - 4500 ft. (1.4 km) -
2 - 4500 ft. (1.4 krn) -
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Table 8-2. Carson Sink, Nevada - Runs 

PRF = 150 Hz ALL RUNS 

APPROX. 
PEAK SiN ABOVE GROUND APPROX. MAX • 

FLIGHT RUN P.W. . (dB) ALTITUDE RANGE INTO NOISE 

7 16 8 5 500 ft. ( . 2 km) 2.0 nmi (3.7 km) 
4 7 500 ft. ( • 2 km) 1.6 nmi (3.0 km) 
2,' 4 500 ft. ( • 2 km) 1.0 nmi (1. 9 km) 

17 8 7 1000 ft. ( • 3 km) 1.6 nmi (3.0 km) 
4 7 1000 ft. ( . 3 km) 1.3 nmi (2.4 km) 
2 5 1000 ft. ( . 3 km) 0.9 nmi (1. 7 km) 

18 8 7 1500 ft. (.5 km) 2.0 nmi (3.7 km) 
4 6 1500 ft. ( . 5 km) 1.6 nmi (3.0 km) 
2 3 1500 ft. ( • 5 km) 0.8 nmi (1.5 km) 

19 8 7 2000 ft. ( . 6 km) 1.6 nmi (3.0 km) 
4 7 2000 ft. (.6 km) 1.5 nmi (2.8 km) 
2 6 2000 ft. ( • 6 km) 1.0 nmi (1.9 km) 

20 8 7 2500 ft. (.8 km) 1.5 nmi (2.8 km) 
4 5 2500 ft. ( • 8 km) 1.5 nmi, (2.8 km) 
2 5 2500 ft. (.8 km) 1.0 nmi (1.9 km) 

21 8 3 3000 ft. ( . 9 km) 1.6 nmi (3.0 km) 
4 6 3000 ft. ( .9' km) 1.5 nmi (2.8 km) 
2 7 3000 ft. (.9 km) 1.3 nmi (2.4 km) 

22 8 6-7 3500 ft. (1.1 km) 1.6 nmi (3.0 km) 
4 7 3500 ft. (1.1 km) 1.8 nmi (1.5 km) 
2 7 3500 ft. (1.1 km) 1.3 nmi (2.4 km) 

23 8 5 4000 ft. (1.2 km) 1.5 nmi, (2.8 km) 
4 6 4000 ft. (1.2 km) 1.2 nmi (2.2 km) 
'2 4 4000 ft. (1. 2 km) 0.9 nmi (1.7 km) 

24 8 6 4500 ft. (1.4 km) 1.5 nmi (2.8 km) 
4 5-6 4500 ft. (1.4 km) 1.3 nmi (2.4 km) 
2 5-6 4500 ft. (1.4 km) 1.0 nmi (1.9 km) 

25 8 6 5000 ft. (1.5 km) 1.6 nmi (3.0 km) 
4 5 5000 ft. (1.5 km) 1.3 nmi (2.4 km) 
2 2 5000 ft. (1.5 km) 0.7 nmi (1.3 km) 

26 8 5 6000 ft. (1.8 km) 2.0 nmi (3.7 km) 
4 3 6000 ft. (1. 8 km) 1.2 nmi (2.2 km) 
2 4 6000 ft. {1.8 km} 0.9 nmi (1.7 km) 

27 8 - 7000 ft. (2.1 km) -
4 - 7000 ft. (2.1 km) -
2 - 7000 ft. (2.1 km) -
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IVI Display, 15 psec Delay 

"A" Scope Display Vert. == 10 dB/DiY. 

EO-540 

Figure 8-1. Clear Air Returns, 8,000 ft. (2.4 km) Altitude 
Flight 8, Run 20 
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EO-542 

Figure 8 - 3 . Cumulus Cloud Signal at 15,000 ft. ( 4.6 km) 

EO-543 

Figure 8- 4. Cirrus Cloud Signal at 36, 200 ft. ( 11 km ) 
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L 

CAT 13 9-6-72 
20:07:23 U.T. 

54 11 _____ _ 

EO - 544 

Fig ur e 8 - 5 . Signal Returns fr om St eep Descent -
Carson Sink , Nevada 
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scale factor here being 20 ~sec. The vertical scale factor 

for the IIA II scope aisplay is 10 aB/aiv. The passbana for the 

IIAII scope aisplay is only 300 kHz; therefore, the clear air 

signals at 1 mile (1.6 km) are not in eviaence in this aisplay. 

The lower figure shows the composite spectrum for both targets. 

A peak reaaing of 42 aB is in eviaence, presumably from the 

grouna signal. 

Figure 8-6 has the same previous aata, except that they occur 

1.0 secona later. The peak reaaing on the swept analyzer is 

approximately 30 dB, with a very broad envelope ~ 1.0 MHz wide 

at ~ 15 dB, presumably aue to the clear air returns. 

Figure 8-7 is an example from the same run. In this instance, 

the ground return is 7.6 n. miles (14.1 km) and both air and 

grouna signals are at the same frequency; therefore, both signals 

appear (at 10 - 12 aB) S/N on the IIA" scope as well. 

The aircraft was then airectea to the southern California area 

at a nominal cruise altituae of 15,000 ft. (4.57 km), where a 

number of cumulus cloua penetrations were maae. Acquisition on 

these targets was maae as far as 8 miles (12.9 km). The air­

craft then proceeded into the northwest corner of Arizona, where 

a reasonable probability of encountering blowing aust existea. 

We were fortunate in encountering just such an area in the 

Kingman region (see Figure 8-8). 

Figure 8-9 is sampling of aata photos taken on the 35 mm sequence 

camera as the aircraft approachea the aust storm. Calibration 

of this sequence is as follows: 

Upper aisplay is RVI, with range aisplayea 0 to 7.0 miles 

(11.3 km). Vertical raster inaicatea fre­

quency, ± 5 MHz from raster center, equi­

valent to ± 50 knots (25 m/sec) of aircraft 

speea. 
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CAT 13 9-6-72 
20:07:24 

5472 

C'A"- r-~/Gllr /$ o.6'.llfNe/t:¥rr-
J<~AJ t} 916~ /od13/p'tr f 
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EO-545 

Figure 8- 6 . Steep Descent Signals - Carson Sink, Nevada 
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CAT 13 9-6-72 
20:06:46 U.T. 

F igur e 8-7. 

EO- 546 

Clear Air and Ground Signals 
at Same Doppler Frequency 

8 -1l 



.~ 
~"4altl: . 

I 

/ 

........ 

"-;" -

EOA-933 

Figure 8-8. Flight Pattern in the Kingman, Arizona Area 

Flight 13 
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CAT 13 9-6-72 
6084 

CAT 13 9-6-72 
6092 

CAT 13 9-6-72 
61q2 
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,." ... ,--- ------

CAT 13 9-6-72 
6120 

CAT 13 9-6-72 
6141 

CAT 13 9-6-72 
6170 

CAT 13 9-6-72 
6205 

EO- 54 7 

Figu r e 8 - 9 . Sequence Camera Series - Kingman, 
Arizona Dust Storm 
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Lower display is "A" scope, Horizontal calibration is 

10 I1sec/Div. 

Vertical calibration is 20 dB/Dive 

The sequence shows the approach of the dusty area, with the 

RVI scans clearly indicating the wind velocity along the beam 

axis at the various ranges. Most of the sequence photos show 

a distribution of at least 2.5 MHz, equivalent to ~40 ft./sec 

velocity changes or 25 knots. 

During this series of runs, SIN ratios in excess of 40 dB were 

detected on the "A" scope. 

Figures 8-10, 8-11 and 8-12 are from a later run, and are con­

secutive frames from a run over the dust storm. Signals are 

traceable to 6 nmi (11.1 km) I with SiN ratios in the 20 dB range. 

Figure 7-10 shows a discontinuity at ",3.5 nmi (-6.5 km) (circled) 

presumably due to a minor wind shear at that range. 

8.3 FLIGHT B TESTS (See Appendix F for a detailed analysis of flight 
B data) 

The eight B flights of January 1973 utilized both GeCu and 

HgCdTe detectors with excellent performance from the HgCdTe detectors 

(see, especially Flight B-2, 12 January, Appendix F) where marginal 

CAT events were clearly resolved. Flight B corroborated evaluations 

by A. V. Jelalian (Raytheon memo EM73-lll5) of flight A data that 20 dB 

of system improvement would be desirable. Flight B analysis deter­

mined that improvements should be: 

~ll dB for a detection range of 5 nmi. (9.3 km) 

~18 dB for a detection range of 10 nmi. (18.5 km) 

~26 dB for a detection range of 20 nmi. (37.1 km) 

at an altitude of 40,000 feet (12.2 km). Since the desired detection 

range is 10 to 20 nmi. (18.5 to 37.1 km), the required improvement 

in SiN ratio is roughly 20 dB. 

The determination of required improvement is outlined in Table 

8-3 and plotted against range and altitude in Figure 8-13. These 

analyses assumed: 
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Figure 8-10. Dopple r Re tur ns - Dust Storm - RVI Shows Abrupt 
Wind Shea r a t ""3 . 5 nmi. (",6.5 km) 
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Figu r e 8 -1 2 . Doppler Returns - Dust Storm -

Kingman, Arizona 
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a. The receiver was focused at 6,000 ft. (1.8 km) during 

the January tests and the receiver can be properly collimated in 

future systems. 

b. The backscatter coefficient is a·factor of 16 lower at 

40,000 ft. (12.2 km) (13",,10- 10 per meter-ster) and a factor of 

5 lower at 20,000 ft. (6.1 km) (13,.....4 x 10-10 per meter-ster), 

compared with ground level. 

c. The atmospheric attenuation coefficient is 0.1 dB/km each 

way at 40,000 ft. (12.2 km) and 0.15 dB/km at 20,000 ft. (6.1 km). 

d. A SiN ratio of 8 dB is sufficient for detection, and any 

reduction caused by frequency broadening of the signal beyond the 

bandwidth due to turbulence is not detrimental. 

The SIN ratio improvement can come from a variety of sources; the 

logical steps for improvement are: 

1. Reduce 'the losses. The observed loss exclusive of the 

detector is 15 dB which is detailed as follows: 

Optics. (beamspli tter, Ge window, lenses) 
Extended diffuse target, Gaussian beam 
Target depolarization 
Receiver electronics 
Unexplained 

Up to 5 dB of these losses can be eliminated. 

3 dB 
5 dB 
1 dB 
4 dB 
2 dB 

2. Pulse integration. The SIN ~atio can be improved by 

increasing the number of pulses if integration is perfect 

and signal amplitude remains constant. However, signal 

amplitude varies widely, and analytical integration of 

the Edwards returns shows that there was virtually no 

improvement in the integrating 50 pulses. At higher 

altitudes air turbulence, the primary cause of the signal 
variation, is less severe; hence, substantial improvement 

could be obtained from integration •. 
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3. Increase the laser output. This step should be considered 

only as a last measure. 

4. Other system improvements. Examine the possibilities of 

improving the detector and the. aperture. Because the 

quantum efficiency of the HgCdTe detector in the test was 

approximately 0.25, little room for improvement was 

suggested there. Enlarging the effective aperture from 

10 - 15 in. (25.4 38.1 cm) would theoretically increase 

the signal-to-noise ratio at 10 mi. (16.l km) by 3 dB. 

Analyses of the data from the flight tests were conducted under 

the data analysis section of this contract (see Section 1) and are 

the bases for the suggestions for systems modification and improve­

ments described in Raytheon proposal ER76-4063, Proposed Modifications 

to CAT Detection Instrumentation System, 2 March 1976, and in the 

Offset CAT System component description given in Section 3. 
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9.1 GENERAL 

SECTION 9 

FLIGHT DATA ANALYSES 

The performance of the CAT system was evaluated by examining the 

system performance against known targets - ground, clouds, clear air, 

etc., in order to estimate system efficiency, focusing, and the back­

scatter coefficients of atmospheric targets. If the ground target is 

a smooth area, the backscatter coefficient can be determined using 

samples in the laboratory or data from previous tests. Sand covered 

ground (Rogers pry Lake at Edwards Air Force Base) provided such a 

target. When a sufficient amount of data was consecutively collected, 

statistics of the signal were measured to determine the effects of 

backscatter fluctuations, system energy and efficiency fluctuations, 

and atmospheric turbulence on system performance. The backscatter and 

system fluctuations were separable from the turbulence fluctuations 

by a study' of range dependence and temporal behavior of the fluctua­

tions. These then .were separated from each other using temporal be­

havior and measurements from ground tests under controlled conditions. 

Two atmospheric phenomena were also known to have significant 

effects on the system: attenuation due to absorption, and scattering 

and atmospheric turbulence, which causes fluctuation in the signal 

and a degradation of average signal value. Each of these has a 

unique range dependence detectable from the amplitude behavior of 

single and multiple pulses in periods of straight, level flight. 

The benefits of pulse integration were also evaluated. 

Basically the tests fall into three groups: 

1. Returns from the ground to check out and calibrate the laser 

system. A flat area (Rogers Dry Lake at Edwards AFB) was 

selected and dives made at it. 
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2. Returns from clouds to detect turbulence. A mountainous 
area was selected. Where feasible, the flight was con­

tinued through the clouds to correlate actual turbulence 

with the laser return. 

3. Returns from air. 

4. Returns from miscellaneous targets. 

The data analysis indicated good results from all four categories. 

The 1973 ground tests showed a signal smoothly varying with range, 

consistent from run to run on different days, and nearly two orders 

of magnitude larger than returns measured during flight tests in 

1972 at the same location. 

The runs against clouds clearly showed the ability of the system 

to detect turbulence and predict the time it will be encountered. 

During one flight over the mountains bordering the OWens Valley, a 

total of 23 clouds was detected. From an examination of the 

sequence camera record of the A-scope (amplitude vs. range) and RVI 

(velocity vs. range) plots, the length, range signa1-to-noise ratio, 

and Doppler width of the clouds were measured and tabulated. Although 

the plane usually avoided the clouds for safety reasons, there were 

some instances in which a correlation between the sighting and the 

encountering of turbulence could be made. 

Signals were also received from clear air and are correlated in 

the complete data analysis given in Appendices E and F. 

Evaluations were also made of CAT flight data with area of Doppler 

broadening as a function of pulse width, and from air returns in a 

steady state, which indicated air speed. Data were taken from 

sequence camera photo~magnetic tapes, and the on-board computer 

print-out of flight parameters, and voice commentary. 

Three sets of tests were conducted. The first two were in the 

winter of 1972 and 1973 before the modifications and the third test 

series was in the first quarter of 1979. 
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9.2 DATA HIGHLIGHTS 

.' The correlation between CAT instrument returns from a cloud and 

aircraft response at cloud penetration is shown in Figure 9-1 where 

the wide IVI trace at 23:53:10 with range gate at 27 ~sec is the 

processed return from a turbulent cumulus cloud. Flying at 350 knots 

(175 m/sec), the aircraft penetrated the cloud 22 seconds later with 

the aircraft vertical accelerometer recording a strong impulse 24 

seconds afterwards, showing the correlation between turbulence as 

predict~d by the CAT instrument, and as experienced later by the aircraft. 

Returns from thin cirrus clouds are shown by the series of RVI 

and A-Scope photos (Figures 9-2 (a) through (j». Several examples 

show two clouds, one seen through the other. (The clouds can appear 

at different frequencies or different velocities.) The A-Scope filter 

is sometimes tuned on the near cloud while rejecting the far cloud; 

or conversely when both clouds are at the same frequency, the A-Scope 

shows clearly two returns separated in range. 

A steep descent at Edwards AFB is recorded'by RVI and A-Scope 

series photos (Figure 9-3 (a) through (h». The A-Scope sweep is 

changed at the sho~ter ranges. Notice that the range to the ground 

is measured independently by the two displays. The strong returns 

at close range saturate the receiver which is set at maximum sensi­

tivity, so that a signal appears across the entire RVI range display. 

The STC would adjust sensitivity with range to prevent this effect. 

Another steep descent at Edwards AFB is shown via the IVI presenta­

tions shown in Figure 9-4 (a) through (d). The range gate is manually 

tracked in from 192 j.lsec to 34 j.lsec during the descent. Figure 9-4 (a) 

shows a very strong ground return and a wind return. 

Figure 9-5 (a) through (d) shows various returns from dust clouds 

and ground targets in the Imperial Valley and Owens Valley. 
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CAT FLIGHT 19 - JANUARY 17, 1973 

ALTITUDE 33,000 FT. (10 km) AT START OF SERIES: 
CIRRUS CLOUDS 

TRUE HEADING: 79.2 0 

TRUE AIR SPEED: 480 KNOTS (240 m/sec) 

Figure 9-2. Thin Cirrus Clouds Returns 
( Sh e e t 1 0 f 5) 

9-5 

(a) 

RVI 

Vert. 3.33 MHz/div. 

Horiz. 2 nmi/div. 
( 3 • 7 km/ d i v • ) 

A SCOPE 

Vert. 10 dB/dive 

Horiz. 1 nmi/div. 
( 1. 9 km/ d i v • ) 

(b) 

LATITUDE (DEG. MIN.) 
40.17.0 N 
LONGITUDE (DEG. MIN.) 
106.57.5 W 

EO-552 



CAT FLIGHT 19 - JANUARY 17, 1973 (continued) 

ALTITUDE 33,000 FT. (10 km) AT START OF SERIES: 
CIRRUS CLOUDS 

TRUE HEADING: 79.2 0 

TRUE AIR SPEED: 480 KNOTS (240 m/sec) 

Figure 9-2. Thin Cirrus Clouds Returns 
( Sh e e t 2 0 f 5) 

9-6 

(c) 

RVI 

Vert. 3.33 MHz/div. 

Horiz. 2 nmi/div. 
(3 • 7 km/ d i v • ) 

A SCOPE 

Vert. 10 dB/dive 

Horiz. 1 nmi/div. 
(1. 9 km/ d i v • ) 

(d) 

LATITUDE (DEG. MIN.) 
40.17.0 N 
LONGITUDE (DEG. MIN.) 
106.57.5 W 

EO-553 
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CAT FLIGHT 19 - JANUARY 17, 1973 (continued) 

ALTITUDE 33 ,000 FTe (10 km) 
CIRRUS CLOUDS 

TRUE HEADING: 79.2 0 

AT START OF SERIES: 

TRUE AIR SPEED: 480 KNOTS (240 m/sec) 

Figure 9-2. Thin Cirrus Clouds Returns 
(Sheet 3 of 5) 
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( e ) 

RVI 
Vert. 3.33 MHz/div. 

Horiz. 2 nmi/div. 
( 3 • 7 km/ d i v • ) 

A SCOPE 

Vert. 10 dB/dive 

Horiz. 1 nmi/div. 
( 1. 9 km/ d i v • ) 

(f) 

LATITUDE (DEG. MIN.) 
40.17.0 N 
LONGITUDE (DEG. MIN.) 
106.57.5 W 

EO-554 



CAT FLIGHT 19 - JANUARY 17, 1973 (continued) 

-~ --- --- -- - ---

ALTITUDE 33,000 FT. (10 km) 
CIRRUS CLOUDS 

TRUE HEADING: 79.2 0 

AT START OF SERIES: 

TRUE AIR SPEED: 480 KNOTS (240 m/sec) 

Figure 9-2. Thin Cirrus Clouds Returns 
(Sheet 4 of 5) 
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(g) 

RVI 

Vert. 3.33 MHz/div 

Horiz. 2 nmi/div. 
(3.7 km/div 

A SCOPE 

Vert. 10 dB/dive 

Horiz. 1 nmi/div. 
(1. 9 km/div 

(h) 

LATITUDE (DEG. MIN. 
40.17.0 N 
LONGITUDE (DEG. MIt' 
106.57.5 w 

EO-555 



CAT FLIGHT 19 - JANUARY 17, 1973 (continued) 

ALTITUDE 33,000 FT. (10 km) 
CIRRUS CLOUDS 

TRUE HEADING: 79.2 0 

AT START OF SERIES: 

TRUE AIR SPEED: 480 KNOTS (240 m/sec) 

Figure 9-2. Thin Cirrus Clouds Returns 
(Sheet 5 of 5) 
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(i) 

RVI 

Vert. 3.33 MHz/div. 

Horiz. 2 nmi/div. 
(3 • 7 km/ d i v • ) 

A SCOPE 

Vert. 10 dB/div. 

Horiz. 1 nmi/div. 
( 1. 9 km/ d i v • ) 

(j) 

LATITUDE (DEG. MIN.) 
40.17.0 N 
LONGITUDE (DEG. MIN.) 
106.57.5 W 

EO-556 
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' I • I 
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' Oi l ,I 

I 

It 

(a) 

RVI: 2.64 MHZ/DIV 
20 \-lsec/DIV 

A-SCOPE 10 dB/DIV 

(b) PHOTOS 1233--1327 

20 j.J.sec/DIV 

(c) 

PHOTOS 1339--1368 

10 \-lsec/DIV 

EO- 557 

CAT FLIGHT 15 - JANUARY 12, 1973 - RUN 9 -- HgCdTe DETECTOR 

Figure 9- 3 . steep Descent at Edwards AFB (Sheet 1 of 3) 
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.- -_ .. - --_._- .,.--~ 

'- -_. _._ .. _----

(d) 

(e) 

RVI: 2 . 64 MHz/DIV 
20 \-lsec/DIV 

A-SCOPE 10 dB/DIV 

PHOTOS 123 3--1327 

20 \-lsec/DIV 

PHOTOS 1339--1368 

10 \-l sec/DIV 

( f) 

EO- SS8 

CAT FLIGHT 15 - JANUARY 12, 1973 - RUN 9 -- HgCdTe DETECTOR 

Figure 9- 3 . Steep Descent at Edwards AFB (She et 2 of 3) 
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( g) 

RVI: 2.64 MHz/DIV 
20 ~sec/DIV 

A-SCOPE 10 dB/DIV 

PHOTOS 1233--1327 

20 ~sec/DIV 

PHOTOS 1339--1368 

10 ~sec/DIV 

EO- SS9 

CAT FLIGHT 15 - JANUARY 12 , 1 97 3 - RUN 9 -- HgCdTe DETECTOR 

Figure 9-3. Steep Descen t at Edwards AFB (Shee t 3 of 3 ) 

9-12 



(a) 

(b) 

ADDAS OUTPUT DATA: 

WIND SPEED: 33 kn (16.5 rn/sec) 
WIND DIRECTION: 299° 
AIRCRAFT HEADING: 247° 
AIRCRAFT DRIFT ANGLE:-5.4° 

IVI DISPLAY PHOTOS 
RECONSTRUCTED FROM TAPE. 
10 MHz FULL SCALE 

IVI MANUALLY TRACKED 
ON GROUND RETURN FROM 
192 ~sec TO 34 ~sec 
DURING DESCENT 

EO-560 

CAT FLIGHT 21 - JANUARY 19, 1973 - RUN 17 

Figure 9- 4 . Descent at Edwards AFB (Sheet 1 of 2) 
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L- __ _ 

(c) 

ALTITUDE: 1,500 FT. (457 METERS) 
PITCH ANGLE 5.00 DOWN 

( d) 

SECONDARY RETURN ON 
PHOTO 20:53:01 IS 
GROUND WIND, CALCULATED 
FROM ADDAS DATA AT 2.2 MHz 
ABOVE GROUND RETURN 

EO-561 

CAT FLIGHT 21 - JANUARY 19, 1973 - RUN 17 (continued) 

F igure 9- 4 . Descent At Edwards AFB (Sheet 2 of 2) 
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(a) 

RUN 9 

IMPERIAL VALLEY 

DUST CLOUD AT 4,300 FT. 
(1,311 METERS) 

HORIZ. 2 NMI/DIV. 
(3.71 KM/DIV.) 

VERT. 10 dB/DIV A-SCOPE 

2.64 MHz/DIV RVI 

(b) 

RUN 20 

CWENS VALLEY 

DUST CLOUD AND GROUND 

CAT FLIGHT 21 -- JANUARY 19, 1973 EO-562 

Figure 9- 5 . Dust Clouds and Ground Targets Returns in Imperial 
and Owens Valleys (Sheet 1 of 2) 
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HORIZONTAL - 2 nmi/DIV (3.71 km/DIV) 

VERTICAL - 10 dB/DIV A-SCOPE 

2.64 MHz/DIV RVI 

(c) 

TWO DUST CLOUDS 

(d) 

RETURN FROM MOUNTAIN 

EO- 563 

CAT FLIGHT 21 - JANUARY 19, 1973 - RUN 20 -- OWENS VALLEY 

Figu r e 9-5 . Dust Clouds and Ground Targets Returns in Imperial 
and Owens Valleys (Sheet 2 o f 2) 
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A series of clear air returns during a climbout from the Imperial 

Valley is shown in Figure 9-6 (a) through (h). These IVI photos 

illustrate signals up to 21,800 feet (6,645 m) altitude. The wind 

was out of the West, at 2800
, and the aircraft heading was approximately 

3100 from 14,300 feet (4,359 m) to 21,800 feet (6,645 m) altitude. The 

range gate on the IVI was set at 24 ~sec for most of these photos. 

Cumulus cloud returns from the Bishop area are shown in Figure 

9-7 (a) through (e). The first RVI photo, 9-7 (a) shows three 

individual clouds at three different ranges and three different fre­

quencies. The A-Scope was tuned on the middle cloud only. The four 

following photos, 9-7 (b) through (e), show very wide returns from 

cumulus clouds. The aircraft was maneuvering during this sequence. 

9.3 SUMMARY OF 1972 TEST ANALYSI§ 

9.3.1 INTRODUCTION 

The data from the flight tests of the CAT laser radar in August 

and September 1972 are analyzed in this section. In the first part, 

the backscatter returns from the ground are compared with theoret­

ically expected values to evaluate the system performance. In the 

second par~ the backscatter returns from the atmosphere are analyzed. 

The conclusions are presented at the end. 

9.3.2 RETURNS FROM GROUND 

9.3.2.1 Test Data 

Signal-to-noise ratio measurements of ground returns at a 

nominal pitch angle of 10 degrees were made on runs 6, 7A and 7B of . 

Flight 13 at Carson Sink, Nevada, and on runs 12 and 15 at Edwards. 

These data are presented in Tables 9-1 and 9-2, and are plotted in 

Figures 9-8 and 9-9. (Clouds appeared in the beam on some of the 

measurements at Carson Sink. Their returns were easily identified 

and rejected. 

To compare with the theoretical curves, the atmospheric losses 

were determined and applied to the measured data. These losses, as 

calculated by C. Sonnenschein from the altitude, temperature and 
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1/19/73 Run 12 
19:45:46 19 us 

PRESSURE 
ALTITUDE 

(a) 

TRUE 
HEADING 

4,500 ft. 1090 

(1,371 m) 

(b) 

6,250 ft. 39
0 

(1, 905 m) 

(c) 

14,300 ft. 304
0 

(4,359 m) 

(d) 

17,900 ft. 304
0 

(5,456 m) 

EO-564 

Figur e 9-6. Climb from Imperial Va lley - Clea r Air Returns 
( Sh e e t 1 0 f 2 ) 
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r'~ .~ . .. ~ .. - ~ .. 

PRESSURE 
ALTITUDE 

(e) 

TRUE 
HEADING 

18,750 ft. 3040 

(5,700 m) 

( f) 

19,800 ft. 3180 

(5,700 m) 

(g) 

20,000 ft. 3180 

(6,096 m) 

(h) 

21,800 ft. 315 0 

(6,645 m) 

EO-565 

Figure 9-6. Climb from Imperial Va lley - Clear Air Returns 
(Sheet 2 of 2) 
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• . .' . ' +- ".., (b) 

HORIZONTAL - 2 nmi/Div. 
(3 • 7 1 km/D i v • ) 

VERTICAL - 10 Dd~ A-SCOPE 
lV 

2 64 MI:Iz RVI 
• DlV 

#2729--THREE CLOUDS 

#2835 to #2838--
WIDE SPECTRAL RETURNS 

EO - 566 
CAT FLIGHT B8 - January 15, 1973 - Run 12 

Figure 9-7 . Cumulus Clouds in Bishop Area - Altitude: 17, 000 ft. 
( 5 . 2 km) ( She e t 1 0 f 2 ) 
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(c) 

(d) 

(e) 

HORIZONTAL - 2 nrni/Div. 
( 3 • 7 1 krn/D i v • ) 

VERTICAL - 10 Dd~ A-SCOPE 
1V 

~ 2.64 Div RVI 

#2729--THREE C~OUDS 

#2835 to #2838--
WIDE SPECTRAL RETURNS 

CAT FLIGHT B8 - January 15, 1973 - Run B8 - (continued) EO-56 7 

Figure 9-7. Cumulus Clouds in Bishop Area - Altitude: 17,000 ft. 
( 5 . 2 km) ( She e t 2 0 f 2 ) 
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TABLE 9-1. CARSON SINK TEST DATA (FLIGHT 13) 

Run Slant Ranqe to Ground SiN 

6 84 x 10 3 ft 3 dB 

60 6 

18 30 

12 35 

7A 84 x 10 3 1 

48 10 

18 30 

15 33 

7B 84 x 103 3 

72 5 

63~2 8 

48 9 

36 16 

12 34 

To convert from feet to meters, multiply by .3048. 
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TABLE 9-2. EDWARDS TEST DATA (FLIGHT 9) 

PICTURE DATA INFLIGHT 

Run Slant Ranqe SLN(T~.l Slant Ran~e SLN 

12 5.8 n. mi. 7 dB 6 7 dB 

5.6 6 4.8 12 

4.8 8 3.8 15 

4.0 11 3.3 20 

3.1 12 2.5 18 

2.5 16 2.0 24 

2.0 18 

1.6 22 

15 5.5 6 5.5 6 

4.6 8 4.5 10 

3.5 12 3.5 12 

3.2 10 2.5 22 

2.2 20 1.5 25 

To convert from nautical miles to kilometers, multiply 

by 1.853. 
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relative humidity records at Carson Sink, are plotted in Figure 9-10. 

The effects of the two major attenuators in the atmosphere at 10.6 

microns - water vapor and carbon dioxide - were measured by McCoy, 

Rensch and Long3 and by Yin and Long. 6 The spread of the points from 

the line in Figure 9-10 stems from the slight variation in pitch 

angle during the runs. For the purposes of this analysis, these 

variations can be ignored. The ground returns corrected for atmos­

pheric losses are plotted in Figure 9-8 as crosses and in Figure 9-9 

as a dashed line. 

In comparing the data at Carson Sink ahd Edwards, it is evident 

that the signals at Carson Sink were much stronger and covered a 

wider range. Therefore, the Carson Sink results were emphasized. 

9.3.2.2 Theoretical Signal-to-Noise Ratio 

Although both the beam and receiver were supposed to be focused 

at infinity, there is some doubt as to whether they both were. Also, 

the beam may not have filled the optical aperture, as sensitivity tests 

involving the closing of the "c 1am she1l" shutter seem to indicate. 

Therefore, three possibilities were examined. 

1. Both the beam and receiver field-of-view were focused at 

infinity. 

2. Both the beam and receiver fie1d-of-view were focused at 

some finite range Rf • 

3. The beam was focused at infinity but the receiver field-

of-view was focused at Rf • 

Since the first case is a special variant of the second, the equation 

will be derived for the second case. The additional degradation 

of the third case will be computed as an extra loss factor. The 

aperture effect was considered by varying the diameter. 

The signal-to-noise ratio of a heterodyne rece.iver is: 

S fld 
N = 2 hv B x Ps 
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The effective signal power P of a focused system (Case 2) against s 
the ground not at the point of focus is given by:8 

P = P x s 
cr ' 
fi x R2 + (~d2/4A)2(1 _ R/Rf)2 

By combining the equations through P and 
2 s 

A = (~/4)d , and Tl = 1 (the atmospheric 

substituting E ~ P/B, 

loss was taken out of the r a 
measured data), the SNR equation for Case 2 is derived: 

Here 

, d 2 
E cr 'fld ns 

(~ no atm. 
N 

E is the laser pulse energy 

cr' is the target cross section factor 

(Calculated below) 

d is the aperture diameter 

nd is the detector quantum efficiency 

ns is the system efficiency 

hv is the energy per photon 

R is the range to the ground 

R
f 

is the range of focus 

A is the laser wavelength 

(1) 

= 5 mjoules 

== 0.25 

= 1 ft. (30 cm) 

== 0.08 

= 0.2 

== 1.9 -20 
x 10 joule 

-6 = 10.6 x 10 m 

For Case 1 (beam and receiver focused at infinity), Rf = 00 in the 

above equation. For the Edwards Test data the pulse energy was 3.1 

millijoules. An aperture diameter of 6 in. (15.2 em) was also tried. 

as: 

The radar cross section cr' of a target filling the beam is defined 

cr' 
41r = Reflected intensity 

Incident power 

Laboratory measurements of the reflectivity of dirt samples from the 

test area by R. Seavey showed that this ratio is 0.02 ster-l largely 

independent of viewing angle. Thus, 

cr' = 4~ x 0.02 = 0.25 ster-l 
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By substitution into equation (I) the signal-to-noise ratio 

in the absence of an atmosphere is calculated for Cases 1 and 2. 

It is plotted in Figure 9-11 for ranges of focus of 10, 20, and 30 

thousand ft. (3.05, 6.1 and 9.1 km) and infinity. The 6-in. (15.2 cm) 

aperture case for infinite focus is also plotted. 

For Case 3 - beam focused at infinity and receiver focused at 

some finite range Rf - an additional loss factor must be included 

in equation (I). The loss factor is determined by the fraction of 

the beam within the receiver field-of-view. If the beam is smaller 

than the field-of-view and therefore wholly contained within it, 

there is no loss; but if the beam is larger, only the portion within 

the field-of-view is detected. The remainder is missed because it 

falls outside the LO beam in the receiver. Hence the SNR degradation 

is given by: 

Receiver FOV area 
Beam Area 

d 2 (1 - R/R
f

) 2 + (AR/d) 2 

d 2 + (AR/d) 2 

x 
R/R

f 
- 2 

= 1 

if R < 2R
f 

(2) 

The equations are approximate because the field-of-view is not a 

sharply defined, uniform cone as assumed in the derivation. 

The signal-to-noise ratio is plotted in Figure 9-12 as solid 

lines which are actually asymptotes. The dashed lines represent 

the SNR with both beam and receiver focused at Rf • 

9.3.2.3 Comparison of Experimental and Theoretical Data 

None of the theoretical models fit the data points without 

modification. All must be shifted downward by varying amounts, and 

. then, only a few are reasonable fits. The better fits are plotted in 

Figure 9-13.. The curves are identified as follows: 

9-29 



60 

50 

40 

-. 
co 

~ 30 
Z 
';),-

20 

10 

o 

I , 
I I ! i ! ~ i i 

, ' I I .1 LLW1I1JJllllill I 
I " I 1-+-

~~ RANGE OF FOCUS = 10,000 ft. (3.05 km) , ' I 
I 

~ L! I I, 

I-l2u I 
I , ' 

I t-130 ! i I I 

i ' I I 
po ~ I 
t:", 
bo 

, 

0" = 4 p (r) = 0.25 

"'sys = 0.2 

"'d = 0.08 

E = 5 mJ 

d = 12 in. (30.5 em) - solid lines 
l-
e- 6 in. (15.2 em) - dashed line, 
l-

I- I I I I I I I I I I I I I II I III I I I I 1'1 I I I I I I I III LlIIII Llil LlL 

10,000 ft. 
(3.05 km) 

'I . 
20,000 ft. 
(6.1 km) 

JIll 11111 

30,000 ft. , 
(9. 1 km) , 

RANGE 

50,000 ft. 
(15.2 km) 

" , ,; 

I 

" 

, 
I 

I 

I 

if, "! ,j:! 
,:11 ''1' .:.J 

I :il it' 
I,:; " lili;'" 
i ~ I 'f :i 
Ii' j " 
" ill' 
! ,I' '~ 

Ii U; " 

1,1 ' 

,! lSJ 
; I Ii:', ' 
. " ,:;1 , 

'ilJ 
",: 
.',;' 

I 

I II 
I " 

, 

" 

I 

, 

ill 111111 

I 
100,000 ft. 
(30.5 km) 

EOA-938 

Figure 9-11. Expected Signa1-To-Noise Ratio of CAT System 
Against Ground Assuming No Atmospheric 
Attenuation 

9-30 



60 

50 

40 

z 
~ 30 

20 

10 

o 

i , 

I 
I 

" ""I.. 
r-~ 

I , 

10,000 ft. 
(3.05 km) 

I 

I 

I ' , ; , I I I i I I I', I'! ,I \: 
, I; I I III 

i I I ' , , 
" 

I I ii, 'i 
I I I 

I I I' I' 

I I 
I I I 

: , I 

I 11 ; . 
I I I I ! ." 

I I I i I ., Ii: 

I ,I II 

, I I I ' I I 

'I ; Ii I! ,I ';1 "'-, 
I, RANGE OF FOCUS (Rf) : ~' 

- 20, 000 ft. (6.1 km) 
I I III I i ~ , 

t.... I 
I 

!i 

M.L I 

III 
'j.' 
\J. III 

: 

i 

Ii 

MEASLRED VA IE! 
(ATMOSPHERIC LOSS TAKEN OU T) 

20,000 ft . 30,000 ft • 
(6. 1 km) (9 • 1 km) 

RANGE 

50,000 ft. 
(15.2 km) 

I 

I, 

100,000 ft. 
(30.5 km) 

EOA-939 

Figure 9-12. Expected SNR Against Ground' with CAT 
Transmitter Focused At Infinity, Receiver 
Focused at Rf (No Atmospheric Attenuation) 

9-31 



z 
~ 

60 

50 

40 

30 

20 

10 

o 

, i , 
I 

! 
I , 

, , , 
, , ! 

, 
i 

r-...' 
I'--

"'" t-.. "1A 

i~' 

~2B '" 
13 I 

I- EDWARDS TEST DATA l-
I- (AVERAGED, NO ATM.) 
I-

10,000 ft. 
(3.05 km) 

20,000 ft. 
(6.1 km) 

30 , 000 ft. 
(9.1 km) 

RANGE 

I II 
' ' 

i 

I 

: ' i 
I 

, 
I 
Ii , 

I 

I 

, 
" , " 

I I ' i: ': 'I 

' i ;I~: 
' , , I , 

i , I: I ! ! 

I I 

:,I~·~ :i' ! 
, 

II iii I 
I I 

I , ,I , 
II I':! 

: ! lJi, , 
, : 

' , ,I I !itt 

:ffi 
I 

, , ' 

I I , 

I 

: 

I 

m 
RSON SIN '1,\ 

50 , boo ft. 
(15.2 km) 

, 

, 

100,000 ft. 
(30.5 km) 

EOA-940 

Figure 9-: 13. Fit of Theoretical Models to, Carson 
Sink Measurements. (See Text for 
Identification of Curves.) 

9-32 



1. RFt = ~r = 10,000 ft. (3.05 km) I d - 12 in. (30.5 cm), 

6L = 15 dB 

2. ~t = co 
~r = 6,000 ft. (1.8 km) I d - 12 in. (30.5 cm) , , 

6LA = 7 dB, 6LB = 11 dB 

3. ~t = RFr = co, d = 6 in. (15.2 cm) , 6LA = 9 dB, 6LB = 15 dB 

Here ~t and ~r are the range of focus of beam and receiver respec-

tively, d is the aperture diameter and 6L is the additional loss 

factor by which the curves are shifted downward. Note that curves 

2 and 3 must be shifted down by different amounts depending upon 

altitude. The only way to account for the large difference in 

shift is to postulate a haze or very light cloud layer at 20,000 

to 35,000 ft. (6.1 to 10.7 km) slant range; i.e., an altitude of 

3,500 to 5,000 ft. (1.1 to 1.5 km) above ground. Although the 

atmospheric backscatter measurements did not detect a definite 

haze layer, clouds blocked the beam during parts of the Carson 

Sink flight, and variations in haze with altitude were clearly 

evident in the Edwards atmospheric data runs. 

Each of the cases indicates a higher operational loss than the 

predicted 7 dB - anywhere from the extra 7 dB for curve 2 to the 

15 dB for curve 1. Possible explanations are: 

A. Ground may have lower reflectivity at 10 degrees incidence 

than what was measured in the lab with loose dirt 

B. Turbulence in front of the aperture which reduces the 

effective area 

C. Higher atmospheric attenuation than predicted all along the 

path. 

The extra loss is probably due to some combination of these factors 

plus higher losses within the receiver under flight conditions. 

9.3.3 RETURNS FROM AIR 

Tests were run with the beam transmitted horizontally. The 

received signal was measured as a function of time·, i. e., range. 

The object here is to find the optical model which yields the most 

constant value of the backscatter coefficient, S, calculated from 

the measured SNR data. Since the readings on each pulse are at 
>/ 
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the same height, ~ should be a constant. The backscatter coefficient 

should also be as close to the expected value as possible. However, 

there is considerabl.e uncertainty as to what this value should be 

at various altitudes. 

9.3.3.1 Test Data 

Measurements were made at barometric altitudes of 7,000 ft. (2.1 km), 

7,400 ft. (2.3 km), 9,400 ft. (2.9 km), 11,450 ft. (3.5 km), 13,500 ft. 

(4.1 km), 16,000 ft. (4.9km) and 17,000 ft. (5.2 km) at ranges out to 

3 nautical miles (5.6 km). Since the data at 9,400 ft. (2.9 km) is the 

most complete, this altitude was setected. In any event, the variation 

of signal with range is similar at the other al ti.tudes. The data points 

are plotted in Figure 9-14. 

To compare with theory, the atmospheric attenuation was taken 

out of the measured values. Inspection of typical temperature and 

humidity readings at that altitude plus application of the Rensch, 

McCoy and LOng 3 data show an attenuation coefficient at 10.6 microns 

of the order of 0.25 dB/km one way or 0.5 dB/km round trip. If this 

value is far off, it will show up in the plotted data and a correction 

can be made. The signal-to-noise ratio without the atmospheric 

attenuation is plotted in Figure 9-14 as the circled data points. 

Comparison with Theory 

As discussed earlier, there are various possible optical models. 

To repeat, (1) both the beam and receiver are focused at infinity, 

(2) both the beam and receiver are focused at some finite range ~, 

or (3) the beam is focused at infinity but the receiver is focused 

at RF • There is also some flexibility in the selection of the 

aperture diameter. The flight tests against the ground showed that 

some of these models fit the data points well, others very poorly. 

See Page 9-33 for a summary of the cases which gave the best fit in 

the hard target tests. 

The signal-to-noise ratio of a focused system against a soft 
. . b 1 target ~s g~ven y : 

S 
N = 
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where 

x = 41. (R + CT) _ 7f d
2 

( 1 _ R +" (CT/4)) 
1,2 7fd2 4 41. Rf Rf 

The equation for the loss factor from a difference in focusing, 

F, was given previously in equation (2). Since the atmospheric 

attenuation was taken out of the measured data, na = 1. Solving for 

the backscatter coefficient, S, 

s = 1 
(3 ) 

The parametric values are the same as for the hard target case 

except for: 

E = 3 mjoules 

T is the pulse length ( ~ l/B) = 8 ~sec 

c is the velocity of light = 3 x 10
8 

m/seG 

The backscatter coefficient was calculated witn the SNR values 

at 9,400 ft. (2.9 km) for the various optical situations and 

plotted in Figure 9-15. The curves are identified as follows: 

1. ~t = 00, ~r = 5,000 ft. (1. 5 km) , d = 12 in. (30.5 cm) 

2. RFt = 00, RFr = 10,000 ft. (3.05 km) , d - 12 in. (30.5 em) 

3. RFt = 10 Kft, RFr = 10,000 ft. (3.05 km) , d = 12 in. (30.5 

4A. RFt = 00, RFr = 00, d = 6 in. (15.2 em) 

4B. RFt = 00, RFr = 10,000 ft. (3.05 km), d = 6 in. (15.2 cm) 

where ~t is the range of foeus of the transmitted beam, ~r is the 

range of focus of the receiver, and d the aperture diameter. The 

"best fit" curve is one which is most nearly horizontal and closest 

em) 

to the expected value of backscatter coefficient at that altitude. 

Very few measurements have been made of the backscatter coefficient at 

10.6jL, and probably none near 10,000 ft. (3.05 km) -altitude. One way 
" of estimating the coefffic'ient is to. extrapolate from the decrease 

in attenuation from the principal scattering agent, water vapor, 
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with altitude. This approach leads to an estimated reduction of 

an order of magnitude in the backscatter coefficient, from 10-7 

-8 -1 -1 per meter per steradian at sea level to roughly 10 m sr at 

9,400 ft. (2.9 km). 

Inspection of Figure 9-15 shows that all the curves except 

numbers 2 and 3 are reasonably horizontal and all are below the 

estimated value of backscatter coefficient. (The dip in curve 1 

at 9,000 ft. (2.7 km) range is partially due to the approximation of 

eq. (2) for the loss factor from the difference in focusing. Curve 

4A for a six-inch (15.2 cm) aperture size and both beam and receiver 

focuses at infinity is the most horizontal. However, it is still 

roughly 6 dB below the estimated backscatter coefficient. Thus, the 

most probable models based upon the soft target results are: 

1. Both the beam and receiver are focuseCi at infini tv but 
... . 

the effective a~erture. diameter is only 6 inches (15.2 cm) and 

the system losses are roughly. 6 ·dB higher than predicted 

(with S = 10-8 m- l sr- l ) 

2. The beam is focuseCi at infinity but the receiver is 

focused at 5,000 ft. (1.5 km) (the curves at 4,000 and 6,000 ft. 

(1.2 and 1.8 km) are significantly different and less horizontal) 

with a 12-inch (30.5 cm) aperture and the system losses are rough 1 
. " -8 -1 -1 

4 dB higher than predicted with (~= 10 m sr ). 

A third, less likely possibility i~ that both transmitter and 

receiver were focused at 10,000 ft. (3.05 km) with losses 12 dB higher 

th d ' t d ( 'th D -- 10-8 m- l sr- l ). an pre lC e Wl IJ 

CONCLUS:rO~ 

The analysis of both the hard and soft target results shows 

that one of the, following optical models of the CAT system applies: 

1. 

2. 

~t= 

~t= 

l f~ 

~,RF = 5,000 ft. (1.5 km), d = 12 in. (30.5 cm) 
r ; 

~ = 10,000 ft. (3.05 km), d - 12 in. (30.5 em) --Fr 

3. ~t = RFr = 00, d = 6 in. (15.2 cm) 
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where RFt and RFr are the ranges of focus of transmitter and receiver 

and d is the aperture diameter. The required extrf,system loss to 

fit the above models to the data varies from 7 dB f~r (1) to 15 dB for 

(2). The original loss was 7 dB. A summary of how the three models 
-"', 

fit the data runs is given in Table 9-3. 

Of the three, the most probable model appears to be the third 

one, provided the e~istence of a haze layer is possible. It is con­

ceivable that the effective aperture size on transmission and re­

ception was only 6 in. (15.2 cm) even though the physical size was 

12 in. (30.5 cm) because the laser output is somewhat Gaussian in 

intensity distribution. Whichever model does apply, there is little 

doubt that the losses were roughly an order of magnitude higher than 

expected. In other words, the total loss is closer to 16 dB than 

the 7 dB figure originally assumed. Whether these losses are due 

to sources wi thin the laser system or are external has yet to be 

determined. possible external sources are (1)., tower ground reflec­

tivity than 0.02 per steradian, (2) turbulence in front of the 

aperture, and (3) higher attenuation along the path. 

There is a good correlation between the test against the ground 

and the atmosphere which tends to indicate the test data are consis­

tent and the laser system operated at the same setting for both 

tests. Also, a backscatter coefficient of 2 x 10-8 per meter per 

steradian is indicated at the 9,400 ft. (2.9 km) altitude, assuming, 

the reffectivity of the ground was 0.02 per steradian in the ground 

tests. "The losses then match as indicated in Table 9-3. 
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9.4 SUMMARY OF 1973 FLIGHT TEST ANALYSIS (see Appendix F) 

9.4.1 INTRODUCTION 
r 

The January 1973 "B" series of flight tests consisted of eight 

flights in California from January 4 through 19. The tests from 

these flights fall basically into four groups: 

1. Dives at Edwards AFB against a uniform dry lake to check 

out and calibrate the laser equipment. 

2. Measurements of backscatter returns from air at various 

altitudes. 

3. Turbulent cloud tests to evaluate the laser returns from 

turbulence. 

4. Measurements from miscellaneous targets including a mountain, 

the ground prior to landing, and cumulus, dust and cirrus 

clouds. 

Data from each of these groups were analyzed in detail, and the results 

presented in Appendix F. The main conclusions are given here. 

The data are in the following forms: 

a. Sequence camera photographs of the A-scope and Range/Velocity 

Indicator (RVI). The photographs are spaced at 1.2 second 

intervals. Each exposure lasts 0.1 second and thus con­

tains the returns from approximately 14 pulses, and the 
RVI plots frequency versus range for the integrated output 

of 50 pulses. 

b. Intensity/Velocity Indicator. The output from this display 

is recorded on tape. The IVI plots intensity versus fre­

quency at a selected range for the integrated output of 

50 pulses. 

c. Polaroid photos of the A-scope taken during flight and in­

flight notes of signal-to-noise ratio. 
~ 
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" d. Voice recordings. The conv~rsations during flight were 

recorded on tape. 

e. Flight data printouts. The ground and air velocities, wind 

speed and direction, pitch and roll angle, altitude, heading, 

latitude and longitude, temperature, dew frost point and 

acceleration were recorded at ten and one second intervals. 

The data analysis was concerned with the sequence camera output only, 

because this was largely sufficient to describe the system perfor­

mance. There were two exceptions: (1) the flight data printouts 

and (2) the IVI data were included in the analysis of the cloud 

turbulence tests. 

9.4.2 RETURNS FROM GROUND AT EDWARDS AFB 

The purpose of the flight tests at Edwards AFB was to check out 

and calibrate the CAT laser system. The aircraft engaged in steep 

descents against a uniform target, Rogers Dry Lake, with the laser 

operating continuously. The resulting measurements of signal-to­

noise ratio was compared with various theoretical models of the laser 

system for the calibration. To calibra\te the target, a sample of the 

dry lake bed was taken back to the lab and reflectivity measurements 

were made at the same angle of viewing. 

The conclusions of the Edwards tests are: 

1. The CAT laser system worked well, providing consistent 

results with signal-to-noise ratios as high as 42 dB. 

2. The measured signal-to-noise ratios followed roughly the 

same slope as the 1972 test returns but were 17 dB higher. 

The improvement was due to a higher laser output and the 

substitution of the HgCdTe detector. 

3. The wide variations in signal level from pulse to pulse, 

at times exceeding 30 dB, are caused primarily by atmospheric 

scintillation. The other sources - target scintillation, 

frequency tuning of the receiver and laser instability -

have smaller effects. 
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4. There was little improvement in signal-to-noise ratio by 

pulse integration. The variation in signal level from 

atmospheric scinitillation was so great that the SNR for 

an integrated series of pulses was hardly better than the 

peak single-pulse SNR. 

The measured data were compared with the theoretical model in 

Figure 9-16. Good data were recorded on three dives during the 

flight test series: (a) Flight B2, Run 7: (b) Flight B2, Run 9: and 

(c) Flight B8, Run 18. The signal-to-noise ratios from these dives 

are plotted on the graph and are seen to fall into a smooth narrow 

channel and correlated well with each other. The theoretical model 

of best fit is drawn as the upper dashed line. 

9.4.3 AIR BACKSCATTER RETURNS 

The eventual target of the Clear Air Turbulence laser radar is 

clear air. Therefore, the returns from this target are of interest. 

Returns from air were observed throughout the test series, at 

altitudes as high as 22,000 ft. (6706 m) and at ranges as far as 

6 miles (9.65 kID). However, the sequence camera was not operated all 

the time; in fact, it was on only during 20 percent of the good data 

flights on the average, and much of that was for the dives at Edwards 

or the Owens Valley runs. Therefore, the sequence camera seldom recorded 

data at the higher altitudes where some clear air returns were observed 

on the Intensity/Velocity Indicator (IVI). Hence the data analysis was 

confined to the lower altitude returns, i.e., below 10,000 ft. (3,048 m). 

The conclusions of the analysis are: 

1. Based upon the system loss of 15 dB determined from the 

Edwards data, the backscatter coefficient S at five altitudes 

between 2,000 and 10,000 ft. (610 and 3048 m) varied from 
-9 0.7 to 7 x 10 per meter per ster. These values are 

roughly an order of magnitude less than the coefficients 

observed in the 1972 test series, probably"due to the 

difference in air between summer and winter. 
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Figure 9-16. Signa1-to-Noise Ratio Measurements and Calculated 
Values for the Dives at Edwards 
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2. The signal amplitude fluctuated wildly with range on indivi­

dual pulses, although the envelope remained reasonably con­

stant from pulse to pulse. Numerous causes were postulated. 

The primary one appears to be target scintillation. 

9.4.4 TURBULENT CLOUD TESTS 

During the 1973 flight test program the aircraft flew into 

regions of severe air turbulence in order to evaluate the CAT laser 

performance against turbulence. The flights were conducted over the 

Owens Valley in California through cumulus clouds which were fed by 

high winds from adjacent mountain ranges. 'Clouds were detected on 

37 occasions. The laser operated continuously during these flights 

even though the aircraftt encountered forces as great as 1.25 G above 

normal. 

The high turbulences were clearly shown on the laser radar 

displays well before they were reached. They appear as wide darkened 

returns on the Range/Velocity Indicator (RVI). 

A study of the cloud returns indicates that: 

• As many as three well-separated clouds were detected 

simultaneously by the laser radar (see Figure 9-9a). 

• Doppler widths were as large as 5.5 MHz, showing a 

wind velocity spread of 60 mph (27 m/sec) in the space of 

a mile (see Figure 9-9b) . 

• Clouds were detected at ranges out to 9 nmi (16.7 km). 

• Signal-to-noise ratios exceeded 20 dB. 

• The extent of laser beam penetration into a cloud was 

as much as 3 nmi (5.6 km). 

One conclusion from these observations is that 10.6 micron radiation 

pentrates certain types of cumulus clouds well. A visual check 

showed the clouds to be opaque to visible radiation. In spite of 

the good penetration, the backscatter return was still high - in one 
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instance when two clouds were detected simultaneously, the signal-to­

noise ratio was 13 dB from each one. 

9.4.5 DATA EVALUATION 

This study demonst~ated that the CAT system is a consistent and 

reliable system, but that improvement is needed to detect CAT at high 

altitudes. The measurements of system sensitivity, and the areas and 

components which could lead to realizing the required improvement 

are discussed in Section 8 and Appendix G. 
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