NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

AR

D M it a2 - s enn NS | TR S 4
R E .

NASA

Technical Memorandum 81995

Comparison of and Conversion
Between Different Implementations

of the FORTRAN Programming
Language ~

Lioyd Treinish

0F MND | N81-12762
)95 ~ AND)
NASA~TH-81995) COMPARISON OF
CONVERSION BEEWEEN DIFFERENT INPLENENTATIONS
OF THE FORTRAN PROGRAMMING LANGUAGE (NASA)

T SCL 098 Unclas
55 p HC AQ4/MF K01 Cs 63/61. 39830

AUGUST 1980

K
National Aeronautics and y ' 4 ,,
Space Administration (.
Goddard Space Flight Center

Gree‘nbelt. Maryland 20771

e e . -
B S NI

T T

D e 4

o TR T e

AT ST T K\

iy :
[EN—~

COMPARISON OF AND CONVERSION BETWEEN DIFFERENT
IMPLEMENTATIONS OF THE FORTRAN PROGRAMMING LANGUAGE

Lloyd Treinish
Information Extraction Division
NASA/Goddard Space Flight Center

Greenbelt, Maryland

August 1980

I

GODDARD SPACE FLIGHT CENTER
' Greenbelt, Maryland

s /////’

g

ST TR e Y

T™ 81995 [

i i <

o Tl e s

e MERREC

4 | :
§ » o
g
| b \
; i
f
¢ . /
1
4
‘ \;’f”'//;//' E
; . COMPARISON OF AND CONVERSION.BETWEEN DIFFERENT ‘,
3! IMPLEMENTATIt3NS OF THE FORTRAN PROGRAMMING LANGUAGE i
L Lioyd Treinish
‘ \\ , < Information Extraction Division) §
% f g‘; NASA/Goddard Space Flight Center |
L : i FR : H
‘: Greenbelt, Maryland
| ~ ABSTRACT
This document is intended to be used as a guideline for computer programmers
who may need to exchange FORTRAN programs between several computers. The
characteristics of the FORTRAN language available on three different types of com- R
; puters are outlined, and procedures and other considerations for the transfer of pro-
? | grams from one type of FORTRAN to another are discussed. In addition, the variance ?
of these different FORTRAN’s from the FORTRAN 77 standard are qﬁscuSSedg i
s |
i f 3
3
: i
! [‘
i

I
i
: 5 _ CONTENTS ,
((ABSTRACT LA I R I A L A I I) LA S N A L A R O e e R L S I I O S A A R O) iii |
|) ID INTRODUCTIONU LI) rk) 2N IR R I R A I L A A O I I I N O 2 e I e T T R B R) LN I S T I I Y l :
o ;
{ Ilh IBM FORTRAN """" L O B T R R e I e L R I T I I O D I N IR T T A S I O N 2 2 T A T 2]
” [II‘ XBROX FOI{TRAN [A T A O O) [A 2 I I K O 2 I I R A R 5
f - .
! 3 & lv. ' DEC FOIN{TRAN L N L O I O I I O Y O R B R R I O T N I R A O A R Y LR N T I A I R A 7 g
: V. CONVERSION OF FORTRAN PROGRAMS BETWEEN COMPUTERS |
S A, IBM TO XEROX (360 to Sigma 9)0.ovovsv.s. P - |
x e B, XEROX TO IBM (Sigma 9t0360) ,.,...... O R [V
"~ C, IBMTODEC(3G60to PDP I1/70) .. vsvviviinnnisoneennnss PN 12
: t Do DEC TO IBM (PDP 11/70 to 360) L I T I I R I I A A] L) El; LI A] 14
h E, XEROX TO DEC (Sigma 9 to PDP11/70) , vrrr s 16
F., DECTO XEROX (PDP 11/70to Sigma 9)o v s v eeas 18
i VI APPENDIX A - “Companson of Data Structures on Three Computers” . deewen 21
VIL APPENDIX B - “IBM 360/PDP 11/70 Tape Compatibility” | R X
VIII. APPENDIX C - “FORTRAN for the 11/70 and the 360s” e e a 37
| IX. APPENDIX D - “Effect of Floatmg Point Architecture on 2
‘ Computation Accuracy” T S 45 5
X. REFERENCES T I P B A 49
XI. ACKNOWLEDGMENTS e e e .. S0
3 , %
: -
K :
| ;"TCRRING PAGE BLANX NOT FILMED
e ‘
i T
- IR
%

aiannGEES AR AR B -k ST

COMPARISON OF AND CONVERSION BETWEEN DIFFERENT
IMPLEMENTATIONS OF THE FORTRAN PROGRAMMING LANGUAGE

INTRODUCTION

This document is intended to be uged as a guideline for scientific programmers at Goddard
Space Flight Center who may need to exchange FORTRAN programs between several computers,
The characteristics of the FORTRAN language available on three different types of computers
are outlined, and procedures and other considerations for the {ransfer of programs from one type
of FORTRAN to another are discussed. Specifically, FORTRAN from IBM (e.g., E‘;ACC System
360/91 and 360/75, M&DO 360/95 and 360/75), Xerox (e.g., AE Sigma 9) and DEC (e,g., DCAC
PDP 11/70) arc examined, ’ ‘

The constructs and syntax acceptable to the FORTRAN's from the three computer manu-

facturers outlined below have many mutual incompatibilities as well as a considerable number of

differences and inadequate capabilities with respect to the FORTRAN 77 standard (ANSI X3.9-

1978, see reé}prences_ 11 and 12). If FORTRAN programs developed on any one of the afore-
mentioned types of computers are to be at all portable then as many of the “maéhine—peculiar"*’
FORTRAN features should be avoided as possible. However, because of the lack of a standard
that encompasses all three types of FORTRAN adequately, no specific guidelines for ‘‘machine-

independent” code can be realistically offered.

o A S ARG ke G e R L i LRI s A e SR SR B e L S e S s I s I S S I B

i

C i

AT T |

L

ST T ST T TR

IBM FORTRAN

IBM has marketed many different versions of the FORTRAN programming language. For
example, the SACC IBM 360’s support five different FORTRAN compilers, FORTRAN’s G, G1,
H, H extended and Code and Go, The G1 and H extended compilers represent upward-compatible
supersets of the G and H compilers, respectively, However, the latter two compilers are no longer
supported as “Program Produc(§f'. from IBM. In any further discussion of IBM FORTRAN, the
G1 version will be considéfeﬁ;s an “IBM standard.” For’ completeness, the differences between

the five IBM compilers will be noted,

The FORTRAN G1 compiler is the IBM Program Product designed for the development
phase of FORTRAN programs. It compiles programs relatively fast while producing moderately
inefficient (i.e., unoptimized) code, Since much of the effort in developing new FORTRAN pro-
grarﬁs often occurs in debugging, whose costs tend to be concentrated in the compilation phase

7

rather than in short test execution of the programs, the G1 compiler fills this need for both fore-
ground and background applications. The version of FORTRAN acceptable to the G1 compiler
also possesses a debugging facility that can be invoked through s}pe‘cial statements, and the compiler
can produce code that can be executed through the interactive‘;debugger, TESTFORT. It should
be noted that the Code and Go FORTRAN compiler accepts a G1 type of FORTRAN but exe-
cutes the code after compilation instead of producing an object module. It can provide additional
savings in program develcpment cost over the G1 compiler because it can streamline the procedure
to compile and test execute new code. Of course, once a program is debugged lt should be com-
piled using an optimizing compiler for run-time efficiency.

e

, The G1 compiler, for the most part, represents a small subset of the FORTRAN 77 standard.
The following is a summary of the important G1 facilities not found in or different than the

standard: i

1. The PUNCH statement. ‘ ' | , JT

2. The debugging stat.eme‘nté: DEBUG, AT, TRACE ON, TRACE OFF and DISPLAY.

W

3, Alternate returns in subroutine calls marked with an ampersand [e.g,, CALL X (&10)].

4, Léfxéth specification in ‘type’ statements, (G1 allows INTEGER*2, INTEGER*4, LOGICAL*1,
LOGICAL*4, REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16 stutements in addition
to what the standard allows, INTEGER, REAL, DOUBLE PRECISION, LOGICAL and
COMPLEX statements,)

75, Direct access 1/O S{)ccificd in a different manner. ([e.g., DEFINE FILE and FIND statements,
READ or WRITE ($'IPTR)] . \

i

6. Use of hexadecimal épnstants and Z formats.

7. NAMELIST I/O [c.g{, NAMELIST statement, READ or WRITE (device, namelist)],
8. Some SERVICE routmes (¢.g.. ERRSET, DUMI’ SLITE).

. COMPLEX*16 intrinsic functxons. '

skt e ’Fﬁ,:’:&v st
D

10. The following intrinsic functions (slight spelling differences between the same routines are
not listed): B
; f (a) COTAN/DCOTAN - cotangent
o (t) ERF/DERF/ERFC/DERFC - error function j
4 ‘ (c) GAMMA/DGAMMA/ALGAMMA/DL??‘AMMA ~ gamma function, : 4

f .
The FORTRAN G compiler accepts a larg§»~.su,bset of the language processed by the G] com-

piler. FORTRAN G does not permit list-directed 1/0O, does not generate code for TESTFORT,

does not round {j‘nfinite binary expansions (e.g., G! rounds 3.9999 . . . to 4,000 and G truncates

3.9999 , , . to 3.99999), etc,

The FORTRAN H extended compiler is designed to generate optimized object code for

production-type execution of FORTRAN programs. It is, therefore, expensive to use but the

| resultant code is relatnvely cheap to execute. FORTRAN H extended does not provide the de-
> bugging facilities of FORTRAN G1 but does have several othcr extensions to the G1 language,
none of which are within the FORTRAN 77 standard:
1. Asynchronous I/O [e.g., READ or WRITE (devxce, ID = identifier) list, and the WAIT

statement].

TS S Lt S b 0o e e e L
R T IS Mt it yreaptarcatss

e T R S R S LT

2, Extended precision arithmetic (i.c., REAL*16 and COMPLEX*32) and the intrinsic functions
and subroutine library to support it.) |

3, External statement extension [e.g,, EXTERNAL &subprogram-name], ;

4, Automatic function selection [e.g,, use of the GENERIC statement].

| | The FORTR.AN H compiler is also designed to generate optimized object code for the 1
production-—ty_pc exccution of FORTRAN programs. FORTRAN H reprcsent;v/é subset of

FORTRAN H extended by providing less powerful optimization, allowing x)/é/ list-directed 1/0
and pcr_mitting none of its language extensions over FORTRAN G, Tllcz;ﬁ'{l’ compiler accepts g
and should be consistent with all FOR“'”I"RAN.G code except for the latter’s debugging facilities, i
However, there is no guarantee, even from IBM, that code written for the G or Gl compilers

will execute in the same manner if it is compiled by the H or H extended compiler,

g 2

i

ST TR T

il . . N \

¢

B e

p=s

g,

ksl

T TR R T

R TS i

XEROX FORTRAN

The Xerox Sigma 9 computer supports three FORTRAN compilers, Xerox Extended
FORTRAN 1V (FORT4), FORTRAN Load and Go (FLAG) and an improved, new FORTRAN
(ANSF). All three compilers are available on the AE (Atmosphere Explorer) Sigma 9 but at
GSFC only FORT4 is supported and used by the AE community. Thus, FORT4 wiil be con-

sidered the standard Xcerox compiler for this discussion.

ANSF represents 2 fairly complote subset of the FORTRAN 77 standard, Although the
ANSF compiler is better than the FORT4 compiler, the languages acceptable to each compiler
have limited overlap, and hence, are not very compatible,

The FLAG compiler operates in one? paés by compiling and executing FORTRAN code in a

i

single step. In many respects FLAG is 7unuar to the IBM Code an;‘ Go compnler. Hence, FLAG
J

can b}z used to reduce the cost oftecinpilation during the devclopment phase of new softwarz,

vHowevcr, FLAG accepts only a subset of the FORTRAN allowed by I“OR.T4 and thus, thc two

2

compllers are not compatible,

ﬁThe FORT4 compiler is very incompatible with the FORTRAN 77 standard, It can produce

code to permit program execution through an on-line debugger. The following is a summary of
the important FORT4 facilities not found in or different than the standard:

1. Conditional compilation [i.., X in column one].

2. In-line assembly language.

3. Compound statements [efg., B =C; A =B]J.

4. Hexadecimal constants, | | | —_
DOUBLE COMPLEX data. | »
Extended and optional relational‘_'gl;sxpressions [e.g., AEORB, I1<J < 10].

Multiple assignment statements [e.g,, A = B = C],

LA T R

The END LABELS statement.

3
3
:

9
10
11,

12,
13,
14,

16,
17,

18,
19,

20.
21,
22,

Global statement labels [e.g., 108]),
The REPEAT statement.

NAMELIST 1/O [e.g., the NAMELIST statement, READ or WRITE (device, namelist), INPUT
or OUTPUT (device) list, *],

Direct access and list~directed 1/0 specified in u different manner,

R, Z, M, backward (i.c., negative) X, widthless and adjustable format specifications,

Formatted data conversions (‘i,e., ENCODE/DECODE) specified in a different manner,

Asynchronous 1/O [e.%n, calls tﬁo BUFFER IN, BUFFER OUT and ICHECK],

FORTRAN 1 I/O (so{nc forms like READ or WRITE DISK or TAPE, etc.),

Carriage control with a *+' in column one not supported on the Sigma 9, and * in column
one not supported in the standard,

GLOBAL data,

Alternate returns in subroutine calls marked with an ampersand, dollar sign or letter S [e.g.,

(CALL X(&10), CALLX(108), CALL X(108)]. R

Some service routines [e.g., EOFSET],

DOUBLE COMPLEX intrinsic functions,

The follovving intrinsic functions (slight differences in Sp‘f![i,"g are not listed):

(@) CASIN/CATAN/CACOS/CCOSH/CSINH/CSNGL/CfANII/C’PAN/ClNT - functions of a
complex variable. .

‘ j
(b) ISL/IAND/IEOR/IF/INOT/IOR/ISA/ISC = boolean functions, o

S T e ~ 141 e e e ﬂ

\\

DEC FORTRAN S,

The DEC PDP~11 computer supports two FORTRAN compllers, FORTRAN 1V (FOR) and :

FORTRAN-IV PLUS (F4P), Since the DCAC (Ploneer Venus/Stratosphere Data Communication

and Analysis Center) PDP 11/70 only supports the latter, only 4P will be discussed. FAP repre-

sents a small subset of the FORTRAN 77 standard with a few incompatibilities. 1t conforms to |

the standard better than any of the aforementioned compllers ex~ept for the Xerox ANSF com-

. piler. FA4P can generate code to permit program execution through the on=line debugger, ODT.

The foliowing is a summary of the important F4P facilities (ot found in or different than the

o 1. Length specification in ‘type’ statements. (F4P allows INTEGER*2, INTEGER*4,
~LOGICAL*2, LOGICAL*4, BYTE, REAL*4 and REAL*8 statements in addition to the
// standard, INTEGER, REAL, DOUBLE PRECISION, LOGICAL and C()MPLLX statements.)

|
i
’ standard: ‘}
|
1

{

2. Comments after statements,

3, Direct access 1/O specified in a different manncr [e.qg., DEFIND F ILE and FIND statements,
~ READ or WRITE (9* l[’TE,) B

4. Formatted data convc.rs,o/n specified in a different manner [i,e., ENCODE/DLCODL]
5. Somewhat differcnt férm.\t for the OPEN and CLOSE statements, :

6, The INCLUDE statem\\;\nt.

7. Conditional compilutiox; (i.e., D in column one),

8. The ACCEPT/TYPE statements,

:9. Use of octal constants, i s i

T 10. The VIRTUAL statement. @

11, Octal, Q and adjustable formats,
12, Some service .réutines (e.g., ERRSNS, USEREX).

13, The following intrinsic functions (slight differences in spelling are not listed):
(a) TAND/IOR/IEOR/NOT/ISHFT - boolean functions. b
(b) RAN - random number generator. ’ »

g P it e

5

CONVERTING IBM FORTRAN TO XEROX FORTRAN i
In converting « FORTRAN program from the SACC IBM 360 computers for use on the AE ;
Sigma 9 one must remove any of the FORTRAN H extended special Janguage features (possibly ‘
excepting asynchroncus J/O) that the other IBM FORTRAN's do not allow, and any of the De-
bug Facility statements aceepted by FORTRAN G, FORTRAN G1 or the Code and Go compilers,
For the most part, Sigma 9 FORT4 represents a superset of IBM FORTRAN G). In addition,

the following types of statements will require some modifications: ,
1, LOGICAL*1 change to LOGICAL (only the foum{}té version is allowed).
2, INTEGER*2 change to INTEGER (only the fouyr byte version is allowed),)
3. READ (device, *) list change to INPUT (device) list, , :
4, WRITE (device, *) list change to OUTPUT (device) list, |

5. References to cotangent, error or gamma functions,

6. IBM FORTRAN H extended asynchronous 1/O statements [e.g.,, the WAIT statement, READ
or WRITE (device, ID= identifier) list] perhaps can be simulated by Xerox FORT4 asyn-
chronous 1/O statements [e.g., calls to BUFFER IN, BUFFER OUT and ICHECK].

Xerox FORT4 is designed to be upward-compatible with the IBM FORTRAN’s, The Sigma
9 is a 32-bit EBCDIC machine using flexadccimal notation like the 360 and data are stored in a
; o similar manner on both computers, The use of the FTIO or DAIO packages in programs written
| for the SACC 360’s can be simulated using the GE’I’PUT package on the Sigma 9. The acceptable

Argument values for intrinsic mathematical functions may not be compatible between the Sigma 9

1
’FV ; and the 360. The ability of many of the character and bit manipulation routines, and service .
| routines (e.g.,, INCORE, KTIME, LAND, SLITE) on t'hé SACC computers are available in various
forins on the Sigma 9. Sigma 9 FORT4 only has full word data types so that IBM programs that *

use smaller types }nust be changed,’ The only problem that users of the 360 may encounter in |
~ attempting to convert IBM programs to Xerox FORTRAN is with the size of the Sigma 9. A
single user on the AE Sigma 9 can only request 288K bytes of memory. This may prcvexlt the i

, use of some large IBM FORTRAN programs on the Sigma 9. An overlay structure that is set up

T S T R ST T

MRS AR -

through linkage editing may help to alleviate storage difficulties. It should be noted, however,
that a load module generated on the Sigma 9 for a particular program will, in general, be much
smaller than its equivalent on the 360. Hence, a large IBM program may result in a small enough
load module to run on the Sigma 9, In addition, the speed of the Sigma 9% epu and the capabils
ity of its softwarz will constrain the use of IBM programs. The FORT4 compiler is not particus
larly fast nor does it optimize its generated code. [t tends to be quite slow In compiling programs
that make extensive use of non-executable statements, espesially DATA statements. Since the
Sigma 9@ is roughly an order of magnitude slower than the SACC 360/91 and Sigma 9 FORT4’s
generated code is not optimized, IBM FORTRAN programs may execute too slowly to be practical
on the Sigma 9. It should be noted that negative real numbers are stored in n different fashion
on the 360 and the Sigma 9 and that this will cause some difficultics in converting programs that
access real data at the bit level, However, if the aforementioned items are kept in mind, the con-

vérsion of IBM FORTRAN to Xerox Extended FORTRAN should be relatively simple and painless.

el

it

CONVERTING XEROX FORTRAN TO IBM FORTRAN

The conversion of Xerox FORT4 programs to IBM FORTRAN is an extensive and messy

e

proposition, The code will have to be rewritten to eliminate many Xerox-acceptable constructs,

8 ineluding the following:
| ‘ 1, Conditional compilation [ive.,, “X™ in column one],

2, In-line assembly language.

f | 3. Compound statements [c.g., A=B; C=A]},

o

4, Multiple assignments {¢.g,, A=B=C].
% : 5, Global references [e.g., Glb‘ii&f.‘ data, global labels like 108]. ‘
6. REPEAT loops. L

7. R, M, backward (i.e,, negative) X, widthless and adjustable format specifications.

8 Extended and optional relational expressions [e.g., A.EOR.B, | <1< 101,

E : 9. Complex inverse tngonmetnc, hyperbolic and “type” conversion functxons
g ! 10, Hollerith constants in other than FORMAT “type” or DATA statements [e.g., A=<4HABCD].
L 11, Expressions in I/O lists [e.g., WRITE (6, 10) X**SIN(X)+3.0].
12. The END LABELS statement.
e I3. Negative, zero, real or complex DO indices, ’ ‘ '
t 14. Backward DO loops. .
s, Some Fortran 11 1/0 [e.¢., READ TAPE].
| :
; “% 7 The followmg items in a Xerox FORT4 program are acceptable to the SACC 360’s but their

syntax must be modxfxed

1. DOUBLE COMPLEX change to COMPLEX*16. o T o “

2. NAMELIST 1/O (if Xerox format is used).
L 3. List directed 1/O; | -
OUTPUT (device) list change to WRITE (device, *) list

INPUT (devicé) list change to READ (device, *) list,

Rt Y pcitiiaste

ko

4, ENCODE/DECODE statements can be simulated by the INCORE routine,

/5, Asynchronous I/O (calls to BUFFER IN, BUFFER OUT and ICHECK) may be simulated
by FORTRAN H extended code (READ or WRITE with ID and the WAIT statement),

Alternate returns in subroutine calls (if Xerox format is used),

-

, i
Boolean functions may be simulated by routines available on the SACC 360’s, |
|

Variable names shortened to six characters,

=T - T B - N

-

Somte service routines may have similar purposes (e.g., ERRSET).

10, Arguments to mathematical routines may have different acceptable values.

. Since Xerox FORT4 represents a superset, for the most part, of IBM FORTRAN and both ?
‘ the Sigma 9 and the 360 are thirty~two-bit EBCDIC machines using hexadecimal notation, the
Sigma 9 FORT4 and the 360 FORTRAN's are reasonably compatible. However, in practice, the
{ : modifications on a Xerox FORT4 program required to convert it for use on the 360 are so ,,
“ numerous that a design consideration of Xerox software should be the question of portability.
If new software is to bé possibly copied from the Sigma 9 t;) anotlier computer then the use of

the “Xerox-peculiar’:constructs should be avoided. It should be n(‘)tec!_that negative real num-

Y

bers are stored in different fashions on the 360 and the Sigma 9 and that this will cat{i'swg:;iome

difficulties in converting programs that access real data at the bit level,

11

F e U ———

s 4 A

andis

e Ly

g

CONVERTING IBM FORTRAN TO DEC FORTRAN

In converting a FORTRAN program from the SACC IBM 360 computers for use on the
DCAC PDP 11/70 one must remove any of the FORTRAN H extended special language features
that the other IBM FORTRAN’s do not allow or any of the Debug Facility statements accepted
by FORTRAN G, FORTRAN Gl or the Code and Go compilers, However, the language accept-
able to the IBM FORTRAN’s and DEC F4P are reasonably compatible, The following type of
code will have to be removed or clmnggd from IBM FOf{TRAN:

1. Optional returns from subroutines [e.g,, CALL X(&10)].

Data initialization in “type” statements [e.g.,, REAL 1X/3.45/].
COMPLEX*16 data and their intrinsic functions,

P oW

NAMELIST 1/0 [c.g.,, NAMELIST statement, READ or WRITE (device, namelist)] .
The PUNCH statement,

References to cotangent, error or gamma functions, -

~“Type™ specification should be explicit.

© N &

Use of hexadecimal constants and Z formats,

The PDP 11/70 is a sixteen-bit ASCII machine using octal notation while the 360 is a
thirty~two-bit EBCDIC machine using hexadecimal notation. Any explicit references to EBCDIC
characters or h’exadecimal constants will have to be translated to ASCII or octal notation, respec-
tivcly.f Thé a':c:fault size of INTEGER and LOGICAL type variaplés is two bytes on the 11/70
while it is four byfes on th¢ 360. The use of explicit type declarations or the [I4 switch when
DEC F4P is invoked will solve this problem. Generally, the use of twok-byte variables is preferred,
where possibie, for the sake of speed of operation on the 11/70. Since the 360 and the 11/70
do not store their data in, the same manner, the conversioh of some FORTRAN programs may
be se‘verely constrained.“} A‘ﬁ,beiidices.A and B discuss this problem in detail. Some of the c:fi)a-
bilities o‘f the FTIO and DAIO 'packages on the SACC computers can be simulated by the OPEN/
CLOSE statements in F4P. IBM FORTRAN and DEC F4P interpret,’ t'h’e ENTRY statement in

5
/)/

12

e A
NP L g

SRR s

different fashions (sece Appendix C for one example) and its use should be avoided, The accept- ‘
1

able argument values for intrinsic mathematical functions may not be compatible between the |
Iy, |

PDP and the 360, The ability of many of the character and bit manipulation routines, and ser- |

vice routines (e.g., INCORE, KTIME, LAND, SLITE) on the SACC computers are available in

various forms on the DCAC 11/70, The only other problem that users of the 360 may encounter in
attempting to convert IBM programs to DEC F4P is with the size of PDP 11/70, A single user

. on the DCAC 11/70 can onl‘iié/ request 64K bytes of memory, This may prevent the use of some ,
large IBM FORTRAN programs on the 1 1/70. An overlay stricture that is set up through task i
building or the use of VIRTUAL arrays may help to allevnate storage difficulties, It should be 3
H noted, however, that a task image generated on the 11/70 for a particular program will, in gc“neral, }
i be much smaller than its equivalent load module on the 360. Hence, a large IBM program ma‘y\ f(|
result in a small enough task image to run on the 11/70, In addition, the fact that 11/70 is much
slower than the 360/91, and despite F4P’s ability to optimize code, IBM FORTRAN programs

may not execute quickly enough to be practlcal on the 11/70.

\\\

13

D | Mt

bt cninrt A

Vi

CONVERTING DEC FORTRAN TO IBM FORTRAN

il
l’q

10.
ll'

' | 12.

15.
16.
17,

/18,
19,
20,

The conversion of DEC F4P programs to IBM FORTRAN will require more work than the

=5 converse, The following F4P constructs will have to be removed or changed:

The PARAMETER statement.

Expand INCLUDE statements,

ENCODE/DECODE statements change to use INCORE on the SACC 360’
Comments after statements.

OPEN/CLOSE statements may be simulated by FTIO/DAIO,

Conditional compilation (i.e,, “D” in column one).

ACCEPT/TYPE statements.

Octal constants,

The VIRTUAL statement,

Boolean func&{égns may be substituted with equivalent SACC routines.
’I"he’BYTE stat;}ﬁent change to LOGICAL*1,

0, adjustable, $, : and Q format specifications.

LOGICAL®?2 data.

Backward DO loops.

Negative, zero, REAL or COMPLEX DO indices.

Hollerith constants in other than FORMAT or DATA statements (e.g.,, A = “ABCD").
Shorten variable names to six characters,

Some service routines have similar purpose‘s (e.z., ERRSET).

“Type” specifications should be explicit.

_Arguments to mathematiéal routines may have different acceptable values.

* The PDP 11/70 is a sixteen~bit ASCII machine using octal notation, while the 360 is a

thirty-two-bit EBCDIC machine using hexadecimal notation. Any explicit references to ASCII

characters or octal constants will have to be tran_slatedr'v"to EBCDIC or hexadecimal notation, '

14

A
Pr e
:

Bhar e HEmo

Pt
et

gt s

]
. N
respectively, The default size of lNTEGER and LOGICAL type variables is two bytes on the
b\ 11/70 while it is four bytes on the 360, “Type" statements may have to be incorporated to en-
able the program to run equivalently on the 360’s, Since the 360 and the 11/70 do not store
their data in the same manner, the conversion of some FORTRAN programs may be severely
constrained. Appendices A and B discuss this problem in detail. Some oﬁt\," the capabilities of the
T OPEN/CLOSE statements on the 11/70 computer can be simulated by thé FTIO and DAIO pack-
o ages on the 360. IBM FORTRAN and DEC F4P interpret the ENTRY statement in different
| fashions (sec Appendix C for one example) and its use should be avoided, The ability of many
! . of the character and bit manipulation routines, and service routines (e,g., INCORE, KTIME,
? LAND, SLITE) 6n the SACC computers are available in »iario,us forms on the DCAC 11/70.
Since the 360’s have so much core storage available, any program overlays and virtual arrays used
% on the PDP could be ecliminated 0:{;,§7the 360. The use of the VIRTUAL statement in a F4P pro-
% : : - gram could be changed to the use of 4’ DIMENSION statement in an IBM program.
- | |
! : [
| 5
P
| =
i !
o P

i
= D e

B e

T T

o

S TR TR T IS T A il

CONVERTING XEROX FORTRAN TO DEC FORTRAN

To convert a Sigma 9 FORT4 program to PDP F4P the code will have to be rewritten to

climinate many Xerox-acceptable constructs including the following:

1,
2,
3,
4.
S,
6.
7.

N 80

9,
10,
11,
12,
13,
14,

15,

L

2,

3

In-line assembly language,

Compound statements [e.g,, A=B; B=C),

Multipl] assignments [c.g,, A=B=C],

Global_j’refercnccs [e.g., GLOBAL data, global Iabels like 10$),
REPEAT loops.

‘R, M, Z, backward (i.e., negative) X, and widthless format specifications.

Extended and optional relational expressions [e.g., A,EOR.B, I <J < 10},
Complex inverse trigonometric, hyperbolic and type conversion functions.
DOUBLE COMPLEX data and their intrinsic functions.

Asynchronous I/0 (calls to BUFFER IN, BUFFER OUT, and ICHECK),
NAMELIST 1/O (in cither Xerox or IBM format),

Alternate returns in éubroutine calls (in either Xerox or IBM format).

The END LABELS statement,

Hexadecimal constants.

Some FORTRAN 11 1/O [e.g., READ TAPE).

The following items in a Xerox FORT4 program are acceptable to the PDP 11/70 but their

syntax must be modified:

Boolean functions are available under different names.
The GETPUT package can be partially simulated through the OPEN/CLOSE statements,

Variable names of any length are acceptable but the firsty eight characters are significant to
the Sigma 9 while only the first six are significant to the 11/70,

DEC F4P ﬁses quoted Hollerith strings outside of DATA and FORMAT statemkent‘s (e.g,
A=‘ABCD’ not A=4HABCD),

“Type” specifications should be explicit. .

16

6. Conditional compilation in F4P uses a “D” i?n column one instead of X",
7. Adjustable formats have a different syntax (i.c,, use of “<" and ‘“>" instead of “N").
8, Some service routines have similar purposes (c.g., ERRSET).

9. Arguments to mathematical routines may have different acceptable values,

The PDP 11/70 is a sixteen-bit ASCH machine using octal notation while the Sigma 9 is a
thirty-two-bit EBCDIC machine using hexadecimal notation, Any explicit rcfcrencés to EBCDIC
characters or hexadecimal cénstants will have to be translated to ASCII or octal notation, respec-
tively, The default size of INTEGER and LOGICAL type variables is two bytes on the 11/70
while the only version available on the Sigma 9 is four bytes. The use of the /14 switch when
DEC F4P, is invoked will solve this problem, Generally, the use of two-by\\t? variables is preferred,
where possible for the sake of speed of operation on the 11/70. Since theTJ(Sigma 9 and the 11/70
do not store tltgir data in the same manner, the conversion of some FORTRAN programs may be
severely constrained, Appendices A and B discuss this problem in detail, Xerox FORT4 and
DEC F4pP interpret the ENTRY statement in ‘di'f_ferént fashions (see Appendix C for c;ne eXampie)
and its use should be avoided. Large Sigma 9 programs may not fit in the 64K bytes of memory

a single user can request on the DCAC 11/70. However, the use of the optimizing F4P. compiler,

VIRTUAL arrays or an overlay structure may alleviate this difficulty.

/ « , : :

9]

17

g

o ‘]r‘wmrwfww“im»‘w O et iy S £

R S ine i~

CONVERTING DEC FORTRAN TO XEROX FORTRAN
To convert a PDP F4P program to Xerox FORT4, the following F4P constructs will have to

be removed or changed to make the code acceptable to FORT4: - :

1. The PARAMETER statement,

2. Expand INCLUDE statements,

3. Comments after statements,

4, OPEN/CLOSE statements may be simulated by GETPUT,

5. Octal constants.

6. The VIRTUAL statement,

7. Boolean functions may be substituted with FORT4 equivalents,

8. Any “type” specification of less than four bytes,

9, 0, §,: and Q format specifications.

10. FORT4 does not use quoted Hollerith strings outside of DATA and FORMAT statements,

11, Conditional compilation in FORT4 uses an “X" in column one instead of “D",

12, Adjustable formats have a different syntax (i.e., use of “N” instead of “<' and ‘“>").
13. Some service routines have similar purposes (e.g., ERRSET),

14, Arguments to mathematical routines may have different acceptable values,

The PDP 11/70 is a_ snxtecn—bnt ASCII machine using octal notation while the Sigma 9 is a
thnrty-two-blt EBCDIC mac‘une using hexadeclmal notation. Any explicit references to ASCII
characters or octal constants will have to be translated to EBCDIC or hexadecimal notatjon,
respectively.’ The default size of INTEGER and .LOGICAL type variables is two bytes on the
11/70 while the only version available on the Sigma 9 is four bytes. “Type” statements may
have to be incorporated to enable the program to run equivalently on the Slgma 9. Since the
Sngma 9 and the 11/70 do not store their data in the same manner, the uonversmn of some
FORTRAN programs may be severely constrained. Appendxces A and B discuss thls problem i in de-
tail. Xerox FORT4 and DEC F4P interpret the ENTRY statcment in dlffcrent fashlons (see

18

o, Appendix B for one example) and its use should be avoided, Since the Sigma 9 has more core

storage available, any program overlays and virtual arrays used on the PDP could be eliminated

on the Sigma 9. The use of the VIRTUAL statement in F4P program could be changed to the

use of a DIMENSION statement in a FORT4 program,

A

e S

p
Va
‘/ :
i1
o 3
i
BTt T T U T T L A T T e S

.
TR

L R R S G e EE i e

B

APPENDIX A
COMPARISON OF DATA STRUCTURES ON THREE COMPUTERS

The three computers and their FORTRAN compilers discussed in this document implement
various data structures (c.g., INTEGER, REAL) in different fashions. These differences become
important if FORTRAN programs that are being transferred from one machine to another access
binary data (e.g., reading a binary tape, manipulating the bits and bytes of a datum), and can in-

fluence the accuracy ol caleulations (see Appendix D).

Excwi/i‘ for negative floating point data the Xerox Signma 9 and the IBM 360 store their data

in the same manner, Both computers store their floating point data in the following fashion:

(s) (c) | R | j‘/\)
SIGN CHARACTERISTIC FRACTION

A
BIT 0 1 78 31 0R 63
(SINGLE OR DOUBLE PRECISION)

floating point number = SF-16C64 where S = %]

Ngy = F116664 20 - 05 C<127

Note: 16% = 224 =~ 5,96:10-8 F =(0

: 16'i4 = 2-56 ~ 1,39:10-17 1676 S’IIC‘ZISI (single precision)

| | 1’6'14 <IFILI (double precision)

n

Nimm

13

F has six hexadecimal (single) or four-

Y ‘ teen hexadecimal (doubie) digits.

c ; The IBM 360 always stores its fraction, F, as a tre fraction. However, this is only the case

for positive floating point numbers on the Sigma 9, The Sigma 9 stores a 'ncgatj:xfe ﬂoating point
‘ . { L':‘,wft}\ :) : ‘
number as the two’s complement of its positive representation,

The storage of data on the PDP 11 computer differs with the 360 and the Sigma 9 by hav-

ing the positions of a datum’s bytes reversed with respect to how they would be stored on the

Gavare 00 0y

ity

i
BN

360 or the Sigma 9, If the following represents a full word integer stored on the Sigma 9 or
the 360:

8 82 83 84

g ; 0 78 1596 2324 k]|

Then it would be stored in the following manner on the PDP 11

W | B3 B2 B1

24 316 28 150 7

_{; | | |

: | which implies a swnp of half-words followed by a swap of bytes within each halfword., To

| | change a floating point number from the 360 or the Sigma 9 to thc l’Dl’ 11 the bytes within
cach half word are swapped and then a conversion algorithm must b» applied, ' The conversion is

& | necessary because the PDP 11 uscs an eight bit characteristic wlulc the Sigma 9 and 360 use a

& | | vs,e\vlénfbit charaéteristié. Some of the implications of this are illustrated in Appendix D, The fol-

| lowing will illustrate the form in which floating point nmiibers are stored on the PDP 11

; word I: ssg)u cnmné?smsnc MGH-ORD(EF#’FRAGNON

: 15 14 16 0

word 2: . | LOW~ORD‘E':!')FRACT|ON

F | 5 | 0

Wotds S..anq 4 for double precision data would contain lower ordcr"fractiqns (F5 and F3)

in the same format as word 2, : L .

Thus, Npm, = SF2¢-128 where S=%1, 0SC <255

224 < IRFIZ 1 single precision
2‘55 < IFIS 1 double precision

Fractions are }epres;'m’éd in “sign=magnitude notation with the binary radix point on the
left. Numbers are assumed to be normalized and, therefore, the most significant bit Is not stored
beeause jt Is redundant (i.e., *hidden bit normalization”). The bit Is assumed to be 1 unless the
exponent Is zero (eorresponding to 2+128), in wilch case it is assumed to be zero. As a result of
the different floating »oint architectures on the IBM 340, Xerox Sigma 9 and PDP=11, the con-
version of FORTRAN programs among these computers may be constrained, For example:

8.636:10°78 S INjpy | = INyo | S 7.237:1075
while

2,939+10-39 S INPDP | S 1.701+1038,

Therefore, programs that use numbers with very large or very small magnitudes on the 360 or

Sigma 9 may not be compatible with the PDP 11,

A N S T T e L

P ey resieterree

i . {

T T e - - T e
et

T T WINPT A

I | B

AR T T T

P :
“ R

APPENDIX B
IBM 360/PDP 11/70 TAPE COMPATIBILITY

The following material is from Chapter 8 of the Laboratory of High Energy Astrophysics
Computer User's Guide (reference)6) and illustrates the byte-swapping of the PDP 11, The
routines described below are available on the DCAC PDP 11/70 for the ¢onversion of 360 data
to 11/70 data and vice~versa, The routines could be used for the Sigma 9 with an additional

conversion being required for negative toating point data,

IBM 360 - PDP-11/70 Tape Compatibility
1. SOURCE Programs

Source tapes generated on IBM machines use the Extended Binary Coded Decimal Inter-
change Code (EBCDIC) for the representation of characters. DEC machines, however, use Amer-
jcan Standard Code for Information Interchange (ASCII) for characters codes. Utility programs

are available for easy interchange of information of these 8 bit codes on the 11/70.

2, Transfer of Data Files
2.1 Invroduction 7

There has developed a need for algorithms for converting data on an IBM 360-generated mag-
netic tape to recognizable PDP-1) format and algorithms for generating IBM=360 magnetic tapes
on the PDP-11, This need originates @m the difference in byte addressing between the two
computers, The problem épplies to ﬂény‘}NTEGER*Z, INTEGER*4, REAL*4, REAL*8 or
COMPLEX*8 variable. For a detailcd description of the differences, refer to AQIPS Technical
Note #75-001, “DEC PDP-11/IBM 360 Magnetic Tape Formats and Information Exchange

Considerations,”

2.2 Subroutines for Pbl?fl'l and IBM-360 Conversion

(A) TPDPFS - converts an IBM single~precision floating-point quantity o a PDP single-precision
| floating-point quantity. TPDPFS requires one or two arguments:

25 e
+=CEDING PAGE BLANK

NOT FILMED

o R

B

(B)

(©

(D)

(1) INQ - specifies the quantity to be converted,

Call TPDPESANOQ[OUTQI)

(1) INQ ~ specifies the quantity to be converted,

(2) [L,OUTQ] - specifies the destination of the quantity, If omitted, the quantity is re-
turnzd as a function value.

TPDPED ~ converts an IBM double-precision floating-point quantity to a PDP double-
precision floating-point quantity, TPDPFD requires one or two arg;‘jmcnts:

Call TPDPFDUINQ[,OUTQ])

N

(1) INQ - specifies the quantity to be converted.

(2) [,ouTO! = specifies the destination of the converted quantity. If omitted, the quantity
is returned’as a function value,

TIBMFS,"?;- converts a PDP single-precision floating-point quantity to an IBM single~-precision
i

i
floating:-point quantity. TIBMFS requires two arguments:

Call TIBMFS(INQ,OUT&)

(2) OUTQ - specifies the destination of the converted quantity.

TIBMFD - converts a PDP double-precision floating~point quantity to an IBM double-

precision floating-point quantity. TIBMFD requires two arguments:

Call TIBMFD (INQ,0UTQ)

(1) INQ - specifies the quantity to be converted.

(2) OUTQ - specifies the destination of the converted quantity.

Some of the variables used in the examples which follow are; -

(A) BUFF = Address of Data Area

(B) LEN - Length of Block to be Read from Tape
(C) TDAT - Halfword for INTEGER*4 Value
(D) SDAT - REAL*4 Parts of C8DAT

2%

NP

COTTTeReTITI O T T -

b oy] e e e

2.3 Algorithms for Conversion - 360 Tape to PDP Format
(A) INTEGER*2

8 16|10 7

THE BYTES ARE SWAPPED

To retrieve the correct INTEGER*2 data value from a 360-generated mag tape, SWABI is

called,

EXAMPLE 1: Assume the first two bytes of BUFF are an IBM 360 INTEGER¥*?2 variable.

We wish to convert these bytes to a PDP recognizable INTEGER*2 variable, The result
appears in the variable I2DAT as follows:

LOGICAL*1 BUFF(100)

INTEGER*2 IZDAT '
EQUIVALENCE (BUFFE(1),I2DAT

CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
CALL FREAD(BUFF,N,LEN,IOST,LR)
CALL SWABI(I2DAT,2)

‘{CONTINUE PROGRAMj

CALL DISMNT(N,IVSN)
STOP
--END .
27

i

- 2 2 S

f/“/
;/[/
i
i
i
L
i
Lol
o
; é,r_:n‘\
; i
i
i
G
L

™ (B) INTEGER*4

R

/
ﬁ/j?//
24 1 2 R T [|
i %

BYTES ARE SWAPPED

To retrieve the correct INTEGER*4 data value from a 360-generated mag tape, halfwords

must be swapped following the call to SWABI.

EXAMPLE 2: Assume the first four bytes of BUFF are an IBM 360 ISiTEGER*4 variable.

We ‘wish to convert these bytes to a PDP recognizable INTEGER*4 variable. The resuit
appears in the variable I4DAT as follows; |

LOGICAL*! BUFF(100)

INTEGER*2 TDAT(2) K

INTEGER*4 I4DAT =~

EQUIVALENCE (BUFF(1),I4DAT),(TDAT(1),I4DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)

CALL FREAD(BUFF N, LEN, IOST,LR)

K=TDAT(1)

TDAT(1)=TDAT(2)

TDAT(2)=K

CALL SWABI(I4DAT,4)
[CONTINUE PROGRAM]

- CALL DISMNT(N IVSN)
STOP
END

\1d

Py
R

28

CBYES e

P A T T Tr I T T T

i -
1

Rk

(C) REAL*4 ’
:
0 10 1516 23] 2 3 i
|
|
| BYTES ARE SWAPPED
. |
8 15]0 kD 31|16 23 |
! ‘ |
{ TPOPFS k i
L PERFORMS FLOATING POINT CONVERSION |
; i
, ' To retrieve the correct REAL*4 data value from a 360-gencrated mag tape, SWABI is first i
ﬁe} called, followed by the calling of TPDPFS,
; %
; EXAMPLE 3: Assume the first four bytes of BUFF arc an IBM 360 REAL*4 variable, We wish
F’ to convert these bytes to a PDP recognizable REAL*4 variable. The i'gsult appears in the vari-
1 able R4DAT in the following program:
LOGICAL*] BUFF(100)
: - REAL*4 R4DAT
f EQUIVALENCE (BUFF(1),R4DAT)
: CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
: CALLFREADGHH”WQLENIOSTLR)
’ CALL SWABI(R4DAT,4)
CALL TPDPF S(R4DAT R4DAT)
E
N [CONTINUE PROGRAM]
ku .
g »
:

CALLDISMNT(N,IVSN) | :
STOP ; ; , L ‘
END % .

29

(D) REAL*8
0 7]8 15[16 23]24 3 g 56| 66 63
BYTES ARE SWAPPED
8 150 7|24 311 }gsue 55
TPDPFD

PERFORMS FLOATING POINT CONVERSION

To retrieve the cotrect REAL*8 data value from a 360-generated mag tdpe, SWABI is first

called, followed by the calling of TPDPFD.

EXAMPLE 4: Assume the first eight bytes of BUFF are an IBM 360 REAL*S8 variable, We

wish to convert these bytes to a PDP remgnizable REAL*8 variable. The result appears in the

variable R8DAT in the followmg proguam

LOGICAL*1 BUF(100)

REAL*8 R8DAT

EQUIVALENCE (BUFF(1), R8DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
CALL FREAD(BUFF, N LEN IOST,LR)
CALL SWABI(RSDAT,B)

CALL TPDPFD(R8DAT,R8DAT)

[CONTINUE PROGRAM]

CALL DISMNT(N IVSN)
STOP
END

‘30ﬂ '

1

T

a) | (E) COMPLEX*8

)

| REAL PART IMAGINARY PART

o 0o 718 15[16 % é 47(48 55|56 63

BYTES ARE SNVAPPED

- 3 Tl } { ~40] 36

R - CALL TPDPFS (TWICE)

’ x 5 \'\ FOR FLOATING POINT CONVERSION

‘ ; To retrieve the correct C,OM"PLEX*S data value from a 360-generated mag tape, the whole

value is treated as two (2) REAL*4 values. Again, SWABI is first called, followed by the callmg

! of TPDPFS..

l ’

‘\ EXAMPLE S: Assume the first eight bytes of BUFF are an IBM 360 COMPLEX*8 variable,
, _ We wish to convert these bytes to a PDP recognizable COMPLEX*8 variable. The result appears
!, 7 in thé variable C8DAT in the following program:

|

| LOGICAL*1 BUFF(100)

| REAL*4 SDAT(2)

COMPLEX*8 C8DAT

EQUIVALENCE (BUFF(1),C8DAT), (BUFF (1),SDAT(1))

| CALL MOUNT(N,IVSN,NF,LABEL,IDEN) s

L CALL FREAD(BUFF,N,LEN,IOST,LR) ’

¥ : CALL SWABI(SDAT,38)

i CALL TPDPES(SDAT(1),SDAT(1))

3{ CALL TPDPFS(SDAT(2) SDAT(2))

: C THE COMPLEX*8 VALUE IS NOW CONVERTED AND

:i - C CAN BE REFERRED TO AS C8DAT

E E .

i [CONTINUE PROGRAM]

i » CALL DISMNT(N IVSN) T

H T STOP o

[END , o K

b

PURGYOY | aars:

UL 1 LR SR e g s i it it syt g

I

o T T e

24 Algoritlnnx’:§ for Conversion - PDP-11 to IBM Tape
(A) INTEGER*2

0 7[8 15

THE BYTES ARE SWAPPED

+

To generate the correct INTEGER*2 value onto a 360-mag tape, SWABI is called,

EXAMPLE 1: Assume the variable I2DAT is a PDP-11 INTEGER*2 variable which is to be
converted to an IBM recognizable INTEGER*2 variable, After converting, the rcsul{ appears
in the variable I2DAT and is then written to a mag tape,

LOGICAﬁ*I‘ BUFF(IOO) |

INTEGER*2 [2DAT

EQUIVALENCE (BUFF(1),I12DAT) |
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)

[CONTINUE PROGRAM]

CALL SWABI(I2DAT,2) |
CALL FWRITE(BUFF,N,LEN,IOST)

CALL DISMNT(N,IVSN)
STOP -
END
!
/ié::ﬂ::«;.}\
| [y
32 |
'}i g _

Sl

(B) INTEGER*4 |
N :
o u EIEC 23] . [s HIE 7 |
; |
! HALF WORDS ARE SWAPPED
| |
| 0 7]8 5 16 23[74 3
- ; ‘!
| , BYTES ARE SWAPPED \ |
PR g r i
: To generate the correct INTEGER*4 value onto a 360 mag tape, halfwords must be swapped

following the calling of SWABI,

EXAMPLE 2: Assume the variable I4DAT is a PDP-11 INTEGER*4 variable which is to be

~ converted to an IBM recognizable INTEGER*4 variable. After converting, the result arppcars

in the variable 14DAT and is written to a mag tape,

LOGICAL*1 BUFF(100)

INTEGER*2 TDAT(2),K

INTEGER*4 14DAT

EQUIVALENCE (BUFF(l), I4DAT),(T DAT(1),J4ADAT)
CALL MOUNT(N,IVSN,NF, LABhL ,IDEN)

iy

[CONTINUE PROGRAM]

A3
e

K-TDAT(1) o

: : TDA’l‘(l)"TDAT(Z)
clm TDAT(2)=K '
. ; CALL SWABI(I4DAT 4)

~ CALL FWRITE(BUFF,N,LEN,IOST)

CALL DISMNT(N IVSN)
‘STOP
END

| ” (C) REAL*4 o
. : 5[0 712 e 2 -
! ><nms ARE SWAPPE(>< ,, -
: " . } 5t - |
| 0 7|8 15[18 23| K ‘ .
TIBNFS _—
8 PERFORMS FLOATING POINT CONVERSION '
. i j
! i
; To gencrate the correct REAL*4 value onto a 360 mag tape, TIBMFS js first called, followed 3 T ‘!
e . . 1
ﬁ; . by a call to SWABI, | j
r EXAMPLE 3: Assume the variable R4DAT is a PDP~11 REAL*4 variaﬁﬁi which is to be
converted to an IBM recognizable REAL*4 variable, After converting, the result appears in 4

the vanablc R4DAT and is written to a mag rape.

Ial | It -

, LOGICAL*1 BUI‘F(IOO) Y
| REAL*4 R4DAT ;
'EQUIVALENCE (BUFF(1),R4DAT)
; CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
.7 [CONTINUE PROGRAM]
: A . \g\\‘&
CALL TIBMFS(R4DAT,R4DAT) ERRN ((:
- . CALL SWABI(R4DAT,4) . '
; CALL FWRITE(BUFF,N,LEN IOST)
| CALL DISMNT(N,IVSN) - T ,
| STOP | e . -
| END . B : y
o
\
5
i R 34)
B -

ettt SRR

(D) REAL*8

8 1510 7124

G } g 63[43 55 |

. - ’ \ | . ,
><Wnss ARE SWAPPE(>< ><

0 718 15116

i

TIBMFD

23124 2 g 5556 saln

[‘?};.\Pemonms FLOATING POINT CONVERSION
y)

8
To generate the correct REAL*8 value onto a 360 mag tape, TIBMED is first called, fol-

lowed by a call to SWABI

EXAMPLZ 4: Assume the variable R8DAT is a PDP-11 REAL*8 variable which is to be
converted to an IBM recognizable REAL*8 variable, After converting, the result appears in

the variable R8DAT and is written to a mag tape.

LOGICAL*1 BUFF(100)

REAL*8 R8DAT

EQUIVALENCE (BUFF(1),R8DAT)
CALL MOUNT(N,IVSN,NF,LABEL,IDEN)

[CONTINUE PROGRAM]

[

-

[

CALL TIBMFD(R8DAT,R8DAT)
CALL SWABI(RSDAT,3)

CALL DISMNT(N,IVSN)

STOP

END

35

el b

s E “ s - .

R

(E) COMPLEX*8
:
? REAL PART IMAGINARY PART
|] 18] 0 7|24 } é 40[56 s3las 8
E: yd
' BYTES ARE SWAPPED
y o 0 10 15[16 a7[a "
{
v‘ : CALL TIBMFS (TWICE) !
FOR FLOATING POINT CONVERSION
F: ‘ To generate the correct COMPLEX*8 value onto a 360 mag tape, the whole value is treated as
iﬁ two (2) REAL*4 values, Again, TIBMFS is first called followed by a call to SWABI,
; ~EXAMPLE 5: Assume the variable C8DAT is a PDP~11 COMPLEX*8 variable which is to be
} j converted to an IBM recognizable COMPLEX*8 variable. After converting, the result appears
; i ~ in the variable C8DAT and is written to a mag tape,
; LOGICAL*1 BUFF(100)
REAL*4 SDAT(2)
COMPLEX*8 C8DAT \,
EQUIVALENCE (BUFF(1),C8DAT),(BUFF(1),SDAT(1))
\ CALL MOUNT(N,IVSN,NF,LABEL,IDEN)
o [CONTINUE PROGRAM]
S '
o =
? | CALL SWABI(SDAT,8) |
: CALL TIBMFS(SDAT(1),SDAT(1))
CALL TIBMFS(SDAT(2),SDAT(2))
; CALL FWRITE(BUFF,N,LEN,IOST)
A C : »
\y C THE CORRECT COMPLEX*8 VALUE IS
(<> € NOW WRITTEN ONTO TAPE AS C8DAT"
SR C s - o
Lo CALL DISMNT(N,IVSN)
P STOP C ,

Rl

' -ﬂﬁ:_‘J

S PTTER ER e m n S IRRE eniSereiT ERR e T RRr e T E
- - oy - L o e D e

ji

v APPENDIX C
FORTRAN FOR THE 11/70 AND THE 360

Paragraph IV (page 40) of the document in this appendix illustrates one way in which the
implementation of the ENTRY statement by the PDP 11770 F4P compiler differs from the im-
plementation by the Xerox Sigma 9 and IBM 360 FORTRAN compilers, Many DCAC users are
familiar with FORTRAN for the 11/70 and the 360's and it is included here for the sake of

completeness,

FORTRAN for the 11/70 and the 360’ |
A guide to the writing of FORTRAN programs compatible with both the DCAC PDP 11/70
and the SACC S/360's
or

Ways to save man-hours in transferring programs between machines

Jim Hamill
John Campbell
Laboratory for Planetary Atmospheres
Data Analysis Branch

. June 1978

These guidelines outline FORTRAN programming practices that provide compatibility be-
. tween two particular Goddard computers: the DCAC PDP 11/70 and either of the SACC §/360’s,

We emphasize that these practices are casy to follow in the generation of new code.

This memorandum mentions, additionally, a few of the peculiar differences between the two

machines, Attention is directed, in particular, to Paragraphs II and IV,
|);
§
The two compilers Lompared and contrasted are:

37

Mm& L e i ; :

il

© ey

R

e T

o IBM’s FORTRAN-IV level “H”
® DEC’s FORTRAN-1V-PLUS

We recommend that most programming be in American Mational Standard FORTRAN

(X3.9-1966), There ar¢ two important exceptions to this recommendation,

1. We actively encourage the use, where it is casiest for the programmer, of certain com-
monplace extensions to “ANSI FORTRAN", Table I lists some non-standard features
that are common to both vendors’ languagds. We feel that these non-standard features
are of sufficient usefulness and are sufficiently Widcs;)rcad. among vendors of software

that their use should not be discouraged.

2. In some cases, essential language features ar¢ machine~dependent, (A good example s
the means by wl!icli a given data set is opened for program use, In IBM programming,
the Job Control Language (JCL) provides a simple way of doing it, whereas PDP=11 pro-
gmmh‘;érs will want to use the OPEN statement.) In other cases, use of a non-standard
feature can provide one of the followigg advantages with respeet to the best “standard
FORTRAN?” alternative:

. anpprcciablc case of coding;

° gisnificlfmt reduction in 1/O (for IBM applications, where “time is big money”);

® significant reduction in core requirements (more important on the smaller machine,

the 11/70);

® significantreduction in execution time,

If any of these advantages can be realized, or if no sensible alternative is available, we of N

course encourage the use of the non-standard features,

Programmers of the 11/70 must be aware that the default sizes of INTEGER and LOGI-

CAL type variables have been set to g_&_o bytes on the DCAC machine, whereas the default

Y
4
/

38

o 1

11,

sizes are each four bytes in the IBM FORTRAN languages. We encourage explicit or im-

plicit type declarations. We recommend the following practices in particular.

1, Declare as INTEGER*4 those variables that may at some time exceed 32,767 in ab-

solute value,
2. For character type data, nse the LOGICAL*| declaration wherever possible.
3, Use IMPLICIT statements liberally.

Structured programs often consist of numerous subprograms tied together with labeled
and/or unlabeled COMMON blocks, 1t is good practice to use identical COMMON decla-

rations for a given COMMON block wherever it oceurs.

This can be a painful and tedious duty for programmers of the IBM machines. The prac-
tice is facilitated on the DCAC machine, because the PDP FORTRAN IV-plus language
supports the INCLUDE statement. In that language, identical common blocks can be
guaranteed by the following simple device: each subroutine has, near its beginning,
statement referring to a file that contains all the relevant COMMON declarations, for
instance, |

INCLUDE PGMO02.INC
The especial advantage of such an approach is that adjustments of COMMON variables
(for example, a change in the dimensions of an array) are taken care of by modifications

to a single file, in this case the file PGMO2,INC,

If any interest is_:cxpressed, we can write a utility program to convert PDP FORTRAN

(provided that it is sufficiently “standard”!) into a form that should be acceptable to the

IBM compilers. In particular, such a utility can replace INCLUDE statements with the

fully expanded FORTRAN code,

39

TR,

lvl,

‘&;ive the expected result. The same code run on the PDP will invariably give the result \)

k= j(i).. Evidently, it is not sufficient to name a variable in the list of pseudo-parameters.

‘The following features are available in'IBM FORTRAN-H but not in PDP FORTRAN : P

e TR AR e L T T e e e W"”Qg

The ENT,RQ’ statement is supported on both machines, but it does not work the same
way on cach., Example | shows the difference, and Example 2 accomplishes the desired

effect on either machine.

S it s i e s e

Example 1, In order to calculate k = j®, the following subroutine {3 written:

SUBROUTINE SUBI (I)

RETURN

ENTRY SUB2 (J, K)

K = J¥*] a

RETURN : -
END

(The variable “i” initialized with a call to SUBI, and subsequently entry point SUB2 is

used,)

If this subroutine is compiled under the IBM FORTRAN-H compiler and executed, it will © |
L "wl\}ﬂ:

[.

Moot

Example 2. The following code will calculate k = i@ correctly on either machine:

SUBROUTINE SUBI (Ii)

=11 |
RETURN 4 v
ENTRY SUB2 (J, K) | |
K = J* *I : . d » g <y
RETURN | '
'END

SIS
1

,/l;;,f‘ .
(There are other 3;;.@*5.) o

3

i L TR T

IV-plys: - / | s 3

® optional returns from a subroutine; = ; , i
® data initialization in type declaration statements (example:

INTEGER ZERO /0 /)

TR T ey = T TR IR L T

o COMPLEX*I6 type variables, ' L - |

a0 | | =

RS g

T

RS y»vﬁwloawm

B

Rl St e RN A S

VL

VIL

VIIL

’/‘)/ 3
o

s

The first and sccond deficiencies may be remedied by the programmer, Programs which
rely on double~precision complex numbers probably should not be considered for the
11/70, (If double~precision complex arithmetic is restricted to a small portion of the

code, a fixup is feasible, See an experienced scientific programmer.)

The PDP FORTRAN-plus language supports the following unusual features, We strongly

discourage their use in any GSFC programming!
FagC
®| cxpressions as DO parameter;
|

® expressions in subroutine DIMENSION statements;

® run-time format specifications,

£

fo replace these handy features during initial coding requires only a little extra thought,
Experienced programmers are aware of how difficult it can be to repiace “them once they

have been incorporated into a program,

Two features available on the 11/7‘0 a}e handy and not parficularly dangerous in conver-
sion. At the ‘worst, a failure to convert them properly will result in a compiler syntax .
err;)r,‘ These features are:

® | the BYTE statement;

® the same-line commenting feature.

~ We do not actively encourage the use of these features, but we recognize that they can be

convenient. ‘_ o ‘ ‘ :

Table 2 lists some hierarchies of [IMPLICIT, éxplicit, COMMON, DIMENSION, DATA]

declarations that arc acceptable to both the IBM FORTRAN-H and the PDP FORTRAN

IV-plus compilers.

it

 Table 1. The below-listed language features are common to both IBM FORTRAN-IV
* level H and PDP FORTRAN IV-PLUS. e o

1. Array subscripts may be integer valued expressions, If a floating-point expression has
“been coded, it is implicitly “fixed",
2, Mixed-mode expressions are fully supported, with implied “floats” as appropriate.
3. The followipg I/O statements are useful;
: |
¢ DEFINE FILE
® direct access READ (formatted and unformatted)
o] ﬁdirect access WRITE (formatted and unformatted)
| e FIND
g
4. The “END =" and “ERR =" options are permitted in I/O statements.
5. The LOGICAL*1 and INTEGER*2 variable types are useful.,
6. The IMPLICIT stitement -is useful,
. 7. The lengths of variables and of function values may be easily defined, for instance,
| FUNCTION JFUNC*2 (1)
INTEGER*2 IRAY (10) e
»oo)
8. TheUENTRY STATEMENT IS SUPPORTED. Please note the caveat in Paragraph 1V,
3 Table 2. The standard declaration statements may not be coded in an arbitrary order,
Here we list them in an hierarchical order that is acceptable to both compilers of ‘interest.‘;
o 1. IMPLICIT declarations. T TN
il f -2 'Any of the following declarations in any order:
3 ~ ® 'COMMON o S
‘ : . explicit type. de{:lﬁarat‘ion
& e DIMENSION
) ® EXTERNAL |
o 42 ‘

e e T L el e g R R T R P

4

%,

it e e A i

s

e T,

. One may declare the type or the dimension of variables in COMMON, either before or

after the corresponding COMMON sta;gment.
3. Data statements,
(Type 1 must precede Type 2 which must precede Type 3.)

bl

£

o

43

i

XQAL,.

b

I

AL

ey

o TR IR e e e

o EARRERAL e IR R v;rw:’r,xi

@ TR, T
-0

TR T

s,

R L e T T R I T

SR

/
APPENDIX D \(5
7
EFFECT OF FLOATING POINT ARCHITECTURE ON
COMPUTATION ACCURACY //
|

This material appeared in the Goddard Weekly Report for May 25, 1979 to May 31, 1979
from Code 570.

Effect of Floating Point Architecture on Computation Accuracy

Recent experience with scientific computations on several éomputers raised suspicion, as to
the accuracy of the floating point arithmetic units in the respective machines. Upon investigation
it was learned that some of the machines in question truncate the results of a floating point oper-
ation, while the others fund the results. The overall effects of truncation and rounding on a

lengthy computation can have a dramatic impact on the final result. To assess the magnitude of

this effect, an analysis was performed and the results are presented here in the hope that others

involved in large scientific computations may gain insight into the numerical errors which can be
attributed to floating point arithmetic. These results are not to be construed as criticism or
praise of any machine, since many more factors must be considered in fully evaluating the nu-
merical a{{curacy of a 'particular machiﬁe. Instead, the results can and should be used in under-

standing the differences between truncation and round-off with respect to the accuracy of long

sequences of operations.

4
i
i

The analysis reported here addresses, in particular, the IBM S/360 and the DEC PDP 11 com-

puters. With appropriate care, however, the results can be generalized to other computers.

The DEC VAX 11/780 and PDP 11/70 represent double precision floating point numbers in

a binary format, Fifty-five bits comprise the fraction, eight bits the gxponenf, and one bit is

used for the sign. ‘Binary normalization is used and arithmetic results are rounded, Numerical

precision to sixteen decimal digits is provided in double precision.

CULUING FAGE LEANID NG FILMED

Thal

- R adnar e et e NS it A i ca A it A e A M > e S T

The IBM $/360 represents double precision floating point numbers in a hexadecimal format.
Fourteen hexadecimal digits (Fifty~six bits) comprise the fraction, seven bits the exponent (base
16), and one bit Is used for the sign, Hexadecimal normalization is used, and arithmetic results

are truncated, Numerical precision to sixteen decimal digits is provided in double precision.

The following graph displays the results of the analysis for these two floating point architec-
-tures. On the ordinate is the number of double precision floating point operations performed in
sequence on the same set of operands, such that the numerical errors will be compounded. The

abscissa then shows on two scales, binary and decimal, the number of digits which will be accurate

after a number of operations.

Considering the case of truncation first, it is important to understand that truncation will
¢ither leave a result unchanged, or make it smaller; hence, truncation imposes a bias on the result,
In the ideal case, where all operations result in leaving the result unchanged after truncation, the

accuracy of the result will be the accuracy of the machine (56 bits in the case of the S/360),

/ ,
This is displayed as the minimum truncated error on the graph, the vertical line next to the

ordinate. The maximum truncation error line assumes every operation results in truncation of the

result, and the mean truncation error is computed assuming a uniform mix of truncation errors

throughout the sequence of operations. Note that the mean truncation error is half of the maxi-

mum, a point which is easy to miss on a log-log graph such as this. ”

i

~ In'the case of round-off, a result can either be left alone, made larger, or made smaller,

There exists no bias as is encountered in truncation. Over a long sequence of operations, some

results will be rounded up, others rounded down, and still others will remain unchanged'. The
mean rounding error, therefore, corresponds to the minimum truncation error, as shown on the _

graph. The maximum rounding error theoretically corresponds precisely to the maximum trunca-
. \;) - B . . — N

tioh error. The 'giifference shown on the graph is a result of the binary {raction on the PDP ll

7
V4

versus the hexadecimal fraction on the $/360, Perhaps the most significant line on the graph is

46

e

o e TR

st S SR

By P

the one labelled *“Reasonable Bound on Rounding Error”., This line corresponds to the square

root of the maximum rounding error and is derived from the Central Limit Theorem.

Most numerical results on a rounding machine will fall within the enVcIOpc buwccn the
mean rounding error and the reasonable bound on the rounding error. In contr'ﬁ\% N thns, most

results on a truncating machine will tend to lic closely clustered about the mean, intrnducing

k » v P ! - I3 % > 13 o N *
5 . significant errors after long sequences of operations, For example, it is clear from this graph
3
that after a million serial operations on a truncating machine, only about nine digits can confi-
: P dently be expected to be correct, whereby the same sequence of operations on a rounding ma-
, ;
) | chine can be expected to be correct to fourteen decimal places. The conclusion of this analysis
is that the numerical architecture of some current computers may limit the achievable accuracy

‘ of lengthy scientific computatlons' in other words, caveat emptor,
i_ P - For further information on clarification on this concept, please contact Ron Larsen, 344~
i 7777. Anyone engaged in precision computing tasks on thé 360 computers should be aware of
~ this effect,
" o
¢
! v
¥ //'/

i

'
b !

| L

LrSmmmTE e

L
L1

P TIPS

V.1Vva 40 135 Y NO SNOILVYHIdO IAISSIIINS AB AIANNOIWOI SHOHYI TVIIHINNN

SNOILYH3dO LNIOd ONILYOT4 NOISIOAHd 378N0a Vi3S 40 YIAWNN

- AoeInday uonegyndwop) uo AMINNIIY Jurog Surieoy Jo OB
S1191Q AHVYNIE - ADVHNIIY
ot e ve 9 8 oy vy vt o 8y 05 2§ s 95
1 | I i | | i i I 1 | | 1
SLIDIG TYNIDIA - ADVHNIIY ;
oL i ZL £L vl SL 9L o
T | ; 1 T 77T 0013074 -
o P
- —o:301
09E/WILSAS Wl = —m e e e
11-d0d 93Q = —{20+30L
- c0+3011
Houu3 N
NOILVONNYHL V.
2:2.5:\\\\ , 4 vo+301t
P | |
; Houu3 i .
/7 NOILVONNHL S0+301
Py Nvan
\\\
\\ ’ HOHYH3 HOUY3 ONIONROY NO S N .
PVl YNIAONNOY WNINIXYIN aNNog 319YNOSYIH iRl N R
HOHYI ONIANNOY NVaW | £0+30'L
HOHYI NOILVONAHL WNWINIW
80+30°L

48

y

§
W
3

REFERENCES

L

IBM System/360 and System/370 FORTRAN IV Language, (IBM: GC28-6515-10), 1974

I

2. IBM Systcm/SGﬂ Operating System FORTRAN LV (G and H) Programmer’s Guide, (IBM:

10q

1.

12.

13.

14.

GC28-6817-4), 1973.

3. IBM System/360 OS FORTRAN 1V (H Extended Plus) Compiler and Library PRPQ Users
Supplement (IBM: SC28-6868-0), 1971,

4. IBM OS FORTRAN IV (H Extonded) Compiler Programmer’s Guide, (IBM: SC28-6852-1),
1972.

5. Xerox Extended FORTRAN IV Language Reference Manual, (Xerox: 90 09 56F), 1975,

6. Xerox Extended FORTRA'N IV Operations Reference Manual, (Xerox: 90 11 43E), 1975,

7. Xerox Control Program-Five Reference Manual, (Xerox: 90/7 64 H-1), 1978,
8. FORTRAN IV-Plus User’s Guide, (DEC~11-LFPUA~B-D), 1975. <<
|
9.

FORTRAN Language Reference Manual, (DEC-11-LFLRA-C-D), 1977,
] ;

“FORTRAN for the 11/70 and the 360’s,” J. Hamill and J. Campbell, (GSFC Code 626),
1978,

ANS Programming Language FORTRAN (ANSI X3.9-1977), 1978 (i.e., FORTRAN 77),

“FORTRAN 77", Brainerd (ed.), CACM, V. 21, N. 10, 1978, pp. 806-820,

*

“Effect of Floating Point Architecture on Computation Accuracy”, R. Larsen (GSFC-Code

570), Goddard Weekly Report, May 25, 1979-May 31, 1979,

Xerox Sigma 9 Computers Reference Manual (Xerox: 90-17-33-1), 1979.

P
A

Mg,

g

e s

i

nerer e

v
;

i

15. 1BM System/360 Principles of Operation (IBM: GA22-6821-~7), 1968,

16, Laboratory for High Energy Astrophysics (LHEA) PDP 11/70 User’s Guide (GSFC T,
‘ 79584), 1978,

- ACKNOWLEDGMENTS
The author wishes to thank Christine Gloeckler, Robert Turkelson, and Narindra Bewtra for

their suggestions on the coritent of and helpful review of this text,

i
i
i
ir
i 7

50

DR .
L Sl

SRS s kTR wa -t L E

ST T

promn s
BIBLIOGRAPHIC DATA SHEET
1. Report No, 2. Government Accession No. 3. Raclplient’s Catalog No,
T™ 81995
4. Title and Subtitle , 5, Report Date
i Comparison of and Conversion Between Different August 1980 ,
5 Implementations of the FORTRAN Programming 6, Performing Organization Coda
] Language 932
; 7. Author(s) 8. Performing Organization Report No,
‘ Lloyd Treinish
5 9, Performing Organization Name and Address 10, Work Unit No,
. Interpretive Techniques Branch
; Information Extraction Division 11, Contract or Grant No,
f Goddard Space Flight Center
?:, Greenbelt, MD 20771 13, Type of Report and Period Coverod
12, Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration
Washington, D.C. 20546
14, Sponsoring Agency Code
15, Supplementary Notes
76, Abstract
f This document is intended to be used as a guideline for computer programmers who may
: need to exchange FORTRAN programs between several computers. The characteristics of the
: FORTRAN language available on three different types of computers are outlined, and pro-
3, cedures and other considerations for the transfer of programs from one type of FORTRAN
! to another are discussed, In addition, the variance of these different FORTRAN’s from the
': FORTRAN 77 standard are discussed. '
J
:
17. Key Words (Selected by Author(s)) 18, Distribution Statement
| Programming Languages ~ FORTRAN, Unclassified = Unlimited
i Software Portability, Software Conversion
! | .
19, Security Classif. (of this report) | 20, Security Classif. (of this page) 21, No. of Pages | 22, Price*
Unclassified Unclassified

*For sale by the National Technicai Information Service, Springfield, Virginia 22151.

GSFC 25-44 (10/77)

3

A T sk e B

	1981004251.pdf
	0049A02.tif
	0049A03.tif
	0049A04.tif
	0049A05.tif
	0049A06.tif
	0049A07.tif
	0049A08.tif
	0049A09.tif
	0049A10.tif
	0049A11.tif
	0049A12.tif
	0049A13.tif
	0049A14.tif
	0049B01.tif
	0049B02.tif
	0049B03.tif
	0049B04.tif
	0049B05.tif
	0049B06.tif
	0049B07.tif
	0049B08.tif
	0049B09.tif
	0049B10.tif
	0049B11.tif
	0049B12.tif
	0049B13.tif
	0049B14.tif
	0049C01.tif
	0049C02.tif
	0049C03.tif
	0049C04.tif
	0049C05.tif
	0049C06.tif
	0049C07.tif
	0049C08.tif
	0049C09.tif
	0049C10.tif
	0049C11.tif
	0049C12.tif
	0049C13.tif
	0049C14.tif
	0049D01.tif
	0049D02.tif
	0049D03.tif
	0049D04.tif
	0049D05.tif
	0049D06.tif
	0049D07.tif
	0049D08.tif
	0049D09.tif
	0049D10.tif
	0049D11.tif

