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INTRODUCTION

The chemical and physical interactions causing molecular orientation

at liquid crystal-solid interfaces are a subject of fundamental physical

interest. They are also important for practical applications in liquid

crystal display devices. The successful operation of most electrooptic

liquid crystal displays requires a. well defined alignment of the liquid

crystal molecules at the substrate surface. Special chemical or mechan-

ical treatments of the substrate surface are required to obtain the

alignment (Ref. 1)

The optical behavior of an electrooptic liquid crystal display is

controlled by an applied electric field. A typical display geometry con-

sists of a thin nematic layer (10-20 pm thick) sandwiched between two

parallel surfaces, which have been treated to produce alignment. In the	 i

absence of electric (or magnetic) fields, the equilibrium bulk orienta-

tion is determined by the elastic response of the liquid crystal to the 	 -

interaction Forces at the surface boundaries. The orientation of a

nematic liquid crystal is conventionally described by the director, n, a

unit vector representing the average orientation of the long molecular

axes in a local region of space whose dimensions are small compared to

the long range of the ordering forces present in a liquid crystal. An

ordered nematic liquid crystal behaves optically like a uniaxial single

crystal with the optic axis parallel to the director n. For liquid

crystals with positive dielectric anisotropy, the application of an

electric field tends to reorient the molecules along the field direction.
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The onset of reorientation occurs at a critical voltage, producing a

sharp transition in the optical properties.

Among the electrooptical qualities desired for good device perform-

ance are sharpness of transition and transparency. 'These qualities are

critically influenced by the direction and uniformity of the initial

surface alignment and by ;Iv strength of interaction (pinning strength)

between the surface forces and the liquid crystal molecules (Ref. 2). A

measure of the pinning strength is the anchoring energy. Quantitative 	 l
i

evaluation of the anchoring energies for various surface treatments,
1
a

types of alignment and different liquid crystal materials is needed for

a better understanding of the diverse factors contributing to surface

alignment and could be useful to the development of display technology.

The most commonly used model for the surface energy (Ref. 2), re-

flecting the ani.sotropic nature of the surface interactions, has the form

w W sin2(Ae)	

(1)

where w (ergs/cm2) is the energy required to rotate the director away 	 i

s

from its preferred surface orientation (called the "easy direction")

through a small angleA6. The coefficient W in this expression is the

surface anchoring energy. Equation (1) has been used in measurements of

surface energies corresponding-to rotations of the director both in a

vertical direction away from the plane of the substrate and in the plane;

of the substrate. Extremes of observed anchoring energies, corresponding

€	 to different surface treatments, range from about 19-  ergs/cm 2 (weak
3

anchoring) for rotations in a vertical direction up to about one erg;/cm2

(strong anchoring) for rotations in the plane of the substrate (Ref. 2).
!	 `
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Another parameter sometimes used to characterize surface energies is

"extrapolation length" (Ref. 3, p. 74), whose magnitude is on the order

of K/W, where K is an elastic constant of the liquid crystal (,genes-

ally about 10-6 dynes). The extrapolation length defines an effective
k

sample thickness when a distortion has been imposed on the bulk orienta-

tion and can be regarded as a nieasure^of the continuation into the sub-

3

strate of the angular variation of the director. For strong anchoring	
f

conditions, in which the surface energies are comparable to or larger

than the interaction energies between molecules, the extrapolation length
{

is on the order of or smaller than average molecular dimensions (<100 A)

and for all practical purposes is essentially zero. For weak anchoring

conditions, the surface energies are much smaller than the intermolecular

interaction energies. Then the extrapolation length is much larger than

the molecular dimensions and can be as high as 100 um.	 i

Only a few methods exist for the experimental determination of sur-

face anchoring energies. In one of these methods (Ref. 4), quantitative

estimates of anchoring energies have been obtained from a nombination of
e,

optical analyses of the variation in director orientation aF^ross surface

disclination lines and measurements of the equilibrium line widths. Sur-

face disclination lines are a common defect observed in liquid crystals

F
and are lines of discontinuity in the molecular orientation attached to

the substrate surface. In a second method, analysis of the wall effects

on the magnetic Freederickse transition in a homeotrop cally aligned

nematic cell have been used to evaluate anchoring energAes For substrates	 s

treated with various surfactants (Ref. 5). In yet ,another method,

I
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anchoring energies were determined in twisted nematic cells from measure-

ments of the director rotation caused by a pplication of a magnatic field

(Ref. 6).

A new method for evaluating surface anchoring energies from measure-

ments of the director orientation at the surface boundary of a nematic
I

liquid crystal cell has been presented recently by Riviere, Levy and

Guyon (Ref, ?), The theoretical and experimental results of Riviere,

Levy and Guyon (RLG) are briefly reviewed below.

The sample used in the RLG experiment consisted of a slightly wedge-

shaped nematic liquid crystal cell formed by two nearly } parallel glass

plates. The sample geometry Is shown in Figure 1.

Z
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Figure 1. Liquid crystal sample geometry used for determination	 z
of surface anchoring energy from tilt angle measurement

^^ are the easy directions of alignment and repreThe angles ¢l and 

i	 sent what the tilt angles would be for each surface alone. The angles 61

	

r	 and a are the actual tilt angles and are distortions induced by the

opposite surface. The small wedge angle a in the RLG study was 18

minutes of arc. The upper surface was treated with an organosilaae to

i
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I

produce a strong homeotropic alignment (¢g - 90 0). The lower surface was

coated with an obliquely deposited SiO film which provided an easy direc-

tion of 01 - 300 . The angle 0 was the angle formed by the director nA

and the X-axis. Rotations of the director were assumed confined to the

XOZ plane.

To derive an expression relating surface anchoring energy to the

tilt angle 01 and sample thickness d, RLO started with the free energy

density as given by the isotropic elastic continuum theory for liquid

crystals,

2
Fd	 2 K (Ve)	 (2)

To simplify calculationop the ofte-constant approximation was assumedo In

which the,liquid'crystal is considered as an isotropie elastic medium

wbpse elastic'properties are represented by a single elastic constants K.

For this free energy density, the Euler-Lagrange equation for minimiza-

tion of the total bulk free energy is simply LaplaWs equation, V26 = 0.

Because of the small wedge angle a, it was also assumed that -the varia-

tion of the director angle e in the X-direction was much smaller than

90	 Do 	 = 92in the Z-directiort, viz.,	 this assumption v20  —For 0	0.
29z

Integration of the one dimensional Laplace equation gives

e	 az + 00	(3)
e —e2	 1

where d is,, 	 samplewhere a	 For a given x,	 d --

thickness at that point._ The surface energy at the lower surface

(subscript 1) was assumed to be given by

2
WSJ Wl sin(0 1	(4)

•
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Substitition of Eq. (4) into the equation representing the balance

between the surface and elastic torques,

dw 
91

kaz)z=z
Do

dO	 K 

resulted in the following expression for the 641 rface anchoring energy

K(0 2 - 01)
W1 d $in [2 (01	

(6)

To enable evaluation of W from experimental measurements of the tilt

angle 01 and sample thickness d only., same additional approximations

were made. One approximation was that 09 01 ̂ 2 ^1 A$ and that
d	 d	 d

A0 was constant over the region of measurement. Also for small anglea

(01	 01)p it was assumed that sin[2(0 1 	2 (01	 Using tilt

angles, el and 61, and the corresponding sample thicknesses, 
do 

and

do', measured at two locations along the lower surface, Eq. (6) can be

rewritten as

K(A0	 i l
W1 11 ) Cd r1	 2(0	 6

The tilt angles were deduced to within ±0.30 from reflectivity measure-

ments at the critical angle of parallel polarized light from a laser
6light source (Refs. 7,8). Using an approximate value of K -10- erg-cm ,

RLG reported a calculated value for W of (2.1 0.8)x1O" .3 ergs/cm 2

which generally agreed with previously reported values of the surface

anchoring energy for the same surface treatment.

The purpo.se of this thesis 1S Lo extend and generalize the theory

presented by RLG' to include non-eciiial elasttc constants and a two

(5)
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I

dimensional variation of the director orientation. The sample geometry

and parameters are the same as defined by Figure I. The sequence of

presentation is as follows. First, there will be . a very brief discussion

of relevant aspects of the elastic continuum theory for nematic liquid
{

crystals. Then, an analytical solution to the one-dimensional problem

allowing for elastic .anisotropy, i.e., assuming non-equal, elastic con-

stants, will be presented and discussed. This wia,l be followed by a

special solution for the two-dimensional problem, appropriate for the

slightly perturbed cane-dimensional geometry representing the wedge-

shaped liquid crystal sample. Next, a. comparison will be made between

the surface anchoring energies obtained using the one-dimensional,

elastically isotropic approximation and the 'two solutions for elastic	 #

anisotropy presented here. Finally, an experiment for measuring surface

anchoring energies using the analytic solution for the one-dimensional

case will be proposed.

{
ELASTIC CONTINUUN THEORY

A number of large scale phenomena involving the response of the bulk

liquid crystal to external disturbances can be successfully described by

the elastic continuum theory (Ref. 3, Chap. 3 Ref. 9, Chap. 8), in which

the liquid crystal is treated as a continuous elastic medium. In the

absence of applied electric or magnetic fields, the thermodynamic equilib-

rium state is determined solely by the elastic response of Lhe bulk liquid

F crystal to the surface interaction forces at the walls of its container.

The surface forcesinduce- a static distortion of the director orientation.'
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The starting point for calculations is the equation for the elastic

free energy density, expressed in -terms of the director field, a(r). The

elastic free energy density is given by

2	 2	 2
n	 (8)Fd	 tKl [V	 + K, [n (r) • V x n^	 + X 

n 0 x (V x 
n 

r

2	 ^ 'r)]	
I

Here KI, X2 and K3 are the Franck elastic constants and correspond to

the three basic Itypes of distortion for a nematic liquid crystal, namely,

splay, twist and bend, respectively. The basic problem in appliaattons

of the elastic continuum theory is to determine that director configura-

tion which minimizes the total free energy. The total free energy is

II given by

F FB + FS

Fd( _Ln
n P 	 x dv + FS	1,,2,3)	 (9)axi

Volume
of sample

EE

where
FB

 is the total bulk elastic free energy and F is the total
S

surface energy. The equilibrium conditions are determined by minimizing

the total free energy with respect to all variations of the director n^ (-r')

subject to the constraint n•n = I. In actual calculations it is more

convenient to write n In terms of appropriate polar angles and minimize

F with respect to all variations of these angles.

For the sample geometry shown in Figure 1,.all rotations of the

director are assumed to take place only in the XOZ plane. There is then

only one polar angle, 0, as defined in Figure 1. In terms of 0, the

A

components of n are



9

A A

nX  n * ex	 cos £^
A. K

11y n e 	 0
A Anz ,K n o eI	 sin 0

where ., ey, ee	 z are the unit vectors for the Cartesian coordinate

system. By direct calculation

Vin	 sin QOX + cos 00
i

and

V x n	 (cos 66X + sin 00 e

where
6

i

as	 66	 aj	 6 _	 6x - az

-	
Then

(V • n) 2 	(sin 68X -cos 06x)2

n • Vxn- Q

,^

Ii x n (V x	 = (cos 68x + sin 66?) 
2

The free energy density is

-	 2	 2 r

Fa	
(162 + 826X62 + 8 6z)	 (10)

where

gl - Kis n26 + K3cos26

g2', 2(KZ - K3)sin 0 cos 6	 (l)	
t

2	 2693 = Kicos6 + K3sin

i

f
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In the one-constant approximation where K - K 	 Kp Eq. (10) reduces to

the F^j given by gq. (2) .

Using Eq. (10) for the clastic free energy density, Uq • (9) for the

total free energy cart be written

F	 V (8,9 ,4.,)dxdydx + ^	 wida;	 (12) ff
iml, 2

where

I'	 a

wi mt Wisin2 (0 i ^ 0j)	 (13)

and dai is an elemen `,of area on the ith surface.

The minimization of F requires that

&F	 $F (O,Bx,Oz)dxdydz + PJ 116widai, 0	 (14)
i-1, 2

for arbitraryvariations 40 in the director angle 6 According to the

calculus of variations, the variation Od can be written as

a Fd	 a'Fd	 DFd 606F	
^e	 Sol

aid 	 1 
( 60) + 

and a_ 

(60)t	 ale	 DOX ax	 Dez' az

[!)Fd9 aFd	
a aFd 	aFd 

ap ax aax az ae., ae ^" axe aQ	
aaF

az rae,- ^

(15)
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where 60 m ^^ (60) and 60 - ^^

The variation in the total free energy is than

and	
0Fd a'Fa 60 dxdydzdF =	 - -
	 Vex...as 	 ax 	 ax aoz

[a	 1'	 a	 rd

a@a d0 * x	 , d4 dxdydz +	 16f$wida^i = 0
I	 z	

i-1,2

where 6wi = aWi 66

AeGennes has shown (Ref. 3, pp. 73 -76) that when the surface forces

are strong enough to orient the director it in a weal-defined direction

easy direction") at the surface, the extrapolation length is on the

order of molecular dimensions. It then suffices to neglect the surface

terms and to minimize the bulk free energy term only, with .fixed boundary

conditions for n. This is a common practice in most calculations using

the elastic continuum theory. In that case one would consider only the

first integral in Eq. (16). As a condition for local bulk equilibrium,

one has the familiar Euler=Lagrange equation,

aFd	 a IFd	 a	 Fd

ae ax aexaz(
2_
aAz 4
	 ( 1 7)

In the case considered here, however, surface energy plays an impor-

tant role. We are 1;aA1ng; at the influence of one surface, manifesting

itself in torques t1'ansnlitted through the liquid crystal, in modifyin g

the orientation of the director at the opposite surface. The surfa(!e 	 j
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terms cannot be ignored. In addition to Eq. (17) ) which expresses the

condition for local equilibrium 
in the 

bulk) we have the following con-

dition for mechanical equilibrium at the substrate aurfacea.

11	

')	 60 dxdydz +fff lyk 0 Fd	
d

c Vor 
6 0 +

x
	 3a oz	 ff	 60]z.zidrij - 0

1-1,2 

(18)

As will be seen, in subsequent applications to the one- and two-

dimensional cases, Eq. (18) introduces in a natural way the boundary

conditions expressing the balance between surface energy torques

awil	
exerted 

on 
the liquid crystal and the elastic torques exerted

Do 1 0061

by the liquid crystal.

VARIATION IN ONE DIMENSION

We consider first the case where it is assumed that variations of

the director angle 0 in the X-direction can be neglected in the calcu-

lation of the equilibrium conditions, i.e., O X << 6 z . This assumption is

equivalent to taking the two surfaces to be parallel. Equation (10) for

the free energy density is then

Fd(3,0z)	 1 93 0 z	(19)

where 93 Klcos
2
 0 + K3sin2 0. The Euler-Lagrange equation for bulk

equilibrium is

arld a ( eL" d
'rz 

a	 0	 (20)
Z
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1

Substitution of Eq. (19) into Eq. (20) gives for the guler-Lagrange

equation,	 X

1g 62 }. gg	 ffi p	 (21)
2 38 z	 3 zz

2
where g38 	 ^ and gzz a 2. With z being the only independent

8z
variable, O z and 6zz are total derivatives. Eq. (21) is an ordinary

second order differential equation which can be integrated directly as

Follows. First multiply by ez. Then	 I

1	 3	 d	 )

s

°
2 $3eez + 93 0 z ezz d (12 93ez	 ( 22)

a
i

4	 _4	 _	 dz (Fd)	 I

^.

0

The free energy density is thus a constant which can be evaluated in

terms of the boundary conditions as follows. Let F d = C.' Then

d8	 2C l/2
dz	 g	

(23)	 4

3

Integration of Eq. (23) gives-	 -

9

2C (..2	 z l ) =	 g3/2do	 (24)7

Let d z2 zl be the sample thickness and

E'

E

,
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42

E1(9102)

	

	 91/2de

el,

02
s	 (Klcos29 + K3sin20)1 

2de	
(25)

fe1
E1(610 9 2 ) is an elliptic type integral and is readily evaluated, given

el , 92, Kl	 and	 x3 .	 The subscript 1 • in- 11(81 ,9 2) refers to the one-

dimensional, variation of	 8.	 The free energy density is then

yy
Fd	 12 [El (81 , 8 2)J 2 = C	 (26)

k 2d

For two parallel surfaces, the elastic free energy density given by 	 l',

Eq. (26) is constant throughout the sample.	 For the slightly wedge-

shaped sample, calculation of the equilibirum conditions based on the

assumption that	 9x	can be neglected indicates that 	 Fd	remains

constant (or approximately so).	 This implies that at a given location

x, where the sample thickness is 	 d, 91	and	 9 2	should assume values

such that Eq.	 (26) is satisfied.

' The surface terms in the variational calculation, Eq. (18), give the

equilibrium conditions for the balance of torques at the surface.	 From
F	

t

the balance of torque equation, one then obtains an expression relating

surface anchoring energy to measurable parameters such as sample thick-

ness	 d	 and tilt angles 	 8 1	and	 e2.

" Consider the lower surface, z 	 zl.	 The variation in surface energy,
8w1

SW1	
89	

69
t

is

is

9=81

,1
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6w1 = 2Wlsn(9 - ¢l )cos(0 - $3.)60Ie^
1

Wlsin 2(0 - 
^1) 6e 10=0

l

For the one -dimensional case, where 
BFd,= 

Q, the first integral in
Box

Eq. (18) is

f

z2 a 8Fd r ap.
 z2

az ae 6e dz =La_Oz 6 
z1

Combining the lower limit of Eq. (28) with the variation awl given by

Eq. (27), one obtains the following equilibrium condition expressing the

balance of torques at the lower surface,

BFd

88	 + Wlsin[2(6^l)]I
Z=Zi

_ b	 (29)
z
IZ'Zl 

From Eqs (19),and (26)

aEd_ g3ez
	

4/93 E1 ( 61,92)	
(30)

80Z 	d	 „

a

The anchoring energy Wl at the lower surface is then

(93)e/e El(e11e2)
1

Wl = d sin[2(8 1 	Al)]

t	 1/2

(Klcos201 + K3s;n201)	 L1(0102)
--	 (31)

d sin r2 (91 ¢1fl
f

ij

'.t	

s

t

_.	 i

(27)

(28)



i

1(+

In the one-constant approximation where K - K1 = K30 9
1/2 = K1/2 and

E ( 810 9 2) = K1/2 ( 02 - A i }. Eq. (31) is then identical to Eq. (6). An

expression for the surface anchoring energy W 2 at the upper surface

can be obtained in a similar manner.

VARIATION IN TWO DIMENSIONS	 1

For variations of the director orientation angle 8 in both the x i

and z -directions, the free energy density is given by Eq. (10) as

F (8, 9 , 6 ) _	 (910x + g 9 9 2 + g 9 2 )	 (10),d	 x z	 2 1 x	 Z x z	 3 z
I

where 91 92 and 93 are the functions of 0 only defined by Eq. (11).

The total free energy, elastic and surface, is given by Eq (12) as 	
1

F fffFd (8,9X,9Z )dxdydz +	 Jywidai	(12)

i=1f2
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1 where gig	 89 (i - 1,2,3), Oxx = 2' Oxz - ^x^r and O zz	 a 2`.
Ox	 8z

i

Eq. (32) is a "quasi-linear" second order partial differential equation, 	 I
t	 r	 ^

p
so called because of being linear in the highest order derivatives. A

general solution to this equation was not found In the literature.

Attempts to obtain such a solution by systematic or ad hoc methods were

unsuccessful (Ref. le).

A special solution to Eq. (32), similar to the solution to the one-

dimensional Euler-Lagrange equation, Eq. (20), can be derived. This
d

"linearized" solution is appropriate for the slightly wedge-shaped sample

r'	 geometry, which is only a very small departure from the one-dimensional

parallel surface geometry.

An insight into how to approach a solution can be gotten by looking

back to the one-dimensional case. For the two surfaces parallel, the

calculated free energy density, Fd , was found to be constant throughout

the sample. This was an exact result. The same calculation was assumed

approximately valid for the slightly wedge-shaped geometry with the

implied result that the free energy density remained approximately con -

stant over the dimensions of the sample. In the one-elastic constant

approximation, which gives qualitatively the same results as K1 # K31

Fd 
2 
KOZ with Oz = 02 d el The difference in thickness between two

points along the sample is Ad tan a Ax = Ax. For tan a « 1,

Ad << Ax. Thus d varies very slowly with x and consequently so do
:t

O z and Fdo Therefore, for ): >> 1, the assumption that the free ener gy

density is constant over the dimensions of the sample is a reasonably good

approximation.

4

is
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a

,	 Although variations of p with both x .and z will be allowed,
1

let us assume that Fd remains constant over the volume of the sample.
i

This assumption will enable a ,linear solution to )q. (32). Let

Fd(erexpez)	 2 (Bl e x + 920x@z	
g36 2

z)	 C	 (33)

where C is a constant to be evaluated in terms of the boundary

conditions.

For first order partial differential. equations in which the inde-

pendent variables do not appear explicitly, of which Eq. (33) is an

example, Charpit's method -(Ref. 11, pp. 69-73) can often be effectively

F	 applied to obtain a solution. In this case, two of Charpit r s equations
a

assume the especially simple form

d9x dOZ
(34)-	 ®x	 ez

where dOX and dO z are differentials. It follows immediately that

Ox	 ae z	(35)

where a is a constant. Substituting 1q. (35) into Eq. (33), we find

Fd (8,ex ,92) + Fd (e,8 z ) and

Fd(e'ez) 
s 2 (a281 + a82 + 93)eZ

2 G9Z	 (36)

C



where

G - a2gi + a82 + 93

Then

^^	 2C 1 2

	

2C
	 0x ,^ a 2C l/2	 (38)

	

r G)	 j,G

i

The expression for Oz in Eq. (38) is similar in form to the result for

one-dimensional case given by Eq. (23). For a - 0, whence 8x = 0, 4he

results are identical. It is easily verified that the solution to E0.	
I

(36) also satisfies the Euler-Lagrange equation, Eq. (32). For example,±,

substitution of Eq. (38) Into Eq. (32) shows for constant C that

1 (9 8 +g 09 + g 8)+(g 0 + 8 +&82	 18 x 	 28xz	 39z	 1xx	 2xz	 3zz

2 (a 910 + ag20 + g39) f GC^ (a291 + a92 + fi3)(^2)r88

=CaG_CaG
C H G ae

=o

A complete integral for 8 can be obtained by integrating the total

differential

de _ 0xdx + 9zdz
ij

ez(a dx + dz)

(2Cl/2G) (a dx + dz) 	 (39)

It is convenient at this point to define a new function, s(x,z) where

I	 s - ax + z	 (40)

`	 Then ds = a dx + dz and

r	 ^

19

(37)

i
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ll2

d8 x -as ds = az- ds CMG	 ds	 (4l)

from which

02	 s2

	

Ol/240 _ (201/2	 ds	 (42)
^l fs I

The introduction of the function s in Eq. (39) has in effect reduced

the number of independent variables from two to one. `1'o facilitate the

P	 integration of Eq. (42), let us look first at the geometrical signifi--

eance of s	 For s = cons tant,	
1

dzds adx+dz 0	 ► ds=-a

Similarly for Q constant,

d8 _ Oz(a dx + dz) 	 Q	 d z_ _a

In the XO? plane, lines of constant s and 8 are parallel straight

lines with slope -a. If one assumes rigid anchoring at the upper sur-

face, i. e. , 62 = ^2 = constant, the constant a is related directly to

tan a, in fact, a = -tan a. This can be directly verified in the follow-

ing simple way. At the upper surface, 6 Oz = constant implies that

everywhere on the surface that VO is normal to the surface, where

98 _ exex + 9 Zez. The unit normal to the upper surface is given. by

t	 A
Nsinaex - cosaeZ

Then

i
r

A



1

21

r
VO x N 8 v (aex e`) x (sin a ex cos a a)

A

0,(a cos a + sin a)ey

0

from which a - tan a. The surfaces of constant 0 and s are thus

planes parallel to the upper inclined surface. The gradients, which are

normal to these surfaces, are related by

VO - O z (a ex + ez) = as Vs	 (43)

Generally, 02 is not expected to be constant over the dimensions of

R the sample, even for strong homeotropic alignment at the upper surface,

and most likely would vary slowly with x. For large differences between

el and 9 2 , the parallel planes representing the surfaces of constant 0

cannot intersect both the upper and lower surfaces. Consequently,

jai < tan a. in the special case of rigid anchoring at the upper surface

just considered, jai has a maximum value of tan a (5.24x10- 3 for a ffi l$

minutes of arc). Generally, 0 < I a I < tan a.

As in the one-dimensional case, the constant C denoting the free

l	 energy density can.be evaluated In terms of the boundary conditions. Let

(xa,zla) be a point on the lower surface with tilt angle 0 
l and (xa,72a)

be the opposite point on the upper surface with tilt angle 02a . Inte-
grating Eq. (42) along ds = dz between these points, we obtain

j	 02a
i 1	

Gl /2de	 S2a Sla - 22a 71a - da	 (44)
2C

01a

k
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i
where da is the sample thickness at x xq. Let

02 l

E20102)°'
	 G1/2dq	 (45)

fe1

Like E101,e2) in Eq. (2$), E2(e102) is an elliptic integral and can be

evaluated numerically, given a, KP K20 41 alld 0 2 . The subscript 2

refers to the integral being a result of a two-dimensional analysis.

With the understanding that el l 0 2 and d all correspond to Lhe same

x we drop the subscript~ a in Eq. (44)	 Combining Eq'. (44) with

Eq. (45), we obtain for the free energy density

k	 C2(©l, ^2 )^ 2

d	 2d2

For a = Q, El _ E2 and Eq. (46) becomes identical to Eq. (26) for the

one-dimensional case.

An alternate approach to the solution of the Eul:er-Lagrange equa -

tion, Eq,. ('32), which yields the same expression for the free energy

density, Eq. (46) is the following. Because the slightly wedge-shaped

sample geometry is such a small departure from the parallel surface

	

g	
:i

	€	 geometry (tan a , << l), assume that q can be represented by a functionE

of a linear combination of x }and z, ax + x, where a is on the order

of tan a. Let 6 8(s) where

s	 ax +	
(47)	

f

'I'I)r11	 x

	

k	 _

	

F	 1

ae as	 aeae as	 ao -^.	 (4s)__ .	 _	 _
Z as z as;_ x ' as a^ ! a

I	 _
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Substitution of Eq. (48) into Eq. (10) for the free energy density gives

Fa (0 , no	 (I t 0 
0 

2

$a	 2 ^ rs)

where C is the function of 0 only defined by Eq. (37). Substitution

of Eq. (48) into the Cuter-Lagrange equation, Eq. (32), gives

I a /D O\	 02e.^

7 askTs) G 
asi A

which upon multiplication by 
as 

can be rewritten as

1	 a8 2 Fd_^0

a z Vas	 as

Let 9 s	 Then

OF
d'd(8,@s)	

a8 
d8 + ad dOs

as

_ aFd ^ + 
bp a6sd	

d,5
ae	 s a ,

aFd
,^. _ ds
as

f	 ,

0

2
Thus Fd C is constant and C 	 G f1 can be written in the form

of Eq. (42) and integrated to obtain Eq. (46)

As in the one-dimensional c;W.2e, the surface energy, W l , can now be

written in terms of the sample thickness, d, and the tilt angles e l and

0 2 . The first step is to derive the equilibrium conditions for the'

balance of torques at the surface from Eq . (18). Consider the first

integral in Eq. ('18), viz.,	
A

,r

(50)



24

fff 0^	 de dxdydz
7x(

i"
3nK 	s3G s^Q

x	 Using 9x - ae Z and taking the indicated derivatives, the integrand

becomes

IaFd

a a	 0 
* x	

a	 a7 (i X 7 )60 + (Go d 	 (8b) - a (oe 60)
 )

t51

The first integral in Eq. ('18) is then
l

(G ?^e)dZ dxdy	 Ce760] Z2dxdy	 (52)ff	 xl
zl ff

Using the lower limit in Eq. (52), the total variation of the surface

terms at the lower surface is givan by
i

1GezdQ 7 ,-ridxdy +I 
If 

6 wldxdy	 l

sz + taa sin (2(0	 e}	 dxdy

i

(53)

Eq. (53),yields the equilibrium condition for the balance of torques at

the sower surface, viz.,

ceZ j z^zl wlsin [2 (el - 41 1 )]	 (54)

1/2	 EE2 (e1, 0 2) 2Substituting GO Z	(2CG)	 and 2C	 2	 , we obtain for the
d

f surface energy at the lower surface

(Gl/2 ) gs®lE (8 , )2 ). 2
t] _ (55)l	 d; sin [2 (8l
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which for a 0 becoples Identical to the one-dimensional result given

by Eq. (31) 0

MULTS AND DISCUSSION

Equations for the surface anchoring energy have been derived for two

cases which allow for elastic anisotropy, ioeop K, 4 K3 . T4ese equations,

including the one-d1menaiQnal isotropic result of RLO, are suminariged in

Table I below.

TABLE I. Surface anchoring energies t Wl , for isotropic and anisotrople

elasticity.

W

One-dimension isotropic
K(02 - 01)

K = KI ft K3 d sin 2', (01 - 01-)	
Eq.	 ( 6)

One-dimension ani sotropic ( 81/2 )0.014(0102)3	
Eq.	 (31)

K, #; K3 d sin 2(61

Two-dimension anisotropic, (Gl/2 )0=01 ft 
P 

(01,02)

K, 0 K3
Eq,

d sin
I 	)]12 
(01 - ^ 1

The quantities 93, El (01 ,02), G and L-20102) in Table I are defined

by Eqs. (11) 0 (25), (37) and (45), respective-1y.

For numerical comparison of elastic anisotropy effects on the calcu-

lated values of Wl , it suffices to use only the numerators of the

ON
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expressions given in 'fatale I. Of tha elastic constants, the bond con-

stant is the more sonsitiva Indicator of elastic anisotropyp particularly

near the nematic-smectic A transition. To emphasize the dependence on

K3 , the numerators are rewritten as follows.

3/2)0	
/2

.elEl(6l*62) . K3(s3
(g	 )d.p1Cl(dl,02)

where&3 _ V E3 - (1 + k cos Vii}

02-

E101t02) - Kk E.101,02)'^ 	 .93/2dA

fe I

and k a` 
K

Kl -^ I. Also
_3

(1/2) 0-01g20102 ) 
0 K3 (91/

2
) 6.0 1 2(01002)

where C - K G	 fl + n2 ) + k(cos`0 + a sin 0)I
3 

°2

X2(01,02) - K3 E 20
11 0 2 ) .	 G1 /2de

01

Equations (56) and (57), representing the one-- and two-dimensional an so-

tropic cases, are to be compared with K(02 - 61). Evaluation of W1 as

shown, requires knowledge of 0 1 , 02 and d. The slightly wedge-shaped

sample configuration used by RtC (Ref. 1), did not allow simultaneous

accurate measurement of both 0 1 and 02. To enable evaluation of W 

from measured values of 01 and d only, RLG'trade the assumption men-

^tioned in the Introduction, namely that (02 - 01) _ (02 01) 

`a

(56)

(57)
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remained approximately constant over the region of 'measurement. Eq. (6)

for W1 then becomes

W,
d sin ^2 ( 
	 (58)

The above assumption also predicted the experimentally observed approxi-

mately linear variation of 01 with 1/d. This linear dependence is

readily seen by rewriting Eq. (58) as follows, .using

sin[2(01	 ^1)]	 2 ( 01 - ^1) for small angles (81 ^1)

61 	 d + ¢1	 (59)

For numerical evaluation of Eqs. (56) and (57), the assumption

guiding the choice of 01 and 02 is that 6 1 vary linearly with 1/d

for small angles (8 1	Equations (56) and (57) should then remain

constant. The surface anchoring energy in the one-dimensional isotropic

	

`	 case (Ref. 7) was evaluated using	 300 and 2 900 for 81 and

	

El }'	 82, respectively. The same procedure is followed to enable a numerical

	

1	
v.

evaluation for the anisotropic cases presented here. The calculated

values of Eqs. (56) and (57) are presented in Table 'I1 for a range of
t

anisotropic conditions, from the isotropic elastic case where K- K1 = K3

to large anisotropy where K3 = 10 Kl . For comparison purposes, it was

assumed K Kl = 1, with K3 allowed to vary.

' It was shown previously that la` < tan a. Por the purposes of num -

erical evaluation, it was assumed that a_= -tan a. For a equal to 18
-r.

minutes of arc, tan a = 5.24x1.0' 3 . Because of the smallness of this



IC	 K/3	 1 1 1.5 2 5 10

kK	
- 1 0 -0.333 -0.5 -0.8 -0.9

_3

KAO 60.0 -- -- -

1/2
^83 1.0 0.866 0.791 0.633 0.570
0=^1

Kl(`1,^Z) 60.0 56.92 55,29 52.05 50.87

83j2 4
1
y 	 C1 60.0 49.30 43.71 32.92 29.00
10=^1

K3	 832	 E1 60.0 73.95 87.42 164.6 290.0

\^	 le=^ 1
G1/210 1.0 0.867 0.792 0.635 0.574-01

E2^1.2) 60.0 56.98 55.35 52.16 51.00

E2
.G1/210=0

60.0 49.41 43.84 33.14 29.26

K3 (Gl/	 E2 60.0 74.11 87.68 165.7 292.6

_.	 1

K. X3/2	 E

C-
1.0 1.23 1.46 2.74 4.83

,.

r

1
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TABLE II. Numerical evaluation of''Egs. (56) and (57) and comparison

with KAf.
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factor, the two-dimensional results shown in Table 11 do not differ sig-

nificantly from the one -dimensional. anisotropic results and hence will

"	 not be discussed further.

As Table II shows, anisotropy effects are significant. 	 Whereas,

both	
b	

and	 E10102) decrease with increasing	 K3 , the overall effect
resulting from the factor	 K	 is an increase in the calculated values of

W1 .	 The ratios of	 W1 	fo.r the anisotropic case to 	 W1	for the iso-

tropic case range from 1.23 for 	 K3 = 1.5 Kl 	up to 4.83 for	 K3 = 10 Kl.

The above calculations show that inclusion of elastic anisotropy

effects can contribute significantly to values of the surface anchoring

energy calculated from measurements of surface tilt angles. 	 In the ex-
1

periment with the wedge-shaped sample (Ref. 7), lack of knowledge of	 e2

hindered including elastic anisotropy effects directly in the calculation

tf
of surface energies, although one can assume an average of 	 K1 	and	 f\3

for the value of 	 K.	 The liquid crystal used in this experiment (lief,;)j7)

was 4-cyano-4'n-hexylbiphenyl ( 6CB) whose elastic constants have a, ratios

of about	 K3 /Kl = 2	 at room temperature.	 Table II shows that at
.III

K3 = 2K1, the anisotropy effect could cause almost a 50% difference in {

the calculated value of the anchoring energy.

It would be desirable to rigorously include anisotropy effects in
a	 ^

the calculation of	 W1.	 An experiment is now described which permits
,

this and ` uses the exact one-dimensional equation for 	 W1 (Eq.	 (31)).	 The

T

sample configuration for this experiment consists of two parallel sur-

faces where the nemati :c layer is of constant thickness, d, over the

sample.	 The experimental technique of RLG (Refs. 7 and $) . is used to

t

^

q
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tieasure the director tilt angles (01 and 0 2) at both surfaces. As

d{+.scribed in the Introduction, the RLC technique consisted of deducing Qi

from reflectivity measurements at the critical angle of parallel polar-

ized light from a laser .light source. This technique is capable of de-

tecting very small variations in liquid crystal orientation at the

substrate surface. Tilt angles were measured to within +0,3 degrees,

A glass prism of high index of refraction (about 1.9) was used for the
IJ

lower substrate. In the experiment being proposed, use of a glass prism

with appropriate index of refraction would enable measurement of 02 at

the upper surface as well. Moth 01 and 02 could then be measured at

a number of locations over the sample and statistically averaged to -

{	 obtain" representative values for the surfaces. An advantage of the pro-

posed experimental approach is that, by measuring both el and 0 2 , no

approximations need be made in the calculation of the surface anchoring
i

energy. Elastic anisotropy would be directly accounted for. The only

assumption, which is necessary in any case, is the surface energy model

in Eq. (1).

The proposed experimental technique is potentially useful for the

systematic determination of surface anchoring energies, strong and weak,

for a variety of surface treatments and nematic materials. Such knowl-

edge could contribute to both a better understanding of liquid crystal-	 {

substrate interactions and the development of liquid crystal display

technology.

i
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