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ELECTROSTATIC HEXT i=LOX INSTABILITIES

INTRODUCTION

The purpose of this report is to investigate plasma physics of the Electrostatic Ion Cyclotron (EIC)

F	 and Ion Acoustic (IA) modes in the presence of a heat flux. The initial analysis will be carried out

more generally to include a current in the plasma as well as a heat flux. This will facilitate com-

parisons with the results of Kindel and Kennel (l) who investigated these modes driven by a current

only.

We wish to find a dispersion relation for w (k) parameterized by the ratio of electron to ion temper-

ature and also the growth rate, P, as a function of the wavenumber k. We then wish to specializef,

these results for the special case of marginal stability for which r(k) 0 and find the threshold

drift speed above which the plasma is unstable to the EIC and IA modes. Finally we will find ex-

pressions for these quantities for the limits	 T- ^^ ^,	 and	 ^ -0 1 o

A self-consistent distribution function will be derived in the next 4)ction using Chapman-Enskog

theory to represent an electron distribution including a heat flux characterized by a thermal

conduction speed, v. and also an electric current characterized by a drift speed, u. Tile ions will

be represented by an isotropic Maxwellian distribution. In the third section this distribution will

be used to find the dispersion equation and growth rate for the low frem ,, eiicy, W 4-4.M.+r t
electrostatic modes. In section IV marginal stability will be assumed while the contribution of

the electron current will be dropped and the dispersion equation simplified for the two modes,

EIC or IA. Here an expression will also be given for the minimum conduction speed above which

the plasma becomes unstable. The limits 	 r	 and_ - T== ••	
T

^.  
Y

I4	will be considered and simplified expressions for the dispersion equation, growth rakes, and mini-

mum critical conduction speed derived, The final section will then consist of a short discussion

of the results.	 <,:
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THE ELECTRON DISTRIBUTION FUNCTION

lit Chapman•Enskott theory It Is assumed that the particle collision frequency, v, is very lark so

that f (the distribution function) can be expanded in a series;

Cl)

where the A,'s are all assumed to be of the same order so;

l	
Ie ^' ^^ s7	 (3)

In addition is is assumed that all derivatives of the A d 's are of the same order as A^ itself. In this

derivation we follow Tanenbaum. (2 )_ From Itis oquutians (A.S.20) and (A,S,21),

where,

	

C IO	
aT	

CS)

neglecting any press re gradient and C = N'• (L where k is the peculiar velocity and

Use of f - fo + f
1 	 ^

in this approximation l ads foT ^ e It ,l^A fr	 ., 

the Navies Stokes equation. Our distribution function is now;

1 ^	 JT	 6

where f8 is the Maxwe^^ion

A

s t ^ 13^^ ' p ^ (7)
,

Now let us find some moments of thus, In particular consider the heat fluxt.

f 443
C8)

4



71

We assume that there is n tcmperature gradient In the Z direction, parallel -to the magnetic field. Then:

7 C	 Coo

	

Ty	 'au	 (9)

where;	 C h •	 i' w	 since	 C r /it'- k and +.^ • w f

Then:	 a
^ie AtTe 41TAO

411 4 ~ ' A	
(1A)

/^'^'► s 'ŷ 	 1
so

e	 e e Te

and the distribution function in terms of the -bent flux is

_ 
A

^	 C:;, a t.,S^. l a S e
- C'^^	 (12)W^^ ^^ n ) C

r
where:	 q = iT,ri`re /A i

Now let us calculate the first movement, the average velocity. We can see that f i is even in vX and

	

vy while it is odd in v	 V. since is directed only along the z -axis. Consequently < r)

and <X> • < ',,7 >Z

It is therefore u-aeful to definer

	

a	 a

ON

	

^qtr	 ,.
(t3)

	

Me i, ^ N'Tt	 ^rre	 ^^

then

C a 
Sit	

A.
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Then f can he re-written as:
a	 ;

A[i + G ^4,, ^+ ei"S C 
	
+psi' .

Then, in general:	
00CPO

a 47rf A&	 f 0 0

(15)
a	

AL

.Lj %('T'I I) [ V 3 (ai
•	 .. dit

and integrating over Me.L t i
Or

CPO

Consider the odd moments;

p

where the first term inthe integrand has vanished because of its symmetry. Using; .
Pp x^M ^

i ^K =!
Fir

where;

(.gym-f)^ 1 z 1 . 3 • S r . Air m-,)
We see:

which yields the general result:

Then, the first moment is;

Ke n^ p	 and since N"e ti = 	 —	 (19)

Then:

^r► ^ _ '	 (20)

is

4

( 14)



We can then interpret the parameters as follows: 	 94r,1 is the field aligned heat flux density

(and Is collision dominated) while u Is the electron drift velocity associated with a net current

flawing parallel to 13 . We note that the choices of u and 46, are independent so sett ng 	 0

will reproduce the results of Kindel arid" rennel while setting ik = 0 will specialize to hest flux in.

stabilities which are the main concern here.

To complete an analogy with the curs;n; 4ostahilIty it is useful to define one other quantity; This

w	 is the thermal conduction speed, ArQ , From equation (10):

^ _ # Mtn ^ — ,^, a^, ^	 •1 Ti	 ,„,
n► ^^	 ,^ irvi y, all y	 ,yt - TZ	 (c 1)

Replace f by the mean free path' êand the temperature gradient ^^ by Swhere L is the sys

tern's scale size. Q  then becomes;

911" 3  ^i`.^ L , L Me l ^T,g^	 (22)
9

which is in the standard form for a heat flux: a speed multiplied by an energy flux density, The
i

heat conduction speed can then be defined as: 	 V

r
3

where the factor 3 is put in for later convenience.

This definition can be justified on physical grounds as follows: Consider an ideal gas. The heat

energy density is ncp T since heat conduction will assume constant pressure (mass motions caused

by the pressure gradients are taken care of by the parameter u in the distribution function). The

heat flux is then:

9 _ —ntc (MC'T)

S
	 1

4I1tr
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and for an ideal gas: C y t k fs while	
C 0A V : '	 so:

Are.	 MAST)

M	 T	 as above.

Consequently the constant # is not involved in ^ , Thus the parameter B can be written as

and this form will be useful later.

We can further note that there is a limit to the magnitude of since, in the collision dominated

regime assumed in the derivation, it can ' t exceed the product of the random electron flux (across a

plane e^ endicular to the z-axis) and the mean thermal electron speed;

S^ (► tn't	 ^^gt 14# Ari^	 ^c	 X25)
u

1
i

which, in concert with equation (22) implies:

i
3

or»

of C	 (26)

and this is what is meant by flux limited,

THE DISPERSION EQUATION

l^	 For twa charge species (electrons and ions) the dispersion equation ist3 7.

E (w, A) = 1 t xe + x _ o	 (27)

r

T	 6



qwhere:

So	
-

	

_(

(`J liw '' err N C "3^-,nJL.,)	
(,

M >t ^ ar

o	 i

assuming:,,	 ^	 ,^

! d z CAP* s.

This expression is solely for electrostatic perturbations so It assumr.si' for ` .L 	O	 , that

	

"r^eR^a^ rRestuRe	
^'< .1..	 ''P444oer a PReSruOte

For the Ions, the distribution function Is taken to be an isotropic Maxwellian
Ar

f a	 'X (T Ar.4, ^ 3 '4	 Art̂,

where fri Is the ion thermal speeds

AA 4 r4

a

Then, from Hasegawa(3)equation (2.30):

	

kw'00  	 A	 '•;	 ,^

	

Al-she	 (Q)
F	 U 	 /

r

j

where;	 AA- L

ZM = modified Bessel function
,r

Plasma dispersion function (Fried & Conte('))

f

mr
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For the electrons we will use the distribution discussed above;

^4
(32)

where;-3
A (.n^'^.) /"

	

Q =
	 y tw	 ^.

SM Ar,	 ,

^-^^ *C s
and,,+

A
Are !

With these definitions;

.l fde	 1	 I.,1T t^^\
W a	 3 a	 ^^^IJ'!. CK^ a 'anr'el—^^^^ ^^  	 (33)

where,

Now for ion cyclotron and ion acoustic instabilities x ; ^+ L 	 so K,& &t L . Then the

ergument,';^ , of the 7 a is appreciably different from O only for A A. 'P*v 1	 However,

there is little contribution to the integral from large 	 due to the factor t'a'r` in fp t. Con

sequently, we will assume	 Xe <<	 and with IT Xe) ,% D (n :* 1) and z,(A '.) 1

for Jt- 0 and the electron term becomes

t+J	 3	 ^ 4e n	 r

.e = ' {	 ate	 ^rtee^ 3	 (34)
E'

8
	 1)

I ,

i
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1

^	 1

where,#	 lit W w -1►" ' M	 3

A

Now.	 -

-	 (3s )

and the Integrals over 4L.all have the Form;

C"

0

Performing the integrals over A ra, then. $Ives,#

reqwell

C= '% (!O^ Are+
	 (37)

,r
where;	 1^^

	

re	 Ar.(Aref)	 trait

Now we define.

K - KA

	

cam.► 	 )

s6 that 	 (,)	 is the plasma dispersion f► ,,notion of Fried and ConteC '^, The electron's con-
E

tribution is then:

xe	 +	 ag	 (40)

f

G

9
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c,
i

where.'

If f^ is integrated by packs the following relations maybe four4d:

JL

(42)

/yy
CI	

1
J (43_) .

K
and	 ,	 -.Z (,1 +	 whore	 2 K) •  (44)

Successive Iterations of the recursion relation gives:

while successive applications of the relation between ^. 	 and	 gives:

(a	 =1) e,, + y

to y "
	 3 .) e ..sC3^ ^^ •

Combining these, gives;

C a = 3 CS, + 1^	 _, (45)

lti_

q

IU

y

s



so X can be re-written entirely in terms of 2 4 ea:

^t ^'"^1^1^r"t^lt t ^► ♦ ^ ^^ ^' ^^^y ^^"^ sie ^ ^ J? is '1• ^► ^`	 A
	 (46)

At this point is useful to consider the magnitudes of Band 	 In order to make approximations.

We have already shown that:

since 0,,,, is flux limited. Now consider

Q	 w • #.0 u.
Je	 KNto

Where Arp is the wave's phase velocity parallel to V" a magnetic field For	 ro/rz_ *,P.O 1

we expect (fallowing Kindel and Kennel) that 	 u « .	 if u is taken as the drift speed for

marginal stability, Similarly, In the saute temperature regime we expect Arlo ^+fie Ica ate

5o

41 1C	 FO Ot

When we actually have an expression for WO)we must check to ensure that this limit Is correct.

In what follows, we will assume 1! 44.1 in order to P. lop higher orders of jr, in the disper.

sion equation, We must keep in mind :hat this is strictly true only for T''/rL -s-'* 1.	 and

when we write the general result we will include these terms, We will,. course, also include them

when finding restilts in the Tlc/T4 	 4— regime. Note that the dispersion equation looks

increasingly like that of Kindel and Kennel as higher order terms to I,, are dropped so there is

some heuristic value in this approximation. The corollary to this is that our results should increas-

ingly deviate from theirs as 3c becomes large,

r

11

_..	 ..	 i,.. /[..^...3.fl hez^.- r^.^eYrlr_c7it1•.... 	 .^:._.. y,,.	 -,_: ,..i s.R'.._ .., x„ .. _.-,_	 ..... .._	 _ :. _.	 __.

ri

i

i

4- iy

4
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%J
6

Now, keeping only terms which are explicitly of first order In b or

4^^^	 # ^3s+ ^ ^o + y 	 (47)

The dispersion equation is;

1 t 'k^ '1C • o	 ° (48)

Using equations ( :30) and (47), dividing by 2, this becomes:

w Gjaa ^^ 
C1 ♦ ^^e*a^^; yS^â  +^ ,^G^•=^'1 'L♦ #4 1.4 	^" O (49)

C

Considering the ion contribution, 'k , the imaginary part of 	 is alvv^ f s positive and so pro-

vides damping. The n - 4 contribution is Landau damping while for M	 1 , it is referred to

as ion-cyclot n damping.

Considering the electron contribution, I,, r (1^)^ 7 o so the sign of _^	 depends on

the sign of	 4 + Se	 which is the factor multiplying

3 }
	 _ d'► 	 "Ar.	 where

e	 Ks e	 ^ 

Consequez 'Iy, if the drift velocity, u, is larger than the wave 's phase velocity then the negative

electron dissipation can contribute to instability. In the same fashion, the heat conduction

velocity, if sufficiently large, can lead to instability. The mode will become unstable if the veloc-

ities, u and #C' , are sufficiently largelhat the negative electron dissipation is larger than the

damping from the ions.

GENERAL CASE

In general, if there are a'number of ion species, X` must be replaced by	 X I where the sum

is over all the ion species. Witli this and the definition;

12	 _ ^`
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C	 LAO

the dispersion equation becomes,,

+	 I All
ILI' et* 4

orr	
AArtVr%	 3+ — 14 

^J. + f	 ZO(
.2 PIK T

a
Pri. - V. \ V' +

.3	 1 (;

-,

ri fA 
C__

"k 	 Irp	 41k

40

where the lost term includes the higher order terms in 	 previously dropped,
eJ

Now, assume the system is near stability so:

W,	 AAU	 T0

Then set cA w W	 in equation (50), separate into real and imaginary parts:

and' then, to order
WA

0. W OL	 0

(Krall & Trivelplece(S) 1970,

(50)

(53)

(54)

13



Ual'iniitg	 ,^ • Re t E b)

ax wx oto
w	 gives the real dispersion equation (multiplying b y lk ):0,4)R

1 '"

	

 
K	

--I
`^'^i doe '	 M^^ tom` for 1,4 ^t  

11	 -fir r ^	 Itl _	 /^^ 1	 r	 "N ift

y'	
c	 1	 5

we call see that the conduction speed, M , introduros new terms In the dispersion actuation that r.j

not seen in the case of current Instabilities alone. These terms all contain the factor:

\ K
1

which vanishes if OrL vanishes but not whets n vanishes,

Front equation (50), 	 0 . t ^ t ^ can be re-writtenes:

Pro -
	 ,

1E:7:-ex 
.]
3

tr

ra 3/1

0	
4

t

	

	 This gives the combination of drift speed And conduction speed for marginal stablllty, Tito terms

in braces multiplying c are those dropped when «,1„

Using;

07)

14
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the real imaginary parts of the dispersion equation for small growth rates can lie re^writl

terms of our normalized variables ass
i r	 -

-(1 + a '^ a _	 ` )TM tM;^ 1t^;	 -It%

	

3 3^ a ^•' 7e^,^^t' \3e w) ax tie) # (,;e 14) ^R( ^	 t58)

t	

I	

..

.ti	 1

/Q"^ Lt 3 3t ^^	 ^'f'p 1*	 C^.rM ^^^:^ a 
	 (59)

M

where,

In	 K

	

e	 on

	

JL •	 C	 w	 .^.
	Se,oa k1, Ire 	 Jl _	 ,

^oe $'1T Me C

	

,le	 ^

and the underlined terms can be neglected for 	 i<,,

To find the marginal drift speed for instability equations (58) and (59) are solved simultaneously

along with the requirement that k +,f^ be a minimum with respect to k.6 and k „ . Note that

by equation (54) this is equivalent to requiring r 0 unless .A,,W-, DR'0	 That is, what we wish

is to find, for a given set of physical conditions (T^, Ti , ne, etc.) the solution to the dispersion

equation, cc^km,,^), for which the combined drift speeds are minimum.

Using equations (54) and (50) the growth rate is

TOP
AM, ^M ^^c	 poTT0A	 (40)

G

^k



Gd

i
where;,,
	

\I ^
'^	

^l

Tot 4^ ^M \ tt / ^^1i^ J^,^tii ^ cra,
+ rtI r+ f I V(V- I j`1	 r

(61)

TBOTTOM	 ^.	 tS ^t3 ^'t

	

= L ^	 C: M^^,^^^^^^^^l^lgcrc^'t`^^^i^s^^^''1^cya^ 	 ^4 ^

O(j,a) -[j+

where the variables are defined identically to those used in equations (58) and (59) and equation

(57) has been used. We alsG note that since ,}'^ t I is a requirement the terns in I in equa

tion (62) can generally be dropped unless 	 is appreciably greater than unity, At this point it

might be useful to re-iterate the assumptions implicit in equations (58) through (64);
I

r l) law frequency: W 4 <a

2) Electrostatic modes only

3) Chapman-Enskog approximation -*collision dominated plasma-* Nom; 4wt or 3.. < 11

r	 4) Heat flux parallel to Q -field

5) Maxwellian ions

6) ITI	 is K

HEAT FLUX INSTABILITIES

In what follows we will set u = 0 so there is no electron, current and no net. drift velocity, We will

also assume only one ion species so n, = n d and the"sum over ion species will be removed, With.

jf^'L the equations now become

rd

(63)
+Sc {3 ^e^! `"



i
J

. ^	 1 + c `	 1',„ ^ "`:^ a	 (64)

As long as J1.6 the major difference between these equations and the analogous equations

for the current driven instability Is that the conduction speed doesn't occur In the arguments of the

electron z-functions in the heat flux case while the drift speed does appear in these arguments in the

current driven case. When r*/.r4 V),	=` «) , and the equations for the two cases
sr

are identical. We can then directly take over the results of Kindel and Kennel, replacing the drift

speed (their Vp) by the heat conduction speed, At high temperature ratios then the mode is ion

acoustic in nature with —*--At t< 1	 This is done below.

On the other hand, when Teki.	 the critical conduction speed (the conduction speed

above which the mode is unstable) becomes of order the electron thermal speed.

Then the terms in 1e will be important and the nature of the instabilities will differ somewhat

from the current driven case. As we shall see the instability takes on the nature off an ion cyclotron

wave for r0A: ^+	 characterized by largely perpendicular propagation, OkA/$ !^`j 1
This is true for both the current driven or heat flux driven instabilities but the details are some-

what different.

The major difference between the two cases occurs for T^/^-^ « 1	 In the case of a heat

flux driven instability the critical conduction speed becomes larger than the electron thermal speed.
j)

Since it Is not possible to conduct heat faster than the thermal speed of the particles the plasma is

stable with respect to this source of ff" a energy. To transport energy more rapidly than Ne^,e it is

necessary to direct the electrons rather than let them diffuse; This is a current and gives rise to the

current driven instability -for sufficiently large drift speeds.

We will now summarize the results for 'rlk/-r >> 2,	 (since the analysis is identical to that

given in Kindel and Kennel), briefly consider how the results differ from the current driven case,

17
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0

when	 and than present Bt,aphs of the numerical results for both ranges.

ML

We will consider the ion acoustic approximation separately from the ion cyclotron case and show

that the former has the lower critical drift speed in this temperature regime and so the mode is

actually ion acoustic in nature,

Ion Acoustic mode; Re ruing to equations (63) and (64) we set k 0 so the wave is prop-

agating solely along the eld liras. This implies that jAj 0 and since.-

rA

0

the. eq u a t 'Rons bwe. c. om. a

TO1.4 AC	 +041	 AT4, it

t LTC 	 A)
a	 4L	 a Loi,(14)l

C	 (66)

where 1, 40. '1 . was used in the second equation, We expect a result which will roughly be

eA.) 2	 which would then imply;

Vrt.	 (67)

(68)

18
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^ 9

^:	 1

We will therefore assume S,, «l <4.	 and use the approximations:

A^ (69)

for the electron and Ion plasma dispersion functions. The dispersion equation then becomes: 	 i

a s,^^^ Ca( 70)1 f ah for;

where Cs +	 :	 is the sound speed (kB is Boltzmann's constant) which matches our ex-

pectations. The equation for the conduction speed is now:

So- = 9. ,+Cte^^
	

(71)

w
To find the minims!, conduction speed we differentiate ;this with Tensect to ,, A"f , 

A	 anda,
equate the result to zero:

Ca 34M 11e = 1	 O

which has the approximate solution for large ci	 I

(73)
4 M ^'

where	 is the value `of I; which minimizes	 Using this in equation (71) yields the

minimum marginal conduction speed:

/*c M ^. .QM of C	 (74)

or for a hydrogen plasma, 	 (^,

4	 (75)
t

_i9	
^.



(81)

20

V ^

for the ion acoustic mode with re/r;	 For large 're/n the critical drift speed Is

only a few times the ion thermal speed,

In this temperature regime ffirf/4 t Is generally large (from eq (70)) so Ion Landau damping is

weals. If the conduction speed exceeds the parallel phase velocity then the electron distribution

will have a positive slope at a speed equal to Oct so the electron Landau Instability will cause the

wave to grow.

Now consider the growth rate in this limit, With the above approximations it becomes:

C` ♦ (76)
^kil414	 t1^ y * ^ 5c

'^ 1

and since	 the last two terms in the denominator may be neglected, Then, using
)'r

equation (70)

—U^v a)
ANo C	 x 1'^.where x	 o > >•

Q Electrostatic Ion Cyclotron Mode; Following Kindel and Kennel we note that for ion cyclo-

tron waves	 in this temperature limit so-we can neglect i4 X eg , Further we Can

use 3: - ge r sue 	 for all the ton terms since -&„ is small for cyclotron waves. For

temperature ratios near unity 44--A.- but as 'N/t. increases w will increase to' keep damp-

ing from the n = I mode small. If co were to get close 212, then the n = t2 damping will become

important. Thus we will have CO x A;	 Then Kindel and Kennel find the minimum

critical conduction speed to be

Q

tf



or, for a hydrogen plasma:

AM M 33. TO	 t ) ,

The perpendicular wavenumber is roughly given by,
at^- 	 T4

and;

TIL

As T'r^r: increases the wave changes to more nearly parallel propagation, We also see this in

comparing equations (83) and (I$).- the ton acoustic wave has a smaller e_; ticnl drift velocity then

the ion cyclotron. The mode becomes increasingly more like an ion acoustic wave as the tempera-

ture ratio increases. Because orthis it is not useful to calculate a growth rate in the Ion cyclotron

limit.

P

M

(83)

(84)

(8s)

Tt s
T

From the numerical solution of equations (63) and (64) we see that when T" A,, at 1	 then

g *^ • S while.	 Consequently, even though they don't make a large contribu-

tion, the terms in	 in equation (63) should not be dropped. We will however drop the terms,

in 
a 

in the denominator of equation (64).

Then, keeping only the largest terms, we have;
i

R •..

4

21



Now, from the equation for the growth rate we see that we must have 	 7	 (A- Wp

In order that the electron terms contribute to growth rather than damping. Consequently we will 	 13

expand ^'^c3^) for small 1. and drop terms of order compared to 3, f e . Then

equation (86) is

-(,I# W 'x % 'rt-	 A4) U.+ I jL
M

In the ion acoustic case in the high temperature limit this changes equation (70) to:

C
)2. as	

tt tt 8-?

and since 	 Q this means that the phase velocity would be less than expected when this

term is ignored. 1
^J

Ion Acoustic mode,

As before we set kj = 0 SO;%LM 0 to get,

1 + .1 ► 42. oe	 A	 ^ ^ _	 e ms	 (90)

I
^^^ (91)

We note that the corresponding limit in the current driven case has equation (90) without the last
z x

term. There is no solution to that equation for positive	 rs	 since the maximum value of

O	 is about ,57 at 34 Vie, 1. S	 In fact there is no solution for 	 oe --0

for Te/T•	 2,5-.

.	 4

._	

22



1'>

The Inclusion of the extra term in equation ( 90) will allow solutions for lower values of *4. than

this. Equation (91) is identical to (71) and so leads to the same minimization of eq (72). Solving

(72) numerically for	 = l yields-

l

	

itiA1	 72

TIMM _ ,017

cM " ,3 t,

Substituting these values Into equation (^0) gives:

This violates the initial assumption that k is real and w complex. This same situation also occurs for

"	 smaller values 0 0- 'yT^ ,

The identical problem appears In the case of a current driven instability and is discussed by Kindel

and Kennel. The resolution is that the smallest critical value of k,, Is zero (so the real frequency is

also putatively zero). However, a small increase in the drift velocity above the critical value results

in a shift to w p 1-3 Wp . (the Ion plasma frequency) and to #i „ I pt'" 1 . In practice

only ion oscillations near We .. will be observed, We shall also see that near T^^` w 3, the mode is

basically Ion Cyclotron -rather than Ion Acoustic which is why the ion acoustic approximatiy gives

a poor result,

We see that as N decreases the critical conduction speed increases from a few times the ion thermal

speed to nearly the electron thermal speed, When T'/r,. -1 the wave 's phase velocity is

roughly the same as the ion thermal speed for conduction speeds not greatly exceeding the critical

value. For example, when A*̀  km =2 the most unstable ion acoustic wave has N'"P • ^^ ^bc

so ion Landau damping is strong and a large electron drift is required for instability, If #"';L/^, In-

creases to large values then r, -0 ^Ttt and ion damping can be neglected. This leads to the

Bunemantsl instability,
k	 ,
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k	 Since the critical value of 	 lies near unity no simplifications can be easily made in the equation 	 r^.
for the growth rate.

(Q Electrostatic Ion Cyclotron Wave:

For this wave '401/4A.,44J. so in ventral:

^c

will be assumed and then equation (69) can be used tta approximate the ion dispersion function,

k	 Further we will see that h., -3. so we can assume
a	 +►

and drop this term from the equation. Also we will again expand 1 A 10 in the small s limit.

Thus equation (88) becomesc

T 	 c^.^T^, l w.^	 M N	
'^^	 4

1.	 W -M.Rt	 3 Js 6	 (98)

1a

Now we require that ca1t: while still satisfying equation (92),, This again, requires that ki

be small, Then using the addition rules of Bessel functions equation (93) can be rewritten ass

IMIC

while the equation for the critical conduction speed g

Ic y	 (95)

where	 Cy► 	 •^	 +	 L ^.l_^t^:^	 (96)

"Sawing" equation (94) for-w (ignoring the fact that ^'^ and s are functions of w wpuld give

W _.; E1+ d^	 X97)
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whore	 and we see that the Inclusion of the term 	 ^	 4 tends to decrease d

^putting w closer to Slit It Is not particularly worth while to carry the analysis Airther for this

cane. The numerical solution of equations (63) and (64) (with the requirement that, a be a mini-

mum) is given on the followin g pages and contrasted with the solution to the case of  current

driven Instability and as demonstrated ubove there Is no significant difforence until Te jTe, - 1.
As can be seem from 'these results and the; a of Kindel and .Kennel, the minimum critical conduction

speed is smaller for the Ion cyclotron mode then for the Ion acoustic. Consequently the Instability

takes on the characteristics of an ion cyclotron wave as the temperature decreases to unity, We also

note that as'te/k decreases to unity I. Increases so there Is some temperature ratio below whl^h rto 	 9

physical heat flux can drive the plasma unstably; the threshold to t oo large.

Let us now find an expression for the growth rate for the ion cyclotron mode using the same set of

approximations, FroM equations (60.62):

+ 4 _ ^ a

Or,`
A 21

a— 1^z cp
a Te'_	 W 1_1,AA; s►

 i- y 4
	 y	 (99)

1	 M

*	 Now,(r^,,) < 1 for all M, since 1 = l and ^^	 . Thus all the terms in the sum.

are smaller than unity except perhaps for n I and since w o%Jlt for large n the sum behaves as

'	 and so the contribution to the sum is small for large n. An order of magnitude ap-

proximation to the sum is thus given approximately by the n = 1 term;
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where A is defined by equation (97) and is small. Since the solution here is not very different from

the current driven case we can drop the last term in equation (94) to get an approximate solution

for 0

G	 ^^ +^^^

where G is defined by equation (96). The approximation to the sum is then:

(Ott)

t
and since IC	 i	 while T.# 	 for this case the sum is within an order of

	

Y	 {

magnitude of unity, Since it is multiplied by 	 and	 1,	 we see that the last two

terms in the denominator of equation (99) can be neglected since they are less than unity, Con-

r
sequently, the growth rate can be re-written as;

a	 r
3 Ski) ct 3c^s^ + TT

_ _ ^ —	 J	 ('l oo)
M ^w^ WC^

P'1

for 
T 	

and d given by equation (97).

On the following pages are givenra hs of the dispersion equation andB p	 q	 growth rate as well as the

minimum critical drift speed,	 4L /A ` and K:; all as functions of Ir4

I	 ,
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DISCUSSION

The major point to note is that, unlike the current driven instability, the heat flux instability will

not "turn on" when M I since the requirement on the minimum critical heat flux is that it be

unphysically large (ie.,fcm > 1). The only way in which electrons can transfer ente2 A*ahtcr than
i

the electron thermal speed is by directed (rather titan random) motion. This is a current and gives

the current instabilities.

The second point to note is that the graphs given here for the heat flux instability do not markedly

differ from those Kindel and Kennel have produced for the current instability. This has already

been mentioned in the analysis for Ti >> 1,

From the graphs it can be seen that the results here differ from Kindel and Kennel 's by 10-20

near = I and are essentially identical when is greater than 3 to 4." This means that the two

Instabilities can be "combined" when T► is greater than unity, That is, the fact that a and v.

don't enter into tho real and imaginary parts of the dispersion equation in an identical manner is

irrelevant for Le > 1. Thus we can take the critical drift velocity curves and replace either u (in

Kindel and Kennel's curves) or vc (in our curves) by the combination u + ve for Tr > '1, For

example, the minimum critical velocity for the instability to occur with T► 3.0 is about, 12.

Thus we can say that if the sum of the heat flux drift velocity and the current drift velocity;

vc +u>.12

then the instability will occur, Thus, the existence of a heat flux can cause a current carrying plas-

m to be unstable to the EIC or IA modes even if it were not unstable with the current alone (and
r

vice versa), In a solar flare, for example, the conditions which lead to a current also will give rise

to a heat flux and the combination make the plasma less stable than either alone.

'

	

	 Thi'^ th3rd^point of interest is that the two modes, EIC and IA, exist as separate entities with the

lowerminimum critical velocity for the rilC mode when Ti < 8,5 while the IA mode has the lower

Te 	 > 1 and the IAminimum critical velocity for ^ > 8,5, The EIC mode is characterized by 'u

mode by	 10-5 (from the numerical solutions). Consequently when Te is somwy iat less
Ti

3
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than or greater than S.5 the two modes will both occur, one propagating parallel to the field and

the other perpendicular to it, if the actual drift velocity is somewhat greater than the minimum

critical value. For example, if the drift velocity is roughly 30% above the minimum critical value

then both wave modes would co-exist in the range e from 7,n to 10.0, Since particle acrele pli(n

in solar flares depends on the presence of the EIC model this gives a wider possible rang ^n tem-

perature over which it can occur if the drift velocity is only slightly above the minimum value,

Some results not ,found in the graphs or the analysis but which arc seen in the numerical results

are that some parameters can be changed by large amounts with correspondingly small changes in

vc . In the EIC mode calculations it was found that the minimum critical drift velocity is only

weakly dependant on the value of Ti. For example, ate: 10, a change of 20% in kkl produced

only a 2% change in vc and this is a typical result, Thus the growth rate of the EIC mode is not

strongly peaked about one value of - ; when v. slightly exceeds vem we would expect that the
i1

destabilized wave will contain a spread in k Thus the wave will propagate in a cone around

the magnetic field and the angular thickness of the cone will be appreciable compared to the angle

the side of the cone makes with the field line.

For the IA mode, the preferred direction of prop4gation is very nearly exactly parallel to the

magnetic field with k.,/k l 1 < 10"'. On the other hand, although v m depends strongly onf 1,

if we write5l ass

l ()5qc
then we find that changes m1cyc and as large as a factor of 2 (but which leave f I constant to

six significant figures) change v. only in the sixth significant figure. We expect then that the IA

mode, when unstable, will propagate with a wide range in to,

One further point can be made. ForTe /T » I we found that the IA mode was unstable with

lowest v and dispersion equation given by equation (70), I€the term k l l ^ e in the denomina

for is ignored this further simplifies to:

.	 n

3



I

F	 W2 = ki( C
F

or:

M i.

We see that the computer generated graph of Sim under these conditions duplicates this result to

.	 within about 10%. If we use this in equation (71) we find that, forte0	 » 1

vcm m.0174
vte

i
and this depends on temperature only very weakly.

M
a

SUMMARY

We have investigated the plasma physics of the Electrostatic Ion cyclotron and Ion Acoustic modes

as driven by a heat flux. We find that no physical heat flux can make the plasma become unstable

to these modes when Te < 1, For Le in the range I to 4 our results differ from the case of a currentTi t

driven instability by less than 2W5 while far TeTi greater than this the two situations are virtually

identical. We can consequently use the curve for the minimum critical drift speed with this speed

replaced by the sum (vc + u)m where vC is the electron. c.onduction'tpeed and u is the current drift

speed,

The general dispersion equations have been given as well as simplified versions for Ti . i and
1

Te» 1 The exact equations have been solved numerically and graphs of the results given.

In an appendix the first order correction term in k is given for the Ion Acoustic mode.

Y
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Appendix A: First order correction term in	 for the Ion Acoustic Mode.
tr

r°

The lack of information on 	 comes from the a pproximation µl = 0, Lot us consider the first

order correction In kl:

I'm (µl) = e"'t IM (µJ)	 (	 3

and:

	

e`a't l W	 (A2)

Im (Ad '^Mtt i( jm	 (A8)

so to the first order in p,.: 

E()	 (' m' ) Z (3') N^ I Z (t) 'h Z (-^' ^))	 (A4)M m t R i — cyc ^ R t	 R	 —	 R 1 Cy

Then, with r j,, « I equation (63) becomes:

1 + 2 kj , ode * T^ i %Z1 (rd + A1r1 tZR (^) 4 (^'j rcyc)j ) + fry - Vie ) ZR (ie)	 (A5)

	

E	 1
and the same approximations in equation (64) yield;

rc to	 l	 µi (! — 'fi a c	 C1 +C e't 2i + to I —	 t	 (A6)i	 1))) } 
i

Now, if we assume r, and tt rcyc » I and t. « l (so we can neglect the last term in equation

(AS)):

	

r	
l + 2k^ t Xde =(1 !') •- Te µ^ ^-- 	 (A 7)2	 2

^j	 2T, 	 —Icy o

using equation (69). This can be re-written as:
w

I +2k2 t A 2 	 ka I Cs 2	 — (kL'h ^ 	 CS	 (A8)

	

de ^ ^ ^ 	 —^-^

or:

ll 	 L.)2 r l	 2I + 2kj t Xde	
Ck^ ta

Cs / x	 I i \ 	 \ / ^	 -	
(A8)

i

	r	 so we can clearly see the correction term in

"Solving" this for w gives:
F
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F	
k	 z	 k j	 ^. 2

	

+ 2k ^	
t ° ^ ^ 	 ^	 (A9)

i
so we can see (since w > 1) that the correction term reduces the frequency below the standard Ion

oustic result of equation (70).

	In terms of the variables used in the computer solution equation (A8) can be written as,

Te
`r 	t + 2kj s e	 -

FIT ^l - `'a ^: WI V, IV

	

v-- )i	 (A 10)
	^	 J

i or, solving for w

w2 ` Y V	
2xu V2

v =2I \l 	Te jTi	
(A I 1

where. ri uv, v = w and x = 1 + 2k 2 X2 0 . We can estimate the last term from equation (73): r1m2

A •	
11 duo

I r2G;'ao
W2 =	 ..^ ^l 2 x 1n2s^
	 (A 12)V2	 v —	 Te/Ti	 3'.

and for large Ti x 2. Using this value;

	

Te	 4 In 2Ci

	Ti 	 TeM

	

to	 3.2

	

20	 1.8

	

30	 1,3

	

40	 1.0

	

50	 ,83

	

100	 ,45

so there is no solution for co until T > 40, This gives a rough estimate of where the approxima-

tions are valid, In this range v > 1 so roughly:

W - 
V1 

`k	 (A 13)'	 v

Where k is the factor in the last set of parentheses in (A'j 2).

As anexample, for 
Te' 

50:
Ti
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