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Graphite Fiber Surface Treatment to Improve
Char Retention and Increase Fiber Clumping

SUMMARY

Carbon and graphite fiber composite structures contain electrically
conductlve fibers which can be released into the environment by a fire and/or
explosion. The fibers are potentially hazardous to some types of electrical
equipment. Because of their small size, the fibers can be readily transported
by atmospheric currents over relatively long distances. Techniques to reduce
the degree of transport will decrease risks. One method to help contain the
fibers to a relatively small area is to cause them to agglomerate into bundles
during a fire. These bundles will settle out of the atmosphere more readily,
limiting the area of contamination.

The use of high-char resins is one approach to producing larger
bundles. However, the resin systems that currently provide the best composite
mechanical properties are the epoxies, and these have low char yields. The
high-char-yield resins generally are more difficult to handle than epoxies in
composite fabrication and don't usually provide an optimum-strength structure.

An approach which does not appear to have received consideration is the
modification of the carbon fiber surface and sizing to provide a system which
will form fiber-to-fiber "bridges" when exposed to the heat of a fire and will
then char to hold the fibers in larger bundles. The objective of this
exploratory research and development program was to determine the feasibility
of treating carbon or graphite fiber surfaces with char-forming monomers or
polymers or of modifying the sizing used on the fibers to improve the char
retention and/or increéase fiber clumping when a graphite fiber-epoxy composite
laminate is burned.

Three general approaches were evaluated as sizing modifications for
commercially available carbon fiber. One used low molecular weight potential
char-formers modified by adding epoxide functionality to enhance fiber to
char-former adhesion. The second utilized the same approach except that the
char-forming moiety was a copolymer expected to provide a high char yield.

The third approach used a char-forming polymer dispersed in the fiber sizing
composition. All showed evidence of reducing the fiber transport in a fire by
causing fiber agglomeration. Resin-to-fiber adhesion could be maintained by
incorporating difunctional epoxies in the sizing system.



Abbreviations Used:
GEPCP - Glycidyl ether of pentachlorophenol
AGE/HCCPD ~ allyl glycidyl ether adduct of hexachlorocyclopentadiene

GEsVCl1l - glycidyl ester of vinyl chloride/vinyl acetate/acrylic acid
terpolymer

GEVC1/VAc/VAl - glycidyl ether of vinyl chloride/vinyl acetate/vinyl
alcohol terpolymer

DMF - dimethyl formamide
ECH - epichlorohydrin

AGE - allyl glycidyl ether
SBS -~ short beam shear

PVC - polyvinyl chloride



INTRODUCTION

Carbon or graphite fiber, as made, is relatively nonreactive at the
fiber surface. As a consequence, adhesion in composite structures is poor and
many structural properties suffer unless the fiber surface is pretreated to
bond to the matrix resins. Most carbon and graphite fibers on the market
today are so treated, usually to provide reactivity with, and bonding to,
epoxy resins. These surface-treated fibers are available in differing degrees
of surface reactivity; typically, more than sufficient bonding sites are
available to assure that structural failure will occur within the resin matrix
and not at the matrix-to-fiber surface.

The fact that the fiber surfaces are epoxy-reactive was used to modify
the surface to provide "islands" of potential char-forming groups. These
islands were varied in character and quantity in an attempt to provide an
epoxy composite in which the filaments were held together at these "island"
sites after exposure to the char-forming temperatures of a fire. While the
typical epoxy resin will decompose within the fire and allow many of the
carbon fibers to escape as single filaments, the char-forming groups should
hold many filaments together, and are expected to increase the fall-rate of
the fiber (clumps) and, thus, decrease the area over which the fiber is
spread, reducing the potential hazard.

The authors thank Dr. J. T. Hays of Hercules Research Center for his
assistance in selecting synthetic compounds and synthesis methods for
char-forming epoxides.



APPROACHES

A schematic representation of the method of providing char bridges
during a fire while maintaining good resin-to-fiber adhesion in the laminate
prior to the fire is shown in Figure 1.

Three general approaches were studied. One used low molecular weight
compounds that are potential char-formers; these were reacted to form glycidyl
ethers. The surface treated fiber surface was modified with a solution
containing different ratios of a diepoxide and the char-former epoxy. It was
anticipated that high ratios of the diepoxide would result in a predominantly
epoxy-terminated surface with relatively few char-forming groups, while high
ratios of char-former epoxy would provide a predominantly char-group .surface.
The ratio of epoxy to char-forming surface necessary to provide a suitable
combination of good adhesion and good char-agglomeration was determined
experimentally during the course of this program.

The second approach was similar to the first, except that the
char-forming groups were prepared by epoxidizing (grafting) polymers with
known char-forming capabilities to form glycidyl ethers or esters. The
polymer approach has the potential advantage over the lower molecular weight
approach of providing a local high viscosity melt zone during heating in a
fire. In the event that the surface-to-modifier bond is broken or
volatilized, the polymer melt could wet the filament locally. As the epoxy
resin binder is volatilized and the polymer goes through the tar-stages
leading to char, the tar groups should fuse together, char, and provide the
char bridges. As in the first approach, the ratio of diepoxide to epoxy-char
former provides different ratios in the modified fiber surface. '

The third approach utilized a char-forming polymer finely dispersed
within an epoxy resin and the carbon fiber was sized with this dispersion.
This approach planned to incorporate the best modified surfaces from the first
and second approaches to enhance the probability of forming char bridges.
Difficulties were experienced in obtaining an evenly-coated sizing throughout
the fiber bundle, so the combination system including the first and second
approaches was not evaluated on small scale.

None of the techniques would be practical unless the composite made
from the sized fiber retains its mechanical properties. Sufficient bonding
between the matrix resin and the fiber surface requires that sufficient
epoxide groups are available from either the diepoxide in the sizing or from
the epoxide groups in the epoxy char former, or that the reactive fiber
surface is available to the matrix during polymerization. To assure that
sufficient surface reactive groups were present, a commercial type of carbon
fiber (Hercules Type AS4) was used which has an abundance of surface-reactive
groups capable of bonding to epoxy resins. To determine resin-to-fiber
adhesion, experimental and control samples of fiber were made into short beam
shear test specimens and tested over a U4/1 span/depth ratio.



EXPERIMENTAL SECTION

Char-former Modifiers

The modification of the surface-treated fiber follows the general
reactions of an epoxy group with a carbon fiber surface carboxyl group (1):

COOH + CHy=CH-CHp-OR
FIBER \ /
SURFACE 0

COOCH ,CHOH-CH>~OR

‘where R is either an epoxy functional group or a char-forming group. The
concentration of char-forming groups on the surface is dependent on their
relative concentration (compared to diepoxide) in the modifying solution.
When R was an epoxy group, commercially available diepoxides such as the
diglycidyl ether of bisphenol A were used. When R was a char-forming group,
the epoxy group on the char-former entity was reacted with the fiber surface.

Gljcidyl ethers and esters are simply prepared by reaction of
epichlorohydrin (Shell Chemical Co.) with a hydroxyl compound in the presence
of alkali or with a salt of a carboxylic acid.

QES-CH-CH2C1 + ROH NaOHy cH,_CH-CH,0R + NaCl

0 0
or

CHp-CH-CH,C1 + NaCOOR CH,-CH-CH,0COOR + NaCl
0 0

This type of reaction can be used directly to prepare compounds

containing the epoxy group and a char-forming entity, either low molecular
weight or polymeric.

Two low molecular weight modifiers were prepared for use as sizing
agents for carbon fiber; the glycidyl ether of pentachlorophenol and the
Diels-Alder adduct of hexachlorocyclopentadiene and allyl glyecidyl ether (2).

The Glycidyl Ether of Pentachlorophenol

C 1 o\ c1 /c1
Cc1 OH + C1CH,-CH-CH, NaOH, ¢ 0-CH,~CH-CH,
H,0
o i
PCP ECH MW 322

MW 266 MW 92.5 Oxirane ox. 4.97% (calc)
m 188-191°C B.115-117°C
(Aldrich Cat.
P-260-4)



was made from 26.6 g (0.1 mole) of PCP, 37 g (0.4 moles) ECH, and 20 ml
isopropyl alcohol which were charged to a 250 ml 3-necked flask fitted with
stirrer, heating mantle, thermometer, and reflux condenser. The solution
was heated to 75°C with stirring, 4.4 g NaOH (0.1l mole) as a 40% aqueous
solution was added dropwise over a 30 minute period. Stirring was continued
3 hrs. at 90-95°C (gentle reflux). Upon cooling, a copious precipitate
formed. One hundred ml water was added and the reaction mixture was
transferred to a Waring Blendor to break up large aggregates. The product
was collected on a medium porosity sintered glass funnel and washed with
water. The crude wet product was dissolved in 250 ml of isopropyl alcohol at
80°C and hot water (60°C) was added to incipient precipitation. The
recrystallized product upon cooling was isolated by filtration and dried 16
hrs at 70°C. The product weighed 27.7 g (86% yield) and had an oxirane
oxygen content of 4.9% (theory 4.97%) and a melting point of 113°C. The
compound when held in an open flame melted and was self-extinguishing. A
small amount of char remained on the tip of a spatula after heating to red
hot.

The Diels Alder Adduct of hexachlorocyclopentadiene and allyl glycidyl

ether
Cl Cl 1 0
/ 0
— / \ c1, fHp=0-CHp=CH-CHa
1o + H»C=CHCH»>-~0-CH -CH-CH xylene
2 2 2 2 | S
/
Cl \Cl Cl
1
HCCP AGE MW 387
MN 273 (Alcolac, Inc. 4,13% Oxirane OX (Calc.)
(Aldrich Cat. No. T701102)
H-600-2)

was made using a 500 ml round bottomed flask equipped with a reflux condenser
to which was added 136.5 g (0.5 mole) HCCP and 57 g (0.5 mole) of AGE and

125 ml xylene. The solution was refluxed at 152°C for 24 hours. A yellow
solution was obtained. Vacuum distillation removed xylene at 100 mm and
product distilled at 0.5 mm at 150-153°C. A pale yellow mobile liquid
weighed 150 g (79% yield) and contained 3.9% oxirane oxygen (94% pure).

High molecular weight, or polymeric modifiers were prepared (3,4,5) by
selecting terpolymers containing vinyl chloride as the primary backbone. One
of the terpolymer groups was selected to be reactive with epichlorohydrin,
which resulted in conversion of the terpolymer to an epoxy-containing
"terpolymer.

The glycidyl ester of vinyl chloride/vinyl acetate/acrylic acid
terpolymer was prepared as follows:



0

+ CH2C1-4-§H2 W

The starting material was a terpolymer containing 83 percent vinyl chloride,
13 percent vinyl acetate, and 1 percent acrylic acid (Aldrich Chem. Cat.
20,030-1). The remaining 3 percent in the composition is unknown. A 4 molar
excess of epichlorohydrin was charged to a dimethylformamide solution of the
terpolymer. A 10 percent excess over the stoichiometric amount of sodium
hydroxide was added and the reaction carried out at 70-75°C for U4 hours. The
product was isolated by precipitating in distilled water. Oxirane oxygen
analysis was 0.33% (theory 0.35%). When removed from an open flame the
compound was self-extinguishing. A small amount of char remained after
heating to red heat.

During attempts to synthesize the glycidyl ether of vinyl chloride/-
vinyl acetate/vinyl alcohol terpolymer (91/3/6) (Aldrich Chem. Cat.
18,290-0), it was noted that from 6 to 8 molar excess epichlorohydrin was
necessary in the reaction to assure essentially complete conversion of
hydroxyl functionality to the desired glycidyl ether. Dimethylformamide was
satisfactory for the reaction solvent. The preparation proceeded as follows:



0 OH 0

-0H + Cl-C—!LC —_— ——-O-C-C-l-Cl —_— O-C-éLC
ECH : NaOH
VC/VAc/VAl MW 92.5 Okirane
Oxygen

2.1% (cale)

A 25 g quantity (0.034 equivalents) of VC/VAc/VAl was dissolved in 200
ml. DMF and heated with stirring with 25.2 g ECH (0.272 moles) to 90-95°.
The ECH was 8 times molar equivalent based on the terpolymer. Heating was
continued for 4 hours with stirring. The resulting solution was then treated
with 1.48 g NaOH (0.037 moles) dissolved in 10 ml water. The base was added
dropwise over a 30 minute period. Heating at 95°C was continued an
additional 3 hours. The product was precipitated from 200 ml distilled water

in a Waring blendor, filtered and dried. The following conversions were
obtained:

Percent Conversion

Molar Equivalent Epichlorohydrin Based on Oxirane Oxygen
2 45.0
’4 76.0
8 96.5

Sizing Application

Initially, sizings were prepared by making solutions of the diepoxide,
char-former modifier, or combinations of these in methylene chloride. The
concentration of sizing deposited on the fiber was controlled by the
concentration of solids in the sizing solution. Fiber coating was by dip
impregnation, followed by hot-air removal of the solvent. The time during
the hot air heating and the ambient standing time after heating prior to
fiber evaluation was relied on to react the size with the fiber surface.

The GEPCP crystallized during methylene chloride evaporation. This
made surface reaction questionable. To obviate crystallization before
reaction, the solvent was changed to a high boiling chlorinated hydrocarbon,
perchloroethylene (boiling point 121°C). This assured that the size was in
contact with the fiber surface at a temperature at least up to the boiling
point of the solvent. Residence time during solvent evaporation and size
setting was 6 minutes in 250°C air. This was assumed to be adequate to react
the size with the fiber surface.

Chlorobenzene (boiling point 131°C) was used to apply AGE/HHCPP and
GEs VCl, and dimethyl formamide (boiling point 152°C) was used to apply
GEsVC1l and GEVC1l/VAc/VAl.

Attempts to use a dispersed polymer size were only partly successfui.
A quantity of the glycidyl ether of the vinyl chloride/vinyl acetate/vinyl

alecohol terpolymer was micropulverized at liquid nitrogen temperature. This
was necessary since at ambient temperature the product is flexible and tough
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and could not be finely ground. Three ratios of epoxidized terpolymer to Dow
Epoxy Resin DER 330 were prepared in perclene. The epoxy component dissolved
whereas the terpolymer char former remained suspended. A 2 percent total
solids concentration was prepared.

Size Number 1 2 3
Parts perclene 100 100 100
Parts DER 330 1 1 0.67
Parts epoxidized terpolymer 1  0.67 1.33

Difficulty was experienced handling these sizes because of the suspended

solids. Even size distribution could not be obtained, and the particles
tended to float in the carrier liquid.

A very finely divided poly(vinyl chloride) (PVC) was obtained
(Stauffer Chemical Co., type SLL-OH-1) and attempts made to disperse it in a
sizing composition. The dispersion was not very stable, but the particles
could be kept in suspension in methylene chloride by continuous stirring.
This technique was used to apply sizings consisting of 50/50 PVC/Dow epoxy
resin DER 330 and 66/34 PVC/330 to carbon fiber. Some difficulty was
experienced with the fine fibers filtering out the larger PVC particles, but
some particle coating was achieved within the bundle as evidenced by a dull,
hazy coating on interior filaments. Spreading of the tow bundle during
impregnation improved penetration of the solids but the outer surface of the
bundle always appeared to pick up more of the particulate.

Laminate Preparation and Shear Testing

Sized fibers were dry-wound onto racks and vacuum-impregnated with a
long working life epoxy resin system consisting of 100 parts by weight (pbw)
of Dow DER 330 epoxy, 90 pbw Nadiel methyl anhydride, and 2 pbw N,N-benzyl
dimethylamine. The schematic of the laminate preparation is shown in
Figure 2. Fiber was checked for weight per unit length and density prior to
sizing; these data were used to calculate the number of fibers required to
achieve 62 volume percent in the mold. This number of fibers was wrapped
onto a rack, the rack loaded into the mold cavity and the ends of the mold
attached, the mold, fiber and rack degassed and excess resin added under
vacuum, degassing was continued until no further air release was noted, the
mold containing the resin-impregnated fiber rack was removed from vacuum, the
mold closed in a press and pressure slowly applied to remove excess resin '
until the mold was closed to stops, and the mold heated via the press platen
for 1 hour at 125°C followed by 4 hours at 165°C.

The same procedure was used for short beam shear samples, small
unidirectional laminates, and large unidirectional laminates. Shear samples
were cut from a 5 em x 5 em x 0.203 em (2 inch by 2 inech by 0.080 inch) plate
and measured 1.58 cm x 0.635 em x 0.203 em (0.625 inch long by 0.25 inch wide
x 0.080 inch) thick using an 80 grit diamond wheel. Small laminates were
molded slightly oversize and cut to 12.3 em x 12.3 cm x 0.254 cm (4-7/8 inch
by 4-7/8 inch by 0.100 width) thick. Large laminates were molded slightly
oversize and cut to 30.5 cm x 30.5 cm x 0.254 cm (12 inch by 12 inch by 0.100
inch thick). Some difficulty was experienced with the large laminates
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cracking parallel to the longitudinal windings, about in the center of the
laminates. This was found to be due to buckling of the undirectionally-
reinforced plate due to thermal contraction of the mold on cooling from 165°C
to ambient. This was eliminated by removing the laminate hot, well above the

resin glass transition temperature.

Laminate Burn Tests

A small scale burning jig was.devised to permit assessment of the
sizings using sections cut from the short beam shear samples. This is
illustrated in Figure 3. It consists of a laboratory forced-hot-air blower
which supplied excess combustion air and the air velocity to carry fibers
from the burned laminate. A Meeker burner was used as the combustion
source. The specimen (0.14 cm x 0.2 em x 1.59 cm; 0.055 x 0.080 x 0.625
inch) was cut from the edge of a SBS sample, parallel to the fiber direction,
using a diamond saw. It was placed flat (1.59 em x 0.2 cm; 0.625 x 0.080
face) on a 3 mm square mesh screen located 5 cm above the blower and burner.
An inverted J-shaped Pyrexr tube was used to cover the specimen and provide
a chimney which carried the burned fibers to a collection screen of 1 mm
square mesh. The combusted sample on the collection screen was examined to
determine the character of the fiber bundle, whether it was composed of loose
filaments or of tight bundles of filaments. Scanning electron micrographs
were taken to determine the nature of the filaments on a small scale.

Larger unidirectional laminates were prepared for burn-assessment by
NASA/Langley (Table 4).

DISCUSSION OF RESULTS

The general approach of this program was to randomly intersperse on
carbon fiber surfaces char-forming epoxies and non-char-forming diepoxides in
such a ratio that adhesion to the fiber would not be significantly reduced.
The anticipation was that the char-formers would provide carbonaceous bridges
at many points between individual filaments following a fire that consumes
the epoxy resin. If such bridges could be achieved, much of the carbon fiber
emitted from a fire should be in bridged bundles which will settle relatively
rapidly out of the atmosphere.

Epoxidized low and high molecular weight compounds were prepared using
highly chlorinated starting compounds. The starting materials were selected
because they formed carbonaceous chars on combustion; they all retained this
char-forming ability after epoxidation. Two low molecular weight char
formers were made, the glycidyl ether of pentachlorophenol (GEPCP) and allyl
glycidyl ether adduct of hexachlorocyclopentadiene (AGE/HHCPD). Both were
soluble in chlorinated hydrocarbons such as methylene chloride, however, the
GEPCP crystallized during solution evaporation such as would occur during
sizing of a fiber. This made reaction of the epoxide with the carbon fiber
surface questionable. The low boiling solvents were therefore replaced with

high boiling solvents such as perclene or chlorobenzene.

Two polymeric char-forming epoxides were also synthesized. They were
the glycidyl ester of the terpolymer of vinyl chloride, vinyl acetate, and
acrylic acid (GEs VCl), and the glycidyl ether of the terpolymer of vinyl
chloride, vinyl acetate, and vinyl alcohol (GEVC1/VAc/VAl). These could be
applied as dilute solutions from chlorobenzene or dimethyl formamide.
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" An adhesion baseline was established using type ASY4 surface treated
fiber and a standard filament-winding epoxy resin consisting of 100 parts by
weight (pbw) Dow DER 330, 90 pbw Nadic® methyl-anhydride, and 1.5 pbw
N,N-benzyl dimethylamine. Relative adhesion on two sets of unidirectionally
reinforced control laminates was determined by short beam shear strength to
be 100.6 MPa (14,592 psi) and 103.8 MPa (15,048 psi) with variation
coefficients (Cy) of 1.14% and 1.22%, respectively (Table 1). The
excellent reproducibility of these controls eliminated a need for further
control runs on the unsized fiber.

A second baseline was established using a sizing for the surface
treated (Type ASY) fiber. Table 1 shows that the sized (with 0.28% Dow DER
330 epoxy) fiber adhesion as measured by short beam shear strength was
statistically indistinguishable from the unsized, surface treated fiber at
102.5 MPa (14,869 psi) (Cy 1.55%) and 103.2 MPa (15,041 psi) (Cy 2.83%).

Sized fibers were made for preparation of laminates, for determination
of adhesion, and for combustion screening. Sizings were initially applied
from methylene chloride solution to surface treated Type AS4 carbon fiber
using several ratios of a diglycidyl ether of bisphenol A (Dow DER 330) and
the laboratory-prepared char-former glycidyl ether of pentachlorophenol
(GEPCP). While adhesion (by short beam shear) was almost constant,
extractability varied proportionately to the amount of DER 330 in the \
formulation (Table 2). It was found that the GEPCP had crystallized, and was
fractionating out of the sizing solution as the solvent evaporated; it was
suspected that reaction of the GEPCP did not occur with the fiber surface to
any great degree since the crystals were not soluble in the DER 330. ESCA
analysis of the sized surfaces (Table 3) implied that the GEPCP requires
additional washing to remove the sodium chloride introduced as a contaminant
during the glycidyl ether formation.

Sizings were also applied using the glycidyl ester of vinyl
chloride/vinyl acetate/acrylic acid terpolymer with and without DER 330 using
methylene chloride and chlorobenzene solutions, from GEPCP with and without
DER 330 using perchloroethylene solution, and from the allyl glycidyl ether
adduct of hexachlorocyclopentadiene (AGE/HCCPD) using perchloroethylene
solution with and without DER 330. The purpose of the higher-boiling-point
solvents was to avoid premature fractionation or crystallization of one
component, and to allow sufficient contact time with the reactive fiber
surface while the sizing was in a mobile, liquid phase to permit the oxirane
group to couple to the fiber surface. P

Sizes containing the glycidyl ether of the terpolymer of vinyl
chloride/vinyl acetate/vinyl alcohol could not be applied from high boiling
chlorinated solvents due to limited solubility of the polymer.
Dimethylformamide was found to be a satisfactory high boiling point solvent
for the epoxidized polymer and for the DER 330 epoxide and was used in all
sizes containing this polymer.

Adhesion measurements on sized fibers, using short beam shear strength
as the measurement technique, showed little effect of the epoxidized
char-formers on adhesion at low size levels (Table 2). Incorporation of a
diepoxide (DER 330) in small amounts into the size composition (25% of the
size) resulted in short beam shear values statistically indistinguishable
" from the controls in all sizes except those containing GEs VCl. With this
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epoxidized polymer it was necessary to increase the diepoxide so that the
size contained 75% diepoxide before adhesion equal to the control was
achieved. The sized fiber was also rathér stiff and difficult to handle and
laminate. Laminates from this stiff fiber showed distinect"roping" of the
fiber. This could be almost eliminated by "breaking" the fiber over
stationary rods but only with some damage to the fiber. Fibers sized with
GEsVCl from dimethyl formamide solution, even at high sizing levels, gave
adhesion equal to the controls.

Increased size levels on the fiber reduced adhesion significantly in
all cases but the DMF-applied GEsVCl. Incorporation of small amounts of DER
330 with the char-former sizes restored adhesion.

A simple technique was devised which permits burning of small,
unidirectionally-reinforced short beam shear (SBS) samples and collection of
the released filaments for examination (Figure 3). Several variations were
required before soot-free released filaments were obtained. Initial burn-off
of the epoxy resin produces an oxygen-starved flame around the SBS specimen
which is the source of the soot. A forced-hot-air laboratory blower was used
to provide excess combustion air and enough air velocity to carry filaments
away from the specimen. A Meeker burner was used as the combustion source,
combined with the blower. The specimen is placed on a wide-mesh screen with
the blower and burner beneath the screen, pointed upward. An inverted
J-shaped Pyrex tube is placed over the screen to direct the hot-gas and
released-filaments up the J. The released filaments were collected at the
short, open-end of the J on a small-mesh screen. The screen then served as
the carrier for microscopic examination of the collected filaments.

Initial trials with this system used full-sized SBS specimens; these
proved to be too large and generated too much soot. Use of thin slices of
SBS sample, cut parallel to the fiber axis, provided filament collections
which could be microscopically examined. Optical microscope examination
indicated the presence of residue on many of the sized combusted samples;
however, the resolution and depth of field of the optical microscope was
insufficient to resolve the residue satisfactorily.

Scanning electron micrographs of burned slices from SBS specimens have
not shown a clear, consistent distinction between treated and untreated
fibers (Figures 4, 5, 6, 7, 8). Of the samples examined, the GEs VCl
(Figures 6, 7) and GEVC1/VAc/VAl (Figure 8) sized fibers showed evidence of
residual material on the burned fibers, but there was no clear evidence of
char-bridging. Many fibers appear to be badly oxidized Figures 5, 7, 8);
some have a honeycomb-type residual structure (Figure 5). This may be
evidence of too much oxygen at the burning interface with the technique
used. One interesting feature was the presence in some areas of many of the
samples examined of whisker-like structures growing from the fiber surfaces
(Figures 5,. 7), implying a highly-carbonaceous combustion environment.

Macrophotograhy appeared to be a more meaningful method of examining
the burned fiber bundles. Generally, control samples (no char-former)
produced a more disperse fiber collection than samples containing
char-former. This is illustrated in Figures 9, 10, 11. More sophisticated
methods are necessary, such as the techniques used by NASA, for assessment of

the effects of the char-forming sizes.
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One interesting phenomenon was observed in two burns of full size SBS
samples. The sample was held in the flame long enough to burn off the resin
during which the outer layers of fibers "fluffed" to form an insulating
layer. The inner core of the sample continued to oxidize at a dull red color
(est. 800-900°C) very slowly, even after the burner was removed, and for a
considerable length of time - perhaps 5 minutes ~ before it was extinguished
and examined. The hot-core ends had slowly eroded but left no ash or
residue, similar to the way charcoal burns. This may offer a relatively
innocuous method of disposing of laminate, i.e. not by forced air
incineration, but by "charcoal" incineration.

Larger size unidirectional laminates were fabricated for NASA/Langley
assessment of the fiber release characteristics of these sizing
formulations. Four laminates each 12.3 cm (4-7/8 inch) square by 0.254 cm
(0.100 inch) thick and one laminate 30.4 em (12 inch) square by 0.25 cm (0.1
inch) thick were prepared from control fiber (Type AS4) and each of four

sizing iterations for NASA testing, as shown in Table U.

CONCLUSIONS

Epoxidized char-forming systems have been synthesized which will react
with commercially available surface-treated carbon fiber. Fibers modified
with these char-formers retained adhesion in a specific epoxy matrix resin.
Small-scale combustion testing indicates that using these char-former-
modified fibers in laminates will help to reduce the dispersement of fibers
resulting from exposure to fire without sacrificing resin-to-fiber adhesion.
Larger-scale testing is required to establish the degree of reduction of
fiber dlspersement due to fire.
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Figure 1 - Anticipated Fiber Surface Modification and Char Formation
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Figure 3 - Schematic of Sample Burning Jig
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