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THE DYNAMICS OF OCEANIC FRONTS

PART I THE GULF STREAM

Timothy W. Kao*
Laboratory for Atmospheric Sciences (GLAS)

ABSTRACT

The establishment and maintenance of the mean hydrographic properties of large scale density
fronts in the upper ocean is considered. The dynamics is studied by posing an initial value problem
starting with a near surface discharge of buoyant water with a prescribed density deficit into an'
ambient stationary fluid of uniform density. The full time-dependent diffusion and Navier-Stokes
equations for a constant Coriolis parameter are used in this study. Scaling analysis reveals three
independent length scales of the problem, namely a radius of deformation or inertial length scale,

A Lo , a buoyancy length scale, ho, and a diffusj,4 ength scale, h.. Two basic dimensionless para-
meters are then formed from these length seines; the thermal (or more precisely, the densimetric)
Rossby number, fto = Lo /ho and the Ekman number, E _ (hvlh o )2 , The governin' equations are
then suitably scaled and the resulting normalized equations are shown to depend on E alone for-, 
problems of oceanic interest. Under this scaling, the solutions are similar .for all go. It is-also
shown that 1/ko is a measure of the'froii6l slope. The governing equations, in the form used in
a previous paper by Kao, et al (1978b), are solved numerically and the scaling analysis is confirmed.
The solution indicates that an equilibrium state is established. The front can then be rendered

.	 Al
stationary by a barotropic current from a larger scale along-front pressure gradient. In that quasi-
steadystate, and for small values of E, the main thermocline, and the inclined isopycnics.,forming
the front haves evolved, together with the along-front jet. Conservation of potentialvorticity is
also obtained in the light water'pool. The surface jet exhibits anticyclonic shear in the light water
pool and cyclonic shear across the front. The cross-front ageostrophic circulation is responsible
for the maintenance of the front. It is also shown that horizontal diffusive effects are unimportant,
Comparisons with known hydrographic features of'the Gulf Stream are made, showing superb
agreement. It is thus seen the mean Gulf Stream dynamics is indeed a solution of the Navier Stokes
and diffusion equations'.

t	 For large values of E, it will be shown that another type of scaling is required. That result will
be shown in a subsequent paper as Part II of this series, and is relevant to the study of density and
current structure on the east coast continental shelf of North America from Newfoundland to
Chesapeake Bay, a region subject to forcing by freshwater river discharges.
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THE DYNAMICS OF OCEANIC FRONTS

PART I THE GULF STREAM

1. INTRODUCTION

Large scale oceanic fronts are pseudo-permanent features of the ocean, often::representing the

boundaries of water masses of different densities. The lighter water mass is bounded below by the

base of the main oceanic thermocline, The isopycnics in the main thermocline are tilted upwards to

-	 form the inclined lateral boundary or the frdAt between the light water and the denser ambient

water. There is therefore strong horizontal density change across the front, Obviously the horizontal

scale of tie frontal structure is much smaller than the larger scale of the water masses. Associated

with the structure of the density anomaly is a geostrophic current along the front. The boundary

currents on the western part of ocean basins are in fact such currents. A prominent example is the

Gulf Stream in the North Atlantic. The lighter water in that case is provided by the Sargasso Sea,

The inclined isopycnics of the density anomaly, i.e. the front, is sometimes referred to as the

"wall" of the Gulf Stream. The isopycnics tilt upwards from the main thermocline at a slope

which averages approximately 1 : 100. Clearly, it is the pressure gradient due to the buoyancy of

the lighter water that is the immediate cause of the Gulf Stream. It was also observed (see Stommel,

1966) that the potential vorticity is a constant in the light water. Eased on these two concepts,

Stommel (see 1966) gave an inviscid, steady-state inertial theory of the Gulf Stream with a two-

layer model. This simple model gave a good estimate for the upper ocean transport of the Gulf

Stream but failed to produce the shape of the surface jet and over-estimated the maximum velocity

of the currnt. To be sure, the model contained no information on the structure of the Gulf Stream.

Later elaborations of the steady-state inertial theory by Charney (1955) and Morgan (1956)

incorporated the effects of the change of the Coriolis parameter, f, with latitude and the Sverdrup

transport from the interior ocean basin.

In the present paper we investigate the dynamics of establishment and maintenance of the

structure of oceanic fronts such as the Gulf Stream. The formation and maintenance of the Sargasso

Sea is not addressed in that it is a part of the larger scale dynamics. The dynamics is studied by

posing an initial value problem, starting with a near surface flow of light water arising from the

I



interior ocean basin of Q. per unit length into a stationary ambient donserfluld of uniforat density

PO I When equilibrium is established the frontal structure advances steadily, except for a weak

Inertial period 0"', lotion, A barotropic current resulting 11roin a larger scale along-front pressure

gradient can be superposed to render the front stationary. This will concoinittantly render the

total verdeally integrated cross-front transport to near zero. It will be shown that the quasi-steady

density and current structure of the front, obtained tai solutions of that Hall Navier-Stokes and

diffusion equations, possess a certain similarity property when proper scalings aro u-,voAd, The scalfilg

analysis is tit the heart of the pm-sent paper. Comparisons or (lit, present results with the known

hydroON,,, ,plilc^'propertles of the Gulf Stream are made. Excellent agreement is found. The results

tlierefore, clucid ate the dynamics of the mean bydrography of the Gulf Stream.

The inflow of buoyaut surface mater into an ambient stationar
y
 fluid leas been subject to

previous Investigations by Kao, et if (1 x177, 1978a, b), licreaf ter reftaffed to its 1, It, and 111. We

shall first summarize (fie pilysical, 11 11der'stanki !jig that we have-gained infliese-, studies

(I) A surface density current whose front advances with it constant speed U Is established

in time — Tj (Tj 4 t/0. The d riving,, 'Pive due to buoyancy is balanced at this stage by frictional

drag. The detailed distribution of the isopycnics 
in 

the current depends only 
on 

the Ronolds

number Re, (Re = Qje where P is the kineinatic viscosity).

(ii) For tilmns less 
than 

I /f tile eff"tof the earths rotation is Jirgely neglegible, Thus in

estuarine pititnes whose titne of persistence is loss 
than 

half of a semi-diurnal tidal period, the I'mn-

tal structure is well-represeitted by the insults without the cardt"s rotation as given 
in 

I and in

Garvine 0 974) for the Connecticut River pluine reported by Crarvine and Monk ( 1 974).

(III) For longer times, the effect of the earth's rotation becomes increasingly more lmportt^!Jt,
I

It becomes the dominant factor In time — 211rif as shown In 111, The development of the alons.

front current calls into action the Coriolis foie wbicli gradually relieves tile frictional force from

its role 
In 

the balance of forces against the driving force of buoyancy, The forward speed of', tlie

front is greatly diminished and the stnictuiv tends toward it state of geostrophic balance,

,,- This is as far as we went 
in 

our priaviousst-mlies, Rigorous sealing comideraftons and detailed

accounting of the relevance of the model to oceatiograpliia events were totundertaken. 
In 

the  `I;

present paper, 
we 

first. give the proper scaling laws, It Is found that th6l problem is governed by it

2
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thermal (or densimetric) Rossby number Ro And an Ekman .number E. Furthermore, for sufficiently

small values of E, a normalization can be found so that the solution is similar for all Ro and depends

oil only, Results of the quasi-steady solution for a small E value are then given.

A recent paper by Garvine (1979) on the steady-state frontal dynamics should be mentioned.

Garvine used the momentum-integrul technique, familiar in the engineering literature, by prescribing

the density field and the shape of the velocity profiles, The prescribed cross-front velocity profile

has a surface discharge towards the u b-and a Mturn flaw at greater depth, The flow is assumed to

be two-dimensional, Empirical interfacial fstion and transport factors were assumed, The frontal

shape and the along front velocity at the interface were then calculated. While the present study of

frontal dynamics, within the framework of the dill dynamical and thermodynamical equations,

supports Garvine's assumed surface discharge towards the front as a necessary ingredient for the

maintenance of the front, the basis for Garvine's assumption on the role of the interfacial stress is

less apparent. The vertical Ekman number is a more matyral parameter for measuring the effect of

friction than Garvine's scaling parameter Pr based on the interfacial stress coefficient. Indeed, in

Garvine's limit for small friction, Pr-+-, the conservation of potential vorticity in the light water

side of the front was not obtained, whereas such a conservation is required by the dynamics,

11, SCALING AND GENERAL CONSIDERATIONS

We begin the scaling analysis by re-stating the initial value problem. A now near the surface of

Q, per unit length discharges into an ambient stationary fluid of density pa . The inflow has a den-

sity deficit relative to the ambient of (Ap)a , The viscosity of the fluid is va and the Schmidt num-

ber is assumed to be unity. The local Coriolis parameter is denoted by f and g denotes the gravi-

tational acceleration. The reduced gravity is g' with g' = g (Ap) Q /p,, . From Q. and g' we form a

buoyancy velocity scale Ud, Ua = (g' QQ )'3 and a buoyancy length. scale h., ho = 042/0 113 , The

buoyancy time-scale (short time) is then T I , T, = ho /Ud From f we form an inertial time scale T,

T i /f, and an inertial length scale Lp , L,o = Ud /f:. A diffusive length scale hp is formed from u,

and f, namely hp = (v,,/f)"' . Therefore there are three independent length scales to the problem

LO ,110 and lip,. These combine to form the two dimensionless parameters of the problem, Le, the

thermal or densimetric Rossby number Ko,,,	
L

Po =-

3
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and the Bkman number, E,

hP
E ^ hp

(Note that Ao/E = Re, the Reynolds number, where Re Ue ho /ue)

We let x* be the horizontal corordinate pointing opposite to the inflow direction and *

be the vertical co-ordinate measured upwards from the free surface. The flow is assumed to be In-

dependent of the third co-ordinate y*. Let (u*, v*, w*) be the velocity components in the (x*,y*,z*)

directions. We now proceed to scale the problem. Wo let { , n "_ ';t (x*/L o , z*/h tl ) r = t*f where t*

is the dimensional time, and - M V, %)= (u*, v*, Ro w*)/t,r ,t . The equation of continuity is then

,^	 att + aw	
1

dimensionless stream function is qV, (T %*/Q,a ), then

11= 
a1) 

1V'k	
(I)

We let the y* component of the vortic:ity be M ix., '* au*/Dz* r aw*/ax*. Un normalizing '*

by Ue /ltid we get, on using (2),

If we define the density anomaly as -y, y = (p — p,)/p, and tit, = (Ap),/pa , we can write the nonna-

lined anomaly as,

(3)

(4)

(s)

(6)

Y "° 7/ya

The governing equations are nc w:

a7
+a ( + (W	 (Ro) -z 

à 'z + a...z
r	 an	 a	 a,7

representing the diffusion equation,

a +a 
m?)+a (^^—aw=a +E[(—R

	t2+af
ar 	 an	 an ata an

4



TERM

representing the Navier-Sto.Icesequatioa,goveming the y — component of the vorticity, and

87 a,
	
anV

3 	 (7)

3r
+
 at 
MV) +  wo + Ir a, P, (Ko) .1 at2 + 	 ') -

representing the equation of motion for the y'— component of velocity, Equations (5), (6), (7) and

(3) constitutes the complete set of equations,

(Tito appropriate manner In which the non-rotating limit is to be viewed is outlined in Appendix D.

It Is seen that there the approach to steady-state is not uniform for Ro -+ oo. Thus for any non-zero

rotation rate, f, however small, the steady-state solution for large times do#^S not approach tile non-

rotating limit. The non-rotating solution is however applicable for 
all 

intermediate time range

T, < t* <

For most problems of oceanographic interest Ro is large, say of the order of 10 2 or larger.

(We shall presently see that I /go is in fact a representative slope of the frontal structure,) Thus we

arrive at the result that the dynamics of the frontal structure is similar for all fto and depends on

thevalue of E only. This is so for all stages of the evolution of the frontal development. Indeed 'for

Ro large the equations reduce to

aly a0f Y) a (W 5) 	 ally
—

4— +
at	 at	 a??	al?

at a (ITT) a (W Ir (W a0f + E a+	 + - ^_ --=L ff	 (9)
at	 at	 an anat	 a'q2

+	 + + Vf = E
(10)

at	 at	 al?	 a172

	82V	 01)
2

	

If we admit that tile horizontal eddy coefficient (P.) 	 greatei,,\than (P.). (tile vertical eddy co-

efficient), it is clear that the similarity in Ro is till-preserved unless (P.)lj /(pe )v, > (1(o)2 . This is

highly unlikely to occur in the scale of motions that we are considering.

We, now return to show that I /Ro is in 

"

fact the representative slope of the front. This is easily

shown to be a consequence of the thermal wind balance or Margules Law, Indeed from Margules

Law for the limit of vanishing viscosity, we have

	

00, _0!M"_­­,_­ 	 wow
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where s w frontal slope, and AV* Is the across front geostrophic velocity difference. Upon now
-J)

dimensionalizing the abq'A"n, we have

aw Ko S.

We recall that the current was for short times t* <'/f 
in 

force balance and was travelling at a steady.

speed Ud' Thisis thus an inertial current being turned by the earth's rotation. At the now equilibrium

state AV* — Ud or& — 1, Thus

s— I/Ro

We therefore expect that the frontal slop will have a universal shape in the Q, n) co-ordinate in-

dependent of Ito at any fixed t after jqtiasi-gt---ost-r!opliie-e-quilibrium.h.a-. be  achieved, wheiCe-quation

(6) reduces to	

2F = Ly
an at

in the region where viscosity is unimportant, i.e, away from the surface Ekman layer. We antici-

pate such a characterization of the slope to bevalid for small vale s of E, 6 ,< 1, As k- increases

the region for which this characterization is valid decreases. At large values of E, E Y 1, the frontal

structure is predominantly influenced by frictional effect. That case is of Interest in the study of

shelf-water density and circulation structures and will be investigated in Part Rof the present

series, It will be shown that another type of scaling law exists for that flow rdghne,

It is also of interest to examine the vertical component of absolute vorticity, ca * , where to*

av*—
X* 

+ f. Upon normalization by Ud Ih, we have

(A) = I 
av+

Ro at

I^



On differenting Equation (7) with respect to t and ugal tkv continuity equation, we get in

the limit of vanishing viscosity,

aw aw,+^0 W 
ow + -ar + ^ aum 0

al. 	 iirt at i3n	 at

For a region where 6 w 0, it-0 Iseasily seen to be also zero and the above equation reduces t
an	 an C

aca+Fi-+wi)u390
3r	 at	 at

If such a region exists, and we will show in our Initial value problent that it does, lot us

denote by D its dimensionless vertical extent. We then write the continuity rkluation as
au i dD 0

d a a	 at } D dt
wliercdt 

mar+` 
a,. Combiating Equa+tions ( l3) and (l4) then yields the classical law of con-

servation of potential vorticity

o

(12)

(13)

(14)

dw
0

ei	 l
^^'r 

ry ion of poteutIal vortfcty is contained in the present forrnu•

lie th anal wind balance is shown in the paper as a result of the

it of small viscosity. Thus the simple classical concept of the

ry of the Gulf Stream as given in Stommel is embedded in the

We thus see that the law of

lotion. This law together with

initial value problem in the

steady non-linear inertial tl-

present framework.

Ill. DISCUSSION OF RES

1, Similarity and the Approach to Equilibrium

Calculations were made using the formulation and numerical scheme given in III, to

confirm the scaling laws, to investigate the approach to quasi-steady equilibrium, and to give

the density and current structure of the front. The relationship between the present normalized

quantities and the corresponding quantities in the computational formulation is shown in

Appendix A. In the actual numerical calculations, every term of the governing equations was,

of coursoi included.
f

Five cases were computed as summarized in Table I. The range of Ro is between 10 and

r	 210 and E is between 0.025 and 2.10. Cases 1 and 2 are identical in E but different in go and

fi



n

a

Table f
Parametric Regime of Computed Cases.

F

Case No. Ro

1 (72C) 26,06 0.25

2 (81C) 10.0 0.25

3 (80C) 1010 0,025

4 (82C)
IJ

26.06 0,052

5 (780 210,0 2.10

Cases 2 and 3 are identical in Ro but different in E. Cases 4 and 5 differ in both Ro and E 'from

every other case.

The passage towards quasi-steadiness of the motion of the front is illustrated h ►_ Figure i

where the front speed Of is plotted against the dimensionless time r. The :movement of the

front undergoes a rapid deceleration in the first inertial day. The adjustment towards geo-

strophy is essentially completed at the end of this duration. This was already shown in III.

Subsequent to this initial but primary adjustment, the speed of the front undergoes damped

oscillations of inertial frequency. The rate of damping depends on E, In Figure 1 the solid

curve is for E =0,025 while the dotted curve is for E = 0.25, i.e. a ten-fold increase in viscosity.

Concomitant with the Horizontal motion of the front, the frontal structure is deepening, as

it must for mars conservation. The rate of deepening is also undergoing dumped oscillations

with inertial frequency but with opposite phase to the horizontal motion. Quasi-geostrophy

is maintained in the frontal region away from the Ekman layer. At any time after the initial

adjustment to geostrophy the shape of the inclined bounding isopycoic of the front, beneath

the Ekman layer, is universal in the Qo,, %) co-ordinates, defined by Q, n)Ice, where a is a con-

stant of propotionality dependent only on the time, The bounding isopycnic of the front is

defined here by 1/10 of the total density anomaly (dp) u/po . Tlus is shown in Figure 2 for the

rive cases listed in. Table 1 at,, r = 7 with a = v. It is seen that the shape is indeed universal.

8
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Figure 2. Frontal Shape of different Ro, showing similarity in Ro.
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1

For the larger values of E, they, Ekman layer is rehailvely A ck and is not uxhibiW in the Fi±trtre.
Ij

For E < 1, the Union layer thickness is small. The dashed tine is the shape for E - 0.025,

For that value--of 1 , it is seen that the mean slope h/L of the bounditig riso ycnic is equal to

1.5 110 /Lo , /fir h/L w 1,5 /Ro, where It and L are the vertical and horizontal projections of the

Inclined bounding isopycnic at any time, Thus In = 1.5 a Ito and L -oL., Furthermore, this

mean slope and the shape of the bounding isopycnic is preserved at a later time when quasi

steadiness is approached, The solid line in Figure 2 shows the shape at r : 30 (with (k- 2x).

It is seen that the solid and dashed line arc almost coincident over its entirety. If we denote the

asymptotic values at equilibrium by an overbar, we then have f = 1.5 Wh n and L a LQ so that

(Ti/L) remains approximately equal to LS/Ro for E a; 0.025,

At any time after the initial adjustment to geostrophy, the structural features of the front,

such as the distribution of the isopycnics forming the front, are foun'O. fo depend only on E.
t	

_

For example, Figure 3 shows the surface manifestations of the density anomaly across the

front for E = 0.025 and 0.25, They remain nearly identical for different values of Wo, Thus

the scaling - arguments advanced in the previous section arc indeed borne out by the results of

the actual calculations, In addition, for small values of E, the features become not overly

sensitive even to changes in E. For example a change of E from,0.02$ to 0,052 (case 4 of

Table 'I) produces almost no change in the .structure of the surface density anomaly, For larger

values of E however, Figure 3 shows clearly that the compactness of the isopycnics at the front

x	 is governed by E. In general, increased vertical diffusion, as represented by the increase in E,

causes a broadening of the isopycnics and a thickening of the Ekman layer,

The dynamics of establishment of equilibrium that emerges is really rather simple; namely

after the initial primary adjustment to geostrophy, the shape of the frontal boundary in the

Qu, net) -- plane is universal away from the Ekman layer and is form-preserving in time. The
f

front undergoes damped inertial period oscillations tending towards an equilibrium state when

the deepening of the light water pool is restricted from below. The forward motion of the front

h
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in„ the equilibrium state can fEe brought to zero by adding a barotropic geostro^hic flow

resulting from an along front pressure gradient of a larger scale motion. The'structure of the

front in the quasi-steady state depends only oil 	 Furthermore, for '̂ < 1, the structure is

even insensitive to changes in the value of E.

We now proceed to discuss the features of =hp quasi-steady solution for E = 0.025. In the
-	 J

next Section we will show that this case gives , all V, ,* principal features of the mean hydrog-

raphy of the Gulf Stream.

2. TheQuasi-Steady Solution and the Structural Features of the Front

The quasi-steady cross-sectional features of the frontal structure in the vertical plane is summa-
A

rized and shown in Figure 4. The Ekman Number E is 0.025 and the solution is similar fGr all Ro's.

The outstanding feature is the compactness of the inclined isopycnics which form the front and the

presence of a pooh of light water of almost uniform density. The three dark: solid lines are the

isopycnics representing 10%, 50% and 90% of the total density anomaly between the incoming

light water and the ambient fluid. (Hereafter we shall call them the 0.1, 0.5 and 0.9 isopycnics).

To be more specific in terminology we define the region bounded by the vertical at is = 0 to the

0,1 isopycnic to be the frontal region; The part of the region of almost homogeneous light water
r

bounded by the 0.9 isopycnic is the light water pool. The set of isopycnics between the 0,1 to 0.9
i

isopycnics, representing SO% of the total density anomaly, will be called the front. At to = 0,

all the isopycnics become horizontal and the vertical extent bounded by the 0.1 and 0 .9 isopycnics

gives the thickness of the main thermocline, We shall take the 0 ,9 isopycnic at ta° 0 to be the

base of the main thermocline. In Figure 4 the dashed cur♦ps are the isotachs of the along-front

geostrophic current velocity v, The maximum difference in v across the front is 2.0 with the maxi-

mum oecuring just inside the light water pool. The along front current forms a jet with cyclonic

horizontal shear and strong vertical shear in the front, but anticyclonic horizontal shear and no 	 !

vertical shear in the light water pool. Also shown in Figure 4, as represented by thin solid lines,
i

are the instantaneous streamlines of the cross-front or lateral transport in a frame of reference in

which the front is stationary, The streamlines show surface convergence towards the front, down-

13
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9

welling and return flow at greater depths. It should be pointed out that in the quasi-steady state,

the front is stilt undergoing inertial period oscillations, though of small amplitude. The relative

stromnlino pattern in Figure 4 therefore changes over the period and so does the relative cross-

front velocity (%— i'r) even when the isopycnics and along-front velocity structures are essentially

unchanged. In any case, the relative cross-front velocities fire typically 1/10 of Ua and the down-

welling velocities are more than (to) -i times sinaller. Theis w* is 10-4 to 1 V times the typical

►long-front surface goostrophic current. The features of the along-front jet and the density anomaly

will now be examined in more detail,

Figure 5(a) shows the shape of the horizontal surface manifestation of the along,-front jot. The

Jet is compact with a sharp peak at t& = — 0,8 and is directed Northwards if the light water pool liens

to the East of the front, It exhibits anticyclonic shear East of the front and cyclonic shear in the-f

front itself. The vertical profile of V at location of the horizontal jet rnnximuni is shown in "Figure

5(b), The vertical shear in Vis strongest under the jet maximum. We also observe from Figure 4

that inside the light pool v does not vary with deptli, so that LIV s indeed zero there, We therefore
n

expect the potential vorticity to be conserved, which yields, together with, gcostrophy, a Stomnel-

type result that v decreases exponentially with distance away from the front inside the light pool,

and the depth of the light pool deepens expontentialiy. Indeed, we rind

v ► 	 e-40.74 + to,)
max

and

D = D I — e-6t0,74 + QJ
A

where D is the dimensionless asymptotic depth of the light pool (Dn = D*Jh ) nl,ovc the main

thermocline, Le, Do = 0.82 according to Figure 4, The curve for D/Dn is shown by a dotted curve

in Figure 4 ,and the curve for IV/ n, ax is shown by a short dashed curve in Figure 5(a), It should be

noted that exponential decaZr ofi/v n „s and the exponential deepening of the light fool is generally
r;

faster than, though of the ssun order as, that of Stonil y bl. (1966) for the same density anomaly'a id

the same asymptotic depth, However, more than half of the total transport in the jet now takes

place in. the front itself, outside the potential vorticity conserving region of the light pool, The

t

it
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total transport is now found to be equal to 0,38 g'(DQ )' If compared with a value of 0,5(j D0*)2 If

found. by Stommel (1966). Although the transport is similar the velocity shear in tale along front

jet now changes from anticylonic shear in the light pool to cyclonic shear across the front. This

feature, together with the conservation of potential vorticity inside the light pool, are benchmarks

of success of the present formulati n,
h

Figure 6 shows two density «n6maly profiles at station A-A and B-B of Figure 4. The density

anomaly exhibits a deep homogeneous layer in the upper part followed by a well.-defined thermo-

cline. The profile at A-A gives the thickness of the main thermocline whereas the profile B-B cuts

across the sloping isopycnies of the front itself,

Figure ?(a) and (b) show the surface expressions in density and sea-surface height anomalies

respectively. The dimensionless sea-surface height anomaly, 417., was found by integrating ry

vertically. If Ah= represents the dimensional rise of sea-surface height, then Al?,-
f

_	 7

(All$ /h) CRp /(Ap)a l. From the remote sensing, or satellite observational viewpoint,thesurfaee s

expressions, are rather important manifestations of the frontal structure, It is seen that the surface

density anomaly varies more rapidly across the front than the sea-surface height anomaly. The

latter varies over the entire width of the frontal region and contains information on the whole

vertical cross-sectional structure of the front, The surface density anomaly on the other hand

are easily influenced by events that take place in the surface Ekman layer, such as the effect of

local wind and local heating and cooling. Thus altimetry data is generally a better indicator of

the true location of the front than the infrared data on sea-surface temperature would indicate.

The location of the steepest slope of the sea-surface height corresponds rather well with the location

of the along-surface current jet maximum. Here again local surface wind effects in the surface

Ekman layer has not been included. Local surface wind and heating effects are expected to alter

the surface currents and surface temperature and salinity only in the surface Ekman layer. The

importance of high quality altimeter data to examine the total depthwise frontal structure cannot

be overemphasized. Indeed, given the maximum slope, the total rise height (AN)max, and the

17

_u



1.2

1.4

1.6

Figure 6. Density Anomaly Profiles at Two Cross-front Locations.

D-2

0.4

0.6

0.8-17a

1.0

DENSITY ANOMALY PROFILES
AT TWO LOCATIONS,

1.0	 0.8	 0.6	 0.4	 0.2	 0
	

Y
	

LL

18



1.0	 0.8 	 0.6	 0.4	 0.2

/^/ It

J^

f4__^

CROSS FRONT
SURFACE FEATURES

1s1 Sl1RFACF CFNSiTY

1.0	 0.8	 0.6	 0.4	 0.2

cQ

^ '')

1.0

0.9

0.8

0.7

0.6
Y ,

0.5

0.4

0.3

0.2

00.1
0.7

0.6

0.5

0.4 Q77s
0.3

0.2

0A

0

Figure 7. Cross-front Surface Features: (a) density anomaly, (b) sea surface height anomaly,

19

OWN



erosrfront width L of the saa-surface heiot } anomaly, the hydrophy of the front is completely

determined according to the prount theory,

1V, THE STRUCTURE OF THE GULF STREAM

The results of § Ill (2) are now applied to study the Cliff Stream. We confine ourself to the upper

ocean of approximately 1,500 m or so. The top of the stratified deep ocean serves as a lower

boundary of the upper ocean and imposes a limiting depth for the base of the main thermocline.

Incorporation of this deAp layer and the abyssmal current will be undertaken in a future paper. A

few key references on the Gulf Stream should be mentioned: the book by Stommel (1966) and the

references cited therein, the article by Fuglister (1963), the monograph by Worthington (1976),

and n paper on numerical si sulation by Semtner and Ming (197171).

We may approach the application in the following way, We assume an imposed near surface

transport towards the front, i.e, we assume a Q., of given density deficit (Ap),/p o relative to the

ambient water and examine the structure of the resultant density and flow fields in the quasi-

steady state, From the structure, we obtain, in particular, the maximum surface jet velocity vn

the mean slope of the inclined isopycnics of the front, the width of the sea surface height anomaly

L which is the width of the frontal region, the maximum sea surface height anomaly (Ahs )m&x , and

the Gulf Stream transport as functions of g', QQ , f and the depth of the upper ocean h. The for-

mulas for these quantities as obtained from the results of § 111(2) are summarized in Table 11.

For example, we take as an inihaf4hdition the inflow water to be_Sargasso Sea water with a

typical temperature of 20°C and X5%o salinity and the ambient water to be the deep upper North

Atlantic water of 5°C and 35.0'o salinity, so that Dot 1.6 or (op)r' Jpo = 1.6 X 10"3 and g'

1.S X 10-2 m/s2 . We take the magnitude of Q. to be 50 m 2 (s and f to be 10-4 js. The reference

scales Ua, Lo , and ho are then 0.91 m/s, 9.1 km, and 55 in 	 so that the densimetric

Rossby number Ro -165. To obtain the value of E, the Ekman number, we take the vertical eddy

viscosity coefficient P. to be 0(10) cm2 Js, Then E ^- 0(10 -3 ) to 0(101 ). Published estimates on

20



Table I1.	 U

,%'	 Dist of formulas for,717 Stream hydrography

MAXIMUM GEOSTROPHIC SURFACE GURTZENT, vM Ax 2 (t' Qa)1 /3	 (PI)

FRONTAL SLOPE = 1.5 f (gt)"2/3 Q10/1	 (172)

WIDTH OF SEA SURFACE HEIGHT ANOMALY', L=
1.

 
5 f 

-1 (g')*xls l);1/3	 (173)

MAXIMUM SEA SURFACE HEIGHT ANOMALY = 0,7(g'/S) ri	 (174)

GULF STREAM TRANSPORT ;k' .2" { 1̂=)^ f - 0.38 - 0	 (F5)
7 ,5	 f	 f

the magnitude of P. is subject to a range of variation, so that a precise specification is not Justified,
o

nor is it necessary in the present framework since we have shown the results to be insensitive to

changes jr, E for sufficiently low values of E. On using the formulas listed in Table 1t, with h

1400 m, we get the maximum along-front Gulf Stream velocity vm ax to be 1.82 m/s, the mean slope

of the inclined isopyenies to be 1 t 110, the width of the sea surface anomaly L to be 154 km, the

maximum sea surface anomaly (Ah J )m8x to be 1,57 m and the upper ocean Gulf Stream transport

to be 33 X 106 m3 /s, The details of the structural feature are shown in the similarity plot of

Figure 4. From this we see that the width of the Gulf Stream itself, i.e. the width of the surface

	

Jet, is 108 km and the maximum depth of the 30 cm/sV-- isotach is 750 in 	 the surface,

The thickness of the main thermocline under the light water pool is 650 m.

- Table III shows the various Gulf Stream quantities for different values of Q. while keeping

g', f and Ti the same as in the example, These quantities were calculated using the formulas given

in Table 11. It is seen that a 15 times increase in Q Q increases the slope and maximum jet velocity

by (15)113 or 2.47 times and decreases the width of the jet and L by the same amount, The Gulf

Stream transport is of course independent of Q. as seen from formula (175) and depends only on

h, g' and f. This must be so since the transport is induced geostrophically from the buoyancy de-

rived pressure gradient, For any Q., the Gulf Stream transport is sensitive to changes in h and g'.
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Table 111.
Table of Computed Gulf Stream quantities for different Q9

Q0
(m'/s)

INITIAL
REFERENCE

UANTITIES

GULF STRAW QUANTITIES

lo
MEAN

SLOPE OF
FRONT'

V* x
(mrs)

,;;WIDTH
SURFACE JET

(km)

A-
SURFACE HEIGHT

ANOMALY
E(km)

e
(m/a)

o
(km)

ho
(m)

10 033 5,3 19 279 1:186 1.08 182 260

25 0,72 7,2 35 205 1:136 1,44 136 194

50 0.90 9.0 55 165 1:110 1.80 107 o,154

75 1.03 10.3 73 142 1:95 2,06 94 134

100 1.14 11,4 88 129 1:86 2,28 85 121

125 L3 123 102 120 1:80 2.46 79 113

150 1.30 13.0 115 l3 1:75 2,60 74 105

Thus, for comparison with Stommel's (1966) result, taking the depth of the homogeneous light

pool to be 800 m and g ` to be 2 X 10'2 m/s2 as used by Stommel (1966), we get a value for the

transport of about 50 X 106 ml /s, The values given for the Gulf Stream quantities in Table 111

are all accessible to the Stream. This then suggests wide variations of Q.. Indeed variations of

Qe by several times is reasonable from considering time-dependent variations of wind-driven contri-

bution alone. In addition, there is possibly a significant Ontribution from the Gulf Stream return

flow as described by Worthington (1976).

In the present framowork, we now see that the Gulf Stream dynamics is maintained by the

near surface shoreward transport of light Sargasso Sea water. The Gulf Stream ;s a natural geo-

strophic response to the pressure gradient associated with this buoyant transport. However, at any

typical section, say at Cape Fear, the lateral or cross-front forcing induces a geostrophic Gulf

Stream transport which is fed by water from further upstream, i.e, from the South. The cam_

position of the water in the Gulf Stream thereforep	 reflects its tropical org n. Between two neigh-

boring sections, say between Woods Hole and Hatteras, the increase in Gulf Stream transport, if
im
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any, must 
be 

contributed by entraining water between the two sections from the Sargasso Sca,

which Is the parent pool of light water. This concept appears to be compatible with 
the 

tight

re-circulation pattern of the Gulf Stream proposed by WorthinSton (1976). Finally, It should be

pointed out that the formation of the Sargasso Sea warm Ions is perhaps partly wind-driven as

shown by Samtner and Mintz (1977), but Its study belongs to the study of larger scale events and

is beyond the scope of the study of fror-tal dynamics of the present paper.
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AI'1' -NUIX A

Ira the formulation given In111, the region of integration has a finite depth d. For the sulk of com-

putational convenience, d is used as the reference length, Q a /d as the reference velocity and

d2 /Qe as the reference tune in that scheme. The dimensionless parameters aralo m W(M), Ito

Ud/ud F - U/(gel) 1 /2 and F,, vs 1 03/2 F/'Yn/2 . The conversions of the computer results to the present

normalization is achieved by the following formulas;

t	 - (ld Ro)-' F. 	 x (Al)

1O FC-2/3 Z (A2)

u	 (10)"l V'a2J3 It (M)

w	 10 Ro l°0 `2/3 w (M)

r	 (1torl t (AS)

Ito	 1()0 Rc^/r^^ ^/^ (AG)

E	 1.00 Ro/(Re :1: ',`t/s ) (A7)

l,. /d= (10-1 ) r,1/3 (M)
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APPENDIX B

If we normalize the governing equations by the buoyancy velocity, length and time scales, the

equations corresponding to (3), (S), (6) and (7) are

	

r = v^`p 	(B1)

a +3) + a (w^) t av 
a } 1 ox	 ()

at, ail	an	 ft an a, Re

av

	at +a (av) +a^(w' ") + ^nrj` v2
^ 	(134)

1; ►

	

a2	 ax
where ti = x*/ho , t, ^ t*/Tl , w^ w*/Ud v^ a + 

anx .

In the non-rotating limit Ro = oo, (84) `is uncoupled from the other equations, and is identically

zero for an initial value problem starting from rest, The steady -state is approached for t j -* 00,

z w 0, For Ro 0 oo however, the steady -state is approached for tt -► oo and r large. The approach

to steady-state is thus not uniform for Ro -► «►. Hence the limit to -► and Ro -► oo are not inter-

changeable.

r^
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