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AVJINTRODUCTION

The chemical and physical interactions causing molggular orientation
at liquid crystal-solid interfaces are a subject of funé;mental physical
interest. They are also important for practical applications in liquid
crystal display devices. The successful operation of most electrooptic
liquid crystal displays requires a well defined alignment of the liquid
crystal molecules at the substrate surface. Special chemical or mechan-
ical treatments of the substrate surface are required to obtain the
alignment (Ref. 1).

The optical behavior of an electrooptic liquid crystal display is
controlled by an applied electric field; A typical display geometry con-
gists of a thin nematic layer (10-20 um thick) sandwiched between two
parallel surfaces, which have been treated to produce alignment. In the
absence of electric (or magnetic) fields, the equilibrium bulk orienta=-

tion is determined by the elastic response of the liquid crystal to the

interaction forces at the surface boundaries. The orientation of a

nematic liquid crystal is conventionally described by the director, ﬁ, a
unit vector representing the average orientation of the long molecular
axes in a local region of space whose dimensions are small compared to
the long range of the ordering forces present in a liquid crystal. An

ordereddhematic liquid crystal behaves optically lik= a uniaxial single'

crystal with the optic axis parallel to the director n. For liquid

crystals with positive Qielectric anisotropy, the appiication of an

electric field tends to reorient the molecules along the field direction.
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The onset of reorientation occurs at a critical voltage, producing a
sharp transition in the optical properties,

Among the electrooptical qualities desired for good device perform-
ance are sharpness of transition and transparency. These qualities are
critically influenced by the direction and uniformity of the initial
surface alignment and byi{ﬁe strength of interaction (pinning strength)
between the surface forceéland the liquid crystal molecules (Ref. 2). A
measure of the pinning strength is the anchoring energy. Quantitative
evaluation of the anchoring energies for various surface treatmeats,
types of alignment and different liquid crystal materials is needed for
| a better understanding of the diverse factors contributing to surface
alignment and could be useful to the‘&evelopment of display technology.

The most commonly uééd model for the surface energy (Ref. 2), re-
flecting the anisotropic nature of the surface interactions, has the form
w = W sin?(6) S
where w (ergs/cmz) is the energy required to rotate the director away
from its preferred surface orientation (called the "easy direction")

i through a small angle A46. The coefficient W in this expression is the

TN T

surface anchoring energy. Equation (1) has been used in measurements of
surface energies corresponding' to rotations of the director both in a
ﬁertical direction away from the plane of the substrate and in the plane

of the substrate. Extremes of observed anchoring energies, corresponding

!

to different surface treatments, range from about 10”Qergs/cm2 (weak

anchoring) for rotations in a vertical direction up to about one erg/cm2
i : .

1| & ,
(strong anchorling) for rotations in the plane of the substrate (Ref. 2).
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Another parameter sometimes used to characterize surface energles is
"extrapolation length" (Ref. 3, p. 74), whose magnitude 1s on the order
of K/W, where K is an elastic constant of the liquid crystal (gener-
ally about 10"6 dynes). The extrapolation length defines an effective
sample thickness when a distortion has been imposed on the bulk orienta-
tion and can be regarded as a ﬂgasure~of the continuation into the sub-
strate of the angular variation of the director. For strong anchoring
conditions, in which the surface energies are comparable to or larger
than the interaction energies between molecules, the extrapolation length
is on the order of or smaller than average molecular dimensions ($100 A)
and for ail practical purposes is essentially zero. For weak anchoring
conditions, the surface energles are much smaller than the intermolecular
interaction e#ergies. Then the extrapolation length is much larger than
the molecular dimensions and can be as high as 100 pm.

Only a few methods exist for the experimental determination of sur-
face anchoring energies. In one of these methods (Ref. 4), quantitative

estimates of anchoring energies have been obtained from a gombination of

b

~optical analyses of the variation in director orientation aﬁross surface

disclination lines and measurements of the equilibrium liﬁe;widths. Sur-
fage disclination lines are a common defect observed in liquid crystals
and are lines of discontinuity in the molecular orientation attached to
the substrate surface. In a second method, analeis of the wall effects
on the magnetic Freederickse transition in a homeotropically aligned
nematic cell have been used to evaluate anchoring energies for substrates

treated with various surfactants (Reg. 5)« In yet another method,
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anchoring energies were determined in twisted nematic cells from measure-
ments of the director rotation caused by application of a magnetic field
(Ref. 6).

A new method for evaluating surface anchoring energies from measure~
ments of the director orientation at the surface boundary of a nematic
liquid crystal cell has been presented recently by Riviére, Lévy and
Guyon (Ref. 7). The theoretical and experimental results of Riviere,
Lévy and Guyon (RLG) are briefly reviewed below.

The sample used in the RLG experiment consisted of a slightly wedge~
shaped nematic liquid crystal cell formed by two nearly parallel glass

plates. The sample geometry is shown in Figure 1.

Zl.—.-—- et

Figure 1. Liquid ¢rystal sample geometry used for determination
of surface anchoring energy from tilt angle measurement,

The angles ¢y and ¢, are the easy directions of alignment and repre-
-sént’What the tilt angles would be for each surface alone. The angles 8
and 6, are themactual tilt angles and are distortions induced by the
opposite surface; The small wedge angle o in.the RLG study was 18

minutes of arc. The upper surface was treated with an organosilane to
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produce a strong homeotropic alignment (¢2 ~ 90°), The lower surface was
coated with an obliquely deposited $i0 film which provided an easy direc~
tion of ¢; ~ 30°. The angle 0 was the angle formed by the director f
and the X~axis. Rotations of the director were assumed confined to the
X0Z plane.

To derilve an expression relating surface anchoring energy to the
tilt angle 8y and sample thickness d, RLG started with the free energy
density as given by the isotropic elastic continuum theory for liquid

crystals,

ol

Fg = LK ()2 o @

To simplify calculations, theAéna—consﬁant approximatiOn wasbassumed, in
which :he«liQuid‘crYsta}~is considered as an isotropic elastic medium
?h@ag‘elastié'bropéiﬁies ére represented by a single elastic constant, K.
For this free energy density, the Euler-Lagrange equation for minimiza-
tion of the total bulk free energy is simply Laplace’s equation,‘vze = (.
Because of the small wedge angle a, it was also assumed that the varia-

tion of the director angle 6 in the X-direction was much smaller than

2
in the Z-direction, viz., 38 o QQ. For this assumption V26 =870 .9,
. X 9z 522
- Integration of the one dimensional Laplace equation gives
6 = az + 0, , | - (3)
50 | I
where a = 5. For a given x, a = T where d is the sample

thickness at that.point, The surface energy at the lower surface

(subscript 1) was assumed to be given by
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Substitition of Eq. (4) into the equation representing the balance

between the surface and elastic torques,

dw
1 )
s =K (.az> (5)

resulted in the following expression for the Eﬁrface anchoring energy

K - 68p)
1" T sin[2(6) - T N | | (6

To enable evaluation of W, from experimental measurements of the tilt

1
angle 87 and sample thickness d only, some additional approximations

. 85 = B- - - . ) .
were made. One approximation was that 2 . Lz 92 5 él =.%% and that
, ; ; _

A¢ was constant over the region of measurement. Also for small angles

(61 - ¢1)s it was assumed that sin[Z(el - ¢1Z]¥ 2(01 - ¢1). Using tilt

angles, ai and Sg, and the corrvesponding sample thicknesses, d' and
d", measured at two locations along the lower surface, Eq, (6) can be
rewritten as

K(A¢) (..L 1)

W, = v oAty L v = T,
1 2(61 61) d ’d

(7

The tilt angles were deduced to within #0.3° from reflectivity measure-

ments at the critical angle of parallel polarized light from a laser

light source (Refs. 7,8). Using an approximate value of '1(‘“10'"6 erg~cm,

1

RLG reported a calculated value‘for W, of (2.1 .-t,O.S)xlO'3 ergs/cmz,

1

which generally agreed with previously reported values of the surface
i

anchoring energy for the same surface treatment. “

The purposé of this thesis is Lo extend and generalize the theory

presented by RLG to include non~eqiial elastic constants and a ¢wo
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dimensional variation of the director orientation. The sample geometry
and parameters are the same as defined by Figure 1. The sequence of
presentation is as follows. First, there will be a very brief discussion
of relevant aspects of the elastic continuum theory for nematic liquid
crystals. Then, an analytical solution to the one-dimensional problem
allowing for elastic anisotropy, i.e., assuming non-equal elastic con-
stants, will be presented and diséussed. This will be followed by a
special solution for the two~dimensional prohlem, appropriate for the
slightly perturbed one-~dimensional geometry representing the wedge-
shdped liquid crystal sample. Next, a comparisdn will be @ade begween
the surface anchoring energies ohtained using the §ne-dimensiona1.
elastically isotropic approximation and the two golutions for giastia‘
anlsotropy presented here. Finally, an experiment for measuring surface
anchoring energies using the analytic solution for the one-dimensional

case will be proposed.
ELASTIC CONTINUUM THEORY

A number of large scale phenomena involving the response of thé bulk
liquid crystal to external disturbances can be successfully described by
the‘elastic continuum theor§ (Ref. 3, Chap. 3; Ref. 9, Chap. 8), in which
the 1liquid crystal is treated as a continuous elastic medium. In the
absence of applied electric or magnetic fields, the thermodynamic equilib-
rium state is determined solely by’the elastic response of the bulk liquid
crystal to the surfaée interaction forces at the walls of its container.

The surface forces induce a static distortion of the director orientation.
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The starting point for calculations is the equation for the elastic
free energy density, expressed in terms of the director field, ﬁ(;). The

elastic free energy density is given by
- 2 : " 12 - ” 2
Py =% {xl VA" + Ky [A@ 1 x AD] + ky[n D x (7 x A } (8)

Here Ky, Ky and Kg are the Franck elastlc constants and correspond to
the three basic types of distortion for a nematic liquid crystal, namely,
splay, twist and bend, respectively. The basic problem in applications
éf the elastic comtinﬁum theory is to determine that director configura-

tion which minimizes the total free energy, The total free energy is

glven by
F = Fy+ Fg
= F“i‘l ‘d + F i=1,2,3) (9
= d n»axibxi v+ Fg (1 =1,2,3) )
Volume
of sample

where Fp is the total bulk elastic free energy and Fy 1is the total
surface energy. The equilibrium conditions are determined by minimizing
the total free energy with respect to all variations of the director ﬁ(;)
gubject to the constraint n'n = 1. In actual calculations it is more
convenient to write n in terms of appropriate polar angles and minimize
F with respect‘to all variations of these angles.

For the sample geometry shown in Figuré 1, all rotations of the
director are assumed to take place only in the X0Z plane. There is then

only cne polar angle, 6, as defined in Figure 1. In terms of 6, the

A
components of n are
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& | where ey, Qy, e, are the unit vectors for the Cartesian coordinate
¢ system. By direct calculation

! V'n = - gin 80, + cos 00,

and

Vxh = = (cos 00, + sin 60,)&,

S N I

where

A D

98 90
O = 3 02 " %

Ny T TR TR

Then

(v'n)2 = (a1n 00, - cos 00,)>

[é x (V % ﬁi]z = (cos 60, + sin~aaz)2

The free energy density is

L Fa73 (élex T B0y0, gsez) (10)

K sin20 + Kqcos20

n
)
]

i

2(K1 - K3)sin 6 cos 6 : : e a

[Pl

82

!

g3 = Kjcos26 + Kysin26
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In the one-constant approximation where K - K; = Kﬁ’ Bq. (10) reduces to
the F; given by Eq. (2).
Using Bq. (10) for the elastic free energy density, Eq. (9) for the

total free energy can be written

fff Pg(0,04,0,)dxdydz + 5 jf“’ldﬂl (12)

i

where

i
i
it

|
uy = Wysin?(0; = 4y) | (13)

and dag is an elemeri' of srea on the ith surface.
‘ '

The minimization of F requires that

ff 5Fd(8 By»0,)dxdydz + § ;ffﬁmidai = 0 (14)

i=1,2

for arbitrary variations &0 in the director angle 6. According to the

calculus of variations, the variation &6Fq can be written as

oFq DFd

9Ty
TEA

60 & irvman &9

aF, ar "
=4 55 4 4 (5) "'é"”é““e)

99 30, B 2
90 9x \80, /) 9z ae ™ aex 3z \98,

(15)
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where 80, - (50) and 60, = L (80).

The vardiation in the total free energy is then

r.al:rd 5 [PF, arﬂ o v
90 Bx \afx 3? 20, reyez

o he
5 'aFd aFy | f
% \ 76, 80 az 55, §0) | dxdydz + E > Sugday = 0
‘ . i=1,2

where fuy = —=

(16)
§6 .
le-ei

DeGennes has shown (Ref. 3, pp. 73-76) that when the surface forces
are strong enougﬁ to orient the director n in a well-defined directiOn
("easy direction") at the surface, the extrapolation length is on the
order of molecular dimensions. It then suffices to neglect the surface
terms and to minimize the bulk free energy term only, with fixed boundary
conditions for ﬁ. This is a common practice in most caleculations using

the elastic continuum theory. In that case one would consider only the

first integral in Eq. (16). As a condition for local bulk equilibrium,

one has the familiar Euler=Lagrange equation,

BFd 5 [9F4 Ky aFd ‘
50 ”5?«'(’56;') 9z =0 Q7

In the case conside:cd here, however, surface energy plays anvimpor-
tant role. We are 1uvxing“at the influence of one surface, manifesting
\(/

itself in torques tiansmitced through the liquid crystal, in modifying

the orientation of the director at the opposite surface. The surface
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terms cannot be ignored. In addition to Eq. (17), which expresses the
condition for local equilibrium in the bulk, we have the following con~

dition for mechanical equilibrium at the substrate surfaces,

aFd 3 31* ’ ‘
n.g o 57‘ g 69 dxdydz 4 ,‘i’.id&ﬁ w )

(18)
As will be seen, in subsequent applications to the one~ and two-
dimensional cases, Eq. (18) introduces in a natural way the boundary

conditions expressing the balance between surface energy torques

IV

Yy 6 exerted on the liquid crystal and the elastic torques exerted

by the liquid crystal.
VARIATION IN ONE DIMENSION

We consider first the case where it is assumed that variations of
the director angle 6 in the X~direction can be neglected in the calcu-
lation of the equilibrium conditions, i.e., 9y << e, This assumption is
equivalent to taking the two surfaces to be parallel. Equation (10) for

the free energy density is then

1 2
where ggq = K1c0529 + K351n26~ The Euler=-Lagrange equation for bulk
equilibrium is

aFg 5 fory

30 Bz “a'é'; =0 (20)
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Substitution of Eq. (19) into Eq. (20) gives for the Euler-Lagrange
equation,
L 2, - < :
2 B3g% * Byfp, = O ‘ ) (21)
where g,.. = EEQ and 8 = 38, with = being the only independent
‘ 30 30 2z ’ ’ )

9z
variable, 6, and 6,, are total derivatives. Eq. (21) is an ordinary

second order differential equation which csn be integrated directly as

follows. First multiply by 8,. Then

1 3 ) a1 5 Vi o
7 8309, * 839,89, = 57 (2 g362) (22)
d
= o= (B4
dz (Fq)
= 0

The free energy density is thus a constant which can be evaluated in

terms of the boundary conditions as follows. Let Fy = C. Then

1/2
ds _f2¢cy ;
. (=) o

Integration of Eq. (23) gives

(24)

|
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po2
E1(01,082) = f g;/Zde
el
re 1/2
- f (R, cos?0 + K,sin%0)" “do (25)
51
El(el,oz) is an elliptic type integral and is readily evaluated, given
61, 65, K; and Kj. The subscript l‘in~’El(91,02) refers to the one=-
dimensional variation of 6. The free energy density is then
1 , 2

For two parallel surfaces, the elastic free energy density given by

.Eq. (26) is constant throughout the sample. For the slightly wedge-

shaped sample, calculation of the equilibirum conditions based on the
assumption that 6, can be neglected indicates that F, remains
constant (or approximately so). This implies that at a given location
x, where the sample thickness is d, 6, and 62 should assume values
such that Eq. (26) is satisfied.

The surface terms in the variational calculation, Eq. (18), give the
equilibrium cohditions for the balance of torques at the sutface. From
the balance of torque equation, one then obtains an expression relating
surface anchoring energy to measurable paraméﬁers such as sample thick-

ness d and tilt angles 0; and 8y

Consider ;he lower surface, z = zj. The variation in surface energy,
dwy ; '
1
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Swy = 2Wlsin(9 - ¢1)cos(6 - ¢1)66'8=81
, = wlsin 2(0 ~ ¢1)66l6= 27
. 1
| , AFy
1 For the one-~dimensional case, where 'rm = 0, the first integral in
: . X
L 25 (%, oF, "2
3 | ErY 5—5;—66 dz = 33;69 (28)
21
, 21

[N
i

Combining the lower limit of Eq. (28) with the variation d&uw; given by

Eq. (27), one obtains the following equilibrium condition expressing the

balance of torques at the lower surface,

_ 9%
36,

+ Wysinf2¢6 - ¢,)]
Z’Zl

z=zl

From Egs. (19) and (26),

oF g
d _ - 3
30, =830, = d E1(81,63)

(29)

(30)

The anchoring energy w1 at the 'lower surface is then

1/2
<83)0=61E1(61’62)

17 sin[2(8; - 67)]

bé - ' 1/2

. (choszel + K3sin201) £q(09,09)

d sinE(el - ¢1)]

o oA
: \
.

L J

(31)
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V2 _ 1/2

In the one~constant approximation where K = Kl = K3, 81 and

A ) (61,62) = Kl/2(62 - 61). Eq. (31) is then identical to Eq. (6). An

expression for the surface anchoring energy w2 at the upper surface

can be obtained in a similar manner.
VARIATION IN TWO DIMENSIONS

For variations of the director orientation angle 6 d1n both the x

and 2z directions, the free energy density is given by Eq. (10) as

Fg(8,6y,6,) =*§ (8104 + 820502 + £302) (10)

where g., g, and g, are the functions of 9 only defined by Eq. (11).
1’ °2 3

The total free energy, elastic and surface, is given by Eq. (12) as

F= fff}i‘d(e,ex,ez)dxdydz + E :ffvw;‘tdai (12)

i=1,2

The Euler~Lagrange equation represeniing the bulk equilibrium condition
is given by Eq. (17) as

oFy - o kg _ . (%R =0 (17
56 ~ 3x \36, ) " 9z \96, )

Upon substitution of Eq. (10) into Eq. (1l7), the Euler-Lagrange equation

‘becomes o .
. : %
1)

R

1 2 2
£(850550,505x0x290,2) = 5 (8198 + 8200x8, + 8369,)

+ (810, + 82040, + 830,,) = 0 ‘ (32)

SR -« Ah 1 o 2 e, o g o SR S
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984 2% 2% 2%
where ggg = —2= (1 = 1,2,3), 0y, = "l Oxy = Fmpg A4 0y, = ;;i'

Eq. (32) is a "quasi-linear" second order partial differential equation,
so called because of being linear in the highest order derivatives. A
general solution to this equation was not found in the literature.
Attempts to obtain such a solution by systematic or ad hoc methods were
unsuccessful (Ref. 10).

A special solution to Eq. (32), similar to the solution to the one-
dimensional Euler-Lagrange equation, Eq. (20), can be derived. This
"linearized" golution is appropriate for the slightly wedge-shaped sample
geometry, which is only a very small departure from the one~dimensional
parallel suzfagelgeometry.

An insight into how to approach a solution can be gotten by looking
back to the one-dimensional case. For the two surfaces parallel, the
calculated free energy density, Fq, was found to be constant throughout
the Sample° This was an exact result., The same’calculation was assumed
approximately valid for the slightly Wedge—shaéed geometry with the
implied result that the free energy density remained approximately con-

stant over the dimensions of the sample, - In the one-elastic constant

approximation, which gives qualitatively the same results as Kj ¥# K1,
o L §

1.2 « 02 - 8
Fq = 7 Koz with ez=—~Tl.

points along the sample is Ad = tan a Ax =‘%—Ax. For tanm o << ],

The difference in thickness between two

Ad << Ax. Thus d varies very slowly with x and consequently so do

X

6, and Fda Therefore, for by

>> 1, the assumption that the free energy

density ‘is constant over the dimensions of the sample is a reasonably good

approximation.

.
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Although variations of 6 with both x and 2z will be allowed,

let us assume that ¥,y remains constant over the volume of the sample.

This assumption will enable a linear solution to Eq. (32). Let
1 2 02y =
Fd(eoexpez) = 2 (glex + gp0x0, + gﬁez) = C (33)

where C 1is a constant to be evaluated in terms of the boundary

conditions.

For first order partial differential equations in which the inde-
pendent variables do not appear explicitly, of which Eq. (33) is an
example, Chafpit's method (Ref. 11, pp. 69-73) can often be effectively

applied to obtain a solution. In this case, two of Charpit's equations

assume the especially simple form

34
ex ez . (34)

where dbx and d6, are differentials. It follows immediately that

8y = af, (35)

where a 1is a constant. Substituting Eq. (35) into Eq. (33), we find

F4(8,6,,0,) + Fy(€,0,) and
F4(6,6,) ==%- (a%g) + ag, + g4)02

1 02
= 5 GO,

(36)
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where
= g2
G = a’g) + ag, + g, (37)
Then
r\1/2 1/2
8, = (%?) / y 0y = a (%?) / (38)

The expression for 6, in Eq. (38) is similar in Form to the result for

one-dimensional case given by Eq. (23). For a = 0, whence ex = 0, the
!

results are identical. It is easily verified that the solution to Eg,

(36) also satisfies the Euler-Lagrange equation, Eq. (32). For example,:

substitution of Eq. (38) into Eq. (32) shows for constant C that !

|
3
iy

1, , _ .
7 (8199 * 82990, * 8309,) + (B18,, * B0y, + 838,,)

-1 (a2 NN 1+ BEE SR ¢ (3¢
> (a“g1q + agzq + 839)((;) (a®gy + agy + 83)(;€)(3€)
=£236 _ €26

G a0 G 230
=0

A complete integral for 6 can be obtained by integrating the total
differential

dé = 0,dx + 6,dz

= 6,(a dx + dz)

2C 1/2
= 7;) (a dx + dz)

It is convenient at this point to define a new function

(39)

s(x,z) where

s =ax + z (40)

Then ds = a dx + dz and

i
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1/2
de n*%% ds = %% ds = (%g) ds (41)

from whicéh

8y % 89
f c1/240 = (20)1/2 f ds (42)
81 51

The introduction of the function s 1in Eq. (39) has in effect reduced
the number of independent variables from two to one. To facilitate the

integration of Eq. (42), let us look first at the geometrical signifi-

cance of 8. For & = constant,

vds-adx+dz=o -a>-§§=-a

Similarly for 6 constant,
0 = 0,(a dx +dz) = 0 > 42 =

In the XO0Z plane, lines of constant s and 0 are parallel straight
lines with slope =-a. 1If one assumes rigid anchoring at the upper sur-
face, i.e., 6y = ¢, = constant, the constant a is related directly to
tan a, in fact, a = -tan a. This can be directly verified in the follow-
ing simple way. At the upper surface, 6 = 62 = constant implies that
everywhere on the surface that V0 is normal to the surface, where

ve = exax + ngz. The unit normal to the upper surface is given by

A~ ‘ A
~ Y
N = sin a ey, = cos o e,

Then

HE TR

s ity b
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(xa1z1a) be a point on the lower surface with tilt angle 0,

21

76 x N = 8,(aé, + &,) x (sin o &, - cos a a,)
= 0,(a cos o + sin u)ay

= (
from which a = - tan a, The surfaces of constant 6 and s are thus
planes parallel to the upper inclined surface. The gradients, which are

normal to these surfaces, are related by
A A 90
VG = Oz(a €y + eZ) = '5'; Vs (&3)

Generally, 85 1s not expected to be constant over the dimensions of

the sample, even for strong homeotropic alignment at the upper surface,
and most likely would vary slowly with x. For large differences between
87 and 0,, the parallel planes representing the surfaces of constant 8
cannot intersect both the upper and lower surfaces. Consequently,
[a[ < tan a. In the special case of rigid anchoring at the upper surface
just considered, ]a] has a maximum value of tan a (5.24:':].0"3 for o = 18
minutes of arc). Generally, 0 < |a| < tan a.

As in the one-dimensional case, the constant C denoting the free

energy density can be evaluated in terms of the boundary conditions. Let

1a and (xa’ZQa)

be the opposite point on the upper surface with tilt angle 89q¢ Inte~-
grating Eq. (42) along ds = dz between these points, we obtain
1 1/2

Q{EE 49 d6 = Spu = S31a = %22 ~ Z1a = da (44)

- B T
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where d, d4s the sample thickness at x = x,, Let
a 8

: ‘ 0y
oo E2<el,ez)-/ ¢*240 (45)

81

Like Ej;(01,82) in Eq. (25), E2(07,02) is an elliptic integral and can be
evaluated numerically, given a, Ky, Ky, 0; and 09. The subscript 2
refers to the integral being a result of a two~dimensional analysis.

With the understanding that 6,, 0, and d all correspond to the same
x, we drop the subscript a in Eq. (44). Combining Eq. (44) with

Eq. (45), we obtain for the free energy density

[B2(01,057]%

d (46)

For a = 0, E; = E; and Eq. (46) becomes identical to Eq. (26) for the
one~dimensional case.

An alternate approach to ;he solution of the Euler-Lagrange equa-
tion, Eq. (32), which yields the same expression for the free energy
density, Eq. (46), is the following. Because the slightly wedge-shaped
sample geometry 1s such a small departure from che parallel surface
| f , geometry (tan a << 1), ésshme that @ can be represented by a function

. of a linear combination of x rand 2z, ax + z, where a dis on the order

of tan a. Let 6 = 6(s) where

‘ 8 = ax + 2 (47>
; |
b Then
} B H
| 28 95 _ 99, - 28 988 080 ' .
82 = 3 2z = b8’ Ox =g dx - @ 9 = A% (48)

1
i
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Substitution of Eq. (48) into Eq. (10) for the free energy density glves
30\ . 1. [20 2
Fy (Ov 'a“a) ik (”s'g) “e

where G 15 the function of 0 only defined by Eq. (37). Substitution

of Eq. (48) into the Euler-Lagrange equation, Eq. (32), gives

2
Loy g 2%

2 9s\9s 982

which upon multiplication by %2 can be rewrditten as

g
2| 9F
9 Lo (80Vt _Zd (5¢
28 [2 ¢ (as)] 56 0 (50)
20

VLet BS = 55 Then

, aFd 0 d
dFd(e,es) &= 7&? dg + —— db,
s
9F,; . aF, 00
- d 20 4 d Vs g
20 9s BOS LE:]
oFy4
“5; ds
= 0
1 . [26)\?
Thus Fd = ¢ 41is constant and C =:§ G (53) can be written in the form

of Eq. (42) and integrated to obtain Eq. (46).

" As in the one-dimensional uide, the surface energy, Wy, can now be -
written in terms of the sample thickness, d, and the tilt angles 61 and
85. The first step is to derive the equilibrium conditions for the "

balance of torques at the surface from Eq. (18). Consider the first

1ncégral in Eq. (18), viz.,
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aF,
9. (.od 1
fj’ f Lax aox " (’aoz 56)]"’“’3"'2
Using 0y, » a0, and taking the indicated derivatives, the integrand
becomes
a 3Fy y 9%y .
7ox Y * 5 “ao” §0 ((,07)69 + (Go,) 5 (80) = az (G6,80)
(51)

The first integral in Eq. (18) is then

f f % (69,00)dz] dxdy = f f Lfmzaéj dxdy (52)

Using the lower limit in Eq. (52), the total variation of the surface

terms at the lower surface is given by

- jj EBZGO:]zledXdy +ff‘5 (A)l(l){dy
- f f {[’Gez + Wysin(2(0 ~ ¢1>5jae} dxdy

Z“Zl
= 0 (53)
Eq. (53) yields the equilibrium condition for the balance of torques at

the lower surface, viz.,

GQZI;-le = Wlsin[Z(Bl - (311)1 (54)
12
E2(91162)
Substituting 08, = (2¢0)*/% and 2c = L 7 2 , we obtain for the
surface energy at the lower surface /
(61/2) g E2(81,02)
Wy = (55)

d sinf2(8; - ¢;1)]

| S
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which for a = 0 becomes ldentical to the one=-dimensional result given

RESULTS AND DISCUSSION

Equations for the surface anchoring energy have been derived for two
cases which allow for elastic anisotropy, i.e., Ky ¥ Kq. 7These equations,
including the one-dimensional isotropic result of RLG, arve summarized in

Table I below.

TABLE I. Surface anchoring energies, Wy, for isotropic and anisotropic

elasticity.
Y
hl
One-dimension isotropic K(6, - 91) )
. . o W i — - Eq. (
K= Kj = K3 d Binlil(el - 012] e (6)
1/2
One~dimension anisotropic (33 )agelEl(el'gz? Eq. (31)
& ¥ K d sin[2(6; - &y)]
1/2 ,
Two~-dimension anisotropic @ )Gﬂelzﬂgel’ez)
Kl 2 K3 d sin[2(91 o fplﬂ .

The quantities gg, 31(61,92), ¢ and Ez(el,ag) in Table I are defined
by Egs. (11), (25), (37) and (45), respectively. |
For numerical comparison of elastic anisotropy effects on the calcu~

lated values of W;, it suffices to use only the numerators of the

[P S
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expressions given in Table I. Of the elastic constants, the bend con~
stant is the more sensitive iIndlcator of elastic anisotropy, particularly
near the nematic~smectic A transition. To emphasize the dependence on

Ky, the numerators are rewritten as follows.
1/2 1/2 ‘
(33 )0.9131(91: 92) = K3(§‘3 )Q‘.Qlﬁl(ol’ﬂﬂ (56)

where By = ﬁ%!gg w (1 4+ k coszo)

) F 1/2
Ey(01,82) = g~ E1(61,02) = gy 40
X} 01

Ky
and k ~*§“ - 1. Also

(91/2)9-9132(91’°2> - K3(g1/2)6_91§2(0l~.62) (57

where G = §%~G = [}1 + az) + k(cos 0 + a sin O)i]
3 :

92

Ep(01,07) = 3= B2(01,07) = f 6} 2a0

3 ,

01

Equations (56) and (57), representing the one~ and two-~dimensional aniso~-
tropic cases, are to be compared with K(8, - 6;). Evaluation of Wl as
shown requires knowledge of 0y, 8, and d. The slightly wedge-shaped
sample configuration used by RLG (Ref. 7) did not allow simultaneous
accurate measurement of both 6y and 0. To enable evaluation of W,

from measured values of 081 and d only, RLC made the assumption men-

tioned in the Introduction, namely that (682 - 81) = (42 = ¢1) = Ad

sanasd

AR e s
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remained approximately constant over the region of measurement. Eq. (6)

for Wl then becomes

Wy = e KA
b a sinf2e0; - 41)]

(58)

The above Aﬁéumption also predicted the experimentally observed approxi-
mately linear variation of 6; with 1/d. This linear dependence is
readily seen by rewriting Eq. (58) as follows, using

sin[Z(el - ¢1)] = 2(81 - 41) for small angles (61 - ¢1).

0y = (’2‘6-%)% + o | (59)
For numerical evaluation of Eqs. (56) and (57), the assumption
guiding the choice of 07 and 0y is that 63 vary linearly with 1/d
for small angles (8 - ¢;). Equations (56) and (57) should then remain
constant. The surface anchoring energy in the one-dimensional isotropic
case (Ref. 7) was evaluated using ¢; ~ 30° and ¢, ~ 90° for 6; and
6o, respectivel&. The same procedure is foilowed tb enable a numerical

evaluation for the anisotropic cases presented here. The calculated

i3

values of Eqs. (56) and (57) are presented in Table II for a range of
anisotropic conditions, from the isotropic elastic case where K~K1=K3
to large anisotropy where K3 = 10 K;. ‘For coﬁpatison purposes,. it was
assumed K = K; = 1, with Kq allowed tb vary.

It was shown previously that Ia] < tan a.  For the purposes of num-

erical evaluation, it was assumed that a = ~tan o. For o equal to 18

minutes of arc, tan o = 5.24x103. Because of the smallness of this
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TABLE II. Numerical evaluation of "Eqs.

with KA¢.

(56) and (57) and comparison

28

1.5

10

K
1
kn......_l
Ky

W

~0,333

KA¢

1/2

0.866

0.791

0.633

0.570

Ej($1,92)

60.0

56.92

52.05

50.87

1/2|
g E
_3‘ le=¢1 1

60.0

49.30

43.71

32.92

29.00

K g1/2 E,
3\33
8=¢,

60.0

73.95

87.42

164.6

290.0

21/2'9‘4’1

1.0

0.867

0.792

0.635

0.574

E,(91,62)

60.0

56.98

55.35

52.16

51.00

1/2
: ‘9=¢1E_2

60.0

49.41

43.84

33.14

29.26

1/
“ (—G" | %=¢1§2

60.0

74.11

87.68

165.7

292.6

J1/2
i1 Ke{g E
- '('3 )e=¢1 1

- ¢ my—— o’

Kap lkx

1.0

1.23

1.46

2'7\4v

4.83

e

. 4*“}/.,

A
Ly

s

L i




factor, the two-dimensional results shown in Table II do not differ sig-
nificantly from the one~dimensional anisotropic results and hence will
not be discussed further,

As Table II shows, anisotropy effects are significant. Whereas,
both g, and E;(0;,0y) decrease with increasing Kj, the overall effect
resulting from the factor Kq is an increase in the calculated values of
W;. The ratios of Wl for the anisotropic case to W; for the iso-

4 | tropic case range from 1.23 for Kq = 1.5 Ky up to 4.83 for K3 = 10 Kj.
| The above calculations show that inclusion of elastic anisotropy
effects can contribnte significantly to values of the surface anchoring
energy calculated from measurements of surface tilt angles. In the ex-
periment with the wedge-shaped sample (Ref. 7), lack of knowledge of 62
‘;2 hindered including elastic anisotropy effects directly in the calculation
| of surface energies, although one can assume an average of Ky and h3
for the value of K. The liquid crystal used in this experiment (Ref./7)
was 4-cyano-4'n-hexylbiphenyl (6CB) whose elastic constants have a+fgéig
of about K3/K1 = 2 at room temperature. Table II shows that at “
;ﬁ 2K 1 ‘the anisotropy effect could cause almost a 50% difference in
the caleulated value of the anchoring energy.
It would be desirable to rigorously include anisotropy effects in
- the calculation of Wl. An experiment is now described which permits
, _ this and uses the exact one-dimensional equation for Wy (Eq. (31)). The
Sameie configuration for this experiment consists of two parallel sur-
faces where the nematic layer is of constant thicknebb, d, over the

5, ' ' sample. The experimental technique of RLG (Refs. 7 and 8) is used to

e
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ﬁeasure the director tilt angles (61 and 69) at both surfaces. As

ki

d?scribed in the Introduction, the RLC technique consisted of deducing 61
gfrom reflectivity measurements at the critical angle of parallel polar-

! b
. ized light from a laser light source. This technique is capable of de-

] tecting very small variations in liquid crystal orientation at the

substrate surface. Tilt angles were measured to within #0,3 degrees,

A glass prism of high index of refraction (about 1.9) was used for the
lower substrate. In the experiment being proposed, use of a glass prism
with appropriate index of refraction would enable measurement of 6, at
the upper surface as well. Both 03 and 62 could then be measured at
a number of locations over the sample and statistically averaged to
obtain representative values for the surfaces. An advantage of the pro-
posed experimental approach is that, by measuring both 91 and 65, no
apéroximations need be made in the calculation of the surface anchoring
energy. Elastic anisotropy would be directly accounted for. The only
assumption, which is necessary in any case, is the surface energy model
in Eq. (1).

The proposed experimental technique is potentially useful for the :
systematic determination of surface anchoring energies, strong and weak, ;
for a variety of surface treatments and nematic materials. Such knowl-
edge could contribute to both a better understanding of'%iQuid'crysial-

substrate interactions and the development of liquid crystal display

technology. : - : : . ;
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