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ELECTROSTATIC HEAT FLUX INSTABILITIES

* INTRODUCTION ‘
The purpose of this report is to investigate plasma physics of the Electrostatic Ion Cyclotron (EIC)
and Ion Acoustic (IA) modes in the presence of a heat flux. The initial analysis will be carried out
more generally to include a current in the plasma as well as a heat flux. This will facilitate com-
pésons with the results of Kin;lef(l and Kennel®) who investigated these modes driven by a current

0 A

only, - (i o

We wish to find a dispersion relation for w(k) parameterized by the ratio of electron to ion temper-

ature and also the growth rate, I, as a function of the wavenumber k. We then wish to specialize
v >

gl

these results for the special case of marginal stability for which I'(k) = 0 and find the threshold

drift speed above which the plasma is unstable to the EIC and IA modes. Finally we will find ex-
oo

pressions for these quantities for the limits o 1 and -%- »] .
[ T [e]

A o

A self-consistent distribution function will be derived in the next siction using Chapman-Enskog

7

theory to represenf an electron distribution including a heat flux characterized byk'a thermal
conduction speed, v, andfalso an electric current characterized by a drift speed, u, The ions will
be represented by an isotropic Maxwellian distribution. In the third section this distribution will
be used to find the dispersion equation and growth rate for the low frgguéﬁcy, W< L * ‘M';c.
electrostatic modes. In section I'V marginal stability will be assumed while the contribution of
the electron current will be dropped and the dispersion equation simplified fo’//;' the two modes,
Elé orlA. I-iere an expression will also be given for the minimum conduction speed above which
the plasma becon;es unstable, The limits e %“\l and I-,'% >> 1
will be considered and simplified expressions for the dispersion equation, growth rates, and mini-
mum critical conduction speed derived, The final section will then consist of a short discussion

[

of the results. . ‘/(‘
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THE ELECTRON DISTRIBUTION FUNCTION
In Chapman-Enskog theory it is assumed that the particle collision frequency, v, is very large so

that £ (the distribution function) can be exponded in a series:
f-:AQ* A+_yaA *.o.. | )]

£

A |
I R N P I @

where the A"s are al] assumed to be of the sawe order so:

ENE ALY L IR | )

) P
In addition is is assumed that all derivatives of the A“s are of the _same‘érder as Al itself. In this

derivation we follow Tanenbaum.?) From his equations (A.5.20) and (A.5.21);

- A o ' P .
“l'-‘\.’- ---‘%—so C))
where:
e . a QT '
4 = "F("@c"i)“;'k'f )
-l

wh
neglecting any pms\xre. gradient and C N = u. where W is the peculiar velogity and

g
B N‘,. NERMAL -i'ﬂ? p Usu of f=f, + f in this approximation leads fo fo
the Navier-Stokes equation. Our distribution function is now:

£+(1-81%, =[1--.§.,='-([3¢“_ f)ﬁ]{-o )

where t‘o is the Maxwel ‘ fon:
/\\

- (4 e

pel e

Now let us find some moments of this. In particular consider the heat flux:

5 = a"//mm.g‘c‘(é‘-i)f&’d‘ : | Q (8)
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' We assume that there isa temperature gradient in the Z direction, parallelto the magnetic field, Then: 3
i = i
Cun % "a ¢' \. i
* f+(1- S (pet- DI (P e o |
"’ : o ‘ ]
i i ) . - "] wb ) A |
i ; where: e, A= since ee A‘- W and&e “we, |
| Then: ,
| ) ’"“ e
‘
b $0 B
| Cu_ ATe _ _2 Ofuc. i‘
| ?;'_V_ az S Mc M. N;Q (l l) §
\ ‘ . and the distribution t‘unction in terms of the heat flux is: :
2
} c a AN 4
| § = AfLe BGE) GR) -Sﬂ e 12 3
‘ s a
| , -3 8 ) :!
‘ where: A= (TAre) /a : N '!
4§ g.‘l 1
Q= Me Mg Ave o
§ J;g' (‘.’.!‘-’-T-')"h j
Now let us calculate the first movement, the average velocity, We can see that f, is even iny, and | 1
s
vy while it is odd in vy, = v, since Wis d:rected only alonx the z-axis. Consequently <AGD* “' Paal B
and < A‘ > LA a . ,3
i
It is therefore useful to define: o
e Nl 84,2
X Ney = N",. < | ", 4 .,
| ”.— [ - Q“ v . (‘3’
Neu NTrg " Nye Nw * Ae '
%i, . then: ‘
S e \ 4 a a
Lf ‘ (£)) = Aew + Aey .
: 2} !
D 3 -] -
D ) T Y U Py ;,__A - ' :‘\ ’ ’ P ‘ ,.‘__‘_b.,.u‘_‘_ _;:. ik, m‘_,;*:.‘m.,#;. ....*.;:-A




Then f can be re-written as:

A[iv BAQ“(;,Q".,. Q&L-Sﬂ < - (e +aed)

Then, in general:

<a050y) = a2, 90 o

and integrating over Neg ! -

Gy o [ 21, 30 10 4G, (2 23] €7

Consider the odd moments:

Ng?:"> % 5 N.Q» (3&:“3) e’ e AN;"

9

,arjfm,glj ?;(‘%)[1;3 5. (a5 s 2-8)| €

(14)

(15)
-(N.Q“ er" )

(16)

(17

where the first term in the integrand has vanished because of its symmetry. Using:

f xime  ax = Gt

@m-1)!) 3 2380, . «(am-))

where:

We see!
{Aen "D = ((awn)!'- 3(aK- Dll-.\ a~

which yields the general result:

<~_‘¢:K-1>= -'\K 8 (ﬁK .)l! B

Then, the first moment is:

M.-

(N;”") T 0O andsince  Ne, ¥ “ATe

Then: .

<AL =

(18)

(19)

sy (20)
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We can then interpret the parameters as follows: Pey s the field alignedcl)xent“ﬂux density
(and is collision dominated) while u is the electron drift velocity associated with a net current
flowing parallel to E . We note that the choices of u and @, are indejendent so set? lns Q=0
will reproyduce the results of Kindel arfd"‘.,f,;:nnel while settinguw =0 wnll sbeciaiiie to heat flux in-

stabilities which are the main concern here.

To complete an analogy with the :Q;Dﬁ#=3%~instability it is useful to define one other quantity: This

is the thermal conduction speed, Arc . From ‘equation (10):

7 A '
= M Ve QT a Te .
Q",_s_cf%.n_s....s-«,%ﬂi't,y”l:ﬁa. = . @D

R MeYe o3

| Te
Replace '.",'. by the mean free path \cand the temperature gradient }% by -1;-_‘ where L is the sys-

tem’s scale size. Q " then becomes:

) i
Q“ = - ‘3“_‘3' Nae ‘LL' .l[ Fy Me{ gT.g-] (22)
which is in the standard form for a heat flux: a speed multiplied by an energy flux density, The.
‘ N
heat conduction speed can then be defined as: . N
- 3. (A
Nez 2Mie(D) , | (23)

where the factor 3 is put in for later convenience.

This definition can be justified on physical grounds as follows: Consider an ideal gas. The heat
energy density is nc, T since heat conduction will assume constant pressure (mass motions caused
by the pressure gradients are taken éare of by the parameter u in the distribution function), The

FEN

heat flux is then:

Q = -ANe (mec,T)

=~ (£ W2)(me,T) \
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and foran ideal gas: Q= $Wa  while ley= & T

& 1§ (2 mheT) '

[

- Q- -i& mﬁsT as above,

: _ Consequently the constant f is not involved in A . Thus the parameter B can be written as:

B‘s—q‘g’""ﬂ' - 4(55) 24

Q

and this form will be useful later.

, G\
o We can further note that there is a limit to the magnitude of 4‘“ since, in the collision dominated
regime assumed in the derivation, it can't exceed the product of the random electron flux (across a

planeﬁe;pendxcular to the z-axis) and the mean thermal electron speed:
g ° K Pen< (3 e Me Nie YNee (25)

which, in concert with equation (22) implies:

or:
N < < hrt e (26)
and this is what is meant by flux limited.
L’ THE DISPERSION EQUATION
/ J For tw charge species (electrons and ions) the dispersion equation is(3),

€lwR) =1+ X+ X: =0 27
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where: ) .
- a OO \ a . 7 /r#) m-n-q A; o
- 3 N ol Y
X (5 3 e Ralie Lot 2 ] "
= w
assuming: N 3
] &n% + au.; _n_“ a %ﬂ:.a.l.
8r G.% wom = 97;::,e
Femdam3 M T A = @aSeq = .’*m-'—-::.

a ‘ . 7
ATt L AL AN AR,

This expression is solely for electrostatic perturbations so it assun{i:it\;for 4,P20 ,that

A
\)

L]

ThekMAL _PRETSULRE
4 MAGreric PAESTLRE <l

// | )
For the ions, the distribution function is taken to be an isotropic Maxwellian:
b '

o () = <we1)""e' Nel

where ANg; isthe ion thermal speed: ‘ ,, °
UL o |
Then, from Hasegawa®?, equation (2.30):” N
X (@R = a(r}-{‘)ﬁ ;.: T o1 o Z (T?T"] "

where:

x

- 5 ()’ |

modified Bessel function

oy
i n

Plasma dispersion function (Fried & Conte!*?)

(29)

. .
e . N

Y
Vi
/

L

\
&

o



TR TR TeempeweT fwRel e v

~ sequently, we will assume  Ae << 1  and wnth T (A)xo (n#1and CNERER]

- St '*v*'7jl~,ﬂ<., I it
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o

hS

0 4 2, (S) T-j' "-—-t—'&g . | an
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For the electrons we will use the distribution discussed above: }}

| (/"cu A
; * All* BN;«("\”“'-” 3 A ca."s)] e s ) (32)

where:

-3
A~ ('“I'rt:) b : |

(1) o A
8- SM.M 2 * - % Nee

te v |
N" .1'- |
and: te " Ve , . o o ’
A= 5 Y . N
) Ne.*® —ﬁ""" ‘e Nes* e " . 1
With these definitions: ! X }
S
i ‘1
o
)‘ 33- ) S x..»r.. (ar. & .\
1 -(-Kn ,»;,Z ay J, Qe —-—————-*——*—N T (33)
ey &n "r‘]‘
where: 2 C
e:(’iﬁé—‘)ﬁ&;'ﬂ‘\cﬁ.\.— , - o

Now for ion cyclotron and ion acoustic instabilities A:, ~1 50 Mg«e¢A . Then the
argument, }‘ of the J_ is appreciably different from O only for Ney,> L . Kowever,

there is little contribution to the integral from lerge AN, due to the factor € -%l in £“ Con-

for l‘vo and the electron term becomes ¢
d 'c' d ) '\\.v‘

Ko = -(50) . f e iy e
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© where: Se * CRLIC

yNte

Now: =

J'L,g"' - {-}"«,0 B[arﬂf.’w( 2R a2 »s']'}  Wan el

(35)
and the integrals over N; L Al have the form:
oe d : i
B! - ‘e L : )
LN:J_ C &AT“'- aK‘. . (36)

Performing the integrals over ﬂ;'., then gives:

, 1 .'r?
X = a ::,;f} L‘é&:f:_}:s_:::&d;n (37)

\ o
where: /(/ \ )
g(ﬂhf) = Ney K\G\N““ -"’;" * 1] (38)
Now we define: \
a
\ x“e."* |
Z2.(§) = T'w"'_j;_ -5 4% (39)

sothat 2,(§) is the plasma dispersion frnction of Fried and Conte{*), The electron’s con-

tribution is then:

X ® 4(:.;.'.) [2» (Sa) + B(‘i 2,05 -¢ 2,0 * %2.(&)3] (40)
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where: ‘5‘ ,{:’ -5:;4‘&-
i:h <

B« - 358).

It 2 is integrated by parts the following relations may be fcurd e
s z S z /

Ty ~'§5‘2:

P

i

a’K o i{ (‘f;-’)"t"'.l - 2\:-;\

and Z.'- - L‘L +§2,] where 2, W, j_"fi - (%)

Successive iterations of the recursion relation gives:

2, = 4(527-2.) I

2, - $§(25Y 4 (%)

7 ’
while successive applications of the relation between 2. and ,E. gives:

L]

2, = al@§~1)2, + "lf

2 = ~4g(a8%3) 2, -:cr ) .

Combining these gwes

2,(8) =52, + 1 = C2. r1
a,!.m =3(S2.+1) = T

Y

2 (3) 'S 5 +$%4 % = FEie 2

2,09 £5(8%2,0 T4 3) = St

10 ’

(4D

(44)

(v

(42)

43)

(45)




)
}
i
}

R

R .

&

50 X gtan be re-written entirely in terms of 2, 23

e .:,-..Y‘ {1 R AL (CEAES ATF SE IR !.(S.‘-am . (46)

Y

e
At this point is useful to consider the magnitudes of' B and f. in order to make approximations.

We have already shown that:
G« 1 (Ne < f"tc)

‘since @, is flux linsited. Now consider §q

3 - Wb | Ap-w
o wWee Nia
where A, Is the wave's phase velocity parallel to the magnetic field, For Te/r: R 1L
we expect (following Kindel and Kennel) that  w <« Aee  ifuistaken as the drift speed for
marginal stability. Similarly, in the same temperature regime we expect Np ~ale <4 Nee

50

Tx ’V
g‘ << 1 Fok T » i
When we actually have an expression for ¢3(&)we must check to ensure that this limit is correct,

In what follows, we will assuine S <41 in ord&r to mop hngher orders of f in the disper-
sion equation, We must keep in mind that this is stnctly true only for 'r'/r >4 and
when we write the general result we will include these terms, We will, of course, also include them
when ﬁnding rcsults in the 7‘/1‘.: < 1 regime. Note that the dispersion equation looks
increasingly like that of Kindel and Kennel as higher order terms in f are dropped so there is
some heuristic value m tlus approximation, The corollary to this is that our results should increas-

ingly deviate from theirs as fe becomes large. ‘ )

Y ' i
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vides damping.
as ion—cyclqt(

Tkt kit s oo bt e ia..ﬁ‘mam}x&fum ST S NP GNP ¢ i oo, et hnd

<

[

‘Now, keeping only terms which are explicitly of first orderin & or j.

Xe s (@Y 1+ (g+dp)2, +485,6). @7)

The dispersxon equation is:

1.4'1 +’k"°. , . (48)

«

Using equations (30) and (47), dividing by 2, this becomes:

bl

GV [ G 207 -45e8] + (& )Z‘AI‘“‘[”M%. (u..»r.‘.} =0, @

4

w

Considering the ion contribution, Y. _, the imaginary part of 'k'_.‘ is alwzzs positive and so pro-
O L ’

ing. ;The n = 0 contribution xos fandau'damping while for M 2 A it is referred to

| g
é damping. : \\/j X

NN

Considering the electron contribution, I, (i‘b(ic)) 20 so the sign of T ( %Xe) dependson

the sign of 3 D+ je which is the factor multiplying 2,

Ap =~ =~ =
23+3, = 'N." — where Np= & .

Consequés%tfy, if the drift velocity, u, is larger than the wave’s phase velécity then the negative
electron dissipation can contribute{fo instability. In the same fashion, the heat conduction
velocity, if sufﬁcieptly large, can lead to instability. The mode will become unstable if the veloc=
ities, u and N , are sufficiently large’that t,he‘negative electron dissipation is larger than the

damping from the ions.

GENERAL CASE |

4

In general, if there are a number of ion species, xi must be replaced by 2‘ X o where the sum -

is over all the ion species. With this and the definition:

T - e S S
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the dispersion equation becomes:

YN E}'}‘ﬁ"ﬁ [1e 222, (e >‘J

+ gy, Lo (EEso) 2 (528 )4 § (D)

(50)
- WNp-u\2 powd dpwu
(‘\tn&.\ \Wie {a(ﬂ'« )+ [:( Mee ) \}) 2.( #u)}
where: « ’
= a 4 T; N o
Ay = Tam e> P" ],
fhaeny? Ve &=
Mo w5 M- g an_ P
a ARe']
M“ L 3 Ms <'/~\,.b;a
where the last term includes the higher order terms in “§ previously dropped., = el
e N ' L
(
Now, assume the system is near stability so: A
@ Wp w L AND T < VW, ), (51)
Thenset ) = W R in equation (50), separate into real and imaginary parts;
D= DR (»Q‘A)k) + b:. (""‘A ,{) V (52)
7
and then, to order 2’,; :
De tway 'k) =0
’ o (53)
T, DL |
* T T3d%e '
FY~r (54)

(Krall & Trivelpiece($?, 1973),
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Defining: 24 v Re(Ry)
z: - Im (z‘)
gives the real dispersion equation (multiplying by '&a *y

-atthse =L LT cnd (B2 10 wﬁi (
#1005 () (S +( :\.i::"‘)%ﬁc'%—-)
s IS

>

w0

we can see that the conduction speed, AL | introdugsgs new terms in the dispersion equation thatisrg

not seen in the case of current instabnlitic.s slone, These terms all contain the factor:

N.' = WV \ ( s
which vanishes if Ng vanishes but not when u vanishes,

From equation (50), 0O (W ,k\ can be re-written as:\

W+ [J“ {i\i% ""u ) [( N;\: a w*]'} Q
e M rv I ) 20 U500 C s
N = £§1+? }'“"QQ..;{ (u-ﬁ.‘“) ]3 (56)
where: C. - ( ‘ f‘( —f-)’/‘

This gives the combination of drift speed and conduction speed ‘t‘br marginal stability, The terms

in braces multiplying N; are those dropped when S e ¢ 1 .

Using: ,
~-34 . e
ZW=FC )

14
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thc.real imaginary parts of the dispersion equation t‘dr small growth rates can be re~written in

terms of our normalized variables as;

.

"(1“‘3"\ xu\ izm‘(iﬂl‘ U\-}Y_ﬁ.ﬁ's 2 (3, "’"Sw:ﬂ
*%S.Sc{i AERIUET Y AL E I

/’ ' 3
( \ 5 o
[N h .
3 ‘ {,
N . it
N

{1:3 30G.- 1)} N’ph:i AP A e ’"’"')*3‘}” (59)

L
A e e e - -

where:
N ' - X
S0 M e T e € T
Ne-o ‘ ‘
- PR a%, T: M A T %
Se Nae ”23‘ 7"1-’;4 CL'(—'&:) ("'rf'
J‘..
S ‘z o0t . eo .-—9-—i-l T
R W L= me kpe c TTMee?
- ; &L'r" A a -3
.2 & ,As’i-r;‘*) W hoeRs

and the underlined terms can be neglected for §o << 1. .

To find the marginal drift speed for instability equations (58) and (59) are solved simultaneously

along with the requirement that w +#  be a minimum with respect to k_ and k, . Note that

by equation (54) this is equivalent to requiring T =0 unless 3;& D,.‘o , That is, what we wish

is to find, for a given set of physical conditions (T, T;, n,, etc.) the solution to the dispersion

equation, axk ), for which the combined drift speeds are minimum.

Using equations (54) and (50) the growth rate is )
T To J

ke © " Sorrom
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where:

Tor= TE 2 (BT $8 0 s (e d R g 1) )

~

(61)

BoTTom 3 z;‘_ %i ’ (e )[2“&3 *M?c,‘) "!"S 2g($"‘”3cn$\ * 2 y )*3130.(")

-

o§ J3(1a0) -5, 619200 P S A0S0 e

where the variables are defined identically to those used in equations (58) and (59) and equation
(57) has been used. We alsc note thatsince  f. < A is a requirement the term in j‘ in equa-
tion (62) can generally be dropped unless s is appreciably greater than unity, At this point 1t
might be useful to re—iterate the assumptions implicit in equatlons (58) through (60)

1) low frequency: g < iy

2) Electrostatic modes only

3) Chapman-Enskog approximation = collision dominated plasma = Ng <Ay, or s < 1

4) Heat flux parallel to ﬁ ~field

5) Maxwellian ions

6) ITlasiadg) -

HEAT FLUX INSTABILITIES

In what follows we will set u = 0 so there is no electron current and no net drift velocity, We will

also assume only one ion species so n; = n; and the sum over ion species will be removed, With

m 13
Se * T theequations now become:

-(1+ &K‘ X:.\ - ‘1;'!: ;T,.\U\Q‘.l + S.‘. EgU.‘.“"‘Scn\;} + 3: LY (g¢\

o (63)
5 48,08 B B 1as}
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3 s g 1 1" c.’, T\M"“o é(‘:s M,c.v.) 03‘
| 1s k82 (30 1)

} 64

As long as Ic <4} the major difference between these equations and the analogous equations
for the current driven instability is that the conduction speed doesn’t occur in the arguments of the
electron z-functions in the heat flux case whiie the drift speed does appear in these arguments in the
current driven case, When 7"/11 »») ”—3”-'.“'—:-" <<} , and the equations for the two ca_se;é
are identical. We can then directly take over the results of Kindel and Kennel, replacing the drift
speed (their Vo) by the héat conduction speed, At high temperature ratios then the mode is ion

acoustic in nature with .:_*.-. < ] . This is done below,
11}

On the other hand, when T€/7: ~ 1 , the critical conduction speed (the conduction speed

above which the mode is unstable) becomes of order the electron thermal speed.

Then the terms in 50. will be important and the nature of the instabilities will differ somewhat
from the current driven case, As we shall see the instability takes on the nature of an ion cyclotron
wave for T®/r. ~ 4 characterized by largely perpendicu!ar propagation, &&/&"» 1.
This is true for both the current driven or heat flux driven instabilities but the details are some-

what different,

The major difference between the two cases occurs for 78/ << 1 . In the case of a heat
flux driven instabi)lity the critical conduction speed becomes larger than the electron thermal speed.
Since it is not pos;ible to copduct heat faster than the thermal speed of the particles the plasma is
stable with respect to this source of fii{&e energy. To transport energy more rapidly than N;e itis

necessary to direct the electrons rather than let them diffuse: This is a current and gives rise to the
=)

current driven instability Tor sufficiently large drift speeds.

We will now summarize the results for T&/7 >4 (since the analysis is identical to that

given in Kindel and Kennel), briefly consider how the results differ from the current driven case:




e

T TRey T

" agating solely along the

L e - Y i s 4 A
. B T S P st b o

Q
9}
when a7 ~A , and then present graphs of the numerical results for both ranges.
T
'% > 1 H Q

We will consider the ion acoustic approxim;ticn separately from the ion cyclotron case and show
that the former has the lower critical drift speed in this temperature regime and so the mode is

actually ion acoustic in nature,

@® lon Acoustic mode: Repurning to equations (63) and (64) we setk, = 0 so the wave is prop-
4 lires, This implies thatay = 0 and since:

1 meyo

° m+0

the equations becomet
Lealihoe = T 2a(8) + (3e-20) 2480 |
o= 58S [1- S+ (2-33) 2, (1)) 65

e - -5 I 11 *{QSZS(%\-S “)) (66)

where Sg << . Wasused in the second equation, We expect a result which will roughly be

w zf,C, which would then imply:

.~ »1L (67

~ [Me) ‘ (68)
3‘ ./M' <‘ l »

.

0
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We will therefore assume el s and use the approximations:
2,(8) = { "_‘L’ §e1 (69)
ik ; I |
for the electron and ion plasma dispersion functions. The dispersion equation then becomes:
, A
a . \\ f\ C s .
Q) 2= 4 | sy g (70)
1+ R*: 1—5‘ i
where C: . %%;’ is the sound speed (ky is Boltzmann's constant) which matches our ex-

pectations. The equation for the conduction speed is now:

j"_~ = 3,{],\4- C;c‘s.'a] (71)

(X
To find the mininum conduction speed we differentiate this with respect to AT ¢" *"_"’ and
"

¢quate the result to zero:

/7 a -3:
< (‘Q 5.:."_ ﬂe " . 1 (72)

5

which has the approximate solution for large c;:
$) % L. ac
m v (73)

where S'.'M is the value ‘of S; which minimizes i . Using this in equation (71) yields the

minimum marginal conduction speed:

/f M o
- = [ mac (74)
or for a hydrogen plasma; @ .
N:M o
, - 2 T2 ;
. J‘l.a-r 2w (7 » (75)
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wherex= (1+ A& \u\" And &

e \\

for the jon acoustic mode with 7¢/v: »> L | Forlarge "¢/ny the critical drift speed is

only a few times the ion thermal speed. I

ﬂln this temperature regime "."/&g is generally large (from eq (70)) so ion Landau damping is

weak If the conduction speed exceeds the parallel phase velocity then the electron distribution
will have a positive slope at a speed equal to d" so the electron Landau instability will cause the

wave to grow.

Now consider the growth rate in this limit. With the above approximations it becomes:

: o

-3
T o HLC 2 e s¢ -
m&.‘r&e ~me (3;)—93,4- 3 Sg

and since S~ J"—;—' the last two terms in the denominator may be neglected. Then, using

"

equation (70):
Y iy
SER0 g

“ ]

® Electrostatic Ion Cyclotron Mode: Following Kindel and Kennel we note that for ion cyclo-
tron waves' A ~1 in this temperature limit so we can neglect &a x:g . Further we can
ue 3.-m§.,.®1L for all the ion terms since 4 ,, is small for cyclotron waves. For
temperature ratios near unity ¢«d~.: butas Te /¥  increases w will increase to keep damp-
ing from the n = | mode small, If w were to get close 282, then the n = +2 damping will become
important. Thus we will have & % -2- &: . Then Kindel and Kennel find the minimum

critical conduction speed to be:

Bem o 3 0. () o
fo f ; - - £82)
20




7 = j
/ :
or, for a hydrogen plasma: o a
Arc M e :
3r94 ﬂm(Iﬁ') | (83) ]
1
a A
The perpendicular wavenumber is roughly given by: 2l
B 21 an®
: -~ (84)
and: : /oo
T :
[W & R ) —‘F‘L' ’ 4 4
Ry © |20 ("e/ag;)] . @
-+ ‘ ? (/}/\’ a i
s ‘/‘f; lncrea,ses the wave changes to more nearly parallei propagation, We also see this in {
comparing ,gquz_n ions (83) and (75); the jon acoustic wave has a smaller critical drift velocity then L
thé ion cyclotron. The mode becomes increasingly more like an ion acoustic wave as the tempera-

ture ratio increases, Because of this it is not useful to caiculate a growth rate in the ion cyclotron

limit.

From the numerical solution of equations (63) and (64) we see that when 7o/, 41  then
Se ~ S while 3, ~,3 . Consequently, even though they don't make a large contribu-
tion, the terms in 3 3 in equation (63) should not be dropped. We will however drop the terms. __

in S in the denominator of equation (64).

Then, keeping only the largest terms, we have:

r-(;.ax‘x.:)-’: '5*.-.2;’1.(‘@11*5& igts;-msmﬂ} (1-30%,(8,) *+ §%.5. (86)

y
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, o 2 (i-m v )y 32 |
s‘ a sg [ 1"‘ C: % .r‘m(“;) e eve :‘ ] . (87 j
f ‘ o Now, from the equation for the growth rate we sce that we must have 4 _ - 1‘ (Ne»ay)
| in order that the electron terms contribute to growth rather than daniping. Consequently we will 4 |

expand &,(%) forsmall §g and drop termsof order £ * comparedto 3¢ . . Then

&

,‘ equation (86) is:
OV RN D NERIETE KX I WA IR 2 0 AP
™M

In the ion acoustic case in the high temperature limit this changes equation (70) to:

[

for Te/r, & 3.5.

] ' 2
f ( _‘ﬁ. a - _ fsf — gﬁ?)
LY 1+ a8 ).“ + i! 5‘ 3‘ Vol |
\ .
and since 3‘ S >0 this means that the phase velocity would be less than expected when this a
: term js ignored. %
i
@ Ion Acoustic mode: ,‘ o |
As before we set k"_ =050y = 0 to get:
1+aR2hoe = 22, 8) - 448, (90)
| oy
r o - -a
S‘zg‘il#cie :‘ ‘l -ﬁ ' (91)
We note that the corresponding limit in the current driven case has equation (90) without the last {
; . a ’ t
} term. There is no solution to that equation for positive Aaku since the maximum value of |
a a
} i,: (§.) isabout.57at S{ % 1. § . Infact there is no solution for Wdoe @0 3




&
|
|

| et

O]

,
»

The inglusion of the extra term In equation (90) will allow solutions for lower values of "&4 than
this. Equation (91) is identical to (71) and so leads to the same minimization of eq (72). Solving
(72) numerically for % = | yields:
;:.n = .72
Sem = 017
Sep = 31

Substituting these values into equntion (90) gives:
2\ .
« i >\ e F L 52' !

This violates the initial assumption that K is real and w complex, This same situation also occurs for

smaller valves of Te/r, |

The identical problem appears in the case of zi current di’iﬁn instability and is discussed by Kindel
and Kennel. The resolution is that the smallest critical value of k il is zero (so the real frequency is
also putatively zero). However, a small increase in the drift velocity above the critical value results
inashiftto & & ,3Wp: (the ion plasma frequency) and to &, Npe™~ 1 . In practice
only ion oscillations near @y, will be observed, We shall also see that near "‘A, ~3 the mode is
basically Ion Lyclotron rather than Ion Acoustic which is why the ion acoustic approximatly gives

a poor result.

We see tha;,as ey décreases the critical conduction speed increases from a few times the ion thermal
speed to nearly the electron therma! speed, When T®/x, ~ 1  the wave’s phase velocity is
roughly the same as the ion thermal speed for conduction speeds not greatly exceeding the critical
value. For example, when "‘/ZE,, =2 the most unstable ion acoustic wave has ATp ® 1 A,
so ion Landau damping is strong and a large electron drift is required for instability, If "'F/,qﬁin.
creases to large values then Ny > Ng. and ion damping can be neglected. This leads to the

Buneman(®) instability,

R Y
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Since the critical value of j" lies near unity no simplifications can be easily made in the equation o

for the growth rate.

@ Electrostatic Ion Cyclotron Wave:

For this wave ‘Vg L<<). soingeneral: : .

W= MR : : . -

__ - D - “
$ormlL o TEC e 1 oo (92)
will be assumed and then equation (69) can be used to approximate the ion dispersion fun;tion.
‘F urther we will see that A~ ~A so we can assume ‘
[ QR '
&. kb. <a l X 0
and drop this term from the eqﬁntion. Also we will again expand i‘ (%e) in the small 3" limit,

Thus equation (88) becomes: :
¥

- ‘ MT ('Y |;1 N
1+ % = T 2282 - pas, ORI if-

¥ A AR M A ST N e
N e

Now we require that &~R: while still satisfying equation (92). This ngaif\( requires that k,,

be small, Then using the addition rules of Bessel functions equation (93) can bé re-written as;

Y " 94
LeB-aay s g - B85,

while the equation for the critical conduction speed is:

EEREA et I

(95)
* 4 T (ne
where Gn) = Twy) + _1-__;15_‘_‘.‘_2. . . (96)

“Solving™ equation (94) for w (ignoring the fact that %, and !e are functions of w would give
W * x:(1+d) y (97)
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[  where A <«1 and we see that the inclusion of the term 4 $, g; tends to decrease A

? ” putting w closer to Q. It is not pnrticulnr]yv wortl while to carry the analysis further for this
case. The numerical solution of squations (€3) and (64) (with the requirement that,§ be a mini-
mum) is given on the following pages and contrasted . with the solution to the case of a current.

(]
l driven instability and as demonstrated ubove there is no significant difference until 7e/7e ~ 1.,

As can be seem from these results and thoze of Kinde and Kennel, the minimum critical conduction

b ;
i ‘ speed is smaller for the ion cyclotron mode than for the ion acoustic. Consequently the instability

; takes on the characteristics of an ion cyclotron wave as the temperature decreases to unity, We nlsd:}\
l note that as %/ decreases to unity §, increases o there is some temperature ratio below whizh 1o

| physical heat flux can drive the plasma unstable: the threshold 43 too large.

Let us now find an expression for the growth rate for the jon cyclotron mode using the sime set of

approximations, Frofn equations (60-62):

A
R TAN Terd) <s.l--me."
TG @, T Aladua

& -njg,.)“ +4 S - a Jc

or; ’
-R:
(=)

~ (Ko
_L _PS;!.(AQE (1 *(ﬂ;)c )

“fn Te 13'2': & _:)l ruf -5, (99)

W
<

Now, T (n)ed for all n.smce f'l‘ =4 and T' =7 an + Thus all the terms in the sum

~ are smaller than unity except perhaps for n =1 and since W~ for large n the sum behaves as
-

T .!.g. ~ and so the contribution to the sum is small for large n, An order of magnitude ap-
& .

proximation to the sum is thus giver{;‘}approximately by then= 1 term;
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where & is defined by equation (97) and is small, Since the solution here is not very different from

the current driven case we can drop the last term in equation (94) to get an approximate solution
Q

" for a $ O ; e ) . G

o

" j_'__ §. Nin
B (%) J_-‘ Z MT“!!:)

q
)

L-Gr Tilrg

where e 1s defined by equation (96). The approximation to the sum is then:
o) 'm('\.‘.) T a
Z Y %) *

and since \C‘- ()<L whie Tf ~ 3

~(1-¢ +

for this case the sum) is within an order of

and o <al

terms in the denominator of equation (99) can be neglected since they are less than umty Con-

magnitude of unity, Since it is multiplied by j-‘ we see that the last two

sequently, the growth rate can be re-wntten as:

(1 3!.1:)3;. 3 2

(u Je

(100)
(2-mq+ a)*

for !isf.\, 1 and B given by equation (97).
\;\/
74

On the following p\ages are given graphs of the dispersion equation and growth rate as well as the

minimum critical drift speed, _ﬁ’:, &‘y&. and A; all as functions of r'/,:
SR ' »
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DISCUSSION

The major point to note is that, unlike the current driven instability, the heat flux instability will
not *‘turn on" when%ﬁE S 1 since the requirement on the minimum critical heat flux is that it be
unphysically large (ie., $.y > 1), The only way in which electrons can transfer enem};aaa.cr than
the electron thermal speed is by directed (rather than random) motion. Thisisa current and gives

the current instabilities.

The second point to note is that the graphs given here for the heat flux instability do not markedly
differ from those Kindel and Kennel have produced for the current instability, This has already

been mentioned in the analysis for == }e >> 1,

From the graphs it can be seen that the results here diffed from Kindel and Kennel's by 10-20%

near% = | and are essentially identicai when% is greater than 3 to 4, This means that the two

instabilities cen be ‘“‘combined” when %‘- is greater than unity, That is, the fact that u and v,

don’t enter into the real and imaginary parts of the dispersion equation in an identical manner is
irrelevant for— > 1. Thus we can take the critical drift velocity curves and replace either u (in

Kindel and Kennel’s curves) or v, (in our curves) by the combination u + v, torﬁ > 1. For

example, the minimum critical velocity for the instability to occur with :;—-? = 3,0 is about .12,
g Thus we can say that if the sum of the heat flux drift velocity and the current drift velocity:

e | Ve +u>.12

then the instability will occur, Thus, the existence of a heat flux can cause a current carrying plas-
ma to be unstable to the EIC or IA modes even if it were not unstable with the current alone (and
vice versa), In a solar flare, for example, the conditions which lead to a current also will give rise

to a heat flux and the combination make the plasma less stable than either alone,

A“.N

loweﬁmmmum critical velocnty for the EIC mode when =5 i < 8.5 while the IA mode has the lower
minimum critical velocity for & ﬁ » 8.5, The EIC mode is characterized by Kff > | and the IA
mode by E-:q-. < 107* (from the numerical solutions). Consequently when %3 is some’ugtiﬁi less’
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than or greater than 8.5 the two modes will both occur, one propagating parallel to the field and
the other perpendicular to it, if' the actual drift velocity is somewhat greater than the minimum
critical value, For example, if the drift velocity is roughly 30% above the minimum critical value
then both wave modes would co-exist in the range % from 7.0 to 10,0, Since particle accyt/ién
in solar flares depends on the presence of the EIC mode? this gives a wider possible mmmm-

perature over which it can occur if the drift velocity is only slightly above the minimum value,

Some results not found in the graphs or the analysis but which are seen in the numerical results

are that some parameters can be changed by large amounts with correspondingly small changes in
V.. In the EIC mode calculations it was” found that the minimum critical drift velocity is only
weakly dependant on the value of %e. For example, at-}% = 2.0, a change of 20% in {t— produced
only a 2% change in v, and this is a typical (esu.lt. Thus the ‘g_ro._wt.h.rate of the EIC mode is not
strongly peaked about one value ot‘éh i when v, slightly exceeds v, we would expect that the
destabilized wave will contain a spread in -EIT Thus the wave will propagate in a cone around

the magnetic field and the angular thickness of the cone will be appreciable compared to the angle

the side of the cone makes with the field line.

For the IA mode, the preferred directiqn of propagation is very nearly exactly parallel to the
magnetic field with ky/kyy < 107%, On the other hand, although Vem depends strongly ong;,
if we write§} as:

$i= &S
then we tind that changes in$cyc and 1% as large as a factor of 2 (but which leavef; constant to
six significant figures) change v_ only in the sixth significant figure. We expect then that the A

mode, when unstable, will propagate with a wide range in w.

- One further point can be made. For Te/Ti>> | we found that the IA mode was unstable with

lowest v, and dispersion equation given by equation (70). If the term k2 )\ﬁe in the denomina-

tor is ignored this further simplifies tot




; m”nk}.Cs’

or: v :
S | $im V-
’ We see that the computer generated graph of $im under these conditions duplicates this result to
} . within about 10%. If we use this in equation (71) we find that, forT >> 1
; Vem
;’ V_te' > 0174
% and this depends on temperature only very weakly. :
E SUMMARY

We have investigated the plasma physics of the Electrostatic Ion cyclotron and Ion Acoustic modes
‘ as driven by a heat flux. We find that no physical heat flux can make the plasma become unstable
g to these modes when < 1, For ;e in the range 1 to 4 our results differ from the case of a current
| driven instability by less than 20% while for% greater than this the two situations are virtually
identical, We can consequently use the curve for the minimum critical drift speed with this speed

replaced by the sum (v, + W)y where v, is the electron conductionuqs‘pee,d and u is the current drift

speed,

| The general dispersion equations have been given as well as simplified versions t‘or;rve ~ | and

Ti
.T,f>> 1. The exact equations have been solved numerically and graphs of the results given.

£
g

In ar appendix the first order correction term in lk-(l'-; is given for the Ion Acoustic mode,
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Appendix A: First order correction term in %T for the lon Acoustic Mode,

7 _
The lack of information on ,’Elﬁl- comes from the approximation y; = 0, Let us consider the first

order correction in p;: ' Q
, =

Fin () = ™1 L, () Ay
and:
| ot | - | (A2)
Lo (W) ~ 2 (71)‘“ | (A3)

so to the first order in y;:
2Ty () Zg (§—méoy ) = Zp ) = wy (Zg (§)) — 14 Zp (8%, )] (A4)
Then, with §.§, <<1 equatnon (63) becomes: "
12y N, =g \%zn G+ iy (2 Q) —Z (] = £,y o)) } @ =3 Ze @) (A9)

and the same approximations in equation (64) yield:

$. =S, ‘ [+Cesi + e (1 =, (1 =Y efcde (2-—" l))]] (A6)
\
Now, if we assume §; and §;, = {,, . >> | and §. <<l (so wecan neglect the last term in equation
(A5)):
§i =2 ‘
1+2ki, A3, (F) —= f‘—‘-ﬁﬁ (AT)
j i deye )
using equation (69), This can be re-written as: 4
w
e, = (SeS) -nl ) () (A8)
Q- 1 :
7,
or: " | )
kiy C L :
2 (K ls w 8
oo (52 () &) (5]

&

sO we can clearly see the correction term in %i'-
' L

“Solving™ this for w giv‘ €s;
8
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o | o

ki Cs? |, (k.t ) ! (w) : %”2 .
w? =S ) - 2 —_— (A9)
l+2khl3a 37 R/ nﬂ -1

$O We can see (sinco-ﬁ—> 1) that the correction term reduces the frequensy below the standard Ion
i

Acoustic result of equation (70).

In terms of the variables used in the computer solution equation (A8) can be written as;

, Te | v -2 ‘1o
1 +2ki, Aﬁc = T ﬁ" [l -1 wiy? (%____r)] (A10)
or, solving for w: "
2= v - l ( - 2 x U’V:' i
w "’i‘(v =2\ = =Terr ~ (A1)
where: §;=uv,v =='="’-‘:-).ami x=1+ :’.k" )\de. We can estimate the last term from equation (73): §jm? =
¢
in2Ci 50 o
. 2 fv=1 2xIn2C
2= — 1)
t v \v~— 2) (l Te/Ti ) (A12)
and for large -’{-'.‘“ , X = 2, Using thls value;
Te 41n 2Ci
Ti Te/Ti ©
10 3.2
20 1.8
30 1.3
40 1.0
50° .83
100 45

so there is no solution for w uniil;Irf- > 40, This gives a rough estimate of where the approxima-

tions are valid. In this range v >> | 50 roughly:

w—£ . (AI3)

where k is the factor in the last set of parentheses in (A72).
Te _ <n.
As an example, forﬁ = 50:
W :azé. .
v
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