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SECTION 1.0

SUMMARY

This program is a continuation of the experimental and design study programs
conducted by Pratt b Whitney Aircraft for advanced propulsion systems intended
for a second-generation supersonic cruise aircraft. The program was directed
towards evaluating the aerodynamic performance of two coannular exhaust
systems at simulated takeoff and cruise conditions.

Wind tunnel performance tests were conducted using scale models of two
variable-geometry coannular ejector nozzle configurations. The selection of
these designs was based on low jet noise and the potential for good supersonic
cruise performance. The main difference in the two designs is that one uses a
short flap nozzle mechanism for fan stream control with an isentropic
contoured splitter, while the other employs an iris fan nozzle with a conical
flow splitter. Both designs simulate a translating primary plug for primary
flow control and an actuated auxiliary inlet ejector. Three models of each
exhaust system, approximately one-tenth scale (21.6 cm (8.5 in) diameter) were
fabricated and tested in the NASA Lewis 8 by 6-Foos Supersonic Wind Tunnel.
The models simulated takeoff, subsonic cruise, and supersonic cruise
configurations of the full scale designs.

Over 200 data points were acquired at test Mach numbers of 0, 0.36, 0.9, and
2.0 for a wide range of nozzle iperating conditions. The subsonic cruise iris
configuration was also tested over an expanded range of subsonic Mach numbers.
Aerodynamic test variables included fan nozzle pressure ratio and fan to
primary pressure split commensurate with engine operation at each flight
regime. In addition, the supersonic cruise configurations were tested with
ejector secondary flow rates of zero, 2, and 4 percent relative to the
combined flows of the fan and primary streams. Model geometric variables were
ejector inlet area and the clamshell reverser position for the takeoff and
subsonic cruise configurations. Fan and primary nozzle areas were varied to
match desired engine operating conditions.

At a simulated supersonic cruise operating condition both configurations
demonstrated good performance, comparable to levels assumed in earlier
Advanced Supersonic Transport (AST) propulsion studies. At zero secondary
flow, the gross thrust coefficients of the iris and short flap configurations
were 0.980 and 0.984, respectively. Addition of secondary flow increased the
iris nozzle thrust performance as much as 4.1 percent, while performance of
the short flap configuration increased as much as 3.5 percent. Variation of
fan to primary pressure split had no effect on nozzle gross thrust coefficient.

At the subsonic cruise operating condition No = 0.9), the performance of
both configurations was deficient relative to the Advanced Supersonic
Transport study level of 0.94. The maximum thrust coefficient was 0.880 for
the iris configuration and 0.865 for the short flap configuration. Variations
in ejector inlet area and the clamshell reverser position produced little
effect on nozzle performance. Exploratory tests of the subsonic cruise
configurations showed that inadequate ventilation of the ejector shroud
resulted in excessive ejector inlet boattail drag.



Performance of the iris takeoff configuration approached the Advanced
Supersonic Transport study level of 0.984, demonstrating a thrust coefficient
of 0.980 at static conditions and 0.960 at climbout N O - 0.3). The short
flap configuration, however, was deficient by 4 and 6 percent, respectively,
at these conditions. Additional tests of the takeoff configurations showed
that the unsatisfactory performance of the short flap configuration resulted
from an interaction of the fan nozzle flow with the ejector inlet flap. The
tests also showed that the jet flow of the iris configuration impinged on the
reverser clamshell.



SECTION 2.0

INTRODUCTION

2.1 BACKGROUND

For the past six years, Pratt b Whitney Aircraft has participated in a series
of NASA sponsored programs aimed at establishing a technology base for a
second-generation advanced supersonic commercial transport. A result of this
work (Reference 1) has been the identification of the Variable Stream Control
Engine as a very attractive engine configuration in terms of system
performance and potential for low noise. Also, these studies indicated that a
low jet noise, high performance coannular nozzle with variable geometry
capability is a critical component in the Variable Stream Control Engine
propulsion system.

Under NASA direction, a separate ongoing Coannular Nozzle Technology Program
has focused on the aerodynamic/acoustic characteristics of the coannular
exhaust system operating in the takeoff flight regime. Results of these
programs (References 2 and 3) have demonstrated the ability of a coannular
nozzle system with an inverted velocity profile to exhibit jet noise reduction
benefits for both static and simulated takeoff flight conditions. A further
result was the development of an aerodynamic/acoustic prediction procedure for
inverted velocity profile coannular nozzles (Reference 41. This procedure is
capable of predicting jet noise as a function of nozzle geometry, operating
condition, and flight effects in the low speed flight regime.

Current effort in the program, as presented in this report, extends the
demonstration of coannular exhaust system performance to key supersonic and
subsonic flight conditions. Problem areas with current Advanced Supersonic
Transport exhaust system designs end available performance procedures for
evaluating the designs are defined.

2.2 PROGRAM DESCRIPTION

Two concepts of a variable-geometry coannular ejector nozzle were identified
as promising configurations for the Variable Stream Control Engine exhaust
system. These included a baseline and an alternate configuration. The
selection of both designs was based on the potential for low jet noise at
takeoff and good supersonic cruise thrust performance. The baseline
configuration consisted of a variable-area short flap fan nozzle with a
contoured flow splitter. The alternate configuration employed a variable-area
iris flap fan nozzle with a conical flow splitter. The iris flap was chosen
for potentially better subsonic performance. Common to both configurations was
a translating plug in the primary stream and an actuated inlet ejector shroud
with a clamshell reverser. Three configurations, approximately one-tenth
scale, of each design were tested in the NASA Lewis 8 by 6-Foot Supersonic
Wind Tunnel. The models simulated takeoff, subsonic cruise, and supersonic
cruise configurations of full scale exhaust systems.
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Over 200 data points were acquired for the six models at wind tunnel Mach
numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operatinC
conditions. The subsonic cruise iris configuration was also tested at other
subsonic Mach numbers. Fan and primary nozzle areas were varied to satisfy
Variable Stream Control Engine operating requirements, while fan and primary
pressure ratios were varied along with ejector inlet area and clamshell
position. In addition, the supersonic configurations were tested with 0, 2,
and 4 percent secondary ejector flow relative to the total flow of the fan and
primary nozzle streams. Tests were also conducted with a modified Supersonic
Tunnel Association nozzle to verify the facility thrust and flow measuring
systems. The results of these tests are contained in Appendix A.

Nozzle charging station pressure, temperature, and weight flow were measured
for each stream along with nozzle generated thrust. Data were analyzed in
terms of nozzle thrust and discharge coefficients. Model surface static
pressures were also measured. The results of the test program are presented in
this report. Detailed data are presented in the companion Comprehensive Data
Report (Reference 5).

The author wishes to acknowledge Douglas Harrington of the NASA Lewis Research
Center for his assistance in conducting the test program and contributions to
this report.
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SECTION 3.0

FACILITY AND TEST EQUIPMENT

3.1 TEST FACILITY

The test program was conducted in the NASA Lewis 8 by 6 Foot Supersonic Wind
Tunnel (Reference 6). Test nozzles were attached to a 21.59 cm (8.5 in)
diameter cylindrical model supported in the test section by a perpendicular
strut connected to the tunnel ceiling, as shown in Figures 3.1-1 and 3.1-2.
Air was supplied to the model th r ough long, flexible tubes running down the
strut into coannular air passages that carried the air aft to the test model.
The air supply tubes were fixed to the tunnel ceiling at the top, which was
nonmetric (forces here were not transmitted to the load cell), and to the
coannular air passages at the bottom. Air flow from the tctbes entered the
coannular passages normal to the model centerline and tftas eliminate,! any
entering axial momentum force on the load cell, Static pressure
instrumentation waa located on the internal upstream facing surfaces of the
metric hardware to account for tare forces that result when internal static
pressures were different from ambient.

Nozzle thrust was measured with a load cell mounted in the forward portion of
the model. The air passages, supported by bearings at the front and rear, made
contact with the load cell and were metric:, i.e., axial forces acting on the
model support coannular piping were measured by the load cell. The load cell
was calibrated by applying a known axial force along the centerline of the
model. This force was generated by using a hydraulic cylinder connected to the
model with the shaft of the cylinder pushing along the txis of the nozzle. The
correlation of the known applied force and the electrical output of the load
cell provided the debired calibration which was from 0 to 8896 Newtona (2000
tbs.), t'he maximum allowable balance load.

FAN FLOW

1 *—PRIMARY FLOW

s	 f

t i !l	 ì ► 	
AIR SUPPLY TUBES

TUNNEL CEILING	 R i	 ^'

MODEL SUPPORT }	 If	
t	

1E

STRUT	 I }

i	
E REAR SUPPORT BEARING

LOAD CELL
METRIC BREA'

}}
'	 \	 •• Li.i tUlA.t ILU 4K^ILy

FRONT SUPPORT -/	 FAIN AIR L PRIMARY AIR	 TYPICAL TEST

BEARINGS	 PASSAGE	 PASSAGE	 NOZZLE

figure 3.1-I	 Diagram of Model Installed in Wind Tunnel



Figure 3.1-2	 Model Installed in NASA Lewis 8-by-6 Foot Supersonic Wind

Tunnel

A schematic of the air supply system is shown in Figure 3.1-3. The air source

was a compressor that provided a continuous supply at 310 N/cm 2 (450 psig).

After passing through a „as-fired heat exchanger, the air flowed through a

system of control valves and flowmeter, and finall y into the model strut. The

heater was ustu onl y at supersonic cruise (i.e., a free stream Mach ninnber of

1.96) where the tunnel total air temperature reaches 93 0C (2000F). To

minimize temperature gradients in the model, air was heated to 660C
(150 0F). At all other test Mach numbers, the model air was not heated.

E>^ - HAND VALVE

yr - PNEUMAT IC OR
HYDRAULIC VALVE

31028 Nicm2	
4-443922-

. 1 7477 ,n!
(450 peIQ)	 FAN VENTURI
SUPPLY AIR

13 2995 cm
(I 2990ml
FAN VENTURI

7

3 305Bcm

.-,AS F IRED HEAT EXCI.ANGER
PRI MARY

ARY 
 VENIURI

(' 3	 —^

Figure 3.1-3	 Model Air Supply System
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Primary nozzle air was metered with a choked venturi which had a 3.3058 cm
(1.3015 in) throat diameter. Pan nozzle air supply was metered through either
a 4.4392 cm (1.7477 in) or 3.2995 cm (1.2990 in) diameter choked venturi,
depending on the flow rate required.

Tests were conducted with a modified Supersonic Tunnel Association nozzle to
verify the facility thrust and flow measuring systems. The results of these
tests are described in Appendix A.

3.2 EXHAUST NOZZLE SYSTEM REQUIREMENTS

The exhaust system requirements for a duct burning turbofan propulsion system
were established on the basis of a combination of engine characteristics and
mission and acoustic considerations. The operating conditions (nozzle pressure
ratios and areas) of the Variable Stream Control Engine 502B ( Reference 1),
are tabulated in Table 3 . 2-I for the key flight conditions tested. As shown,
independent fan and primary nozzle area control is required. The largest area
variation occurs in the fan stream where a 3 to 1 area change is needed for
engine operation. Nozzle performance / range trade factors for a supersonic mis-
sion indicate that supersonic cruise is the critical design point. The mission
analysis established that one percent in supersonic cruise nozzle performance
is worth 270 km (168 mi) range for an overall 7364 km (4700 mi) mission. Simi-

+	 3laxly, one percent in subsonic nozzle performance y1C13a onlyly .,4 I=..... (2 11 mi)
range increments. The nozzle performance levels assumed for the Advanced
Supersonic Transport propulsion studies are shown in Table 3.2-II. Acoustics
becomes important because of takeoff jet noise requirements. Previous acoustic
tests indicate that a coannular nozzle configured with a high radius ratio fan
nozzle annulus and inverted velocity profile allows rapid mixing of the high
velocity fan stream, reducing overall jet noise. Finally, the exhaust system
must be capable of thrust reversal.

TABLE 3.2-I

VSCE-502B OPERATING CONDITIONS AT KEY FLIGHT CONDITIONS

(409 kg / sec (900 lb / sec) flow size), Reference 1

Fan Stream
Flight	 Throat Area,	 Primary Stream Throat
Condition	 P f̂ /Pn	Alg m2(ft 2 )	 Pt /Pr„	 Area AR m 2 (ft2)

Takeoff -
Low Noise	 2.49	 1. 106( 11.91)	 1.46	 0. 749(8.06)

Takeoff -
Design	 3.14	 0.766(8.25)	 1.70	 0.749(8.06)

Subsonic
Cruise	 5.26	 0.367(3.95)	 1.97	 0.792(8.53)

Supersonic
Cruise	 27.5	 0.511(5.50)	 2.32	 0.797(8.58)

7



TABIE 3.2-II

NOZZLE PERFORMANCE ASSUMED FOR

ADVANCED SUPERSONIC TRANSPORT STUDIES

Flight	 Mach	 Gross Thrust
Condition	 Number	 Coefficient

Takeoff
Static	 0.0	 0.984
Climb  Out	 0.3	 0.983

Subsonic Cruise	 0.9	 0.940

Supersonic Cruise	 2.3	 0.982

*No Secondary flow

3.2.i Exhaust Nozzle System Design

A nozzle design to meet the requirements outlined in Section 3.2 was defined
in a preliminary nozzle design study (Reference 1). The features of this de-
sign are incorporated in an early engine design in Figure 3.2-1 and include: a
variable-area convergent-divergent (C-D) primary nozzle incorporated in the
fan-primary gas path flow splitter, a variable-area iris flap fan nozzle, an
actuated ejector inlet with variable-area trailing edge flaps, and a clamshell
reverser. Refinements of this design formed the basis for the test configura-
tions,

VARIABLE AREA PRIMARY NOZZLE

EJECTOR VARIABLE
VARIABLE AREA IRIS FLAP FAN NOZZLE

	
TRAILING EDGE FLAPS

ACTUATED EJECTOR INLET

Figure 3.2-1
	

Variable Stream Control Engine (VSCR-5028)
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NOZZLE
CUSTOMER CONNECTION PLANE 6.775m .

(26675 i n)
TO FAN
INLET

A flow analysis of the configuration in the supersonic cruise mode revealed a
potential internal performance loss due to the splitter design. The analysis
indicated that the impingement angle of the fan and primary flows at the
splitter trailing edge would create a strong shock loss. However, predictions
of overall internal performance were not possible because of difficulties
encountered in the analysis of the complete flow field. The exhaust system was
redesigned to eliminate this shock loss, as shown in Figure 3.2-2, with an
isentropic contoured splitter, so that the merging fan and primary flows would
exit nearly parallel. The design reflects the minimum overall length required
for optimum thrust-minus-drag at the critical supersonic cruise operating
condition. The design was not compromised with the increased length, i.e.,
friction drag and weight, required to optimize performance at off-design
mission conditions. As a result of geometry limitations, this splitter
modification required the addition of a translating centerbody plug to provide
primary nozzle area control. To avoid primary overexpansion losses in the
takeoff mode, the center portion of the plug translates aft to form the nozzle
throat at the splitter trailing edge. The axial translation inherent with the
iris flap mechanism (Figure 3.2-3), in conjunction with the contoured
splitter, would result in large off-design losses because of uncontrolled
overexpansion and flow turning. Therefore, the iris flap was replaced with a
hinged short flap nozzle that rotated in a radial plane to provide fan area
variation. This redcsigned exhaust symrnm provided the flow path lines for the
short flap nozzle test configurations.

SUBSONIC CRUISETRANSONIC CLIMB r-y

r =	
- PID

IISENTROPIC	 SUPERSONIC
CRUISE

( 	 SPLITTER

SUBSONIC CRUISE-
1.118m	

TAKEOFF-(44.00 in
R	 -	 --

-TAKEOFF a
SUBSONIC
CLIMB

AKEOFF 8	 ,	 REVERSE
SUBSONIC
CRUISE

Figure 3.2-2	 Short Flap Nozzle Mechanical Design Drawing
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e flow splitter
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provided a second

The iris nozzle has the potential for improved subsonic perfo
to the short flap configuration because there is less tendenc
separation off the longer smoother contour iris noszle, as co
relatively short flap configuration. To experimentally evalus
for improved subsonic performance and quantify the lose of a
flow impingement angle, the iris nozzle design of Reference 1
shown in Figure 3.2-3. The modifications included reducing th
impingement angle to 15 degrees and incorporating the primary
the baseline configuration. This iris flap fan nozzle design
configuration for wind tunnel evaluation.

ALL OTHER HARDWARE EXCEPT
IN THIS AREA IS THE SAME AS
SHOWN IN FIGURE 3.2-2

CONICAL SPLITTER

SUPERSONIC	 SUBSONIC CRUISE

TAKEOFF

IRIS FLAP

Figure 3.2-3	 Iris Nozzle Mechanical Design Drawing

3.2.2 Model Design

Three 0.0966 scale model configurations of both the iris and short flap nozzle
designs were fabricated for testing. The models were designed to simulate the
exhaust systems operating in the takeoff, subsonic cruise, and supersonic
cruise modes, as shown in Figures 3.2-4a, b and c. The principle nozzle design
parameters and test variables for each operating mode, as shown in the
preceding figure, are tabulated in Table 3.2-III.
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(b)	 Subsonic Cruise Research Model Test Configurations

Figure 3.2-4 Model Test Configurations



SHORT FLAP

IRIS FLAP

(c)	 Takeoff Research Mcx?e1 Test Configurations

Figure 3.2-4 Concluded

The research nozzle model assembly was mated to the wind tunnel jet exit
model, i.e., the structure supporting the research nozzle, with the coannular
adapter section shown in Figure 3.2-5. The adapter contained choke plates in
the fan and primary streams to provide uniform flaw approaching the charging

station. The six models were designed to utilize common hardware where
possible. A single primary plug with appropriate spacers served all six
configurations. The conical and contoured flow splitters were common with the
three iris and short flap models, respectively. Both supersonic cruise models

utilized the same ejector shroud. All subsonic cruise and takeoff
configurations were assembled with the same ejector shroud. Photographs of

model components are presented in Figures 3.2-6 through 3.2-10. Detailed
design drawings of the research nozzle model hardware are contained in the

Comprehensive Data Report (Reference 5).

Secondary flow for the supersonic cruise models was provided by bleeding flow
from the fan duct stream to an annulus around the fan nozzle where it flawed
into the ejector shroud as shown in Figure 3.2-5. The bleed flow passed

through a series of holes in the fan duct outer wall. The flow rate was set by
varying the number of open holes. A separate blocker ring was designed to seal

the secondary flaw annulus for fan nozzle flow calibration.

Variation of the ejector inlet area was provided by axial translation of the
12 ejector inlet doors located between the shroud support stings, as shown in
Figure 1.2-4, similar to the full scale design. A screw clamp arrangement held
each door in a fixed axial position. At door positions other than full open,
the existing gap between the door and shroud was filled to provide an
aerodynamically smooth surface.
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TABLE 3.2 -III

PRINCIPLE NOZZLE DESIGN PARANETERS OR VARIABLES
MODEL SCALE

REFERENCE: FIGURE 3.2-4

OPERATING NODE/CONFIGURATION	 Iris	 Short Flap

SUPERSONIC CRUISE

Primary nozzle area (Ag) -- cm2 (in 2 ) 74.32 (11.52) 74.32 (11.52)
Fan nozzle area (AIg) -- cm 2 (in 2 ) 47.68 (7.39) 47.68 (7.39)
Overall nozzle area ratio (Aq/(A8 + AIg)) 2.84 2.84
Primary nozzle area ratio (A 8 '/A8 ) 1.26 1.26
Shroud length to diameter ratio (L/Dmax) 0.98 0.98
Shroud min. diameter to fan nozzle diameter 1.11 1.08

ratio	 (Da/Df)

Location of shroud min. diameter to fan nozzle 0.11 0.16
diameter ratio (La/Df)

Shroud external convergence angle (Q) -- deg. 0.5 0.5
Shroud ivternal divergence ( 0 ) 6.3 6.3
Flow impingement angle (6 ) -- deg. 13 0
Plug half-angle ('Y	 -- deg. 15 15

SUBSONIC CRUISE

Primary nozzle area	 (Ag) -- cm 2 (in 2 ) 74.00 (11.47) 74.00 (11.47)
Fan nozzle area (AIg) -- cm 2 (in 2 ) 34.32 (5.32) 34.32 (5.32)
Primary nozzle area ratio (A8 '/A8 ) 1.26 1.26
Overall nozzle area ratio (Aq/	 (Ag + AIg)) 2.35 2.35
Ejector	 inlet	 to exit area ratio (A inlet /A9 ) 0.56, 0.63,	 0.69* 0.36, 0.46,	 0.60*
Clamshell	 thickness	 to chord ratio (t/c) 0.09 0.09
Initial	 inlet	 angle	 ( Ct I)	 --	 deg. 10 10
Final	 inlet	 angle	 ( Q'2)	 --	 deg. 35 20
Trailing edge	 flap boattail	 angle	 (Q)	 -- deg. 10 10
Clamshell	 angle of rotation from supersonic 13,17,21* 13,17,21*

cruise position (T )	 --	 deg.

TAKEOFF

Primary nozzle area plug extended	 (Ag) 69.83	 (10.82) 69.83	 (10.82)
--	 cm 2 	(in2)

Fan nozzle area (Alg) --	 cm 2 (in 2 ) 103.23	 (16.0) 103.23	 (16.0)
Primary nozzle area 	 ratio,	 plug retracted 1.37* 1.31*

(A8'/A8)

Overall	 nozzle area ratio (Aq/(A8 + AIg)) 1.47 1.47
Ejector	 inlet	 to	 exit	 area	 ratio (Ainlet/Aq) 0.67,	 0.80,	 0.91* 0.36,	 0.46,	 0.60*
Initial	 inlet	 angle	 (C1 1 )	 --	 deg. 10 10
Final	 inlet	 angle	 ( Ot 2 )	 --	 deg 20 20
Trailing edge	 flap boattail	 angle	 (Q)	 -- deg. 10 10
Clamshell	 angle of rotation from supersonic

cruise position ( T)	 -- deg. 13,17,21* 13,17,21*

*Test variable

NOTE: A complete dimensional description of the model components is provided

in the Comprehensive Data Report, Reference 5.
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i- 
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Figure 3.2•-5	 Tupic-al Research Nozzle Installation on wind Tunnel Model
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Figure 3.2-6	 Supersonic Cruise Model Components
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Variation of the ejector clamshell position shown in Figure 3.2-4b was
provided by rotating each clamshell bucket about a pivot pin located in the
shroud wally similar to she full scale design. Each clamshell segment was
designed with three index holes located 90 degrees from the pivot point which
engaged a locking pin extending from the shroud wall. This design allowed the
clamshells to be rotated aft from the supersonic cruise position through
angles of 13, 17 9 and 21 degrees by engaging the locking pin in the
appropriate clamshell index hole.

3.2.3 Model Instrumentation

Fan and primary nozzle charging station instrumentation used to determine
stream flow properties was located in the constant area sections of the model
support shafting, as shown in Figure 3.2-5. The primary stream total pressure
was measured with a centerline probe and two five-probe rakes at positions
diametrically opposed. The probes were located at centers of equal area. Two
static taps were located in the primary duct wall, each displaced 15 degrees
from a primary rake. Primary total temperature was measured with a single
three-probe area weighted total temperature rake. The temperature probes were
constructed with chv ael-alumel thermocouples. The primary stream measuring
station was located t8.8 cm (7.4 in) upstream of the primary nozzle exit
plane. Fan stream properties were measured with two five-probe total pressure
rakes and a three-probe total temperature rake. Both pressure and temperature
probes were at centers of equal area in the annular passage. The two total
pressure rakes were located 180 degrees apart. Two static taws were installed
in the vicinity of each total pressure rake. These taps were located in the
inner and outer annulus walls and displaced 15 degrees from the rakes. The fan
stream measuring station was located 25.6 cm (10.08 in) upstream of the fan
nozzle exit. Secondary flow pressure was measured with two total measure
probes positioned 180 degree apart located downstream of the flow discharge
annulus as shown in Figures 3.2-11a and b.

Static pressure taps were installed on the model surfaces to aid in the
analysis of performance data. The location of instrumentation for each
configuration is illustrated in Figures 3.2-11a through 3.2-11f and tabulated
in Table 3.2-IV. The tabulated values (X/Dmaximum) are referenced relative
to the model connection flange and normalized by the model maximum diameter,
21.59 cm (8.5 in). During the test program, in some instances, not all of the
pressure and temperature data were recorded. The instrumentation is described
to indicate what information is available.

3.2.4 Test Matrix

A test matrix tabulating the combinations of aerodynamic and geometric vari-
ables tested is shown in Table 3.2-V. For each configuration tested, fan duct
nozzle pressure ratio (P tf/Po) was varied over a prescribed range at fixed
values of fan to primary total pressure ratio (P t f/P t p). The supersonic
cruise configurations were also tested with three secondary flow rates (Ws
tors) as defined by Equation 7, page 26, at each condition of fan to primary
total pressure ratio.
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Iris Supersonic Cruise Configuration

Flow Splitter Ejector

Tap Tap
No. X/D.S. No.	 X/D.,Y

36 0.422 43	 0.624

37 0.692 44	 0.830

38 0.569 45	 0.960

39 0.635 46	 1.090

40 0.692 47	 1.227

TABLE 3.2-TV

STATIC TAP LOCATION - X/Dmax

SHORT FLAP SUPERSONIC CRUISE CONFIGURATION

-L%
Tap
No.	 X/D,

28 0.432

29 0.530

30 0.629

31 0.727

P1ug

Tap
No. X/D,^sY

28 0.432

29 0.530

30 0.629

31 0 727

Flow Splitter
Tap
No. X/Dm„,
36 0.422

37 0.670

38 0.508

39 0.583

40 0.670

Elector
Tap
No. X/D„,Y
43 0.624

44 0.830

45 0.960

46 1.090

47 1.220

48 1.350

48	 1.350
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TABLE 3.2 - IV (CONTINUED)

STATIC TAP LOCATION - X/DMAX

SHORT FLAP SUBSONIC CRUISE CONFIGURATION

Flow Fan Nozzle
Plus Splitter Forebody Flap

Tap Tap Tap Tap
No. X/Dm, No. X/Dm,,, No.	 X/D,,,,,, No.	 X/Dm,,,

28 0.434 36 0.422 43	 0.398 49	 0.463

29 0.533 37 0.670 44	 0.431 50	 0.495

30 0.631 38 0.508 45	 0.449

31 0.729 39 0.583 46	 0.486

40 0.670 47	 0.522

48	 0.558

IRIS SUBSONIC CRUISE CONFIGURATION

F1 ow
Plug Splitter Forebody Ejector

Tap Tap Tap Tap
No. X/D,,, No. X/Dm,,, No. X/DmAX No. X/Dm,,,

28 0.434 36 0.422 43 0.319 51 0.793

29 0.533 37 0.691 44 0.340 52 0.844

30 0.631 38 0.564 45 0.386 53 0.793

31 0.729 39 0.635 46 0.432 54 0.844

40 0.692 47 0.478

48 0.522

49 0.563

50 0.605

Ejector
Tap
No. X/D,,,.,,

51	 0.793

52	 0.844

53	 0.793

54	 0.844
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TABLE 3.2 - IV (Concluded)

STATIC TAP LOCATION - X/DHAX

SNORT FLAP TAKEOFF ODNFIGURATION

P1 ug P1 ug Flow
Retracted Extended Splitter Forebody

Tap- Tap Tap Tap
No. X/Dm„. No. X/Dm„, No.	 X/Dmix No. X/Dm„.

28 0.434 28 0.722 36	 0.422 43 0.398

29 0.533 29 0.820 37	 0.670 44 0.431

30 0.631 30 0.919 38	 0.508 45 0.449

31 0.729 31 1.017 39	 0.583 46 0.486

40	 0.670 47 0.522

48 0.558

Ejector
Tap
No.	 X/D.,,,.,

51	 0.793

52	 0.844

53	 0.793

54	 0.844

IRIS TAKEOFF CONFIGURATION

P1 ug P1 ug Flow
Retracted Extended Splitter Forebody

Tap Tap Tap Tap
No. X/Dm„[ No. X/Dm, x No. X/Dm,, No. X/DmwY

28 0.434 28 0.722 36 0.422 43 0.319

29 0.533 29 0.820 37 0.692 44 0.340

30 0.631 30 0.919 38 0.564 45 0.336

31 0.729 31 1.017 39 0.635 46 0.434

40 0.692 47 0.461

Ejector
Tap
No. X /Dm.Y

51	 0.793

52	 0.844

53	 0.793

54	 0.844
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SECT10W 4.0

DATA REDUCTION PROCEDURES

General descriptions of the equations used to define model flow rates and
nozzle thrust are contained in this section. All constants and equations are
given as actually used in the data reduction process.

4.1 FAN AND PRIMARY FLOW RATES

As previously discussed, both fan and primary mass flow rates were measured
with a choked venturi. These flow rates were calculated using the measured air
total temparature (T tv) and pressure (P tv), respectively, and Equation (1).

+
_	 - V Ptv At

Inv  CDv 3 
T	

(11

tv
where: CDv is the venturi discharge coefficient, Kv the critical flow
factor, and Av the geometric throat area of the venturi.

The venturi discharge coefficient is based on analytical techniques for choked
venturis with circular arc throats. This coefficient accounts for viscous
effects and sonic line distortion at the venturi throat. The critical flow
factor (Kv) is a function of total pressure and temperature, and accounts
for real gas effects. The critical flow factor was obtained by curve - fitting
tabulated values from Reference 7.

Total pressure (P tv) was determined by measuring the static pressure (Pv)
upstream of the venturi throat and calculating the total pressure as:

P tv = PV/C
	

(2)

The factor C is a constant for a given venturi and d the one-dimensional
static to total pressure ratio corresponding to the ratio of the area at the
measuring plane to the venturi throat area., The static pressure was measured
by four taps, each of which was sampled six times with a 48-channel signal
commutator for each data point. These 24 readings were averaged to determine
the static pressure. Venturi total temperature (T tv) was determined using
three iron/constantan thermocouples located upstream of each venturi, with the
readings averaged.

4.2 DISCHARGE COEFFICIENTS

The discharge coefficient of a nozzle is defined as the ratio of actual mass
flow through the nozzle to the ideal isentropic flow rate at the temperature
and pressure of the flow (Equation 3).

M	 (3)
^D = ml
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MS Ots

mf ^ + mP v `tP

WS 
corr (7)

Ideal flow rate was calculated from the following equation:

K Pt A A*
mi ^ ^ A
	

(4)

where: A, Pt , and T t are the nozzle geometric throat area, total pressure,
and total temperature, respectively.

The critical flaw factor (K) is a function of nozzle total pressure and
temperature and was obtained by curve- fitting tabulated values from Reference
7. Area ratio A*/A is the ratio of flow area at sonic conditions to the nozzle
throat area. For values of nozzle pressure ratio (P t/Po) greater than
1.8929, A*/A in the ideal weight flow equation is equal to one. For lower
pressure ratios, A*/A was calculated from one-dimensional, isentropic
relationships:

-3

A*/A = 
216
	 1 + M2
	

(5)

where

M = 5	 ( Pt/p
 ) 0.28571 _ 1	 1/2

(6)

4.3 SECONDARY FLOW RATE AT SUPERSONIC CRUISE

Secondary flow (Ws cord was introduced into the ejector for some supersonic
cruise test conditions. Corrected secondary flow is defined as the ratio of
the temperature-corrected secondary bleed flow relative to the temperature-
corrected sum of the fan and primary nozzle flows, as expressed by the follow-
ing equation:

For tests of the supersonic cruise configurations, secondary flow was bled
from the fan duct upstream of the nozzle throat. Since the total temperature
of all the streams in the model tests were equal, flow temperature corrections
were not required.

The secondary mass flow (ms ) was calculated using the following relations:

Ms = DC
Df 	mif	 (8)

where	
W.Df 

s 
(C..)

 
with	

-

	

flow
	 (9)
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The fan nozzle discharge coefficient (CDf ) was determined at supersonic
cruise with no secondary flow by using the equations in the previous section.
Once the fan nozzle discharge coefficient was determined for a given nozzle,
calibrations were conducted to determine the fan nozzle discharge coefficient
with secondary flow. Since the secondary flow was bled from the fan duct
upstream of the nozzle, the discharge coefficient increased (i.e., high
calculated fan flow rate (mf) relative to fan ideal flow rate (mif)). This
apparent increase in flow was correlated with the number of open bleed holes.
Thus, to obtain a specified level of secondary flow during the actual test,
the required number of bleed holes was opened and Equation (S) was used to
determine os.

To account for the fact that secondary flow was bled from the fan stream, the
equation for determining fan flow rate was modified as follows:

KVf Ptvf 14f

4.4 SECONDARY TOTAL PRESSURE ADJUSTMENT

Because of an instrumentation problem with the iris supersonic cruise confi-
guration, the measured secondary total pressure (P t s) at 4 percent secondary
flow was determined invalid. It therefore became necessary to adjust this
questionable pressure based on calibrations of valid secondary total pressure
measurements and secondary flow rate. In the correlation, it was assumed that
the secondary flow passage was choked, as discussed in Section 5.1.1, and that
one dimensional, isentropic flow conditions existed.

At test conditions where valid secondary total pressure measurements were
obtained, a choked flow area was calculated using measured secondary total
pressure, temperature, and weight flow. For each nozzle configuration, this
calculated area was found to be almost constant over the entire range of test
conditions. For example, the area for the iris nozzle with 2 percent secondary
flow varied no mkre than 0.7 percent from the average for the 30 test cases.
The average calculated area for this case was found to differ by only 3.3
percent from the comparable area for a similar nozzle with 2 percent secondary
flow. The -hoking flow area for the iris nozzle with 4 percent flow was
determined by assuming that the same relationship existed at this flow
condition, i.e., the same proportionality was assumed at 4 percent as existed
at 2 percent flow. With this calculated area,as well as measured weight flow
and temperature, it was then possible to calculate the secondary pressure for
the iris nozzle with 4 percent secondary flow for each test case of interest.
The resulting variation in secondary pressure was found ver y similar to that
observed for the other nozzles. Thus, the calculated pressure is believed to
be valid for analysis of the test results.

27



4.5 THRUST MEASUREMENTS

For this test, the nozzle generated thrust-minus-drag is defined as the axial
exit momentum of the exhaust flow, plus the excess of exit pressure over
ambient pressure times the exit area normal to the axis, minus the axial
pressure drag on the nozzle external surfaces (i.e., trailing edge flaps and
auxiliary inlet doors).

F - Dex - fA 
xit d (MV) axial + f exit (Pey- t - PO) CIA - Dex (11)

Thus, this definition of thrust-minus-drag does not penalize the nozzle for
external friction drag.

Figure 4.1 shows a control volume applied to the test nozzles. Writing the
momentum equation in the axial direction for this control volume demonstrates
how the thrust was measured for this test:

PIC + E P
int Aint - Pexit Aexit + Dsa + Dex = me.Nit

(12)

Substituting Equation (11) for mVexit in Equation (12) then,
FEC + E P

int Aint - Pexit Aexit + Dsn + Dex - (F-Dex)

(13)

(P exit - l'o) Amt + Dex

Rearranging and cancelling terms,

r -Dex - FLC +	 Dint Aint	 Po Aexit + Dsm	 (14)

But

Po Aexit	 E Po Aint
	

(15)

Therefore

F-DeX 	FLC + ` flint (Pint	 PD) + D :;m	 (16)

FLC is the axial force measured by the load cell, which was calibrated by
applying a known force and correlating this force against the load cell
output. Thus, this calibration provided a linear relationship between the
applied load and the load cell output in millivolts, which was used to
determine the load cell force

FLC - a(mv ) + b	 (17)

where a and b are constants determined by the calibrations and my is the
load cell reading in millivolts. The load cell was sampled 26 times for each
test condition, the above calculation was made for each sample, and the re-
sults averaged to yield the measured force.

28



AIR SUPPLY TUBES
METRIC BREAK

SKIN FRICTION

D	 Asxit

FLC r F-Dex

LA int
A int

INTERNAL FORWARD	 CONTROL VOLUME
FACING SURFACES	 SURFACE

NOTE : SHADED AREAS ARE NONMETRIC ( i.e. FORCES ON THE
SHADED AREAS ARE NOT REACTED BY THE LOAD CELL)

Figure 4-1	 Control volume for 21.59 cm (8.5 in.) Model Thrust
Determination

The term Aint (Pint - Po) accounts for internal pressure tare forces
acting on the forward facing surfaces (Aint) of the metric part of the
model. The internal pressure (Pint) was measured with two static pressure
taps 180-degrees apart at each of the forward facing surfaces.
As indicated by Equation (16), an adjustment was made to the measured
thrust-minus- drag of the nozzles to account for external skin friction drag
(Dsm ) acting on the cylindrical section of the model downstream of the
metric break. External skin friction drag was estimated by using the method
reported in Reference 8.

4.6 THRUST COEFFICIENTS

The gross thrust coefficient is defined as the ratio of measured nozzle gross
thrust-minus-drag to the sum of the ideal thrusts of the fan and primary
streams. As noted previously, the thrust-minus drag for this report does not
penalize the nozzle for external skin friction drag. Ideal thrust for each
stream equals the mass flow rate times the ideal velocity, i.e., the velocity
of the stream expanded isentropically from the upstream total pressure to the
ambient pressure. The equation for the gross thrust coefficient is thus:

F - D^

cfP ^f vif ♦ P Vip

The ideal thrust for each stream was calculated using the dimensionless ideal
thrust function, which is a function of nozzle pressure ratio (P t/P o) and
the ratio of specific heats 'Y .

(18)
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'Y—	 1/2	 i_1 1/2	 (l9)
miVi	 3

P t A _	 ^y+T^ Y=7	 1 - (Po/Pt) y •

V ,	 -	 28571	 (20)or P A = 1.81163	 1 - ( Po/P t )'	 for Y - 1.4
t

The ideal thrust for the fan and primary streams was then:

A" 
(MiVi (mf Vif = CDf Pt f Af A)f PLAT f	 (21)

M . V.
mp Vip = Cpp Ptp Ap A*	 P 1A	 (22)

 ( p t p

For pressure ratios greater than 1.8929, A*/A a 1.0. For pressure ratios less
than this, A*/A was calculated as described in the previous section on
discharge coefficients.

4.7 NDZZLE EFFICIENCY

In addition to nozzle gross thrust coefficient, a nozzle efficiency
coefficient, tj , was also defined, which relates the overall efficiency of the
exhaust system by including the ideal thrust contribution of the secondary
flaw, as follows:

F - Dex
►1 = m f Vif + tP Vlp + ms Vis

where mfVif and mpVip were calculated using Equati- as (21) and (22).
Since a discharge coefficient was not calculated for the secondary flow, the
following equation was used to calculate NVis:

	

2 ^	 _	 Po 	 Y	 (24)

ms Vis - ms	 (i-1) S ts	 1	 Pts

rearranging and setting Y - 1.4,

( Po .28571
	 (25)

	

M V . = 2.64575 m _	 gR'r	 1 -

c is	 5	 is	 Pts

(23)
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SECTION 5.0

RESULTS AND DISCUSSION

The measured nozzle thrust performance and exhaust flow characteristics of the
two nozzle configurations tested, the iris and the short flap design, are pre-
sented in this section. Inched are the effects of geometric and aerodynamic
test variables at the simulated flight Mach numbers. Also, measured perform-
ance is compared to levels assumed for the Advanced Supersonic Transport pro-
pulsion studies. Emphasis is placed on the performance observed at simulated
engine operating conditions.

In the following discussion, the thrust performance characteristics of the
supersonic cruise nozzle configuration are presented first, followed by the
performance of the subsonic cruise and takeoff configurations. Nozzle flow
characteristics are then addressed in the same order.

5.1 NUZZLE THRUST PERFORMANCE

Two nozzle parameters are used to express thrust performance: gross thrust
coefficient (C fp ) and nozzle efficiency coefficient ( ?1 ), as defined by
data reduction equations 18 and 23, respectively. It should be noted that the
thrust performance described by both coefficients does not penalize the nozzle
for external skin friction drag. Also, the thrust contribution of the second-
ary flow is not included in the ideal thrust terms of the gross thrust coeffi-
cient (Cfp).

5.1.1 Supersonic Cruise Performance at Mach Number 2.0

Nozzle performance in terms of gross thrust (Cf p ) versus fan nozzle pressure
ratio (P tf/Po) is presented in Figures 5.1-1a and b for the iris and short
flap configurations. In this series of curves, data are compared at three fan
to primary pressure splits (P t f/P tp ). The data were acquired at a second-
ary flow rate (Ws corn) of 2 percent. It may be observed that with the
presence of secondary flow, the performance coefficient (Cf p) exceeds unity.
As noted previously in the definition of gross thrust coefficient, the measur-
ed thrust contribution of the secondary stream is not normalized by the ideal
thrust of the stream. The comparisons show that for both configurations the
range of fan to primary pressure split tested had 'Little influence on nozzle

performance. Data acquired at the other secondary flow conditions, flow rates
of zero and 4 percent and tabulated in the companion Comprehensive Data Report
(Reference 5), also indicate that the fan to primary pressure split had a neg-
ligible effect on performance. These results suggest that if engine operation
deviates somewhat from the predicted pressure split of 2.32 at supersonic
cruise, nozzle performance will not be degraded.
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The influence of secondary flow on supersonic cruise gross thrust coefficients
for both configurations is shown in Figure 5.1-2. The data show that over the
range of fan nozzle pressure ratios tested, the performance of the iris nozzle
benefits more with increasing secondary flow in comparison to the short flap
configuration. At zero secondary flow, the gross thrust coefficient of the
iris nozzle is 0.4 percent less than the short flap, while at 4 percent
secondary flow performance of the iris configuration is 0.2 percent higher
than the short flap. Figure 5.1-2 also indicates that for zero and 2 percent
secondary flow peak nozzle performance (minimum over or under-expansion loss-
es) occurs over a fan pressure ratio range of 27 to 28. This range of measured
maximum performance brackets the engine operating conditions at supersonic
cruise, a fan nozzle pressure ratio of 27.5 and a fan-to-primary pressure
split of 2.32 as shown in Table 3.2-I. The trend at 4 percent corrected se-
condary flow indicates that nozzle performance is still increasing slightly at
the facility pressure limit, a fan nozzle pressure ratio of 30. For secondary
flows greater than 2 percent, some allowance in area ratio must be made to
achieve peak performance at the design nozzle pressure ratio.

A comparison of nozzle performance as a function of secondary flow at the
supersonic cruise engine operating conditions outlined above is shown in
Figure 5.1-3. The data trend indicates that small amounts of secondary flow
provide a greater increase in nozzle performance than the percent mass flow
adde''. As indicated previously, the nozzle coefficient C fp does not include
the ideal thrust of the secondary flow. An increase in secondary flow from
zero to 2 percent increased the iris nozzle performance 2.6 percent, and the
short flap nozzle 2.3 percent. A further increase in secondary flow to 4 per-
cent showed an additional 1.5 percent improvement in iris nozzle performance
and 1.2 percent for the short flap configuration. The reason for the perform-
ance increase for small additions of secondary flew is attributed to control
of the initial overexpansion of the fan nozzle jet flow prior to attachment on
the ejector shroud wall. At higher secondary flows, diminishing performance
returns are realized.

The level of secondary total pressure (P ts) required to provide a given se-
condary flow rate is directly proportional to the fan nozz l ± total pressure

(P tf ) , once compound choking flow conditions have been established for the
two streams. The data in Figure 5.1-4 illustrate this correlation for the
short flap nozzle by showing secondary to fan total pressure ratio (nozzle
pumping characteristic), (Pts/Ptf), as a function of fan nozzle pressure
ratio. The data show that primary nozzle operating conditions have no effect
on the pumping characteristic, as indicated by the collapse of data measured
over a wide range of fan to primary pressure split at anstant corrected se-
condary flow rate.

A comparison of pumping characteristics of the iris and short flap configura-
tions tested over a range of corrected secondary flow rates (Figure 5.1-5)
shows that this parameter is dependent on the nozzle geometry. As both confi-
gurations were tested with the same ejector, the difference in nozzle pumping
characteristic level between, O.e two configurations is attributed to the vari-
ance of the fan nozzle design, i.e., isentropic versus conical contoured flow
splitter. Previous experience indicates that the pumping characteristic is in-
fluenced by the nozzle shape as well as the spacing between the fan nozzle and
ejector shroud minimum diameter.
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in the definition of gross nozzle thrust coefficient, the ideal thrust of
secondary flow is not considered, as pre.,iously noted, because of the
difficulty in accurately defining the secondary total pressure entering the
ejector in full scale flight hardware and, therefore, the performance of the
propulsion system. However, a definition of the level of secondary total
pressure and corrected flow is necessary to provide design requirements for
sizing the flow supply piping and identifying the source, i.e., inlet flow,
inlet boundary layer bleed, or engine bleed.

To quantify the ejector nozzle thrust performance in terms of the ideal thrust
of the total exhaust flow, primary plus fan plus secondary, the nozzle
efficiency ( 71 ) was defined, as discussed earlier, Page 31. As in the gross
thrust coefficient definition, nozzle efficiency does not include the effect
of external skin friction drag. This definition of nozzle performance provides
a convenient means of comparing ejector nozzle performance with secondary flow
to the thrust coefficients of other exhaust systems that are based on the
ideal thrust of the total exhaust flow expanded to ambient.

A comparison of the iris and short flap nozzle efficiencies at supersonic
cruise engine operating conditions is presented in Figure 5.1-6. This
comparison shows that at secondary flow rates up to 4 percent the overall
performance of the short flap nozzle is superior to the iris configuration.

Data trends indicate that secondary flow rates of only 2 percent are required
to obtain maximum nozzle performance. With further increases in corrected
secondary flow, performance tends to fall off. At approximately 2 percent
corrected secondary flow, the short flap nozzle achieves maximum performance
of 0.995 and the maximum for iris configuration is 0.990.

1.00 r	 SNORT FLAP

NOZZLE	 --^-----^IRIS
EFFICIENCY 0.98

'I

0.96 '	 '	 '	 ' --^
0	 1	 2	 3	 4

SECONDARY FLOW N % Wscorr

Figure 5.1-6 Comparison of .Short F:ap and Iris Nozzle Efficiency at
Supersonic Cruise Engine operating Conditions. Conditions: Free
Stream Mach Number, (Mo ) 2.0; Fan Nozzle Pressure Ratio,
Ptf/Po, 27.5; Fan-to-Primary Pressure Split, Ptf/Ptp,
2.32.
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It is interesting to note that in terms of gross thrust coefficient at 2
percent corrected secondary flow (figure 5.1-3) 0 performance is nearly
identical. In terms of efficiency at 2 percent corrected secondary flaw, the
performance of the short flap is clearly 0.5 percent higher than the iris. The
reason for this apparent anomaly is that the iris configuration requires a
higher secondary total pressure to pass a given secondary flaw than does the
short flap. The higher secondary total pressure of the iris, for a given flow,
manifests itself in a proportionately larger ideal secondary thrust term
relative to the short flap. As the measured thrust of both configurations is
similar, the larger total ideal thrust of the iris due to the higher secondary
total pressure results in a lower overall nozzle efficiency.

5.1.2 Subsonic Cruise Performance (Mach Number 0.9)

Curves of gross thrust coefficient v,:,revs fan nozzle pressure ratio are pre-
sented in Figures 5.1-7a and b compaziag data at three fan-to-primary pressure
splits for the subsonic cruise iris and short flap configurations. The iris
nozzle data were obtained with the clamshell set at 21 degrees and an ejector
inlet-to-exit area ratio (Ainlet/A9) of 0.63. The short flap nozzle data
were acquired at a 17 degree clamshell angle and an ejector inlet area ratio
of 0.46. A com;,arison of data shows that the performance of both subsonic
cruise configurations tend to increase with decreasing pressure split. The
trend of increasing performance with increasing fan nozzle pressure ratio in-
dicates that the nozzle flow is greatly overexpanded at lower pressure ratios.
The higher performance associated with decreased pressure split is a result of
the increased primary flow tending to reduce the overexpansion losses.

The effect of variations in ejector clamshell angle on nozzle performance at
subsonic cruise conditions is shown in Figure 5.1-8. The data trends for both
configurations indicate that nozzle performance is relatively insensitive to
clamshell angle over the range tested. The maximum performance for both con-
figurations occurred over a range of angles from 17 to 21 degrees. The iris
configuration exhibited a gross thrust coefficient of 0.878, 1.3 percent
higher performance than the short flap nozzle. Additional tests of the iris
nozzle, with the clamshell removed, indicated a modest increase in perfor-
mance. to a gross thrust coefficient of 0.881. Similar tests of the short flap
configuration showed a 1 percent improvement in performance.

The effect of variations in ejector inlet area on nozzle performance at sub-
sonic cruise conditions is shown in Figure 5.1-9. The short flap nozzle data
were acquired with the clamshell set at 17 degrees. The iris configuration
data were obtained with the clamshell removed. Figure 5.1-9 shows that varying
the inlet area produced little improvement in the performance of these con-
figurations, i.e., reduction in over expansion or base drag losses by ventila-
ting the ejector shroud. The iris nozzle demonstrated a maximum gross thrust
coefficient of 0.881, while a level of 0.865 was attained for the short flap

r	 configuration.
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The measured subsonic performance, as presented in Figures 5.1-7 through
5.1-9 9 was lower than expected. Diagnostic tests mere conducted to understand
these deficiencies. Emphasis was placed on the iris configuration because of
its higher performance level. Both configurations were tested over a range of
Mach numbers to determine the effects of external flow on performance, as
shown in Figure 5.1-10. The data show that performance deficiencies are
related to external flow effects since both nozzles demonstrated significantly
higher performance levels at static conditions; the iris configuration showing
the highest potential at a level of 0.975.
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Figure 5.1-10 Effect of Free Stream Mach Number on Subsonic Cruise Nozzle

Performance. Conditions: Fan Nozzle Pressure Patio, Ptf/Po'
5.26; Fan-to-Primary Pressure Split, PtflPtp, 1.97.

The iris configuration was also tested over a range of free stream Mach
numbers with the ejector shroud removed. A comparison of these results to data
with the shroud in place (Figure 5.1.11a) shows a very similar performance
trend as a function of free stream Mach number. The results imply that
boattail drag of the ejector inlet base is the problem. An integration of the
static pressure distribution over the boattail at Mach number of 0.9, shown in
Figure 5.1-11b, confirms this observation. The integrated boattail drag in
terms of incremental gross thrust coefficient is a large part of the
performance difference between static and 0.9 free stream Mach number teat
conditions.
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5.1.3 Takeoff Performance

The takeoff configuration of the short flap nozzle was tested over a range of
clamshell positions and ejector inlet areas at static and 0.36 free stress
Mach number conditions to determine the optimum geometry of the ejector shroud
components. The influence of clamshell position on nozzle performance at the
takeoff condition is shown in Figure 5.1-12. Data trends are similar at both
the static and 0.36 Mach number conditions, and show that the minimum
clamshell angle tested, 13 degrees, results in the highest performance. The
effect of ejector inlet area on takeoff performance is presented in Figure
5.1-13. The data show that the performance of these configurations is
relatively insensitive to inlet area variation over the range tested. A
comparison of the data also shows a decrease in performance from static
conditions to 0.36 Ile. The performance decrease with free stream flow
indicates a lack of tertiary flow through the ejector inlet to ventilate the
shroud.

The iris takeoff configuration was tested with the clamshell positioned at 13
degrees (r ) and the inlet area (Ainlet/Ag) set at 0 . 80. The results are
compared to the best performing short flap configuration T of 130 and
Ainlet1Ag of 0.46 in Figures 5.1-14a and b at static and 0.36 Mach number
conditions. As indicated, the performance of the iris configuration is
superior to the short flap over the range of fan nozzle pressure ratio tested.
At takeoff conditions, the static performance of the iris nozzle is 0.980, 4
percent higher than the short flap. At a Mach number of 0.36, iris nozzle
performance decreases to 0.966, but still provides a 4 percent advantage over
the short flap configuration.

A comparison of data at the two fan to primary pressure ratios tested, 1.46
and 1.7, is shown in Figure 5.1-15. Results show that performance of the
takeoff configurations is insensitive to pressure split.

Primary nozzle operating conditions at supersonic and subsonic cruise require
a convergent-divergent nozzle design for optimum performance. At takeoffs
operating conditions are below sonic requiring a convergent flowpath to
minimize overexpansion performance losses. These diverse flowpath requirements
are satisfied by the split translating centerbody plug, but with an added
degree of mechanical complexity over a solid type plug nozzle as shown in
Figure 3.2-4c.

To evaluate the performance benefits of a split plug design, the takeoff
configurations were tested with the plug retracted. A comparison of nozzle
performance with the split plug retracted and extended is presented in Figure
5.1-16. The comparison shows that the complexity of the split plug design is
warranted to obtain maximum takeoff performance. With the plug retracted, the
iris nozzle loses 2.5 percent in static performance and 2 percent at 0.36 Mach
number. This loss is a direct result of the flow being overexpanded in the
primary nozzle. The short flap configuration exhibited a similar performance
loss at the 0.36 Mach number condition.
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Figure 5.1-22 Influence of Clamshell Position on Short Flap Nozzle Per-
formance. Conditions: Fan Nozzle Pressure Ratio, PtfJPo,
2.5; Fan-to-Primary Pressure Split, PtfIPo, 1.66; ajector
Inlet Area Ratio, AinletjAg, 0.66•
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Analysis of the short flap takeoff performance as a function of Fftjpo+
previously illustrated in Figure 5.1-14 9 shows that lowest measured perform-
ance occurs at takeoff engine operating conditions. The performance decrease
is attributed to overexpansion of the fan flog on the isentropic splitter. A
plot of the limited static pressures on the splitter, Figure 5.1-17, indicates
an initial region of overexpanded flow downstream of the nozzle throat. Ex-
ploratory tests were conducted to determine the cause of these losses. It was
found that the overexpansion losses were influenced by two design elementst
(1) the close proximity of the ejector inlet flap to the fan nozzle lip creat-
ed a convergent-divergent nozzle effect and (2) the fan nozzle-splitter shape.

Tests of the short flap configuration with the 20-dogree trailing edge portion
of the ejector inlet flap removed, showed a 1.5 percent improvement in per-
formance, as illustrated in Figure 5.1-18. However, the trend still indicates
an ove rexpans ion characteristic at takeoff engine operating conditions. A com-
parison of the static pressure distributions of the original and modified con-
figurations (Figure 5.1-19) shows that the modification reduced the initial
overexpansion region, but did not completely eliminate the loss. Examination
of the geometry of the fan nozzle flap re lat ive to the crown of the flow
splitter indicated that the throat flow may be underturned, which would ex-
plain the residual ove rexpans ion loss. Increased flow turning can be obtained
by revising the kinematics of the nozzle flap mechanism to relocate the flap
lip in the takeoff mode.

Exploratory tests of the iris takeoff configuration were conducted to investi-
gate the fall-off in performance with increasing fan nozzle pressure ratio.
Ih is included testing with the ejector  c lamahel l removed. The test revealed
that the exhaust flow was impinging on the clamshell.  A comparison of iris
nozzle performance with and without the clamshell is presented in Figure
5.1-20. The comparison shows that removal of the clamshell decreased the per-
formance fall-off with increasing pressure ratio. The data show that if the
c lamshe l l impingement could be avo id ed, the iris configuration could achieve
takeoff performance comparable to the levels assumed in the Advanced Super-
sonic Transport studies. One way to avoid impingement of the nozzle jet plume
on the clamshell, would be a reduction in fan nozzle radius ratio to reduce
the plume diameter.
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Figure 5.1-16 Comparison of Takeoff Nozzle Performance with Primary Plug
Extended and Retracted. Conditions: Fan Nozzle Pressure Ratio,
Ptf/Po, 2.5; Fan-to-Primary Pressure Split, Ptf/Ptp,
1.46; Clamshell Angle, T, 130.
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migurz 5.1-17 Short Flap Nozzle Splitter Static Pressure Distribution. Con-
ditions: Fan Nozzle Pressure Ratio, Ptf/Po, 2.5;
Fan-to-Primary Pressure Split, Ptf/Ptp, 1 . 46; Clamshell
Angle, T, 130; Ejector Inlet Area, Ainlet /Ay , 0.46; Free
Stream Mach Number, (M.), 0.
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Figure 5.1-18 Comparison of Original and Modified Short Flap Nozzle Takeoff
Performance. Conditions: Fan-to-Primary Pressure Split,

Ptf/Ptp, 1.46; Clamshell Aoigle, T , 130; Ejector Inlet
Area, Ainlet,Ag, 0.46.
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Figure 5.1-19 Comparison of Original and Modified Short Flap Nozzle Split-
ter Static Pressure Distributions. Conditions: Fan-to-Primary
Pressure Split, Ptf/Ptp, 1.46; Clamshell Angle, T, 130;
Ejector Inlet Area, Ainlet/A9, 0.46; Free Stream Mach
Number, (MO), 0.
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Figure 5.1-20 Comparison of Iris Nozzle Takeoff Performance With and With-
out Ejector Clamshell. Conditions: Fan-to-Primary Pressure
Split, Ptf/Ptp, 1.46; Ejector Inlet Area, Ainlet/A9, 0.8
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5.1.4 Comparison of Results with Advanced Supersonic Transport Propulsion
Study Performance Levels

A comparison of the measured nozzle performance to levels assumed in the
Advanced Supersonic Transport propulsion studies (refer to Table 3.7-II) is
illustrated in Figure 5.?-21. Data are shown for both the iris and short flap
configurations at simulated enrine operating conditions and flight Mach
numbers. The comparison shows that at supersonic cruise the performance of
both configurations at zero secondary flow achieved the Advanced Supersonic
Transport study level, the iris and short flap configurations demonstrating
gross thrust coefficients of 0.980 and 0.984, respectively. To date,
integrated propulsion studies have not been conducted in sufficient depth to
evaluate the overall benefit of secondary Flow. The comparison also shows that
at subsonic cruise the performance of both configurations is deficient, 6
percent for the iris and 7.5 percent for the short flap configuration. At
takeoff conditions, the performance of the iris configuration approached the
study levels within 0.5 percent statically but was 2 percent lower at
climbout. The short flap configuration, however, was deficient by 4 to 6
percent.

1.00
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0.96	 0
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THRUST 0.92
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Cfp
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0.840
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O IRIS RESULTS

	

SUBSONIC	 O SHORT FLAP RESULTS
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L	 t	 t	 ^

0.5	 1.0	 1.5	 2.0

FREE STREAM MACH NONMo

Figure 5.1-21 Comparison of Test Results with AST Propulsion Study Nozzle
Performance. Condition: Corrected Secondary Flow, Ws co.rrf 0%.
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5.2 RMLE DISCHARGE COEFFICIERrS

5.2.1 Supersonic Cruise Configuration Discharge Coefficients

Fan and primary nozzle discharge coefficients (CD and CD , respectively)
for the iris and short flap supersonic cruise configurati gns are presented in
Figure 5 . 2-1. Data are presented for the extreme range of conditions tested; fan
to primary pressure split of 2.0 and 2.6 and corrected secondary flow of zero and
4 percent. The data collapse shows that both the fan and primary discharge
coefficients are almost independent of nozzle operating conditions and corrected
secondary flow. At nozzle operating conditions well above the critical flow
regime, the trend of the data is nearly constant with nozzle pressure ratio. At
engine operating conditions, the levels of fan and primary discharge coefficients
for the iris configuration are 0.962 and 0 . 991, respectively. Levels exhibited by
the short flap configuration are a fan discharge coefficient of 0.975 and a
primary nozzle discharge coefficient of 0.982.

FAN-TO-PRIMARY CORRECTED
PRESSURE SPLIT SECONDARY FLOW

y1

	

Ptt/Pty	 &Wff

O 2.0	 0
0	 2.6	 0.04

I .00	 NOZZLE 

O
--^--tID PRIMARY

0.98-^ -	
PRIMARY

DISCHARGE	 ----^--^ 
FAN

COEFFICIENT
C	 0.96 	 0 -$ FAN

D
OPERATING POINT	 OPERATING PONNT_

0.9418	 22	 26	 30	 18	 22	 26	 30
FAN NOZZLE	 FAN NOZZLE

PRESSURE RATIO Pt f/Po	 PRESSURE RATIO - Ptf / Po

(a)IRIS CONFIGURATION 	 (b)SHCRT FLAP CONFIGURATION

Figure 5.2-1	 Iris and Short Flap Supersonic Cruise Configuration Discharge
Coefficients. Condition.;: Free Stream Mach Number, (MO),
2.0.
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5.2.2 Subsonic Cruise Configuration Discharge Coefficients

Figure 5.2-2 presents fan and primary discharge coefficients for the iris and
short flap subsonic cruis^ configurations. For each plot, data are presented
for the three fan to primary pressure splits tested. The collapse of fan
nozzle data to a constant value again shows that the fan discharge coefficient
is independent of nozzle operating conditions over the range tested. A similar
collapse is observed for primary nozzle data at pressure splits of 1.8 and
1.97. However, at a fan to primary pressure split of 2.2, the primary nozzle
discharge coefficient increases to values near 1.0 at a fan pressure ratio of
3.5 for both configurations. The corresponding primary pressure ratio for
these conditions is 1.6, which is in the unchoked subsonic flow regime. At
subcritical nozzle flow conditions, there are two possible reasons for the
increased discharge coefficients: (1) fan flow was aspirating the primary flow
or (2) the characteristic of a convergent-divergent nozzle to produce
discharge coefficients greater than unity due to overexpansion of the flow. At
engine operating conditions, the levels of fan and primary discharge
coefficients for the iris configuration are 0.960 and 0.985, respectively.
Levels observed for the short flap configuration are a fan discharge
coefficient of 0.967 and a primary nozzle discharge coefficient of 0.981.
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O 1.8

D 197
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OPERATING POINT
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WIRIS CONFIGURATION	 (b)SHORT FLAP CONFIGURATION

Figure 5.2-2	 Iris and Short Flap Subsonic Cruise Configuration Discharge
Coefficients. Conditons: Free Stream Mach Number, (Mo ), 0.9.
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5.2.3 Takeoff Configuration Discharge Coefficients

Fan and primary nozzle discharge coefficients for the iris takeoff configura-
tion are illustrated in Figure 5.2-3. Data are presented for both pressure
splits tested at static and 0.36 free stream Mach number conditions. As ob-
served previously, fan nozzle dA t..r for all test conditions collapsed to a
single curve. The data exhibit a conventional trend with decreasing fan nozzle
pressure ratio, tending to decrease slightly near sonic flow conditions.
Trends of primary nozzle discharge coefficients, on the other hand, indicate
that the primary nozzle discharge coefficient is a function of fan to primary
pressure split and free stream flow conditions. The figures also show that the
data are not monotonic as a function of primary pressure ratio. The external
flow interaction is very strong at low pressure ratios (e.g., 1.1) decreasing
the discharge coefficient by 5 to 12 percent relative to the levels observed
statically. However, in the range of takeoff operating conditions, the varia-
tion of primary nozzle discharge coefficient is approximately 2 percent.
Measured values of fan and primary discharge coefficients at both static and
0.36 Mo conditions are 0.950 and 0.960, respectively.

Discharge coefficient data for the short flap takeoff configuration are pre-
sented in Figure 5.2-4. The characteristics of the fan nozzle data are con-
sistent with that observed previously. The trend of the primary nozzle dis-
charge coefficient, increasing to values greater than unity in the unchoked
flow regime, indicates that the fan flow over the isentropic splitter is as-
pirating the primary flow. Data at both pressure splits collapsed to a single
curve as a function of primary nozzle pressure ratio, illustrating that the
primary nozzle discharge coefficient is independent of the fan to primary
pressure split. At engine operating conditions, the levels of fan and primary
discharge coefficients for the short flap configuration are 0.968 and 0.980,
respectively, for the two free stream conditions tested.
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Iris Takeoff Configuration Discharge Coefficients.
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Short Flap Takeoff Configuration Discharge Coefficients.
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SECTION 6.0

CONCLUSIONS

The performance of two variable geometry coannular ejector nozzle models for
an Advanced Supersonic Transport was obtained at key supersonic and subsonic
flight conditions over a range of engine operating conditions. The significant
results of the tests are summarized below.

Supersonic Cruise Results

Both configurations demonstrated good supersonic cruise performance comparable
to the level assumed in the Advanced Supersonic Transport propulsion studies,
a gross thrust coefficient of 0.982, at zero secondary flow. The addition of 2
and 4 percent secondary flow increased iris nozzle performance by 2.6 and 4.1
percent, respectively, while short flap nozzle performance increased 2.3 and
3.5 percent. Variation of fan to primary pressure split had no effect on
nozzle performance over the range tested.

Subsonic Cruise Results

The performance of both subsonic cruise configurations was deficient relative
to the Advanced Supersonic Transport study gross thrust level of 0.94. The
iris configuration fell short of the target by 6 percent and the short flap
was deficient by 7.5 percent. Exploratory tests showed the performance
deficiencies resulted from inadequate ventilation of the ejector shroud which
resulted in excessive ejector inlet boattail drag. Mission emphasis on
supersonic performance established nozzle length requirements and constrained
the ejector inlet design. Variation of ejector inlet area and clamshell
position had minimal effect on nozzle performance for the range tested.

Takeoff Results

Performance of the iris takeoff configuration approached the Advanced
Supersonic Transport study levels at static conditions but was 2 percent low
at climbout. The short flap configuration was deficient by 4 and 6 percent at
these conditions. Exploratory tests of the iris configuration showed that flow
impingement on the ejector clamshell degraded the performance 0.5 to 2
percent. Additional tests of the short flap configuration showed that
modifications of the ejector inlet flap would provide limited performance
improvements.
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APPEND IX A

FACILITY VERIFICATION

A modified Supersonic Tunnel Association nozzle was constructed for this pro-
gram and tested as a means of verifying the force and weight-flow measurement

accuracy of the facility. The procedure and results are discussed in this

Appendix.

Calibration Model Description

The geometric details of the modified Supersonic Tunnel Association nozzle are
shown in Figure A-1. This nozzle is essentially an American Society of Mechan-
ical Engineers standard nozzle with a base. The modified Supersonic Tunnel As-
sociation nozzle, installed in the wind tunnel, is shown in Figure A-2. Test-
ing with this nozzle was conducted with either the fan flow (Wf) or primary
flow (Wp ), but never with both flows simultaneously. Flow conditioning was
provides by means of perforated "choke" plates and screens upstream of the

nozzle. Nozzle total pressure was measured by two four-tube rakes, while noz-

zle total temperature was measured with two copper constantan thermocouples.
Base static pressure was determined using four rows of six taps.

Ca 1 ib rat ion Model Data Reduction

In order to compare the modified Supersonic Tunnel Association nozzle thrust
coefficients with semi-empirical predicted levels, it was necessary to modify
the thrust coefficient (Cf p ) as defined by Equation 18 to account for the
nozzle base drag, Dex:

C	 - F -
 e.".., +	 DB	 OA))
F,int _mV.i	 mVi

CF,int - C
fp + 

CfB	 (2A)

where Cf is the nozzle thrust coefficient corrected for friction drag as
previous3y defined, Dg is the nozzle base drag as measured by twenty-four
static pressure taps over the base area.

or
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Figure A-1	 Geometric Details of Modified Supersonic Tunnel Association
(STA) Nozzle. All Dimensions are in cm (in).
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Figure A-2	 Details of Modified Supersonic Tunnel Association Nozzle
Installation.

Calibration Model Results

Internal thrust coefficients for the modified Supersonic Tunnel Association
nozzle are presented in Figure A-3. Data were obtained at quiescent conditions
and at Mach numbers 0.36, 0.9, and 2.0. Testing was conducted by flowing air
from either the fan or primary supply system. The majority of the data shown
were obtained using the large fan flow measuring venturi (Dvf w 4.4392 cm
(1.7477 in)). The predicted levels of internal thrust coefficient were derived
from semi-empirical methods of calculating standard American Society of
Mechanical Engineers long radius nozzle performance, as described in Reference
7.

The American Society of Mechanical Engineers equations were slightly modified
to include the effect of a small difference in length of the internal
flowpaths between the American Society of Mechanical Engineers and modified
Supersonic Tunnel Association nozzles. Internal thrust coefficients were
generally within +0.5 percent of predicted levels for test Mach numbers up to
0.9 1 as shown in Figure A-3. However, at the supersonic cruise Mach number of
2.0, the thrust coefficients were biased approximately 1 percent high, as seen
in Figure A-3. It is felt, however, the relative comparisons between
supersonic cruise configurations are valid.
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Coefficients.
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APPENDI x 3

LIST OF SYMBOLS

(Equation no.)

A Area
e base
C Constant relating venturi area ratio

to one-dimensional pressure ratio
c Chord
C-D Convergent divergent nozzle
CD Discharge coefficient

Cfint Modified Supersonic Tunnel Association
nozzle thrust coefficient

Cfp Gross thrust coefficient (not including
external friction drag)

D Diameter, drag
F Nozzle generated force, thrust

g Gravitational constant
K Compressibility correction
L Length
m Mass flow
M Mach no.
P Pressure
R Gas Constant
STA Supersonic Tunnel Association
T Temperature
t Thickness
V velocity
W Weight flow

Ws corr Corrected secondary flow
X Axial distance
Y Radial position

Grtek Letters

Q Ejector inlet flap angle
Trailing edge flap boattail angle

Y Specific heat ratio or ;lug angle
Difference of two terms

3 Splitter trailing edge included angle
Nozzle efficiency (does not include external
friction drag)

9 Shroud internal divergence angle
T Clamshell angle of rotation0 Shroud external, convergence angle

(3)

(2A)

(la)

(7i

(23)
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APPENDI X 3

LIST OF SYMBOLS (Cunt'd)

(Equation No.)

Superscripts

*	 Sonic flow condition

Subscripts
B Bass
Corr Corrected
SIX Exit
f Pan duct
i Ideal
inlet Ejector inlet
int Internal
I Local
LC Load cell
Hex Maximum
a Ambient condition

P Primary duct
s Secondary or Shroud
M Friction drag on metric portion of model
t Total
v Venturi

Numerals

0	 Free stream or ambient condition
8	 Primary nozzle throat station

Primary nozzle exit station - plug retracted
9	 Ejector exit station
18	 Fan duct nozzle throat station
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