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Nat iona l  Bureau of Standards  
Materials Measurements 

Summary 

T h i s  r e p o r t  d e s c r i b e s  NBS work f o r  NASA i n  suppor t  of NASA'S M a t e r i a l s  

Process ing i n  Space Program under NASA Government Order H-27954B ( P r o p e r t i e s  

of E l e c t r o n i c  Mate r i a l s )  cover ing t h e  pe r iod  A p r i l  2, 1.979 t o  A p r i l  1, 1980. 

The work anphasizes  . a t e r i a l s  measurements an '  has  two main t h r u s t s :  

1 )  Carrying < lt p r e c i s i o n  measurements in space and i n v e s t i g a t i n g  t h e  

f e a s i b i l i t y  of improved measurements when t h e  space  environment o f f e r s  a  

unique oppor tun i ty  f o r  performing such measulements. These measurements 

would be u s e f u l  f o r  e i t h e r  space  process ing o r  p rocesses  on t h e  ground. 

2) Obtaining p r e c i s i o ~ l  measurements on mater j .a ls  p r o p e r t i e s  when t h e s e  

p r o p e r t i e s  a r e  important  t o  t h e  d e s i g n  and i n t e r p r e t a t i o n  of space  process ing 

exper inen t s .  These measurements would be c a r r i e d  o u t  e i t h e r  in space  o r  on 

t h e  ground. 

Th i s  work has  beer. c a r r i e d  o u t  in f o u r  t a s k s .  These t a s k s  have, a s  tw 

of t h e i r  f o c a l  p o i n t s ,  t h e  r o l e  of convect ion e f f e c t s  and t h e  r o l e  of c o n t a i n e r  

e f f e c t s ,  both  of which would d i f f e r  i n  s p a c e - h s e d  experiments from t h o s e  

found i n  ground-based experiments.  The r e s u l t s  ob ta ined  f o r  each t a s k  a r e  

g iven i n  d e t a i l e d  summaries i n  t h e  body of t h e  r e p o r t .  B r i e f l y ,  i n  Task 1 - 
Surf a c e  Tensions and The i r  V a r i a t i o n s  w i t h  Temperature and I m p u r i t i e s  - 
measurements i n  an  Auger spect rometer  of  s u r f a c e  impurity c o n c e n t r a t i o n s  on 

l i q u i d  gal l ium showed t h a t  t h e  principal i m p u r i t i e s  were oxygen a r d  carbon. 

The i m p u r i t i e s  showed a tendency t o  c o l l e c t  i n t o  p l a t e s  o r  clumps. Heating 

i n  hydrogen atmospheres and ion s p u t t e r i n g  were bo th  found t o  be  e f f e c t i v e  

met hods of removing i m p u r i t i e s .  When t h e s e  methods gf removing i m p u r i t i e s  

were a p p l i e d ,  r ep roduc ib le  su r f  a c e  t e n s i o n  .;I) v a l u e s  a t  room temperature  



2 
were found wi th  y = 710 m J / m  . The s ~ r f a c e  t e n s i o n  decreased q u a d r a t i c a l l y  

w i t h  inc reas ing  temperature  t o  y = 690 mJ /m2  a t  500 O C .  I n  Task 2 - S o l u t a l  

Convection During D i r e c t i o n a l  S o l i d i f i c a t i o n  - i n  Pb-rich Pb-Sn ~ f f - e u t e c t i c  

a l l o y s ,  macrosegregat ion caused by so l u t a l  convecc ion was not  reduced by 

v e r t i c a l  o r  h o r i z o n t a l  f i e l 2 s  of 0. IT, but downward s o l i d i f  i c a t i o ~ :  ( l i q u i d  

below s c l i d )  v i r t u a l l y  e l iminated macrosegregation in  smal l  (x 2 mm) d iameter  

samples. C a l c u l a t i o n s  were made t o  p r e d i c t  t h e  onse t  of convec t ive  and 

i n t e r f a c i a l  i n s t a b i l i t i e s  dur ing  d i r e c t i o n a l  s o l i d i f i c a t i o n  of lead- t  i n  

a l l o y s  inc lud ing  e f f e c t s  of v a r i a t i o n s  i n  g r a v i t a t i o n a l  a c c e l e r a t i o n  and 

P r a n d t l  number. R e s u l t s  obta ined in  c a l c u l a t i o n s  wi th  a c o n s t a n t  g r n v i t a t  i o n a l  

-6 
a c c e l e r a t i o n  of 1 0  g show a n o t i c e a b l y  l a r g e r  s t a b i l i t y  range than those  

e 
- 6 

f o r  ge; a t  1 0  g t h e  i n s t a b i l i t i e s  w i l l  develop more slowly wi th  t k e .  
e  

I n  Task 3 - A Thermoct~emical Study of Corros ive  React ions  i n  Oxide M a t e r i a l s  - 

phase  assemblages of s e l e c t e d  csmposi t ions  on t h e  j o i n s  K[Fe 0.5 S i  0.5'  '2 - 
SiO and KFe02 - SiO were determined over  a l a r g e  range of oxygen p a r t i a l  

2 2 

p r e s s u r e s  and t h e  t a n p e r a t u r e  range  800 O C  t o  1400 O C .  Iq melts con ta in ing  

f e r r o u s  ions ,  excess ive  r e a c t  i o n  wi th  plat inum c o n t a i n e r s  occurred.  I n  Task 

4 - Thermodynamic P r o p e r t i e s  of Ref rac to ry  Materials a t  High Temperatures - 
u s e  of  p y r o e l e c t r i c  d e t e c t o r s  t o  determine t h e  r a d i a n t  heat  l o s s  from 

s p h e r i c a l  samples a s  coo l ing  o c c u r s  i n  f ree-cool ing experiments i s  being 

i n v e s t i g a t e d .  The hea t  c a p a c i t i e s  and, under some c o n d i t i o n s ,  t h e  thermal  

c o n d u c t i v i t i e s  in l e v i a t a t e d  high temperature  materials can be der ived from 

s imul taneous  measurement of r a d i a n t  heat  l o s s  and r a t e  of temperature  change. 

D e t a i l s  of t h e  thermal  g r a d i e n t s  t o  be expected i n  both  m e t a l l i c  and non- 

m e t a l l i c  samples have been examined. Limi ta t  i o n s  from sample v a p o r i z a t i o n  

-4 
w i l l  occur when t h e  vapor p r e s s u r e  reaches  t h e  v i c i n i t y  of 1 0  Pa !10 atm) . 



Task 1 

Surf a c e  Tensions and Thefr  V a r i a t i o n s  
wi th  Temperature and I m p u r i t i e s  

S. C. Hardy 
Metallurgy Div i s ion  

Center f o r  M a t e r i a l s  Science  

and 

J. Fine  
Sur face  Sc ience  Divis ion 

Center f o r  Thermodynamics and Molecular Science  

The s u r f a c e  t e n s i o n  of gal l ium has  been measured a s  a  f u n c t i o n  of tem- 

p e r a t u r e  i l l  vacuum and hydrogen atmospheres us ing  cups  of q u a r t z  and g r a p h i t e  

t o  c o n t a i n  t h e  s e s s i l e  drops.  The r e s u l t s  a r e  g e n e r a l l y  i n  good agreement 

w i t h  two previous  measurements and show t h a t  t h e  s u r f a c e  t e n s i o n  dec rease  is 

n e a r l y  q u a d r a t i c  i n  temperature.  A non- l inear  l e a s t  squares  a n a l y s i s  gave 

t h e  fo l lowing f u n c t i o n  a s  t h e  b e s t  f i t  t o  t h e  d a t a :  

Measurements i n  vacuum us ing  q u a r t z  cup-, however, have revealed a  complex 

hea t ing  h i s t o r y  dependence which we t h i n k  j C i  due t o  a n  ox ide  contaminat ion of 

t h e  gal l ium by t h e  quar tz .  

I n  r e l a t e d  work t h e  s u r f a c e s  of l i q u i d  gal l ium sessile d r o p s  have been 

s tud ied  iv  an Auger spect rometer  t o  determine t h e  c o n c e n t r a t i o n  of impus i t i e s .  

The gal l ium s u r f a c e  a f t e r  format ion of t h e  drop was found t o  be covered w i t h  

a  s o l i d  l a y e r  con ta in ing  a  h igh c o n c e n t r a t i o n  of oxygen and carbon.  Prolonged 

hea t ing  t o  s e v e r a l  hundred degrees  e f f e c t i v e l y  desorbed t h e  oxygen but t h e  

carbon was s t i l l  p resen t  i n  t h e  form of a p r e c i p i t a t e .  The c o n d i t i o n s  under 



which these precipitates  form is not understood. The surfaces were a l so  

cleaned by sputtering with argon ions and complex flow phenomena observed. 

The surface tension a t  the melting point of a drop with a sputtzred clean 

surface was i n  f a i r  agreement with the re su l t s  of the s e s s i l e  drop measure- 

ment s. 



In t roduc t ion  

S t u d i e s  of l i q u i d  ga l l ium s u r f a c e s  have proceeded along two l i n e s  i n  

t h e  p a s t  year .  Extensive s u r f a c e  t e n s i o n  measurements have been made us ing  

t h e  appara tus  and techniques  desc r ibed  i n  l a s t  y e a r ' s  r e p o r t .  I n  a d d i t i o n ,  

we have . .tempted t o  c h a r a c t e r i z e  t h e  s u r f a c e  composition of l i q u i d  ga l l ium 

i n  an Auger c2ectrometer.  These la t ter  experiments have revealed complex 

impuri ty  phenomena which we do n o t  f u l l y  understand.  

The c e n t r a l  pro;~em i n  -.;ermining t h e  s u r f a c e  t ens fon  of l i q u i d s  is 

t o  produce a c l e a n  sur face .  Segregat ion of i m p u r i t i e s  a t  t h e  l iquid-vapor 

i n t e r f a c e  w i l l  d r a s t i c a l l y  ~ l t e r  the s u r f a c e  t ens ion  as desc r ibed  by t h e  

Gibb's  equat ion.  Th is  s e n s i t i v i t y  t o  s u r f a c e  a c t i v e  i m p u r i t i e s  is  probably 

t h e  b a s i c  cause  fo r  t h e  wide d i s c r e p a n c i e s  i n  re?or ted  s u r f a c e  t e n s i o n  

va lues .  A r e l a t e d  problem is t h a t  t h e r e  i s  almost no independent charac te r -  

i z a t i o n  of the  chemical composition a t  t h e  i n t e r f a c e  wi th  a s u r f a c e  t e n s i o n  

measurement. It is assumed t h a t  t h e  procedures end m c t e r i a l s  used have 

prcduced a c l e a r  s u r f a c e ,  t h e  c l e a n e s t  s u r f a c e  being asc r ibed  t o  t h e  one 

w i t h  t h e  h i g h e s t  s u r f a c e  t ens ion ,  i .e. ,  t h e  one wi th  t h e  l e a s t  s u r f a c e  

segrega t ion .  Ar. independent c h a r a c t e r i z a t i o n  of t h e  s u r f a c e  by some 

d i r e c t  technique would be extremely va luab le  in t h e  i n t e r p r e t a t i m  of 

s u r f a c e  t e n s i o n  measurements, p a r t i c u l a r l y  i n  c a s e s  where t h e r e  is  a wide 

discrepancy i n  t h e  r e s u l t s .  The Auger work was undertaken p r i m a r i l y  t o  

eddress  t h i s  problem. 

Oxygen is  probably t h e  most troublesome s u r f a c e  contaminant f o r  most 

metals ;  gal l ium,  whi, is chemically s i m i l a r  t o  a l u m i s m ,  is  p a r t i c u l a r l y  

s u b j e c t  t o  t h e  formation of s t a b l e  s u r f a c e  oxides.  These may be e i t h e r  



Ga 0 o r  o ~ a ~ ~ ~ ~ ' ] .  There a r e  f o u r  a d d i t i o n a l  modi f i ca t ions  of t h e  t r i o x i d e  
2 

which a r e  formed only  under unusual  cond i t ions .  S e v e r a l  approaches a r e  

a v a i l a b l e  which one hopes might succeed i n  producing a ga l l ium s u r f a c e  f r e e  

of oxide.  Our samples a r e  prepared i n  a s y r i n g e  under a l c c h c l  cun ta in ing  

HC1 which d i s s o l v e s  ga l l ium oxides .  The ga l l ium is squeezed o u t  i n t o  a 

s , ,al low cup t o  form t h e  s e s s i l e  drop under an atmosphere of f lowing n i t r o g e n  

o r  helium. Although g r o s s  oxides  a r e  removed by t h e  a c i d ,  a chin  oxide  

f i l m  undoubtedly remains a f t e r  t h i s  procedure. Observat ions  suppor t ing  

t h i s  w l l l  be d i scussed  l a t e r  i n  connect ion wi th  t h e  Auger work. Once t h e  

s e s s i l e  drop is f ~ r m e d  i n  t h e  vacuum s y s ~ m ,  t may be c leaned F ~ r L h e r  h~ 

hea t ing .  Th i s  desorhs  weakly bound gases  .ly2 . a t  around 500 O C ,  dcc e s 

t h e  t r i o x i d e  t o  t h e  suboxide according t o  t h e  fo l lowing r e a c t i o n .  

+ 
Ga 0 + 4Ga + 3Ga20 3 3 

The suboxide has  a h igh vapor p r e s s u r e  and is  dapos i t ed  on t h e  w a l l s  of t n e  

vacuum system. Th i s  r e a c t i o n ,  however, does  n o t  go t o  c o u p l e t i o n  a s  shown 

by x-ray d i f f r a c t i o n  measurementsL1l. A l t e r n a t i v e l y ,  t h e  s u r f  a c e  ox ide  can 

b e  reduced Ey hea t ing  i n  hydrogen by t h e  fo l lowing r e a c t i o n s :  

We have used both  of t h e s e  approaches i n  a t t empts  t o  produce c l e a n  s u r f a c e s .  

A t h i r d  p o s s i b i l i t y  f o r  c l ean ing  t h e  s u r f a c e  is ion'.c s p u t t e r i n g .  We w i l l  

d i s c u s s  t h i s  technique i n  connect ion w i t h  our  Auger work. Th i s  a l t e r n a t i v e  

is  very  a t t r a c t i v e  because i t  can be c a r r i e d  o u t  a t  low tempera ta res ,  t h u s  

minimizing t h e  d i f f u s i o n  of gases  and o t h e r  i m p u r i t i e s  from t h e  cup i n t o  



t h e  g a l l i u m  and any r e a c t i o n  of t h e  ga l l ium b'.th t h e  cup o r  r e s i d u a l  gases .  

A d e t a i l e d  d i s c u s s i o n  of :he a p p a l a t u s  and techr,iques used i n  t h i s  

work is contained i n  l a s t  y e a r ' s  Rather ihao r e p e a t  t h i s ,  we 

w i l l  simply no te  t h a t  t h e  ga l l ium drops are conta ined i n  cups of v a r i o u s  

-10 
m a t e r i a l s  i n  an  i o n  pumped vacuum system capable  of reaching t h e  10 

t o r r  range. The o p t i c s  and f i l m  used i n  t h e  measurements have a r e s o l l l t i J n  

which p e r n ~ i t s  t h e  s u r f a c e  t e n s i o n  t o  be measured over t h e  p r o f i l e  o f  t h e  

drop wi th  a p r e c i s i o n  of about 0.5% us ing  t h e  Bashfor th  and Adam1 techniqu-. 

Th i s  w a s  v e r i f i e d  l a s t  year  w i t h  a computer program which f i t t e d  t h e  e n t i r e  

measured p r o f i l e  t c  c a l c u l a t e d  s o l u t i o n s  of t h e  Y o ~ n g - ~ a p l a c e  equation.  

Thus we have some c.onfidence i n  t h e  measurements themselves. Addi t ionz l  

exper imental  d e t a i l s  w i l l  be given when necessary  w i t h  t h e  p r e s e n t a t i o n  of 

t h e  da ta .  

Surface  Tension Measurements -- 

The i n i t i a l  s u r f a c e  t e n s i o n  measurements used q u s r t z  cups t o  contairl  

t h e  s e s s i l e  drops.  Fig.  1 reproduces d a t a  shotm i n  l a s t  y e a r ' s  r e p o r t .  

Although t h e  s u r f a c e  t e c s i o n  appears  t o  decrease  l i n e a r l y  w i t h  teiaperature 

above 120 O C ,  t h e r e  i s  a luaximum i n  t h e  curve a t  chat  temperature.  Th i s  

kind of behavior is u s u a l l y  i n t e r p r e t e d  as evidence of impuri ty  s e g ~ e g a t i o n  

which b u i l d s  up a t  low temperatures  because desorp t ion  is too  slow t o  kezp 

t h e  s u r f a c e  c lean.  Th is  s e a e d  t o  be a reasonable  exp lana t ion  because 

hours  were required t o  cool  t h e  drop t o  t h i s  temperature  range a f t e r  t h e  

i n i t i a l  h igh t e m p e r a t ~ r e  bake, a time s u f f i c i e n t  t o  ~ d s o r b  macy ~cano layers  

of gas  from t h e  r e s i d u a l  atmosphere of t h e  vacuum system which was a t  a 
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p r e s s u r e  of 1 0  t o r r .  



Analysis  of subsequent measurements proved -. t h l s  adsorp t ion  explanat  ion 

t o  be wrong i n  t h a t  i:., impuri ty  d i d  not  a r i g i n a t e  i n  t h e  r e s i d u a l  g a s e s  i n  

t h e  vacuum system. When t h e  drop was heated f o r  twenty hours  a t  570 'C and 

then  cooled,  t h e  d a t a  shown a s  open c i r c l e s  were obtained.  The Lengthy heat  

t rea tment  enhanced t h e  low temperature  depress ion  of t h e  s u r f a c e  :ension and 

moved t h e  maximum i n  t h e  d a t a  t o  a  h igher  t a p e r a c u r e .  An a d d i t i o n a l  twenty 

iiovr heat  t r e a t s e n t  lowered t h e  s u r f a c e  t ens ion  ever, more d r a m a t i c a l l y  z s  

shown by t h e  open boxes. The vacuum l e v e l  dur ing t h e s e  measurements was 

about t o r r .  I n  subsequent experiments on o t h e r  d rops  t h e  e n t i r e  vacuum 
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system \..as baked and t h e  p r e s s u r e  was i n  t h e  mid 10 t o r r   ran,^. Measure- 

ments a t  t h i s  lower p r e s s u r e  conf i rmej  t h e  behavior shorn i n  Fig .  1, 

suggest ing t h e  r e s i d u a l  g a s e s  were not  t h e  adsorbed spec ies .  

This  obse rva t ion  t h a t  t h e  temperature  and hea t ing  time c o n t r o l  t h e  

behavior a t  lc..er L,aperatures i r .d ica tes  a contamination of t h e  sample by t h e  

c r u c i b l e  a t  h igh temperatures .  A l t h o ~ d n  gal l ium is  known t o  a t t a c k  quar tz  a t  

temperatures  over  1000 0 C [ 3 1  , it was thought t o  be non-react ive  a t  .he 

maxinlum temperatures  used i n  our  experiments. I t  is  poss ib le ,  however, t h a t  

t h e  contamination does  not  come <lbout from g a l l i u a  d i s s o l v i n g  t n e  c r u c l b l e  

but  r a t h e r  from g a s e s  o r  o t h e r  components of t h e  c r u c i b l e  d i f f u s i n g  i n t o  t h e  

gal l ium.  A l t e r n a t i v e l y ,  t h e  s i l i c a  g l a s s  t u b e  forming t h e  vacuum j a c k e t  

could r e l e a s e  g a s e s  dur ing  bakeout which r a c t  a t  t h e  gal l ium s u r f a c e .  A 

l i k e l y  cand ida te  f o r  t h i s  would be water which is t h e  primary cor~s t i tu :en t  

desorbed f r o n  quar tz  a t  600 O C ' ~ ' .  Thus a p o s s i b l e  r e a c t i o n  t a k i n g  p l a c e  

rnight be t h e  following: 



-+ 
2Ga + H23 + Ga20 + H2 

Another p o s s i b i l i t y  f o r  contamination e x r s t s ,  however. S i l i c o n  contaminat ion 

of gal l ium i n  quar tz  c o n t a i n e r s  has been tud ied  in connect ion wi th  t h e  growth 

[ 4  I o fGaAs  . 
Support f o r  t h e  ox ide  contamination hypothesis  is sho1.m i n  Fig .  2. Th i s  

sample was l raded i n t o  t h e  cup a s  a s o l i d  under h igh vacuum c o n d i t i o n s  i n  an 

a t tempt  t o  avoid adsorbed gases  a t  the quartz-gall ium i n t e r f a c e .  The gal l ium 

was f rozen  under a lcoho l  in t h e  form of a c y l i n d r i c a l  ingot  w i t h  a t h i n  

rhenium wi re  along t h e  a x i s .  The rhenium w i r e  was a t t ached  t o  i r o n  s l u g s  

which could be moved magnet ical ly  through t h e  s i l i c a  b a l l  of t h e  vacuum 

system. With t h i s  s o l i d  loading technique,  t h e  cup could be baked a t  h igh 

temperature  and t h e  gal l ium loaded i n t o  it without breaking vacuum and back 

f i l l i n €  wi th  an i n e r t  gas ,  a procedure which undoubtedly r e s u l t s  i n  some 

oxygen and water adsorp t ion  on t h e  quar tz  cup. When t h i s  procedure was 

followed and t h e  gal l ium s ~ b s e ~ u e n t l y  heated t o  760 O C  f o r  twenty-four hours, 

t h e  s u r f a c e  t ens ion  v a r i e d  wi th  temperature  a s  shown by t h e  s o l i d  p o i n t s  i n  

r i g u r e  2;  a very s t rong  s u r f a c e  t ens ion  depress ion  a t  low temperatures  w i t h  a 

maximum a t  about 300 "C. This  behavior resembles t h a t  shown in Fig. 1. 

Hydrogen gas  was then edmitted t o  t h e  txhr  through a l i q u i d  n i t r o g e n  cooled 

t r a p  t o  about atmospheric pressure .  When t h e  gal l ium was heated t o  550 O C  f o r  

30 minutes,  t h e  surf  a c e  t e n s i o n  a t  low temperatures Lncreased d r a m a t i c a l l y  and 

e f f e c t i v e l y  removed t h e  maximum i n  t h e  curve. These d a t a  a r e  shown a s  open 

c i r c l e s  i n  Fig. 2 and suggest  t h a t  an ox ide  a t  t h e  s u r f a c e  is being reduced by 

heat ing i n  hydrogen, t h e  second c lean ing  procedure mentioned in t h e  In t roduc t ion .  



The sur face  oxides ia t h i s  experiment may not have been i d e n t i c a l  t o  

those formed with t he  drop of Fig. 1 because of t he  d i f f e r e n t  procedures 

used t o  form the  s e s s i l e  drop. There was prcbably a heavy oxide l aye r  

present  when the  gal l ium was loaded a s  a s o l i d  because t he  ingot  was 

exposed t o  air  during t r a n s f e r  t o  t he  vacuum system. Larger sur face  . .. 

tension depressions w e r e  found a t  low temperature i n  t h i s  ca se  than when -.' 
t he  l i q u i d  loading procedure was used. This  high concentrat ion of oxide 

may have l ed  t o  s i l i c o n  contamination of the  gal l ium by ciissolving t h e  

qua-;tz during the  extensive high temperature bake. 

A t h i r d  experiment w a s  perfomed i n  t he  quar tz  cup. P r i o r  t o  forming 

t h e  sessile drop t h e  system was evacuated and the  cup and adjacent  tube 

baked a t  900 OC f o r  e ighteen hours i n  an attempt t o  thoroughly e l imina te  

water. The gallium w a s  then added t o  t h e  cup a s  a l i q u i d  and t h e  system 
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e l l ~ c u a t t d  LO :he 10 t o r z  range. After heat ing the  gallium t o  about 

100 "C t o  desorb weakly bound gases,  hydrogen was admitted t o  t he  tube 

through a copper c o i l  imnersed in l i q u i d  N Heating t o  progressively 2'  

higher temperatures f o r  per iods 06 about 30 minutes and then cooling t o  t he  

melting poin t  and measuring t h e  sur face  tens ion  es tab l i shed  t h a t  s i gn i f i can t  

c leaning of t h e  sur face  occcrred a t  temperatures a s  low a s  316 "C. After 

30 minutes a t  460 "C, t h e  low temperature depression of t h e  sursace tension 

was found below 50 OC and was so  s l i g h t  it  could not  pos i t i ve ly  be separated 

from measurement imprecision, i.e., it was about 7 mJ /m2 ,  which is 1% of 

t h e  sur face  tension.  The gal l ium was then heated t o  550 O C  f o r  f i f t e e n  

minutes and photographed. The su r f ace  tens ion  was measured a f t e r  equ i l i b r a t i on  



a t  a ncmker of lower temperatures. These da t a  a r e  shown a s  f i l l e d  c i r c l e s  

i n  Fig. 3. We a l s o  show a s  f i l l e d  squares  t h e  r e s u l t s  obtained a f t e r  

h e a t i q .  t o  600 O C  f o r  eighteen hours. This ho t t e r  and longer heat t reatment  

seens t o  have r a i s ed  t h e  sur face  tens ion  a t  t h e  m e l t i k  point ,  but t h e  

change is  only 2 rnJ/rcL, w e l l  wi thin t h e  normal measurement imprecision. The 

general  agreement of t h e  two sets of da ta  is  good. 

We see, therefore ,  t h a t  prolonged h e a t h g  irr hydroge? with t h e  

quartz  cup seems t o  have l i t t l e  e f f e c t  on t h e  .sirface tension a t  lower 

temperatures i n  con t r a s t  t o  t h e  behavior in t h e  vacuum experiments t yp i f i ed  

i n  Fig. 1. Moreover, t h e  sur face  tens ion  now v r r i e s  monotonically with 

temperature; t h e r e  is no i d e n t i f i a b l e  r e l a t i v e  maximum in ti-- data .  The 

temperature va r i a t i on ,  however, does not seem t o  be l i n e a r .  The depar ture  

from l i n e a r i t y  could be caused by impur i t i es  in t h e  hydrogen gas  being 

adsorbed a t  low temperatures. An increase  in sur face  tension of 1% t o  about 

2 718 m J / m  a t  t h e  melting point  would e f f e c t i v e l y  l i n e a r i z e  t h e  da ta .  

After  t h e  measurements described above, :he system was evacuated. When 
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t h e  pressure had dropped t o  t h e  high 1 0  t o r r  range, t h e  gallium was heated 

f o r  about 15  hours a r  550 OC. A substquent measurement of sur face  tens ion  

a s  a funct ion of temperature produced t h e  da ta  p lo t t ed  a s  open t r i a n g l e s  fn 

Fib. 3. The sur face  tens ion  has been reduced s i g n i f i c a n t l y ,  but t h e  

v a r i a t i o n  with temperature is  s t i l l  monotonic. This is q u i t e  d i f f e r e n t  from 

t h e  r e s u l t s  c i t e d  earlier and i l l u s t r a t d  in Fig. 1. It is not  c l c a r  

whether t h e  change has been brodght about by t h e  extended high temperature 

treatment p r i o r  t o  forming t h e  drop o r  by i n i t i a l l y  heating in hydrogen 

r a t h e r  than vacutim. The r e s u l t s  using quartz cups seen t o  be very 

dependent on t h e  h i s to ry  of t h e  sample; i .e . ,  t h e  atmosphere and pr wious 



heat  treatment.  Although t h e  r e s u l t s  i n  hydrogen a r e  encouraging, t h e  

depression of surf  a c e  tens ion  with heat ing in vacuum ind ica t e s  a container 

r eac t ion  which raises quest ions about t h e  w p l e  pu r i t y  in a l l  of t h e  

experiments. Presumably t h e  contaminant is +n oxide which is reduced by 

t h e  hydrogen, but t h e r e  may be an assoc ia ted  s i l i c o n  contaminant a l s o  

playing a ro l e .  

The ambiguous r e s u l t s  with quartz  led u s  t o  t r y  a n~smber of o t t e r  cup 

mater ia l s .  S e s s i l e  drop experiments were performed i n  cups of alumina, 

boron n i t r i d e ,  and two types of graphi te .  For t h e  most p a r t  these  ma te r i a l s  

ve re  i n f e r i o r  t o  t h e  quartz.  Cups of high pu r i t y ,  p y r o l i t i c  g raphi te ,  

however, gave more reproducible  and corrsistent r e s u l t s  than t h e  o ther  

mater ia l s .  A series of measurenents were made under a v a r i e t y  of condi t ions  

-' ; one of these  g raph i t e  cups in an a t t lmp t  t o  see  i f  t h e  sur face  tension 

changed sys temat ica l ly  with heat treatmeat and atmosphere. To e l imina te  

cons idera t ions  of changing drop s i z e s  and cup o r i e n t a t i o n s  o r  uncont ro l lab le  

d i f f e r ences  i n  t h e  gallium introduced during preparat ion,  ~11  of t h e  da ta  

we ,-ill show have been taken with t he  same drop. These r e s u l t s ,  however, 

,ire reproducible  from drop t o  drop. 

After  t h e  drop was formed using t h e  l i qu id  loading technique, t h e  

system pressure quickly reached t h e  low 10'~ t o r r  region. The drop was 

h e a t d  overnight t o  about 85 O C  t o  desorb weakly at tached gases.  The 
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sur face  tens ion  was under 600 mJ/n a t  t h i s  temperature a f te rwards  in- 

d i ca t i ng  no s i g n i f i c a n t  c leaning of t h e  su r f ace  had occurred. The temperature 

was then r a i s ed  t o  185 "C f o r  two hours, t h e  prersure  i n  t h e  system being 

about t o r r .  When t h e  drop was cooled t o  t h e  melting poin t ,  t h e  sur face  
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tension was meslsured t o  be 696 mJ/m indicating a subs tant ia l  cleaning of 

t h e  surface had been achieved. Subsequent heating f o r  short  periods t o  

progressively higher temperatures s l i g h t l y  increased the  m d t l n g  point 

surface tension. Fig. 4 shows tha t  t h e  temperature va r i a t ion  of the  

surface tension a f t e r  heating t o  465 "C is approximately l inea r  with no 

evidence of a maximum. The vacuum leve l  during these measurements was 

about 2 x t o r r .  Subsequently the  drop was heated t o  565 "C f o r  

eighteen hours with the  r e s u l t s  shown i n  Fig. 5. These r e s u l t s  do not 

d i f f e r  s igni f icant ly  from those shown in Fig. 4. The important f a c t  is 

tha t  the  measured surface tension has not been changed with a prolonged 
. 

high temperature bake, i n  cont ras t  t o  the  r e s u l t s  with quartz cups in 

similar  vacuums. 

After these measurements hydrogen was admitted t o  the  vacuum system in 

the  normal manner and t h e  temperature vas ra ised  b r i e f l y  t o  550 "C. This 

produced r o  s igni f icant  c k n g e s  from t h e  data of Fis. 5. An overnight 

heating t o  500 O C  produced the  r e s u l t s  shown in Fig. 6. Again, there  does 

not seem t o  be any s igni f icant  change from the  r e s u l t s  in vacuum shown in 

Fig. 5. 

A d i r e c t  comparison of the  da ta  obtained a f t e r  prolonged high teaperature 

heating with graphite  cups in vacuum and hydrogen and with quartz cups in 

hydrogen is made in Fig. 7. We have simply plot ted t h e  data  shown in Figs. 

3, 5, and 6 on one graph; no adjustment o r  normalization has been used. As 

is evident, the  measurements a r e  in agreement and suggest tha t  t h e  surface 

tension of gallium does not vary l inea r ly  with temperatu-re. A l e a s t  squares 

non-linear f i t  t o  ar? equation of the  form 



gave f i n a l  parameter es t imates  of 

a = 709.92 (.57) 

b = -.I60275 x (. 5311 x 10'~) 

c = .923122 x (. 9474 x 

where t h e  numbers i n  parentheses a r e  t h e  approximate standard deviat ions.  For 

b t h e  standard devia t ion  is l a r g e r  than t h e  es t imate  of t h e  parameter ind ica t ing  

that t h i s  coe f f i c i en t  is negl ig ib le .  Th~s, t he  dependence is e s s e n t i a l l y  

quadrat ic  . 
The general  agreement of t h e  vacuum and hydrogen measurements in g raph i t e  

with t h e  hydrogen measurements in quar tz  r e in fo rces  our f e e l i n g  t h a t  gall ium 

picks up an oxide impurity when it is heated t o  high temperature in quartz .  

This  oxide presumably is e f f e c t i v e l y  reduced i n  kydrogen but i n  vacuum i t  I 

segregates  a t  t h e  sur face  and depresses  t h e  sur face  tens ion  a t  low temperatures. 

A superposi t ion of Fig. 1 on Fig. 7, however, r evea l s  an add i t i ona l  complication. 

Although t h e  high temperature d a t a  of Figs. 1 and 7 superpose n ice ly ,  a t  and 

below 200 O C ,  t h e  sur face  tension i n  t h e  quartz  cup i n  vacuum rises above t h e  

da ta  of Fig. 7. The maximum of Fig. 1 which occurs a t  about 150 O C  is about 6 
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mJ/m higher than t h e  cunre of Fig. 7. This  is not a l a r g e  discrepancy but a 

reexamination of t h e  o r i g i n a l  d a t a  i nd i ca t e s  t h a t  i t  is r e a l .  It may r e s u l t  

from t h e  f a c t  t h a t  gall ium oxides  seem t o  form in patches r a t h e r  than i n  a 

uniform sur face  l aye r .  T h s ,  it is poss ib l e  t h a t  t h e  sur face  is no longer 

s t r i c t l y  described by t h e  Young-Laplace equation and t h e  Bashf o r t  h and Adams 

ana lys i s  is  inval id .  



Auger Spectrometer Experiments 

As mentioned previously,  t h e  l a c k  of any independent characterization of 

t h e  sur face  is a s e r ious  problem in sur face  tension measurements. A number of 

modern sur face  ana lys i s  techniques are a v a i l a b l e  which.might f i l l  t h i s  need, 

but they have been appl ied infrequent ly  t o  l iqu ids .  The high vapor pressure  

of most l i qu ids ,  of course, reduces t h e  range of ma te r i a l s  which can be s tudied.  

Nevertheless, t h e  complementary u se  of t he se  techniques wi th  sur face  tension 

measurements seems f e a s i b l e  f o r  some l i q u i d s  and arch s t u d i e s  are being 

attempted by s eve ra l  groups. 

Liquid gallium is compatible with high vacuum instruments because of ' its 

low vapor pressure and melting point.  It m e l t s  near 30 O C  and t h e  vapor 

pressure is about t o r r  a t  700 'C s o  t h a t  a l a r g e  temperature range i s  

usable.  We have been studying l i q u i d  and s o l i d  gallium i n  an AYger spectrometer. 

Our specimens a r e  in t h e  form of sessile drops and a r e  contained in cups of 

g r aph i t e  o r  rhenium which can be heated t o  wer 500 O C  and cooled t o  low 

temperatures. The .drops are formed using t h e  l i q u i d  loading technique descr ibed 

previously.  The geometry of t h e  spectrameter is not  ideal f o r  t he se  measurements 

because t h e  drops must be posit ioned w e l l  off  t h e  axis of t h e  be l l  jar in 

order  t o  be within working range of t h e  hor izonta l  c y l i n d r i c a l  mirror  analyzer.  

This  makes simultaneous Auger a n a l y s i s  of t h e  sur face  and photography of t h e  

drop p r o f i l e  impossible. Furthermore, t h e  cup cannot be p rec i se ly  al igned 

with t h e  hor izcn ta l .  Thus sur face  tens ion  measuranents in t h e  presen t  spectro- 

meter a r e  less accu ra t e  than those we have been discussing.  

Although the  sur face  of t h e  drop during Auger ana lys i s  is  d i f f i c u l t  t o  

observe v i sua l ly ,  a video image can be obtained by a technique s iml l a r  t o  t h a t  



used i n  scanning e l ec t ron  microscopy (SE!4). A primary e l ec t ron  beam is 

ra s t e r ed  over t h e  sur face  of t h e  specimen and t h e  l o c a l  change in secondary 

e l ec t ron  emission is used t o  In t ens i t y  modulate a video monitor in synchroniza t im 

with t h e  tuo-dimensional p o s i t i o ~  of t h e  e l ec t ron  beam. This imaging mechanism 

revea l s  sur face  f e a t u r e s  which a r e  d i f f i c u l t  t o  see op t i ca l l y .  Although t h e  

video images do not have high con t r a s t  o r  reso lu t ion ,  they provide va luable  

information about t h e  sur lace.  Furtt.ermore, t h e  video imb&ing permits t he  

sample o r i en t a t i on  t o  be adiusted so t h a t  se lec ted  regions may be analysed 

with t h e  Auger spectrometer. The instrument is equipped with an ion gun and 

a gas  handling system so  t h a t  t h e  sample sur face  can be sput tered.  In  

addi t ion ,  a quadrupole mass spectrometer permits r e s idua l  gas  ana lys i s .  The 

pumping is provided by l i q u i d  n i t rogen  cooled sorp t ion  pumps and ion pumps 

s o  t h a t  t h e  system is o i l  f r ee .  

Nter forming t h e  sessile drop i n  t he  cup and evacuating t h e  system t o  

t h e  low lo-' t o r r  region, an Auger spectrum of t h e  sur face  has in tense  

oxygen and carbon l . ines a s  seen in Fig. 8. Although t h e  video image of t h e  

drop is uniform and f e a t u r e l e s s  a s  would be expected of a l i q u i d ,  t h e  

sur face  is a c t u a l l y  so l id .  I f  t h e  electrosl  gun is l e f t  on f o r  a number of 

hours, a dark rectangular  spot  develops where the beam has been r a s t e r ed  

over t h e  sur face  which p e r s i s t s  unchanged and s t a t i ona ry  a f t e r  t h e  beam is 

turned off  . The amplitude of t h e  Auger lines vary d i f f e r e n t l y  wer t h i s  

dark  region, oxygen decreasing and carbon increasing a s  t h e  beam is moved 

from t h e  cen te r  of t h e  r a s t e r  a r ea  t o  an unbombarded area.  This  does not 

neces sa r i l y  mean that t h e  concentrat ion of these  c o n s t i t u t e n t s  is varying i n  

t h e  same way because t h e  Auger l i n e  i n t e n s i t i e s  of d i f f e r e n t  elements a r e  

i n t e r r e l a t e d .  



The loading technique, therefore ,  p.;.oriuces a sessile drop with a s o l i d  

oxide surf ace  l aye r  containing s i g n i f i c a n t  concentrat  ions  of carbon. Our 

experience with t h e  sur face  tens ion  measurements suggested t h i s  l aye r  might 

be  decomposed and desorbed by heating t o  a moderate tepperature .  The e f f e c t  

of heat treatment on t h e  gallium sur face  rjas examined by heat ing t h e  drop 

b r i e f l y  t o  progressively hf-gher tepperatures ,  then cooling and t a w  Auger 

spectra .  Aft= heating t o  250 O C  f o r  f i v e  minutes, t he  oxygen line was 

halved and t h e  carbon l i n e  was a l s o  reduced somewhat. However, t h e  sur face  

was no longer uniform and featureless. A "white" s t r e a k  ( a s  seen on t h e  

video p ic ture)  developed which gave Auger l i n e s  f o r  oxygen and carbon a t  

least twice t h e  amplitude of t h e  adjacent ,  f e a t u r e l e s s  surface.  T h s  it 

appears  t h a t  t h e  thermal decomposition and desorpt ion of t h e  sur face  l a y e r  

is na t  uniform, o r  t h a t  segregation and growth may occur during t h e  heat ing 

and cooling prccedure. The sur face  of t h e  drop a f t e r  heating is, of course,  

no longer so l id  and flows can develop. As t h e  drop cools  a phenomena is 

seen whlch we  do not  .yet f u l l y  understand. The drop sur face  is i n i t i a l l y  

f e a t u r e l e s s  a f t e r  heat ing t o  400 O C .  On cooling t o  about 120 OC, however, 

small black spo t s  appear near t h e  apex of t h e  drop and move down t h e  s i d e  

co l l ec t i ng  in to  a broad band on t h e  sur face  above t h e  cup edge. An Auger 

spectrum of t h e  depos i t  shows carbon but no noxygen. This process was 

observed In both rhenium and g raph i t e  cups. The Auger spec t ra  of areas of 

t h e  ju r face  without p r e c i p i t a t e s  have oxygen and carbon lines which have 

diminished t o  t h e  point  a t  which they are ind is t inguishable  from t h e  noise .  

Concurrently t he  gallium l i n e s  become more intense.  



Other e x p e r b e n t s  have shown that heat ing t o  200 O C  f o r  s e v e r a l  hours 

produces a s u r f a c e  which i s  c l e a n  weep;  f o r  t h e  p r e c i p i t a t e s  descr ibed 

above. The s u r f a c e  of t h e  p r e c i p i t a t e s  remains c l e a n  f o r  long periods:  no 

oxygen o r  carbon was de tec ted  a f t e r  twenty-four hours at a p r e s s u r e  of 6 x 

t o r r .  Bcposure t o  t h e  r e s i d u a l  atmosphere f o r  a  number of days  produced 

a s i g n i f i c a n t  carbon l i n e  and a  somewhat snaller oxygen l i n e .  Th is  is  t o  be 

expected because CO is  an important r e s i d u a l  g a s  in t h e  vacuum system 

presumably because of t h e  hot f  i: .-mts i n  t h e  i o n i z a t i o n  gauge. 

I n  a d d i t i o n  t o  carbon and oxygen t h e  measurements in t h e  v i t r e o u s  

g r a p h i t e  cup found some p r e c i p i t a t e s  wi th  a  h igh s u l f u r  con ten t .  An Auger 

a n a l y s i s  of t h e  cup wall a l s o  found some s u l f u r .  We suspect  t h a t  t h e  

s u l f u r  was introduced i n  a  g r ind ing  procedure used on t h e  cup dur ing modi- 

f  i c a t i o n .  A more s t r i n g e n t  cup c lean ing  procedure e l iminated o r  g r e a t l y  

reduced s u l f u r  i n d i c a t i o n s  i n  l a t e r  experiments. Severa l  p r e c i p i t a t e s  on 

one drop gave s t r o n g  l e a d  l i n e s .  

Another s u r f a c e  c lean ing  procedure w e  have t r i e d  is i o n i c  s p u t t e r i n g .  

Within t e n  seconds of t h e  i n i t i a t i o n  of s p u t t e r i n g  wi th  2.5 keV argon ions ,  

t h e  uniform, s o l i d  s u r f a c e  f i l m  breaks  up i n t o  l ~ r g e  i s l a n d s  which move and 

r o t a t e  about t h e  bombardment a r e a .  These i s l a n d s  s h r i n k  i n  t h e  ion beam and 

even tua l ly ,  when t h e  s u r f a c e  is s u f f i c i e n t l y  c lean,  f l u i d  f low develops  

which b r i n g s  smal l  i s l a n d s  from t h e  rest of t h e  drop t o  t h e  s i t e  of s p u t t e r i c g .  

When t h e  ion beam is turned o f f ,  t h e  motion of t h e  i s l a n d s  a b r u p t l y  h a l t s .  

With corltinued s p u t t e r i n g ,  t h e  number and s i z e  of t h e  i s l a n d s  decr2ases .  

Eventual ly  t h e  flow slows and s t o p s  wi th  a  few r e s i d u a l  i s l a n d s  r e s t i n g  near  

t h e  cup ddge below t h e  ion beam impact a r e a .  An Auger spectrum of t h e  s u r f a c e  



a f t e r  spu t te r ing  f o r  severa l  hours is shown i n  Fig. 9. This  is i d e n t i c a l  

t o  t h e  r e s u l t  found a f t e r  thermal c leaning and shows no carbon o r  oxygen. 

The same spectrum is obtained if t h e  gallium is f rozen  and sput te red  fu r the r .  

Although the re  a r e  o ther  explanat ions f o r  t h e  processes seen on t h e  

sur face  during sput te r ing ,  t h e  generat ion of flq:id flow by sur face  tens ion  

g rad i en t s  comes immediately t o  mind. I n  t h i s  model t h e  sput te r ing  produce5 

and maintains a c lean a r ea  of high sur face  tension. If ad jacent  a r e a s  have 

a lower sur face  tension because of adsorption, a high u r f a c e  tens ion  

grzd ien t  w i l l  exist about t h e  periphery of t h e  sput te r ing  site. The 

t angen t i a l  shear stress generated on t h e  l i q u i d  sur face  by t h e  grad ien t  
. 

w i l l  set up a f l u i d  flow on t h e  sur face  which w i l l  be d i r ec t ed  from t h e  

area of low sur face  tens ion  i n t o  t h e  a r ea  of high sur face  tension,  i.e., 

i n t o  t h e  sput te r ing  site. Presumably t h i s  becomes a convection node wi th  

t h e  sur face  flow enter ing t h e  drop volume a t  t h a t  point.  I f  t h e  sput te r ing  

is  in te r rup ted ,  t h e  sur face  quickly equ i l i b r a t e -  and t h e  flow stops.  A s  

t h e  sur face  becomes c leaner ,  t h e  grad ien t  is  reduced arid t h e  f l u j d  flow 

disappears .  

A sur face  cleaned by spu t t e r ing  w i l l  apparent ly  s t ay  c lean  f o r  days 

wi th  no change in  t h e  Auger spectrum o r  any add i t i ona l  i s land  formation. 

I f ,  however, t h e  gal l ium is heated b r i e f ly ,  on cool ing a p r e c i p i t a t i o n  

process occurs  which is s imi l a r  t o  t h e  one described previously.  S-11 

dark  island: appear and descend from t h e  apex of t h e  drop p i l i n g  up i n  a 

b e l t  of p r e c i p i t a t e s  a t  t h e  base. An Auger spectrum of t h e s e  p r e c i p t t a t e s  

again shows a s t rong carbon line and no oxygen. Most of t h e s e  p r e c i p i t a t e s  

disappear under ion spu t t e r ing  within a minuce which Ind i ca t e s  they a r e  



very  t h i n .  Repeated s p u t t e r i n g  and hea t ing  seems t o  reduce t h e i r  numbers, 

but  it is not  c l e a r  t h a t  t h e y  can  be t o t a l l y  e l h i n a t e d  i n  t h i s  way. 

Our unders tanding of t h e s e  s p u t t e r i n g  anci prec  i p i t a t  i-on phenomena is  

l i m i t e d  wi th  major q u e s t i o n s  t o  r e s o l v e  about t h e  o r i g i n  and evo lu t ion  of 

carbon i n  t h e  gal l ium.  It does  n o t  seem like1.y tha  - carbon c o n c e n t r a t i o n  

can be  only  t h a t  o r i g i n c l l y  adsorbed on t h e  s u r f a c e ,  .?bly a s  C 0 2 .  We 

suspec t  a con t inu ing  source  of contaminat  ion  which is l o g i c a l l y  t h e  g r a p h i t e  

cup. Occasional ly  l a r g e  and t h i c k  carbon i s l a n d s  have been seen which we 

f e e l  must llave o r i g i n a t e d  i n  t h e  cup. Thus it is p o s s i b l e  t-hat  t h e  cup 

s u r f a c e  is f l a k i n g  o f f  under r e p a t e d  hea t ing  and coo l ing  c y c l e s .  It does  

seem t h a t  t h e r e  was s i g n i f i c a n t l y  1,;s carbon wi th  rhenium cups.  However, 

t h i s  work is very  l i m i t e d  because t h e  ga l l ium drops  tend co run o u t  of 

rhenium cups probably because of good we t t ing .  Some carbon is c e r t a i n l y  

due t o  long exposures t o  t h e  r e s i d u a l  g a s e s  i n  t h e  vacucm system because it 

i s  uniformly p r e s e n t  on t h e  s u r f a c e  and no t  a s s o c i a t e d  wi th  a p r e c i p i t a t e ,  

a t  least b e f o r e  heati-.  It is p o s s i b l e  t h a t  t h e  s p u t t e r i n g  does  no t  

e f f e c t i v e l y  remove carbon from t h e  s y s t e n  but j u s t  d i s p e r s e s  it i n t o  t h e  

v u . . ~ m e  a s  very  f i n e  p a r t i c l e s  s o  t h a t  it is  n o t  seen. Heating then  could 

lead t c  agglomeration and reappearance a t  t h e  s u r f a c e  because of buoyancy 

and f l u i d  flow. 

A s  mentioned e a r l i e r  d e  cannot make a c c u r a t e  surf  a c e  t e n s i o n  measdre- 

ments on t h e  sessile drops  i n  t h e  Auger spect rometer  because of geometr ic  

and alignment. probleins. We have, however, measured t h e  su r f  a c e  t e n s i o n  of 

a drop which -as s p u t t e r e d  f o r  s e v e r a l  hours and whose Auger spectrum 

i n d i c a t e d  ;? c l a n  s u r f a c e .  I n  o rde r  t o  make t h e  measurement, t h e  drop was 

r e p o s i t i o n e d  in  t h e  Auger spect rometer  a f t e r  s p u t t e r i n g  and a n a l y s i s  so 



t h a t  i t s  p r o f i l e  could be photographed i n  p a r a l l e l  l i g h t .  The s u r f a c e  

2 
t e n s i o n  was about 700 m J / m  . Recogni;. ~ n g  t h a t  t h i s  may t ? inaccura te ,  it 

seems u n l i k e l y  t h a t  t h e  e r r o r  could be more than a few percent .  It seems 

2 
beyond p o s s i b i l i t y  that t h e  s u r f a c e  t e n s i o ~  could be  as high as 806 m ~ / m  , 

t h e  anomously high v a l u e s  found prev ious ly  i n  two ins tances[21.  A new 

spectrometer is being assembled which w i l l  permit a c c u r a t e  surf  a c e  t e n s i o n  

measurements and s h u l t a n e o u s  Auger s p e c t r a l  a n a l y s i s .  We b e l i e v e  t h a t  it  

w i l l  permit a reso1llt:on t o  t h i s  discrepar.cy i n  p rev ious  measurements. 

Discussion 

The experiments wi th  gal l ium i n  t h e  Auger specLrometer have shown t h e  

primary s u r f a c e  i m p u r i t i e s  t o  be 7xygen and carbon. A r e l a t i v e l y  low 

temperature  hea t ing  i n  vacuum can c lean  t h e  s u r f a c e  of oxygen but t h e  :arbon 

i s  e i t h e r  not  e f f e c t i v e l y  desorbed or  i s  being resupp l ied ,  poss ib ly  f r o u  t h e  

c r u c i b l e .  The carbon a f t e r  heat ing is conta ined i n  t h i n  p l a t e s  which 

c o l l e c t  on t h e  drop s u r f a c e  near  t h e  cup edge. Thus t h e  s u r f a c z  df t h e  

drop,  a l though  clea'n f o r  t h e  most parc,  w i l l  have  region^ i n  which i t  i s  no t  

l i q u i d .  The e n t i r e  drop shape in t h i s  case is  n o t  desc r ibed  p r e c i s e l y  by 

t h e  Young-Laplace equation.  Because t h e  p r e c i p i t a t e s  c o l l e c t  a t  t h e  base, 

however, t h e  r e s u l t a n t  d i s t o r t i o n  of t h e  drop near  t h e  apex may be small. 

Thus t h e  s u r f a c e  t ens ion  v a l u e s  c a l c u l a t e d  by t h e  Bashfor th  and Adams 

technique above t h e  d ~p maximum may n o t  be seridusl-:r a f f e c t e d .  Assuming 

such a p r e c i p i t a t i o n  phenomenon is a l s o  occur r ing  i n  our s e s s i l e  drop 

experiments,  t h e  f a c t  t h a i  ve ry  n e a r l y  t h e  same s u r f a c e  t z n s i o n  Is cal- 

c u l a t e d  a t  v a r i o u s  p o i n t s  on t h e  drop i n  t h i s  r e g i o n  sugges t s  t h e  p r o f i l e  

i s  no t  severe ly  per turbed.  We do not  know, of course ,  t h a t  p r e c i p i t a t i o n  



is occurring in the  sessile Crop experiments. The cups a r e  d i f f e r e n t  forms 

of g r aph i t e  from d i f f e r e n t  sources in t h e  two experiments; t h e  Auger cup is 

"vitreous" g raph i t e  and t h e  sessile drop cup is high pu r i t y  p y r o l i t i c  

graphi te .  S e s s i l e  drop mmsurenents in a campanion v i t r e o u s  g raph i t e  cup 

indicated s o m e  sur face  tens ion  depression a t  low temperatures, but it is 

d i f  i c u l t  t o  compare t h e  r e s u l t s  because of v a r i a t i o n s  i n  procedure i n  t h e  

two groups of measu anents. The approximate a g r e a e n t  a t  t h e  melting point  

of t h e  sur face  tension va lues  shown i n  Fig. 7 with t h a t  ffieasured f o r  a drop 

t h a t  was sput tered c lean  in t h e  Auger spectrometer is add i t i ona l  w i d m c e  

t h a t  t h e  prec ip i tb tes ,  if present ,  a r e  no t  having much e f f e c t  on t h e  drop 

shape. 

The sessile drop sur face  tension measurements and t h e  measurements and 

observat ions in t h e  Auger spectrometer danons t ra te  a s t rong s e n s i t i v i t y  on 

cup mater ia l  and heating nis tory.  Cer ta in ly  quartz  cups used a t  high 

temperatures in vacuum r e s u l t  in contamination cf t h e  gallium wi th  what 

seems t o  be an oxide 'because of tile ease with wkich it is reduced Li 

hydrogen. The gallium may a l s o  be contaminated wich s i l i c o n  which has 

l i t t l e  e f f e c t  on sur face  teas ion  va lues  presumably because of low con- 

c e n t r a t  ion o r  no tendency f o r  surf  ace  segregation. 

The sur face  contami.nation by t h e  r e s idua l  gases  in t h e  vacuum system 

is uiucb less s ign i f i can t  than t h a t  o r ig ina t ing  in t h e  cup. We have found 

i n  t h e  s e s s i l e  drop experlnents  t h a t  svr face  tens ion  va lues  a t  t h e  melting 

-8 
point  dec l ine  very s l?v ly  z -racuum l e v e l s  of 10 t o  lo-' t o r r .  This  is  

a l s o  t r u e  i n  t h e  hydrogen atmospheres. The Auger measurements s u p p o r ~  t h i s  

observation. 



The general agreement of the  surface tension values measured i n  

graphite  cups i n  vacuum and hydrogen with the  values found i n  quartz cups in 

hydrogen is shown i n  Fig .  7. Although t h i s  is strong evidence the  gallium 

surfaces a r e  in a similar  s t a t e  f o r  these three  groups .of measurments, it 

does not prove the  surfaces a r e  clean. The very limited measurements of 

surface tension on the  one drop in the  Auger spectrometer, however, gave 

surface tensions a t  the  melting point which a r e  only about 1% lower than 

those shown in Fig. 7. Given the  probable er ror  i n  these measurenents, 

t h i s  is good agreement and suggests tha t  t h e  dara of Fig. 7 a r e  typ ica l  of a 

clean surf ace. 

There are,  however, unanmered questions and unresolved contradict ions 

i n  the  surface tension measurements. Fig. 1 is data  taken in a quartz C V ~  

which shows a low temperature surface tension depression which we have 

interpreted a s  a r i s ing  from surface segregation of an oxide contaminant. A 

comparison of t h i s  data with the  campilation of data from "clean" surfaces 

i n  Fig. 7 shows a very good agreement a t  higher temperat-dres. Yowever, 

between 250 O C  and the  melting point, the  surface tensiorrs in t h e  oxide 

contaminated gallium of Fig. 1 rise sbove tha t  f o r  the  clean gallium by a s  

2 much a s  6 mJ/m a t  the  maximum. W e ,  therefore, hz-.~e a contradiction: if 

surface segregation is producing the  maximum in Fig. 1 by depressing t h e  

surface tension a t  low temperatures, how can the  surface tension of t h e  

contaminated surface be higt.er than tha t  of a clean surface? A possible 

resolut ion muld  be that an impurity is  a l so  ac t ive  in the  data  of Fig. 7 

and the  curvature evident a t  low temperatures is due t o  adsorption. This 

impurity woula necessari ly be independent of cup material and atmosphere. 

Another hypothesis is t h a t  the  h p u r i t i e s  in the  "contaminated" gallium 



a r e  confined t o  patches so  tha t  the  drop shape is not being described by 

the  Young-Laplace equation. We have no wider.ce supporting e i the r  of 

these speculations. 

As mentioned in last year 's  repdrt ,  there  have been three p r e ~ i o u s  -. - 

measurements of t h e  surface  t e n s i ~ n  of gallkum as a function of temperature. 

The functions suggested by t h e  authors to  describe t h e i r  da ta  a r e  a s  

f o l lous  : 

The non-lineax least squares analys is  of the  da ta  shorn in Fig. 7 mentioned 

previously gave the  r e l a t  jonship 

Note tha t  our r e s u l t s  and those described by the  f i r s z  two r e l a t i o n s  above 

2 
d i f f e r  a t  the  melting point  by no more than 3.2 mJ/m . Since small systematic 

e r r o r s  must e x i s t  i n  a l l  w r k ,  it is in teres t ing  to  compare the  various 

n-surements by making them a l l  coincide a t  one temperature. W e  do t h i s  

in Fig. 10  where w e  have t rans la ted  yI and -fII t o  agree with Fig. 7 a t  the  

melting point. Our da ta  is  then seen t o  l i e  between the  two curves over 

the  e n t i r e  temperature range. The d i f ferences  in the data  adjusted in 

t h i s  way is hardly more than t h e  precision with which the  measurements 

were made in- our work except possibly a t  the  high temperature end of t h e  

curve. 

We a l so  show t h e  l i n e a r  re la t ionship  y (unadjusted). These 
I11 

measurements c l e a r l y  disagree with the  other  data shown i n  Fig. 11. The 



l i n e a r i t y  of t h e  surface tension values a s  a function of temperatrrLe fa 

t h i s  work was c i t e d  a s  evidence t h a t  t h e  ga l l i tm was cleaner than t h ~ t  

used i n  t h e  measurenents showning non-llnear behavior. H o w e r ,  at 

temperatures above 125 'C, t h e  surface  tension values in t he  linear cata 

a r e  lower than t h e  non-linear data.  A t  360 O C ,  t h e  highest t empera t~ re  

used, they f ind  a surface tension value about 15 m J h 2  l o v e .  than the  

other  r e s u l t s  in Fig. 11. Thus it is hard t o  argue t h a t  t5e linear data  

represents  a cleaner surface. This is t h e  same problem discussed pra-iously 

u i t b  respect t o  our own iaZa and w e  cannot r a t iona l i ze  t h e  contradict ion,  

W e  note, bowever, tha t  the  gallium preparation used in t n i s  work involved 

heating t o  1000 OC i n  a quartz ampule.  W e  suspect t h e i r  gallium may tave 

been contaminated with s i l icon.  W e  do not know how t h i s  would have a f fec t& 

t h e i r  surface tension values. 
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TEMPERATURE (.C) 

Fig. 1. The surface tension of gallium a s  a function of temperature (quartz 
cup ; sample h a t e d  in vacuum) . 
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r'ig. 3. The surface tension of gallium a s  a function of temperature (quartz 
cup; sample heated i n i t i a l l y  i n  hydrogen, then in vacuum). 
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Fig. 5 .  The surface cension of gallium a s  a function of tenperature (5ap.e 
drop a s  Fig. 4;  sample heated to 565 'C for  18 hours in vacuum). 
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Fig. 7 .  The surface tension of gallium a s  a function of temperature 
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Fig. 10. Comparison o f  tht- surface t e n s i o r ~  of gal l ium a s  a  function o i  
temperature founc: previously wi th  t h i s  measurement. 



Task 2 

Solutal  Convection During Direct ional  So l id i f i ca t ion  

W. J. Boettinger, S. R. Cor ie l l  and F. S. Biancapiello 
Hztallurgy Division 

Center fo r  Materials Science 

and 

H. R. Cordes 
Mathematical Analysis Division 
Center f o r  Applied Mathematics 

The e f f e c t  cf  so lu te  gradient induced convection during v e r t i c a l  

so l id i f i ca t ion  03 the macrosegregation of Pb-rich Pb-Sn off-eutect ic  

a l loys  is determined experimentally as a function of composition and 

growth ra te .  In  many cases macrosegregation is suf f i c i en t  t o  prevent the  

plane f ron t  s o l i d i f i c a t i o n  of the  al loy.  The t r a w l t i o n  from dendr i t ic  t o  

composite s t ruc tu re  is  found t o  occur when the  composition of the  so l id  is 

c lose  enough t o  the  eu tec t i c  composition t o  s a t i s f y  a s t a b i l i t y  c r i t e r i o n  

based on G /V ( l iquid  temperature g r a d i e d g r o w t h  ra te) .  A v e r t i c a l  o r  L 

horizontal  magnetic f i e l d  of 0.1T (1 kilogauss) does not reduce macro- 

segregation, but downward s o l i d i f i c a t i o n  ( l iquid  belov sol id)  v i r t u a l l y  

eliminates macrosegregation i n  s m a l l  <%3 nxn) diameter samples. 

Additional calculat ions of the  onset of convective and i n t e r f a c i a l  

i n s t a b i l i t i e s  during the  d i rec t ional  s o l i d i f i c a t i o n  of lead-tin a l l o y s  have 

been carr ied  out with pa r t i cu la r  emphasis on constant gravi ta t ional  

2 
accelerat ions of 980 cmls . , 



A. SOLUTAL CO@lVECTIOh' f  NDUCED &4CROSEGREGA?:OX ;&I! ZiE I?CXD3i ?I C' Tt' 
COWOSITE TRWSITIOK I N  OFF-ELTECTIC ALLOYS 

I n t r o d u c t i o n  

. . 
luct:ira 3 : r.\7 -1 " 1 : ~ .  r?!: : The a b i l i t y  t o  s o l i d i f y  tm-phase  a1igr.t-d s t - , * -  

o f  composi t ions  nea r  a e u t e c t  i c  c o ~ p o s i t  ion !-is k p c r t r i i : ~ ~  1:: c i : ~  f u l l  

u t i l i z a t i o n  of t h i s  c l a s s  of composite ill;3teri31s. The t~rl:: : . -~rk p i  ?:el;..:-.i 

..,:.ic;? pl.inc. f r \ ~ n t  & Flemingsi1' c l a i n e d  t h a t  t h e  range of c a p c s i r i o n s  f.-r --.- 

composite growth u a s  p o s s i b l e  w a s  r e s t r i c t e d  no: onl:: 1.y ccns t i :u t iona i  

supercoo l ing  r e q u i r m e n t s  but  a l s o  by t h e  rc<;ui r~zen:  :!z: convection b c  

. . . . - .  avoided. I n  f a c t ,  t h e i r  e u p e r h e n t a l  - a r k  c s i n p  ver;  ics l  ur.xrird .-;ca~lc i: ica: it;;: 

was l i m i t e d  t o  t h e  Sn-rich s i d e  of t h e  i'h-Sr; e u t c c i i c  ~ i : e r ~   ti;^ i lc i ;  

d e n s i t y ,  inf luenced by temperature  and c o n p s s i t i a n ,  ~ 1 - z : : ~  d e c r c a s ~ s  u i t ? ,  

d i s t a n c e  from t h e  i n t e r f a c e  ( h e i g h t ) .  On t h e  P h - r i c h  side of i h e  e u t e c i i c ,  

. . t h e  c o n c e n t r a t i o n  g r a d i e n t  i n  t h e  1 iquid  can cause :::e acns iLy  tc increase- 

w i t h  d i s t a n c e  n e a r  t h e  i n t e r f a c e  and poss ib ly  czuse  convect ion ( l iere t c r . c d  

s o l u t a l  convect ion) .  Subsequently. it cas a r S u d [ " 3 1  t h a t  as long a s  a 

s tagnan t  boundary l a y e r  e x i s t s  whose th ic la iess  is l a r g e  compared t o  t h e  

e u t e c t i c  spacing,  p l a n e  f r o n t  g r o v t h  of t h e  composite should be p o s s i b l e  i n  

7 4.51 t h e  presence of convection.  T h i s  was i n  f a c t  v e r i f  i.5 by exper inents ' -*  

which demonstrated t h e  growth of Pb-rich Pb-Sn composites.  However, Verhoeven, 

Kingery and Hof er [61  subsequent ly  shoved t h a t  s i g n i f  i can t  macrosegregat  ion 

( 1 C  w/,.) down t h e  l e n g t h  of s o l i d  i f  ied  samples o c c u r s  i n  samples only  1 w/o 

on t h e  Pb-rich s i d e  of t h e  Pb-Sn e u t e c t i c ,  and a t t r i b u t e d  t h i s  macrosegregat  ion 

t o  s o l u t a l  convect ion.  

The purpose of t h i s  r e s e a r c h  is t o  d e s c r i b e  t h e  m i c r o s t r u c t u r e  and 

macrosegregat  ion produced d u r i n g  u p w ~ r d  s o l i d  i f  i c a t  ion  of o f f  -eut  e c t  i c  

a l l o y s  2-5 w/o from t h e  e u t e c t i c  composit ion whec t h e  l i q u i d  d e n s i t y  n e a r  



t h e  in ter face  increases with dietance f r a  the  in ter face  and t o  determine if 

a magnetic f i e l d  o r  so l id i f i ca t ion  dommrd can eliminate s o l u t a l  convection 

and hence macrosegregat ion. 

Experimental Procedures 

Alloys w e r e  prepared from 99.992 pure Sn and Pb in evacuated and sealed 

boros i l ica te  crucibles. The d i rec t iona l  s o l i d i f i c a t i o n  furnace is ~ 0 n s t ~ c t e d  

of non-magnctic materials and has a b i f i l a r  wound cy l indr ica l  r e s i s t ance  

heating elemenc with upper and lower sec t ions  and a c i rcula t ing  water cooled 
' 

c h i l l  zone. A 3 mm I.D. s i l i c a  tube containing the  desired a l l o y  is pulled 

down through the  c h i l l ,  sealed by O-rings, at constant ve loci ty  t o  accomplish 

d i rec t iona l  so l id i f ica t ion .  The cooling tater comes d i r e c t l y  in contact  

with t h e  s i l i c a  tube. Using tn, separate A. C. proportional temperature 

con t ro l l e r s  f o r  the  furnace, and water cooled by a heat exchanger, temperatures 

a r e  constant LO 0.1 OC over an b u r  and 1 OC over several  days. The v e r t i c a l  

d r ive  is powered by a synchonous motor with a multi-speed gear box. Speeds 

from 0.5 m/s t o  0.5 m/s a r e  possible. The tube is attached t o  t h e  pu l l  

shaf t  using a device which permits t h e  sample t o  be suddenly pulled down 

about 3 cm t o  quench the  liquid-solid interface.  

The value of the  l iquid  temperature gradient measured f o r  several  

typica l  experiments with 0.25 mm diameter sheathed thermocouples was 360 - + 

10 K / c m .  This value was assumed f o r  a l l  other  experiments. The furnace is 

designed so tha t  a permanent magnet with a pole diameter of 8 cm and a pole 

separation of 11 cm could be slid around the  furnace t o  apply a 0.1T ( 1  

kilogauss) horizontal magnetic f i e ld .  Alternately, an 11 can diameter solenoid 

cocld be placed over t h e  furnace-chill  t o  a p ~ l y  up t o  0.1T v e r t i c a l  magnetic 



f  ie ld.  M d l t  i o ~ a l l y  t h e  furnace could be inverted for  sol i d i f  i c a t  fun domuard. 

I n  t h i s  ca se  a f ib rous  ceramic plug was used t o  m i n t a h  ; small upward 

pressure on t h e  inverted m e l t  :o prevent s e p ~ r a t i o n  o i  t h e  l i q ~ i d  from t h e  

f r e a i n g  so l id .  

A spec i f i c  d i r e c t i o n a l  so l id i f i ca t lou  experiment was conducted i n  t h e  

following manner. A tube  f i l l e d  with t h e  des i red  a l l o y  was inser ted  chrough 

t h e  c h i l l ,  with t h e  a l l o y  completely in t h e  c h i l l  sect ion.  The tube was 

evacuated and t h e  furnace temperature was equil ibrated.  The sample was then 

dr iven  quickly i n t o  t h e  furnace melting a h u t  12 cm of a l loy .  The tube was 

backf i l led  wi th  argon and t-peratures vere allowed t o  s t a b i l i z e  f o r  about 1 

minute. Excessive holding times at t h i s  s t age  a r e  undesirable  because a 

l aye r  of Pb-rich so l id  so lu t i cn  w i l l  slowly s o l i d i f y  and d i s rup t  t h e  uniformity 

of t h e  initial l iqu id  composition. The tube was then pul led at t h e  des i red  

r a t e  u n t i l  about 6 cm had so l rd i f  id. The remainder of t h e  sample was then 

quenched, de l inea t ing  t h e  l iquid-sol id i n t e r f ace  in the  microstructure.  The 

s i l i c a  w a s  renoved wi th  HF ac id  a& t h e  specimens were mounted in a cool- 

setting epoxy f o r  charac te r iza t ion .  

Samples vere  rout ine ly  exmined i n  a  longi tudina l  sec t ion  ( p a r a l l e l  t o  

t h e  s o l i d i f i c a t i o n  d i r e c t  ion) using standard metallographic techniques. For 

each experiment t h e  shape of t h e  l iquid-sol id i n t e r f a c e  was examined t o  be 

c e r t a i n  t h a t  heat flow was unid i rec t iona l .  In  t h e  present experi~nents,  t h e  

macroscopic l iquid-sol id i n t e r f a c e  of two-phase composite growth, when 

achieved, uas convex towards t h e  l i qu id  by only 10-20 um across  a  3 mm 

diameter sample. 

Measurement of macrosegregation (average composition of t h e  two-phase 

so l id )  along t h e  length  of s o l i d i f i e d  sampiss was performed using tw roethods, 



x-ray fluorescence and a Li t r a t ion  method. The former method, which uas 

described p r e v ~ u s l y [ 7 1 ,  uses incident omnochromatic (22.1 keV) x-rays 

collimated t o  1/2 mm x 112 nu. The use of x-rays permits deeper penetration 

i n t o  the  samples and hence be t t e r  averaging over t h e  two-phase s t ruc tu re  

than does the  use of e lec t ron probe methods. This da ta  m s  used t o  non- 

d e s ~ r u c t i v e l y  evaluate t h e  ertent of m a c r o s ~ r e g a t i o n  and t o  indica te  those 

samples fo r  which t h e  t i t r a t i o n  method would be used. The t i t r a t i o n  method [81 

was performed on approximat~ly 2 nm d i s c s  cut  t ransverse t o  t h e  growth 

d i rec t ion .  Accuracy of t h e  t i t r a t i o n  method is approximately 2 0.25 w/o Pb. 

kper imenta l  Results 

Results on the  microstructure and macrosegregation of Pb- r i ch  off-  

eu tec t i c  a l loys  so l id i f ied  upward with and without magnetic f i e l d  and 

downward a r e  presented here and w i l l  be discussed i n  t h e  next section. 

Directional sol id i f  i ca t  ion experiments were conducted v e r t i c a l l y  upward 

( l iquid  above the  sol id)  on the  Pb-rich s ide  of t h e  eutect ic .  In a l l  cases, 

so l id  i f  i ca t  ion begins with t h e  dendri t  ic  growth of the  Pb-rich phase even 

when the  r a t i o  of t h e  tenperature gradient GL in the  l iqu id  t o  t h e  grovth 

veloci ty  V subs tant ia l ly  exceeds t h e  requirenent of cons t i tu t iona l  super- 

cooling[11 fo r  t h e  bulk composition of the  al loy.  The v o l ~ e  f rac t ion  of 

dendr i tes  decreases slowly a s  a function of d is tance  a s  shown, f o r  exmple, 

i n  Fig. 1, u n t i l  t h e  s t ruc tu re  is a two-phase composite. The region of 

dendr i t i c  growth in most instances is very long compared t o  D/v (where D is 

the  l iquid  in terdff fus ior  coeff ic ient )  and does not correspond t o  an i n l t i a l  

t rans ient  of t h e  type described by Mollard and Flenings[l l .  This long 

region of dendr i t ic  growth w i l l  be shown t o  be a manifestation of t h e  

macrosegregat ion which occurs i n  these a l loys  due t o  so lu ta l  convect ion. 



Table I is a suPmary of  these experiments showing t h e  o r i g i n a l  composition 

(Co), growth r a t e  (V), G d V ,  D/V, t h e  i n i t i a l  l ength  of t h e  l i q u i d  a l l o y  

D (L), t h e  length  of t h e  d e n d r i t i c  zone (2 ), and t h e  average s o l i d  compositions 

a t  three pos i t i ons  in t h e  s o l i d i f i e d  samples: Cs(O.O), C (0.1) and csD a t  
S 

0.0, 0.1 f r a c t i o n  solidified and at t h e  t r a n s i t i o n  from d e n d r i t i c  t o  composite 

s t ruc tu re ,  respect ively.  Fract ion s o l i d i f i e d ,  f  s, is t h e  r a t i o  of d i s t ance  

s o l i d i f i e d  t o  t h e  initial length  of molten a l loy .  Other experiments conducted 

with an imposed magnetic f i e l d  and with so l id  i f  i c a t  ion downward a r e  included 

i n  Table 1. 

Fig. 2 shows t h e  measured composition a s  a funct ion of f r a c t i o n  s o l i d i f i e d  

f o r  f i v e  43.0 w/o Pb a l l o y s  s o l i d i f i e d  a t  0.5 u m / s .  [ l h e  e u t e c t i c  composition, c 
E ' 

i s  38.1 w/o Pb.] Tu, samples were s o l i d i f i e d  upward without magnetic f i e l d  

wi th  initial melt l engths  of 5.2 cm and 11.8 cm r e s ~ e c t i v e l y .  The i n i t i a l  

s o l i d  composition is very high in Pb content 72 w/o Pb ( t h e  boundary of 

t h e  two phase f i e l d  occurs  a t  8 1  w/o Pb), and f a l l s  t o  t h e  v i c i n i t y  of t h e  

eu t ec t  ic composition a s  s o l i d i f i c a t i o n  proceeds. The f r a c t i o n s  s o l i d i f i e d  

n 
f s  , a t  which t h e  d e n d r i t i c  s t r u c t u r e  Iisappears in t h e  tw samples a r e  

e s s e n t i a i l y  i den t i ca l .  Beyond t h i s  pos i t ion  t h e  samples cont inue t o  s o l i d i f y  

nondendr i t i ca l ly  as a two phase composite with changing composition u n t i l  a t  

a fs ,L 0.22 t h e  rate of change of composition with d i s t ance  decreases  

sharply.  Because of t h e  exce l len t  agreement of t h e  macrosegregation of 

t h e s e  two samples a s  w e l l  a s  t h e  dendr i t e  disappearance pos i t ion ,  it is 

apparent t h a t  f r a c t i o n  s o l i d i f i e d  is t h e  proper v a r i a b l e  t o  descr ibe  changes 

i n  composition. This  s t rongly  suggests t h a t  t h e  d e n d r i t i c  zone is not 

caused by an i n i t i a l  t r a n s i e n t  but by macrosegregation. Henceforth, w e  w i l l  

u se  f r a c t i o n  s o l i d i f  ied as' t h e  length  parameter t o  descr ibe  macrosegregat ion. 



Also shorn in Fig. 2 a r e  two samples so l id i f i ed  upuard v i t h  imposed 

horizontal and v e r t i c a l  magnetic f i e l d s  of 0.1T ( 1  kilogauss) . The macro- 

segregation and posi t  ion of dendri te  disappearance f o r  these  experireat  s a r o  

similar  t o  the  samples so l id i f i ed  without magnetic f ie ld .  The f i n a l  sample 

shown in Fig. 2 was so l id i f i ed  v e r t i c a l l y  downward ( l iquid  below sol id) .  

Here a s igni f icant  reduction in the  macrosegregation uns obsuved. Except 

f o r  an initial t rans ient  ( length % 2 D/V) t h e  composition is re la t ive ly  

constant. [The s l i g h t  decrease in composition is caused by thermal diffusion.]  

Furthermore, t h e  s t ruc tu re  is completely two phase composite. There is no 

i n i t i a l  region of dendr i t ic  growth. 

The ef fec t  of a f a s t e r  in ter face  veloci ty  (2.6 d s )  on macrosegregation 

f o r  43.0 w/o Pb a l l o y s  is  shown in Fig. 3. Samples .solidified upward with 

o r  without a magnetic f i e l d  show an i n i t i a l  Ph content of % 52 w/o and 

f reeze  dendr i t ica l ly  up t o  f r ac t ion  sol id  of about 0.25. Their macro- 

segregation p ro f i l e s  a r e  s l i g h t l y  d i f fe ren t  a t  l a rge  f s  but ce r t a in ly  

macrosegregation is qu i t e  evident in both. On t h e  contrary the  sample shown 

i n  Fig. 3 which was so l id i f i ed  v e r t i c a l l y  downward shows very l i t t l e  macro- 

segregation and is two phase composite wer most of i ts  length. As shown in 

Table I, the  Gendritic region 51 t h i s  sample bas not been completely 

eliminated by inverted so l id i f i ca t ion  a s  did occur a t  0.5 m/s. This is 

probably due t o  the  closeness of the  value of G /V compared t o  t h e  c r i t i c a l  L 

value fo r  plane f ront  growth. (See discussion beiow and Fig. 7) .  

With an i n i t i a l  composition closer  t o  the  m t e c t i c  composition (40.7 

w/o pb) macrosegregat ion during upward so l id i f i ca t ion  is reduced compared 

t o  43.0 w/o Pb a l loys  but is s t i l l  s igni f icant  a s  shown i n  Fig. 4. The 



sample s o l i d i f i e d  d e n d r i t i c a l l y  t o  a f r a c t i o n  so l id  of 0.06. On t h e  

contrary,  the sample s o l i d i f i e d  dounward has a reduced l e v e l  of macro- 

segregation and is two-phase composite over its e n t i r e  length. 

Of a l l  t h e  Pb-rich samples s o l i d i f  led upward only one was composite 

over i ts  e n t i r e  l eng th  (with t h e  exception of a 1 mn i n i t i a l  t r a n s i e n t ) .  

The composition of t h i s  sample was c l o s e  t o  t h e  e u t e c t i c  composition and it  

was s o l i d i f i e d  r e l a t i v e l y  r ap id ly  (40.7 w/o Pb, 5.1 ~ m / s ) .  The macro- 

segregation d a t a  f o r  t h i s  sample is shown i n  Fig. 5. 

Discussion of Resul t s  

Upward S o l i d i f i c a t i o n  - No Fie ld  

The extensive macrosegregation shown in  Figs. 1 through 5 occurs  only 

f o r  a l l o y s  on t h e  Pb-rich side of t h e  e u t e c t i c  when f reez ing  v e r t i c a l l y  

upward. Experiments on t h e  Sn-rich s i d e  of t h e  e u t z c t i c  under condi t ions  

i d e n t i c a l  t o  those  used in t h e  Pb-rich experiments exh ib i t  only a ;e la t  i ve ly  

s m a l l  amount of macrosegregst ion which can be quan t i t a t i ve ly  accounted f o r  

by thermal d i f f u s i o n  alone. An example of measured macrosegregati. .I on t h e  

8n-rich s i d e  is shown i n  Fig. 6. The d z t a  agrees  with previous work of 

Verhoeva,  Yarner L ~ibson" ' ,  and can be f i t  using t h e i r  equation (17) with 

-8 2 a thermal d i f fu s ion  c o e f f i c i e n t ,  D, of 2 . 1 ~ 1 0  cm /(s-K), a d i f fu s ion  co- 

2 e f f i c i e n t  of 0.6x10-~ c. 1s and no mixing near  t h e  l fguid-sol id  i n t e r f a c e  ( 6  

l a rge ) .  This  absence of s i g n i f i c a n t  macrosegregation on t h e  Sn-rich s i d e  i n  

experiments conducted under condi t ions  i d e n t i c a l  t o  those  on t.he Pb-rich 

s i d e  is s t rong  evidence t h a t  s o l u t a l  convection (and not thermal convection 

caused by r a d i a l  temperature grad ien ts )  is t h e  cause of t h e  ex tens ive  

macrosegregation on t h e  Pb-rich s i d e  of t h e  eu t ec t i c .  



It is use fu l  t o  descr ibe  a q u a l i t a t i v e  model f o r  t h e  macrosegregatior. 

and r e su l t an t  changes i n  n i c ros t ruc tu re  f o r  Pb-rich a l loys .  So lu t a l  

convec: ion is s u f f i c i e n t l y  vigorous t o  d i s rup t  thp normal d i f f u s i o n  con- 

t r o l l e d  (Sn-rich) s o l u t e  f i e l d  near t h e  l iquid-sol id i n t e r f a c e  regard less  of 

whetner i T  is planar o r  dendr i t ic .  This  s o l u t e  is  transported by t h e  

convection t o  t h e  bulk l i q u i d  f a r  from t h e  i n t e r f a c e  which is  almost always 

[ 91 w e l l  mixed* by t h e  r a d i a l  temperature grad ien ts  which e x i s t  t h e r e  . 
Hence t h e  bulk l i q u i d ,  which i n i t i a l l y  was of composition C on t h e  Pb-rich 

0 

s i d e  of t h e  eu t ec t i c ,  g r a d ~ a l l y  becomes more Sn-rich. This causes a slow 

change i n  t h e  so l id  t o  compositions which are a l s o  more Sn-rich a s  so l id i -  

f i c a t  ion proceeds. The t r a n s i t  ion from dendr i t  i c  t o  composite s t r u c t u r e  

appears t o  occur when t h e  so l id  composition is c l o s e  enough t o  t h e  e u t e c t i c  

composition chat plane fro:,t conposi te  growth becomes s t a b l e  a s  documented 

below. After  plane f ron t  s o l i d i f i c a t i o n  is establ ished,  macrosegregat ion 

continues u n t i l  t h e  bulk l i q u i d  camposition approaches t h e  e u t e c t i c  

composition. Because . t he  avexage composition in t h e  l i qu id  a t  t h e  in t e r f ace  

must be very c l o s e  t o  t h e  e u t e c t i c  composition f o r  two-phase plane f ron t  

growth, t h e  average composit ion gradient  i n  t h e  l i q u i d  vanishes when t h e  

bulk l i qu id  composition reaches t h e  e u t e c t i c  composition. A t  t h i s  point  

s o l u t a l  convect ion presumably ceases. This s i t u a t i o n  is  r e f l ec t ed  by t h e  

sharp break a t  f % 0.22 of t h e  macrosegregation curve in Fig. 2. The f a c t  

t h a t  t h e  so l id  composition a t  t h i s  point is  7. 44 w/o Pb and not equal t o  t h e  

* I n  t h e  present expo-riments t h e  composition of t h e  l i qu id ,  determined 
a f t e r  quenching, was constant  t o  within + 0.25 w/o Pb. The l a r g e  
sample s i z e  (s 2 mm? used f o r  chanical  a&lysis prevents  de tec t ion  of 
t h e  so lu t e  boundary layer .  



[ 61 l i qu id  composition (38.1 w/o Pb) is caused by a t h e r l a l  d i f fu s ion  e f f e c t  . 
From Eq. (15) of Ref .  9, t h e  average composition grad ien t  vanishes  when 

t h e  average so l id  composition, Cs. is CE(l+DB /V) , which f o r  t h i s  a l l o y  
L 

and these  growth condi t ions is  43.9 w/o Pb. Macrosegregation a f t e r  

t h i s  point is g r e a t l y  reduced and is caused only by thermal dif  fur ion.  

A q u a n t i t a t i v e  desc r ip t i on  of t h e  loca t ion  of dend r l t z  disappearance is 

possible .  Fig. 7 i s  a p l o t  of G / V  vs. t h e  composition of t h e  so l id  a t  t h e  L 

pos i t ion  where t h e  s t r u c t u r e  changed f r m  d e n d r i t i c  t o  composite. It 

resembles th* expected form of t h e  r e l a t i o n  between G /V vs.  composition fo r  
L 

t h e  s t a b i l i t y  of plane f r o n t  s o l i d i f i c a t i c n ,  i.e., it f a l l s  s l i g h t l y  below 

t h e  requirement of t h e  simple c o n s t i t u t i o n a l  supercooling c r i t e r i o n  

CL/V = - m(CE-Cs) / D  

where m = 3.2 K/(w/o) and i s  t h e  l i qu idus  s lope  of t h e  Pb-ricl. phase. ~t 

a l s o  agrees  with t h e  da t a  of Davis 6 Frytuk[21 on zone melted o f f - eu t ec t i c s  

where macrosegregation is avoided by t h e  f a c t  t h a t  s l i d  of constant  com- 

pos i t i on  is fed i n to  t h e  melted zone. Hence t h e  t r a n s i t i o n  from d e n d r i t i c  

t o  composite s t r u c t u r e  occurs  when macrosegregation has caused t h e  composition 

of t h e  so l id  t o  change t o  a l e v e l  whish s a t i s f i e s  a s t a b i l i t y  c r i t e r i o n  f o r  

plane f r o n t  growth of a composite. 

Quant i ta t ive  desc r ip t i on  of t h e  observed macrosegregat ion is more 

d i f f i c u l t .  Verhoeven et  a l .  [6' , using a thermotransport-correct ed lu r ton-  

Pr im-Slichter type  (s tagnant  f ilm) ana lys i s  of plane f r o n t  composite 

growth, have formulated an expression t o  p red i c t  macrosegregation. The '40.7 

u/o Pb sample run a t  5.1 pm/s i s  d e n d r i t i c  f o r  an extremely sho r t  d i s t a n c e  

(long compared t o  D/V) and hence t h i s  a n a l y s i s  is  appl icab le .  The pre- 

viously given va lue  of ' the thermal d i f fu s ion  c o e f f i c i e n t  D', and a va lue  of 



90 bm f o r  6 ( t h e  th ickness  of t h e  unmixed zone near t h e  i n t e r f ace )  gave t h e  

bes t  f i t  t o  t h e  measured da t a  i n  c l o s e  agreement wi th  6 values  of Verheven  

et a1. ['I. This ca lcu la ted  curve of t h e  nacrosegregat ion is shown super- 

imposed on t h e  da ta  of Fig. 5. I n  t h i s  experiment, i t  was determined 

experimentally t h a t  t h e  l i q u i d  composition remained on t h e  Pb-rich s i d e  of 

t h e  experiment up t o  t h e  quench po,'.lt and s o l u t a l  convection probably ex is ted  

throughout t h i s  experiment. The ca lcu la t sd  va lue  of t h e  bulk l i q u i d  composition 

using t h i s  va lue  f o r  6 a l s o  agreed t o  within 0.25 w/o with t h e  measured 

composition of t h e  quenched l iqu id .  The success  of t h i s  approach during 

composite growth is somewhat supr i s ing  given t h e  f a c t  that t h e  d r iv ing  f o r c e  

f o r  s o l u t a l  convect ion only exists i n  t h e  d i f fu s ion  boundary layer .  On t h e  

contrary,  samples w ~ r h  iviib r2gizns -f d e n d r i t i c  growth cannot lie f i t  v:th 

t h i s  equation In t h e  da t a  shown in Fig. 3 a s u b s t a n t i a l  number of da t a  

po in t s  e x i s t  i n  t h e  d e n d r i t i c  zone of t h e  sample and a marked change in 

s lope  occurs  a s  t h e  voiu~llr? l ~ a c i i o . .  7f d a d i i t . ~ . ~  decreases. Clear ly  t h e  

ex is tence  of t h e  d e n d r i t i c  izzterface inf luences both t h e  dr iv ing  f o r c e  f o r  

s o l u t a l  convect ion and t h e  geometry f o r  t h e  flow. Fluid flow during 

d e n d r i t i c  s o l i d i f i c a t i o n  [I1' is  known t o  r equ i r e  a d i f f e r e n t  approach t o  

macrosegregstion than a stagnant f i lm  approach. Quant i ta t ive  desc r ip t i on  of 

t h e  macrosegregation curves during d e n d r i t i c  growth is a top i c  f o r  f u t u r e  

research.  

It is s ign i f i can t  t o  no t e  severa l  aspects of s o l u t a l  convection observed 

i n  t h i s  resezrch.  Fig. 8 shows an o p t i c a l  micrograph of a quenched l i q u i d  

s o l i d  i n t e r f a c e  of a 43.0 w/o Pb a l l o y  f reez ing  a t  2.6 ~ m / s .  The sample was 

quenched a t  f = 0.1, s o  s o l u t a l  convection was present  a t  t h e  time of 



quenching. The Pb d e n d r i t e s  are uniformly spaced a c r o s s  t h e  sample a n ,  t h e  

e u t e c t i c  i n t e r f a c e  appears  q u i t e  f l a t .  It seems unc lea r  t h a t  a s i n g l e  ( o r  

double) convect ion c e l l  would l e a d  t o  such a micros t ruc tu re .  

Addi t iona l  i n s i g h t  i n t o  t h e  n a t u r e  of s o l u t a l  convect ion  is  seen i n  
- ,  

Fig.  2 ,  where t h e  sharp break i n  t h e  d a t a  a t  f  % 0.22 marks t h e  t r a n s i ~ i o n  
6 

from macrosegregat ion caused by s o l u t a l  convect ion  t o  macrosegregat ion  

caused by thermal d i f f u s i o n .  This  sharp t r a n s i t i o n  from regimes of con- 

v e c t i o n  t o  no convact ion may be an i n d i c a t i o n  of t h e  e x t r a e l ; ,  low concen t ra t ion  

d i f f e r e n c e s  ( i . e . ,  d e v i a t i o n  from e u t e c t i c  coolposition) necessary  f o r  t h e  

onse t  of convection.  Low concen t ra t ions  f o r  t h e  onse t  of s o l u t a l  convection 

[ 12 I dur ing s i n g l e  phase s o l i d i f i c a t i o n  havz been p red ic ted  t h e o r e t i c a l l y  . 
For example, f o r  v e r t i c a l  s a l i d i f i c a t i o n  of s i n g l e  phase Pb con ta in ing  Sn, 

a t  an  i n t e r f a c e  v e l o c i t y  of 1 p m / s  and a temperature  g rad ienr  of 200 K/cm, 

-4 
s o l u t a l  convect ian w i l l  occur a t  a l l  composit ions above 3x10 wlo Sn. 

Another s u p r i s i n g  f e a t u r e  of s o l u t a l  convect ion is  t h e  f a i l u r e  of t h e  

smal l  (3  m) diameter  c o n t a i n e r  t o  suppress  convection.  The r e s u l t s  of 

C o r i e l l  e t  a l .  'I2' i n d i c a t e  t h a t  a s a l u t e  Rayleigh number based on a l e n g t h  

of D/V i s  s i g n i f i c a n t  f o r  t h e  p r e d i c t i o n  of t h e  onse t  of s o l u t a l  convect ion 

dur ing  s o l i d i f i c a t i o n .  The f a c t  t h a t  D/V is smal le r  than  t h e  r a d i u s  of t h e  

t u b e s  used i n  t h i s  s tudy  may exp la in  t h i s  observat ion.  

The presence of growth r a t e  f l u c t u a t i o n s  has been observed i n  some 

c a s e s  i n  t h e  p resen t  study. However, as can be seen f o r  exanrple i n  Fig. 1, 

many samples have been obta ined :rhich c o n t a i n  no f l u c t ~ a t i o n s .  Hence, it is  

o u r  b e l i e f  t h a t  t h e s e  f l u c t u a t i o n s  a r e  caused by a r t i f a c t s ,  such a s  f o r  

example, by nonsteady thermal contractions[131. S o l u t a l  convect ion seems t o  



be s u f f i c i e n t l y  s teady so a s  t o  no t  cause growth r a t e  f l uc tua t ions .  

Upward Sol i d i f  i c a t  ion - Magnetic F ie ld  

S t a t i c  magnetic f i e l d s  have long been known t o  in f luence  t h e  flow of 

e l e c t r i c a l l y  conducting liql.~ids[141 . Chandraseichar [I5]- ca l cu l a t ed  t h e  

in f luence  of a vert:' -31 magnetic f i e l d  on s u ~ p r e s s i o n  of thei-ma1 convection 

i n  an  in£ i n i t e  hor izonta l  l aye r  of f l u i d  heated from below. Other theo- 

r e t i c a l  work has been performed f o r  d i f f e r e n t  geometries. Experiments on 

l i q u i d  mercury [16' con£ irmed t h e  i n h i b i t i o n  of thermal convection by a 

v e r t i c a l  magnetic f i e l d .  During s o l i d i f i c a t i o n ,  l i q u i d  tomperature 

f l uc rua t ions  and assoc ia ted  growth r a t e  f l u c t u a t i o n s  and s o l u t e  banding 

caused by t ime-dependent convection during t h e  hor izonta l  growth c,: c r y s t a l s  

were eliminzted by impositior! cf a -1er t ica l  magnetic f i e l d  
[17,18,14] 

However, time independent laininar flow may s t i l l  have been presen t ,  Because 

of t h i s  previous work, at tempts  were s a d e  in t h e  present study t o  suppress 

s o l u t a l  canvect ion and t h e  concomitant macrosegration by t h e  impositton of 

a s t a t i c  magnetic f i e l d .  

For most experiments a v e r t i c a l  f ?eld of 0.1T ( 1  kilogauss) was used 

based on t h e  following a n a l y s i s  from ~ h a n d r e s s t h a r  [''I . The f l u i d  elements 

a r e  subjec t  t o  t h e  Lorentz f o r c e  which is proport ional  t o  c u r l  x H, where 

- 
H i s  t h e  magnetic f i e l d  i n  t h e  f l u i d .  Clearly,  i f  Ti is ccns tan t  t h e  Lorentz 

fo rce  vanishes ,  and t h e  magne'ic f i e l d  does not  a f f e c t  t h e  f l u i d  motion. 

Even though t h e  appl ied magnetic f je ld  is  constant ,  t h e  magnetic f i e l d  

t h e  f l u i d  is  not i n  genera l  constant .  I n  f a c t ,  a constant  H w i l l  s a t i s f y  

t h e  basic  p a r t i a l  d i f  f e rcn t  ia l  equation f o r  H i f  and only i f  c u r l  (u x i) 

van Aes ,  where u i s  t h e  f l u i d  ve loc i ty .  Clear ly  i f  u is p a r a l l e l  t o  H, 



then u x TI vanishes,  and tire magnetic f i e l d  has no c f f e c t  on t h e  f l u i d  

motion, i.e., i f  t h e  f l u i d  motion does not c ros s  t h e  magneric f i e l d ,  t he re  

is  no e f f ec t .  Morc qeneral ly ,  however, a constant k is  poss ib le  i f  and only 

i f  (H-v)T; = 0 f o r  an incompressible f l u i d ,  vllich redoces t o  H ( 2 2 3 x . )  = 0 i I 

f o r  a magnetic f i d d  only k, t h e  xi d i - e c t  ion. Thus, a constant magnetic f i e l d  

and a vanishing Lormtz  fo rce  w i l l  occur i f  t h e  f l u i d  ve loc i ty  is independent 

of t h e  coordinate  x .  i n  t h e  d i r e c t i o n  of t h e  magnetic f i e l d .  Such a ca se  
1 

occurs f o r  flow between two i n f i n i t e  hor izonta l  p l a t e s  heated from below 

where t h e  c r i t i c a l  Rayleigh number is  unaffected by a hor izonta l  magnetic 

f ~ e l d .  

Experimental r e s u l t s  shorn i n  Figs. 2-3, show l i t t l e  o r  no e f f e c t  of a 

0.1T ( 1  k i l o g ~ u s s )  magnetic f i e l d  on reducing t h e  macrosegregation produced 

by s o l u t a l  convection. A s  was described above, t h e  s o l u t a l  convection 

present i n  these  experiments i s  s u f f i c i e n t l y  steady tha t  growth r a t e  

f l uc tua t ions  do not occur. Hence t h e  na tu re  of t h e  convect ion present  i n  

t he se  experiments is q u i t e  d i f f e r e n t  from t h a t  observed by Utech 6 Flemings [17,181 

during t ~ r i z o n t s l  so l i d i f i ca t i on .  Recent t h e o r e t i c a l  w r k  may explain t h e  

inef f ect  ivexiess of a magnet i c  f i e l d  on damping s o l u t a l  convect ion '12' . For 

example, Eor v e r t i c a l  s o l i d i f i c a t i o n  of s i n g l e  phase P5 containing Sn, a t  an 

i n t e r f ace  ve loc i ty  of 1 hm/s ,  a temperature gradient  200 K/cm and a 

imposed v e r t i c a l  magaetic f i e l d  of 1T (10 ki logauss) ,  s o l u t a l  convection 

-3 
w i l l  o izur  at a l l  compositions above 3 x 10  w/o Sn. 

Downward So l id i f i ca t i on  

A s  shown by t h e  da ta  i n  Figs. 2-4, s o l i d i f i c a t i o n  of Pb-rich o f f -  

e u t e c t i c  a l l e y s  downward g r e a t l y  reuuces macrosegregation. In  f a c t  t h e  



r a i n i n g  macrosegregation in t h e s e  experiments can be quan t i t a t i ve ly  

accounted f o r  by thermal d i f fus ion .  In  t h i s  geometry t h e  Sn-rich s o l u t e  

l aye r  n a r  t h e  i n t e r f a c e  is above t h e  Pb-rich l i q u i d  away from t h e  i n t e r f a c e  

and f o r  t h e  condi t ions  used i n  t he se  experiments, creates a s t a b l e  dens i ty  

grad ien t  near t h e  i n t e r f  ace  even though t h e  temperature grad ien t  is des t ab i l i z ing .  

Outside t h e  s o l u t e  d i f fu s ion  l aye r  t h e  dens i ty  grad ien t  is des t ab i l i z ing .  

A t  f i r s t  glance t h e  reason f o r  t h e  reduct ion of macrosegregatior, during 

downward s o l i d i f i c a t i o n  app-rs obvious. So lu t a l  convect ion is el iminated 

because of t h e  s t a b l e  dens i ty  grad ien t  near t h e  i n t e r f a c e  and hence d i f f u s i o n  

cont ro l led  so l idFf i ca t i on  is not  interrupted.  However, t h e  l a r g e  v e r t i c a l  

t enpera ture  grad ien t  present  during t h e s e  experiments -muld tend t o  promote 

ex tens ive  th-1 convection f a r t h e r  from t h e  i n t e r f ace .  The  r e s u l t s  i nd i ca t e ,  

however, t h a t  such flow i f  i t  e x i s t s ,  is  suff  icier. t ly d i s t a n t  from t h e  

d i f fu s ion  boundary l a y e r  a s  t o  be i n e f f e c t i v e  i n  cbusing s i g n i f i c a n t  macro- 

segregation. 

A second r a t i o n a l e  could be  t h a t  t h e  mall  tube  diameter (3 mn) is 

e f f e c t i v e  i n  g r e a t l y  r d u c t i n g  t h e  thermal convection f a r  from t h e  i n t e r f ace .  

4 One can c a l c u l a t e  a thermal Rayleigh number R = agG r /vlc f o r  t h i s  geometry, 
L 

where a is  t h e  expansion coe f f i c i en t ,  g t h e  acce l e r a t i on  of g r av i ty ,  GL t h e  

tanpera ture  grad ien t  i n  t h e  l i qu id ,  r t h e  tube  radius ,  v t h e  kinematic 

v i s c o s i t y  and u t h e  thermal d i f f u s + v i t y .  For t y p i c a l  parameters ['*I of t h e  present  

'I, 
experiments R = 65, which is  very c l o s e  t o  t y p i c a l  c r i t i c a l  Rayleigh numb--s 

f o r  closed conta iners  a s  summarized by ~ e r h o e v e n ' ~ ~ ~ .  For l a r g e r  tubes  

thermal convect ion away from t h e  i n t e r f  ace  may become more e f f e c t i v e  in 

causing macrosegregat ion and hence it is  an t i c ipa t ed  t h a t  suppression of 



macrosegregation by so l id i f i ca t ion  downward may be very sens i t ive  t o  tube 

diameters. This e f fec t  was not, however, iniretigated in the  present study. 

Conclus Sons 

1. Solute gradient induced convection can cause extensive macro- 

segregation i n  of f-eutect ic  al loys.  

2 .  Hacrc;segregation is frequently su f f i c i en t ly  l a rge  t o  prevent plane 

f ront  so l id i f i ca t ion  of the  al loy.  

3. The t r ans i t ion  from dendr i t ic  t o  composite s t ruc tu re  occurs when 

t h e  composition of t h e  sol id is c lose  enough :o the  eu tec t i c  

composition t o  s a t i s f y  a s t a b i l i t y  c i i t e r i o n  based on GL/V. 

4. Horftontal o r  v e r t i c a l  magnetic f i e l d s  of 0.1T ( 1  kilogauss) do 

not prevent macrosegregation of oif  -eutect ic a l l o y s  caused by 

s o l u t a l  convect ion. 

5. For -11 diameter samples, inverted so l id i f i ca t ion  elkninates 

macrosegregat ion caused by so lu ta l  convection. 



B. CALCUIATION OF CONDITIONS POR THE ONSET OF SOLUTAL CONVECTION 

Introduction 

During the vertical directional solidification of a binary alloy at 

constant velocity V, the steady state concentration field is exponential 

in form, i.e., c = cOD+(cW/k)(l-k) exp (-Vz/D), where c is the concentrazion 

of solute in the liquid at a distance z from the solid-liquid interface, 

the distribution coefficient k is the ratio of the solute concentration 

in the solid at the solid-liquid interface to the solute concentration in 

the liquid at the solid-liquid interface, cw is the solute concentration 

as z -t -, and D is the liquid diffusion coefficient. The temperature 

field is also exponential but with decay length K/V, &ere K is the thermal 

difiusivity of the liquid. In geceral, K >> P so that the temperature 

gradient G in the liquid is essentially constant in the region in which 
L 

the concentration gradient is significant. It is well known that as the 

concentration is increased for fixed V and G the planar solid-liquid 
L 

interface becomes morphologically unstable. The constitutional supercooling 

principle predicts instability when mC > GL, where m is the slope of the 
C 

liquidus line and G = (c-V/Dk)(k-1) is the concentration gradient at the 
C 

planar solid-liquid interface. In addition ta morphological instability, 

there is the possibility of a convective instability. For solidification 

vertically upwards (positive z-direction) the thermal gradient alone 

results in a negative density gradient (stabilizing) while the solute 

gradient alone can cause a negative (stabilizing) or positive (destabilizing) 

densicy gradient depending on the density variation with solute concentr-">n 

and the distribution coefficient. When the solute gradient gives rises 

to a positive density gradient, e.g., a solute which is rejected at the 

solid-liquid interface and which is lighter than the solvent, a convective 



i n s t a b i l i t y  w i l l  occur If the  so lu te  concentration is su f f i c i en t ly  la rge  

tha t  t h e  des tabi l iz ing  so lu te  f i e l d  overcomes the  s t ab i l i z ing  influences of 

t h e  th-1 f i e l d  and viscous ef fec ts .  Thls, fo r  fixed values of veloci ty V 

a d  temperature gradient G a s  the  so lu te  cpncentraticm increases, one L' 

expects an i n s t a b i l i t y  t o  occur, i.e., f o r  suff i c i e r ~ i l y  small so lu te  

concentrations, t h e  2lanar in te r face  is s t a b l e  and the  horizontal components 

of the f h i d  flow veloci ty  vanish (a  v e r t i c a l  flow due t o  the  volume change 

on so l id i f i ca t ion  is always present),  but f 0.r so lu te  concentrat ions above 

some c r i t i c a l  value the i n t e r face  and the  f l u i d  flow f i e l d  a r e  

I n  our previous publications r12'21*221, a l inea r  s t a b i l i t y  analys is  and 

numerical a l g o r i t h m  have been described which allow t h e  calculat ion of the  

c r i t i c a l  concentrat ion f o r  t h e  onset of convective and morphological in- 

s t a b i l i t i e s  during t h e  d i rec t iona l  so l id i f i ca t ion  of binarv al loys.  In 

addit icn,  a number of r e s u l t s  were obtained fo r  the  speci f ic  case of t h e  

so l id i f i ca t ion  of lead containing tin. In  t h i s  repor t  we combine the  

previous r e s u l t s  and new r e s u l t s  with par t icular  anphasis on small constant 

gravi ta t ional  accelerat ions.  

Results and Discussion 

We r e c a l l  tha t  t h e  dependence of the  perturbed tenperature, con- 

centrat ion,  f l u i d  veloci ty,  and in ter face  shape on the  horizontal  coordinates 

x and y and the  time t is of the  form exp [ a t  + i ( w  X+U y)], where u and w 
X Y  X Y 

a r e  s p a t i a l  frequencies. I f  the  r e a l  part ,  a of the  time constant a is  r ' 
posi t ive  f o r  any values of w and w t he  system is unstable. I f  or < 0 

X Y' 

f o r  a l l  values of w and w t h e  system is stable.  We re fe r  t o  i n s t a b i l i t i e s  
X Y' 



corresponding t o  la rge  values of w (small wavelengths, A = Zn/w) as 

morphological i n s t a b i l i t i e s  and t o  i n s t a b i l i t i e s  correspondin: t o  d l  

values of w ( large wavelengths) as convective i n s t a b i l i t i e s .  

The basic r e s u l t s  f o r  the  c r i t i c a l  concentration c r  above vhich 

i n s t a b i l i t y  occurs a s  a function of growth veloci ty  are shown in Fig. 9, 

We have previously discussed the  curves corresponding t o  g rav i t a t iona l  

2 accelerat ions of ge = 980 uls  and ge. For g - ge, the  con- 

vect ive i n s t a b i l i t y  occurs a t  a lower concentration than the  morphological 

i n s t a b i l i t y  only i f  V < 1.3 d s .  The concentration above vhich the  

2 2 4  i n t e r face  is  unstable a s  a function of the  s p a t i a l  frequency o = (uXhy) 

of the  perturbatiox is shown i n  Figs. 10 and 11 f o r  V = 1.2 and 1.3 m/s, 

respectively. The c r i t i c a l  concentration c? corresponds t o  the  minimrtm 

value of the concentration a s  a function of w. The so l id  curves on the  

r i g h t  of Figs. 10 and 11 correspond t o  morphological i n s t a b i l i t y  while the  

s o l i d  curves on the  l e f t  correspond t o  convective ins tab i l i ty .  Along the  

curves the r ea l  par t  of a vanishes; along the  so l id  curves a vanishes 

while along the dashed curve, which connects the  convective and nutrphological 

branches, tne imaginary pa r t  a of a i s  non-zero. The value of ai is i 

shown i n  the i n s e t s  i n  Figs. 10  and 11 and a t t a i n s  a maximmi value of less 

-4 -1 
than 2.0!10 ) s  . For V = 1.2 p d s ,  the  minimum value of caD is 4.61 vt. 

X a t  u = 1.35 c m l  o r  a wavelength A = 4.7 an. There is a r e l a t i v e  pinhum 

on the  morphological branch a t  w - 204 an-' with c_ = 6.47 w t .  X (not 

shown i n  the f igure) .  For V = 1.3 pm/s,  the minimum value of c- is 5.98 

-1 w t .  X ac w = 210 cm (not shown in the  f igure)  and a r e l a t i v e  minimum 

with c- = 7.15 w t .  I a t  w - 1.4 dl. 



In our previous publ icat ions,  it w a s  shown t h a t  t h e  c r i t i c a l  concen- 

t r a t i c n s  f o r  convective i n s t a b i l i t y  could be co r r e l a t ed  i n  terms of t he  

Rayleigh number R' and t h e  s o l u t e  Rayleigh number S' based on the  length 

where a is  t h e  thermal c o e f f i c i e n t  of expansion, v is t h e  kinematic 

v i s c o s i t y  and a is t h e  s o l u t a l  coe f f i c i en t  ~f expansion. To f i t  our 
C 

previous r e s u l t s  we used an expression of t h e  form 

o r  i n  dimensional form 

where t he  a are cons tan ts  independent of G c-, V and g. The a .  were 
i L' 1 

determined by minimizing t h e  d i f f e r ences  between t h e  numerical values  of 

cap and t h e  values  obtained from t h e  above expression. Using the  previously 

determined values  of t h e  a we  c a l c u l a t e  c r i t i c a l  concentrat ions of 
i ' 

0.32, 2.48, 4.27, and 5.42 wt .  X f o r  V = 0.5, 1.0, 1.2, and 1 .3  u m / s ,  

- 6 respec t ive ly ,  f o r  g = 1 0  ge; these  a r e  i n  reasonable agreement v i t h  t he  

numerically ca l cu l a t ed  va lues  of 0.31, 2.35, 4.61, and 7.15 w t .  % f o r  V = 

0.5, 1.0, 1.2, and 1 .3  pm/s. 

In  our  previous ca l cu l a t i ons  f o r  g = 
ges 

we obtained o s c i l l a t o r y  in- 

s t a b i l i t i e s  with ui % 0.1 <' o r  a period of t h e  order  of 60 s. For 

g = lo-6 u - ld4 s-I o r  a period of the order  of 6(104)s. This 8, i 

suggests  t h a t  t h e  f l u i d  motions are very slow a t  reduced g r a v i t y  l eve l s .  



To fur ther  ver i fy  this, we carr ied  out  a few calculat ions with ur # 0. 

For V = 1.2 w/s and q - ge, a concentration of 7.68 u t .  X is required 

f o r  or = s-I on the convective branch. Thus, although or 0 f o r  

caJ > 4.61 w t .  X fo r  V = 1.2 pm/s, the  aauplitude ot' the  convective in- 

4 
s t a b i l i t y  fo r  c a P  7.68 vt. X increases very slowly, requiring 10 s t o  

increase by a fac tor  of e. In contrast ,  the  morphological i n s t a b i l i t i e s  

a re  only s l igh t ly  affected by reduced gravity. For example, f o r  V = 1.2 

-4 
pm/s and w - 205 the concentrations cox-responding t o  u = 0, 10 , r 

-1 and s a r e  6.47, 6.50 and 11.0 w t .  I, respectively, f o r  g - 10 -6 
8 e 

vhereas f o r  g = ge, or = 0, and s-' correspond t o  concentrati?ns 

of 6.47, 6.49 and 11.2 w t .  X ,  respectively. We emphasize that these 

c a l c u l a t h o s  f o r  g - g assume t h a t  g is constant,  and since the  e 

convective i n s t a b i l i t i e s  develop very slowly, i t  seems unlikely t h a t  t h i s  

is a va l id  assumption fo r  space experiments. 

Liquid metals have low Prandtl numbers, e.g., the Prandtl number 

Pr = V / K  = 0.0225 fo r  lead. In  contrast ,  a large  c l a s s  of l iqu ids  have 

much larger  Prandtl numbers, e.g., Pr  % 10 f o r  water. Zn order t o  study 

the e f f e c t  of Prandtl number, w e  have carr ied  out some calculat ions using 

the propert ies of lead-tin a l loys  except tha t  the thermal conductivi t ies  

and thermal d i f f u s i v i t i e s  of both l iqu id  and so l id  were 100 times lower 

than the  accual conductivi t ies  and d i f fus iv i t i e s .  Thus, the Prandtl  number 

f o r  t h i s  hypothetical al loy i s  2.25; fo r  fixed GL and V the thermal Rayleigh 

number i~ also  increased by a fac tor  of 100. The tin concentrations a t  the  

onset of convective i n s t a b i l i t y  a s  a function of growth veloci ty  f o r  G = 
L 

200 K/cm for  lead-tin a l loys  (Pr  = 0.0225) and the hypothetical a l loy  



( ~ r  = 2.25) are shown in Fig. 12. At low velocities the critical con- 

centrations are a factor of 50 greater for t%e liquid with reduced thermal 

properties than for the lead alloy. At higher velocities, the two curves 

approach each other and the thermal properties have little effect on the 

critical concentration. This behavior can be understood qualitatively 

from eq. (1) through the effect of the reduced thermal properties on the 

Rayleigh number; In general, however, be expect the ai to depend on the 

Prandtl number. 

A few additional caiculations of the effect of magnetic fields and 

thermal gradients were carried out. These together with previous results 

are presented in Figs. 13 and 14. For discussion of these results, see the 

previous publications. 

The present linear stability analysis and numerical algorithm allows 

the determination of the onset of convective and morphological instability 

during directional solidification. We plan additional calculations for 

conditions and materials relevant to experimental investigations. For a 

particular 6ouble diffusive system with linear temperature and sclute 

gradients, Baines and Gill 1231 have shown that the spatial frequency u, 

ccrresponding to the most unstable mode, increases very rapidly as the 

concentration exceeds the critical concentration for the onset of in- 

stability. Calculations of a as a function of w for fixed concentration 

cm will allow us to dezennine whether similar behavior occurs during 

directional solidification. Mathematical analysis and algorithm development 

for fluid flow occurring in the non-linear regime (after the onset of 

instability), with particular emphasis on solute distribution, will be 

initiated in the near future. 
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Fig. 1. Longi tudinal  s e c t  ion of d i r e c t i o n a l l y  s o l i d i f i e d  sample 
showing t h e  change i n  vo1:me f r a c t i o n  of Pb d e n d r i t e s  (dark)  
as a  func t ion  of d i s t a n c e  ( f r a c t i o n  s o l i d i f  i r d )  . S o l i d i f i c a t i o n  
proceeded from bottom t o  top. A t  t h e  extreme top t h e r e  a r e  
nc dendr i t es .  S o l i d i f i c a t i o n  v e l o c i t y  i s  1.3 u m / s  - o r i g i n a l  
composition i s  40.7 w/o Pb. 

, 



V = 0.5 p m / s  

0 L= 11.8 cm? H=O 

A L=5.2 cm, H=O 

H= 0. IT, Vertical 
H= 0. I T, Horizontal 
INVERTED 

. .?ACTION SOLIDIFIED 

F i g .  2. Average sol id composition versus fraction sol idi f ied for 
43.0  w/o Pb a l loys  sol idif ied a t  O.5 m/s showixg extensive 
macrosegregat ion during upward sc - id i f  icat ion, negligible 
sf  fect  of magnetic f i e ld  and large effect  of inverted sol idi -  
f ication on reduction of macrosegregation. 
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Fig. 6. Average so l id  composition versus fraction s o l i d i f i e d  for  a 
35 w/o Pb bl loy  a t  0 .5 m/s. For t h i s  a l l o y  on the Sn-rich 
s ide  of the eutect ic ,  so luta l  convection is absent and the 
re la t ive ly  small amount of macrosegregation is caused by 
thermal diffusion.  
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F i g .  9. The c r i t i c a l  concentrat  ion c i *  of tin above which i n s t a L i l i t y  
occurs  a s  a funct ion of t h e  ve loc i ty  v of d i r e c t i o n a l  s o l i d i -  
f i c a t i on  of l ead- t in  a l l o y s  f o r  a temperature grad ien t  C i n  
t h e  l i qu id  of 200 K/cm. The so l id  cu es r present  grav ta -  5" 8 k 
t i o n a l  acce l e r a t i ons  of g = 980 cmls , 10- g , and 10- ge. 
The upper l i n e  with negatfve s lope  represen ts  f h e  onset of 
morphological i n s t a b i l i t i e s ;  t h e  near ly  p a r a l l e l  dashed-dot 
l i n e  labeled ( 3 0 / 0 z )  = 0 represen ts  t h e  neu t r a l  dens i t y  
c r i t e r i o n .  The dot ted  extension of t h e  curve labeled g 

e corresponds t o  o s c i l l a t o r y  i n s t a b i l i t i e s .  



Fig. 10. The concentrat ion at  t h e  anse t  of i n s t a b i l i t y  during direc-  
t i o n a l  s o l i d i f i c a t i o n  a t  V = 1.2 pm/s of a d i l u t e  a l l o y  of t i n  
i n  lead a s  a funct ion of t h e  s p a t i a l  frequency w of a s inusoida l  
per turbat ion;  t h e  t e m ~ e r a t u r e  gradient  G in t h e  l i qu id  is 290 
K/cm and t h e  constant g r a v i t a t i o n a l  aceekerat ion is 980 (10- ) 2 cm/s . The so l id  curves mark t h e  onset of non-oscillatory 
i n s t a b i l i t i e s  (o -0); whereas t h e  dashed curves mark t h e  onset  i- of o s c i l l a t o r y  i n s t a b i l i t i e s  ( t h e  va lue  of ai is  given in t h e  
inse t ) .  



Fig. 11. The concentrat ion a t  t h e  onset  of i n s t a b i l i t y  d u r h g  direc-  i 

t i o n a l  s o l i d i f i c a t i o n  a t  V = 1.3 pm/s  of a  d i l u t e  a l l o y  of t i n  I 

i 
i n  lead a s  a  funct ion of t h e  s p a t i a l  frequency w of a  s inusoida l  

1 perturbat ion;  t h e  temperature gradient  C i n  t h e  l i q u i d  is  2g0 
K/cm and t h e  constant  g r a v i t a t i o n a l  accekerat ion is  980 (10- ) 

2 i cm/s . The so l id  curves mark t h e  onset of non-oscillatory i 
i n s t a b i l i t i e s  (a =O); whereas t h e  dashed curves mark t h e  onset  

i of o s c i l l a t o r y  i n s t a b i l i t i e s  ( t h e  value of ai i s  given in the 
i n se t ) .  I 
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G L =  200 K/cm 
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Fig. 12. The c r i t i c a l  concentrat ion of t i n  above which i n s t a b i l i t y  
occurs  a s  a  func t ion  of t h e  v e l o c i t y  of d i r e c t i o n a l  s o l i d i -  
f i c a t i o n  f o r  a temperature grad ien t  in t h e  l i q c i d  of 200 K/cm. 
The curve wi th  P rand t l  number Pr = 0.0225 corresponds t o  a  
lead-t  i n  a l l o y  whereas t h e  o ther  curve corresponds t o  ca l cu l a t i ons  
f o r  a  hypothe t ica l  l ead- t in  a1 l oy  with thermal p rope r t i e s  
reduced by a f a c t o r  of 100, i. e. ,  Pr  = 2.25. 
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Pb-Sn 

10 100 1000 

TEMPERATURE GRADIENT K/cm 

Fig. 13. The c r i t i c a l  concentration of t i n  in lead above which in- 
s tab i l i ty  occurr a s  a f u n c t i ~ n  of the temperature gradient in 
the liquid for sol idi f icat ion ve loc i t i e s  of 1 .0  and 20.0 pm/s. 



Pb- Sn 
GL = 200 K /cm 

0 1.0 2.0 

MAGNETIC FIELD T 

Fig. 14. The c r i t i c a l  concentration of t i n  in lead above which in- 
s t a b i l i t y  occurs a s  a function of the strength of a  ver t i ca l  
magnetic f i e l d  far  so l id i f i ca t ion  v e l o c i t i e s  of 1 .0 ,  5 .0 ,  and 

- 20.0 pm/s and a temperature gradient of 200 K/cm. 



Task 3 

A Thermochemical Study of Corrosive Raactionr in Oxide Materlals 

Ha S. Parker 

Ceramics, Glass and Solid State Silence Division 
Center for Materials Science 

Phase assembla~es of I-elected compositions on the joins 

KIPe. 5 ~ i  a 5]02-~i~2 mnd KPeOZ ii02 have been determined after heat 

treatment at oxygen partial pressures of and 10-l7 atin and 

temperatures in the 800'-1400°C range. Exceseive reaction be tween 

platinum ctatainers and melts containing some ferrous ircn was noted. 

A comparison of conventional and containerless techniques for phase 

equilibrium studies ie presented. 



The objecti\-.a of this task a r e  t o  Inveptlgate the nature, extent 

smd l i r i i a t i o a s  tm aper i rcotaf  studies imposed by samplecontainer 

reaction a t  hlgh teaperatwe and t o  svdua t e  containerless techniques 

fo r  m e l t  and sol id  s t a t e  investigations. Alkali aud t ransi t ion ~ lese~ts  

ere among the most reactive sad are  ~f great  technological importance 

because of t h e i r  application in the f i e ld s  of WBD, fue l  ce l l s ,  

catalysts and s b ~ l d  s t a t e  electronic and ionic conductors. Reaction 

w i t h  the  con: r can severely compromise the bulk cmposftion of the 

ssrple and adversely a f fcc t  the e l ec t r i ca l  and chemical properties. 

Tb?a, together v f th  the Inability in general t o  e lec t ra~agne t ica l ly  

levitate ceramlc materials, makes lov gravity experiments a t t rac t ive  

fo r  containexlees st* of ruch materials. 

The gencsal approach i d  t o  se lect  a system of current technological 

importance and investigate: a)  the maxlmna temperature l imi t s  f o r  the 

container material and characterize the  reaction products, b) determine 

the equilibrium phase assemblages i n  selected portions of the systems 

within the linritatiobc hpoaed by a), a ~ d  c) i n  collaboration irith ZlSFC 

provide spechem f o r  levi ta t ton erpe.~.lments a t  S F C  and characterize 

-nd correlate resu l t s  of l ev l t a t lm  experiments with container experiments 

co evaluate problems associated with lwr gravity esper-ts. 

The system being iavestlgatti is the K p i r o n  oxide-SiO system. 2 

This spstr-- ' 6  of major in te res t  t o  the magnetohydrodyn.mics C#HD) 

ef for t ,  where these oxid- a re  present a s  colPpoaenrs of seed anii coal slag. 



The f i r s t  portioa of t b l s  .pmtm imtutigatd daring the course of thi. 

project was capos l t ions  on the K?'e02-nPe203" binary. Due t o  the  high 

temperatures iDovlved (T > 1HK)'C) plat- was choeclr ar the container 

material. As a resu l t  of thi. study, it was reported [I] that ,  contrary 

t o  the expected resul t ,  plat- waa a sui table  contaher at taqeraturee 

ar a h  aa 1600*~, provided m o t  of the Pe was kept in the 3+ state, 

Also, the e rb t cnce  of a 0"'-altdna structure type phaoe was reported. 

be an extenelon of this study, selected compositions In the  50- 
iron oxldrS1Q2 -stem have been m e d  a t  lwer partial p n u u r e a  of 

oxygen, where divalent i ron is present. 

Ibrperimeatal Procedures 

Thc preparation of corpositiaae f o r  st& and cbrac te r lza t ion  methods 

folloving heat treatment has been described [1,2], The mame netheds =e 

utilized f o r  th i s  portion of the  atudy, except tha t  dli calcirratioas and 

bsat treatments were performed in controlled part ia l  pressures of oxygen. 

In order t o  provide atrosphere control  during heat treatment of 

--ecimaus, a gas blerding and purifying t r a i n  was assembled. Mass f l o w  

metere vere wed t o  establieh desired rixing ra t ios  of inert gas (argon), 

95N2/5E2. N, d 02. The inert g u  was further purlfled by paaeing 

wer hot titanium sponge at apptoxiurtely 800°C when desired, The actual  

omen p a r t i a l  pressure in the furnace atroaphcre uar continuously 

mnitored using a s tabi l ized zirconia o w e n  senmor. The f u n a c e  chambers 

consisted of impermeable high purity alllarnr tubes provided with sui table  

aetal end f i t t h g s  fo r  gas flow and temperature measurement, with s i l icone 

rubber gaskets . 



Because of the lower temperatures Involved, the choice of container 

material. included iron, gold and plat-. ?he use of iron a s  a con- 

tainer mate>. ll muat be limited, however, to oxygen pressures determined 

by the  P r P e O  q u i l i b r i r r ,  of the  order of 10-l2 t o  10-l7 a 6  a t  the  

temperatures involved In  thir, study. Gold containers vere u t i l i zed  

fo r  hea thgs  a t  higker orpseu pressures and temperatures up t o  the 

1000°-10500C range. For heating6 abwe t h i s  temperature, p l a t b u n  

containers were used. 

The carpositioas, temperatures and orygen pa r t i a l  pressures investi- 

gated are shown i n  Table 1. Selected i n i t i a l  c~tnposizions on tvc, joins 

were amincd, t5e K@e~5Si~5)2-S10Z j o b  in the 50-"Fe0"-Si02 system 

and the  d o g o u s  W?-SIO2 join  in the K20-Fe203-Si02 system. Thus, 

al l  f i n a l  c apos l t i a a s  f a l l  between these bounding planes In the system 

It-Fe-Si-0. The co r? s i t i ons  in  the  K(Fe~5Si~5)02-Si02 j o b  are an 

extension t o  loucx silica content of the  region studied ea r l i e r  by 

Roeddar [3]. 'Ihe ma2-Si02 join has been studied in air by HcDaniel [4]. 

When heated a t  temperature. or' 800°C and oi ;'Sen partial pressures 

of lo4 a m ,  a11 cqml t ions  on the  K[Feg5Si.5]02-Si02 join yielded a 

phase similar in structure t o  the  high temperature arthorhombic form of 

KFeSi04 p r e v i ~ l y  reported [4,5 I .  In a i r ,  th ie  orthorhanbic KFeSi04 

transform, -wers ib ly  t c  a l av  tcaperature hexagonal fotm a t  a5out 945'~. 

Apparantly, the reduced oxygen preasure during these experiments Increases 

the s t a b i l i t y  region of the  orrhorhmbic structure. Reheat- in air a t  
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800°C of a sample of 2K(Fe.5Si.5)02:Si02 previously heated at  80.C in 

P = lo4 atm (Table 1 )  reilulted in oxidation and formation of the 
O2 

expected hexago~ral, low temp~trature s t ructure  of IIFeSIO4. Heating at 

lower pa r t i a l  pressures of oxygen, lo-'' at., showed de-position of 

the orthorhombic structure,  with the  appearance of f r e e  Si02 in the 

p r a y  dif f ract ion pattern. 

Campositions on the Ed2-Si02  join, prepared by calciaing in air 

t o  yield t r ivalent  iron, showed generally similar resu l t s  t o  t t o se  

i n i t i a l l y  c-staining divalent iron i n  tha t  phases having structures 

similar t o  hexagonal and orthorhombic KPeSi04 were obsennd a f t e r  heating 

a t  reduced oxygen pressures. The i n i t i a l  c a~pos i t i on  4KPd2:3Si02 

is known [4,5] t o  have a tetragonal s t ructure  in a i r ,  at temperatures 

above 850°c, however, apparently not s tab le  a t  pa r t i a l  oxygen pressures 

of lod at.. Welting points of compositions on th i .  join a r e  lowered 

10O0-150'~ by heating a t  the oxygen pressures shown in Table 1 ae 

campared to  the same compositions heated in air [4,5]. 

The use of gold containers fo r  low tenperature experiments was 

generally satisfactory.  I n  cases where melting occurred, minor gold- 

sample reaction was evident. For temperatures abwe the gold l imi t  

where platinum was used, reaction betwe- the molten specimen and 

platinum was pronou~ced. Attempts t o  prepare homogenous glasses fo r  

equilibrium recrysta l l izat ion experiment6 at oxygezi pa r t i a l  pressures 

of I C ~  a m  and t ape ra tu re s  i n  the 1200'-1400°C range were unsuccessful. 

+3 +2 Three cmpositions were t r ied:  KFe Slob,  2K[Fe 5Si 10 :Si02 and . .5 2 



+2 5K[Fea5Si .5 ]02 :Si02. Reaction between the p l a t i n n  containers and 

the molten specieem was observed in a l l  three compositions. Consider- 

able embrittlemcnt of the platinum due t o  iron pickup was evident. 

In the csse of the  1400.C heating, traces of the melt were observed 

on the outside of the  a n t a i n e r  suggesting diffusion through the 

container wall. 

Conclusion and Discussion 

Phase assemblages of selected capos i t ions  on the joins K[Fe.5Si5]02-Si02 

and a d 2 - S i 0 2  have been determined a f t e r  heat treatment of specimens 

a t  oxygen pa r t i a l  pressures of and arm. The use of gold a s  a 

container appears t o  be sui table  f o r  lower temperatures where no l iquid 

is present. Attempts a t  higher temperatures t o  prepare homogeno-1s glasses 

fo r  equilibrium recrystall ization experiments were unsuccessful due t o  

excessive reaction between the platinum container and ferrous iron i n  the 

melt at  these oxygen pressures. 

Discussions with D r .  Oran of MSFC have shown that  it is not feas ible  

to  acoustically l ev i t a t e  in a 1-g environment aci simultaneously heat 

specimem of 'Ihese materials t o  the required temperatures, e i tner  f o r  

preparation of homogenous glasses o r  f o r  melting point studies. Ati 

al ternate  technique is the use of aerodynamic j e t  l ev i ta t ion  and it is 

suggested tha t  t h i s  possibi l i ty  be emlored further. 

A comparison of exper-bental conditions and requirements f o r  con- 

v e c t i o n ~ i  and containerless phase equi l ibr ia  studies a s  w e l l  a s  

a t i c i p a t e d  problem areas are  given in Tables 2 and 3. 



\ Table 2. Comparison of Pscperimcntal Conditions f o r  Phase Equil ibria 
S tudiee . 

Specimen Pre-reacted, powder, packed 
i n t o  tube, tube sealed. 
Mass W. l  t o  0.3 g 

Maximum Heat- No res t r i c t ions ,  pltmge 
ing Rate in to  hot furnace 

Temperature 

A. Measurement Thermocouple o r  o p t i c a l  
pyrometry + l o  t o  +S°C 

3. Conrrol +2O t o  *S0C 

C. Time a t  
Temperature 

1. Subsolidus 
Experiments hrs t o  days 

Pre-reacted pcwler, formed 
i n t o  sphere o r  r i g h t  
cylinder. Uass W. l  t o  
0.3 g 

Limted only by thermal 
stress res is tance  of 
specimen 

Tuo color pyrometry or  
non-contacting method 

Better than -+2S°C a t  
f i n a l  temperature 

Not f eas ib le  a t  presect  

2. Solidus Minutes t o  1-2 hrs  a f t e r  Minutes t o  1 hr a r t e r  
and isothermal equilibrium isothermal equilibrium 
Liquidus 
Determination 

Cool- Rate .- ~ n c h  i n t o  water As rapidly a: possible 

Characterization I n  a l l  cases, specimens a r e  examined post-test 
and Eos'Luation by op t i ca l  and scanning electron microscopy 

and x- LL~V ' i f f r ac t ion  t o  determine phase 
assercblnge , p a r t i e l  o r  comrlete melting. 
Where appropriate, chemical analyses of 
specimens a r e  performed. 



Table 3. Some Problem Areas Associated with Containerless Experiments. 

1)  Heating technique f o r  1300' - ldOO°C range 

1) radiant  wall  furance 

2) l a se r  

3) arc-image furnace 

2) Temcperature ceasurement and control 

1) two-color pyrometer 

2) other non-contacting method 

3) Thermal gradients  i n  specslen must be a s  small a s  possible 

4) Charges i n  bulk composition of specimer, must be measured or 
estimated from vapor pressure measurements 

5 )  Density of specimen w i l l  change v i t h  s in ter ing and melting 
during experiuent 

6 )  Elec t r i ca l  conductivity w i l l  va- with both t a p e r a t u r e  and 
compos i t ion 

I n  the  case of low gravity experiments, electromagnetic positioning 

is an a l t e rna te  technique applicable t c  a more limited c lass  of oxide 

materials.  A s  par t  of an invest igat ion i n  the  area of ref rac tory  oxides 

having good e lec t ronic  conductivity, a gvoup of NBS inves t igators  has 

recently reported (61 c o n d u c t i v i t i e ~  a s  high a s  1 ohm-'an-' i n  the  10O0- 

250°C range in calcium-doped yttrium chromites. Melting pointe axe i n  

excese of 1750°C, making the  choice of container material  severely limited 

f o r  hikh temperature property measurements. Thn, conductivi t ies  appear t o  

be large enough t o  make electromagnetic positioning feas ib le .  
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Task 4 

Thermodynamic Properties of Refractory Materials 

at High Temperatures 

Jack H. Colwell 

Chemical Thermodynamics Division 
Center for Thermodynamics and Molecular Science 

Summary 

The current status of the program to obtain high temperature (1500-4000 K) 

heat capacities of materials while they are levitated in 3 space environment 

is presented. The heat capacities are to be derived from the simultnneous 

measurement of the radiant heat loss and the rate of temperature change of 

spherical samples as they cool freely. Details of the thermal gradients to 

be expected in both n1,etallic and nonmetallic samples have been 2xamined. In 

metallic samples the gradients, in general, will be tolerably small and cause 

little diEficulty. In nonmetallic samples the gradients will be large but 

by making measurements on samples of different size, it should be possible to 

get moderately precise values of botn the heat capacity and the thermal 

conductivity. The upper temperature limit of the experiments will be determined 

by sample vaporization and will occur when the vapor pressure reaches the 

vicinity of 10 Pa (1f4 atm). The program for a ground-based simulation of 

the free-cooliag experiment is discussed. 



Introd JC t ion 

The purpose of this research is to measure the heat capacities of 

refractory materials at high temperatures, 1500-4000 K, by using the low- 

gravity environment of spRce to maintai.1 the samples without physical 

contact. The snmples wlll be spherical, fabricated in that form as solids 

and maintained in that form as liquids by their surface tension. They will 

be heated to a high temperature and then allowed to freely cool by radiation 

in a cold-wal.led vacum chamber. 

As the sample cools its temperature will be determined by radiation 

pyrometry and the total radiative heat loss will be determined simultaneously 

using a wide-band pyroelectric detector. The ratio of the heat loss to the 

rate of change of temperature will be a measure of the heat capacity. 

To give an indication of the nature of the experiment, two pertinent 

quantities are presented in Fig. 1. The rate of cooling of a sphere by 

radiation is obtained, assuming no thermal gradients, by equating the rate 

of heat loss 

2 4 dH = -4rR EOT dt (1) 

with the thermal capacity 

3 dH = (4/3)~rR cpdT (2) 

which yields 

4 
d~//'t = -3ECT / (c~R) . (3)  

E is the total hemispherical emissivity, U the Stefan-Boltzmann Constant, 

c the specific heat and p the density. In Fig. 1 the rate of cooling as a 

function of temperature is shown for a sphcre of radius K = 0.5 cm with 

values of E and pc typical of refractory metals. For the regicln of interest 

the rate varies quite widely, from 20 K/s to ,learly iOtiC? , r e  it is 



A. 

i 
I 

. , .  i teraomble t o  consider rrrcrrulcuaata on amplea as mall. as 1 t ~ r r  radius, the 

.I . hi& as 5000 We. The detector, vill be operating at frequencies of about 

1 kHz, so the temperature will not be cha~g- appreciably during the 

sampling period even for the highest cooling rate. Depending on sample 

size, the free-cooling period will last between about 5 and 30 -ieconds for 

coolings to 2000 K and considerably longer for coolings extending be.low 

that temperature. 

The total pwer radiated by the sample, as shown in Fig. i, gets qui te  

Large-acthe highest temperatures -and will, of course, be eve.. l a  rgcr !'or 

larger samples or ones with higher emissivities. At these levels, tilp b  

heating of specimens to the desired temperature will beconle a major problem. 

For metals, inductive heating will be the principal source, but to rcach 

the highest temperatures it may habe to be supy'anented with a radiative 

source. Normetals will almost certainly require supplementary heating. 

The large amount of power being radiated by the sample, however, will 

simplify considerably the determination of that power at a dip tance. As a 

result, there should be no problem with signal level except possibly for 

the pyroelectric detectors with very small samples at the lowest temperatures. 

We foresee no insurmountable obstacle to the free-cool.ing experiments 

from the physical measurement aspect, that is, the radiatioc pyrometry 

measurement or the measurement of total radiant power with p roelectric 

detectors. Some of the problems in making these measuren;ents have been 

pointed our ih an earlier report''' and are fuither discusser! in thi. 

report. The real limitation to the free-cooling ~periment~jr arise from the 

experimental approach. Because of the rapid cooling of the samples, temperature 
, 

gradients will exist in the samples and for those of low thermal conductivity 



will be quite large. At some point these will maw it impossible to extract 

meaningful data from the measurements. We have spent considerable effort 

in the determination of the temperlture gradients likely to be encountered 

in the experiments and what information can be extracted. The vaporization 

and/or decomposition of the sanple will determine the maximum temperatures 

which can be reached in these experiments. Both of these limitations on 

the applicability of the experiments will be discussed as well as the 

current plans for future development. 

Temperature Gradients 

The thermal gradients within a sphere, freely cooling by -adiation, 

are given by the Fourier equation 

.. 
a L ~  2 aT 1 aT - + - - = - -  
ar 2 r a r  a a t  

with the thermal diffusivity a = /pc, A being the thermal conductivity and 

pc the density times the specific heat, i.e., the heat capacity per unit 

volume. Solutions to Eq. (4) must satisfy the boundary condition 

where X aT/ar is the heat conducted to the surface of the sphere which must 

equal the heat radiated from the surface given by the Stefan-Boltzmann 

4 4 relation eaT . The T term in the boundary condition, Eq. ( 5 ) ,  makes the 

equation nonlinear and it cannot be solved analytically. Solutions to this 

problem have 2aen obtained by other workers '**'I using the numerical method 

of finite differences, but their results are not available to us in a 

usable form. We are fortunate in having two generalized program in the 

NBS computer library for the numerical solutions of nonlinear partial 



differential eq~~ations. The programs are MOLlD (method of lines, one 

dimension) I 4  and PDBCOL (partial differential equations, collocation over 

piecevise polynominals) I .  The HOLlD program can be used to produce 

tabulated temperature values at various radii for a given set of times. We 

have used this program in generating the data discussed below. The program 

can be made very general in allowing for various initial temperature gradients 

and for different temperature dependences of the physical parameters, c, 

p, E, and A .  The results are somewhat awkward to use in that one cannot 

conveniently generate data for different input parameters at the same 

temperatures. The PDECOL program produces a polynomial solution whlch may 

be better suited for this purpose but it has not been run to date. 

To describe and understand the temperature gradients in free-cooling 

spheres it has been extremely useful to define what we term the "limiting 

parabolic temperature distribution." Once a cooling sphere has this limiting 

distribution, its form will be maintained for the rest of the cooling cycle. 

To derive this limiting temperature distribution we assume first, that a gradient 

exists and second, that the gradients do not change as the 

sample cools. The second assumption is not strictly true, of course, and will be 

modified subsequently. In Fig. 2 we define the quantitdes describing the 

heat flow from a sphere; Q is the power radiating from the surface of 

the sphere of radius R, and q is the heat flux across a surface within 

the sphere at radius r. If all parts of the sphere are cooling at the same rate, 

and ass*&ng that c, E, and h are all independent or only weak functions of 

T, then 

This equation simply states that as the sphere cools, each volume element 



gives up the same amount of heat and that  all the heat must be conducted t o  

the surface a t  R. For q t o  be conducted across the surface a t  r, the 

temperature gradient a t  r m u s t  be such tha t  

Q is given by the Stefaa-Boltzman re la t ion 

where Ts indicates the surface temperature. 

Substituting ( 7 )  and (8) in to  (6) w e  have 

CUTs 4 
d T =  -- A8 rdr  , 

and integration fram r to  R yields 

The temperature at  the center of the sphere re la t ive  t o  tha t  a t  the surface is 

the temperature difference being 

These equations a r e  accurate when the temperature difference, AT, is only a few 

percent of Ts, but not for larg: valiree. Bq. (12) shows that  the t a p e r a t u r e  

difference is diminishing a s  Tg drops whereas the i n i t i a l  a s sup t ion  in Eq. (6) 

was that  the difference was conatant. To be correct, the t a p e r a t u r e  at  the center 

of the sphere m u s t  drop more than the t a p e r a t u r e  at the surface. Therefore, 

q i n  Eq. (6) must be proportionately larger toward the center of the sphere 

by an mount which varies with r and T much am T(r)/T We have fomd tht  
8- 

modifying Eq. (6) so that  



solviag fo r  a new T(r)/Ts using Bqs. (7 )  and (8), and by i t e r a t i m  

repeatedly, one obtains 

which closely f i t s  the  computed resul t s .  

In Fig.  3 we compare the  temperature d i s t r ibu t ions  derived fran the  p a r t i a l  

d i f f e r e n t i a l  equation ( so l id  l ines )  with the  predicted l imi t ing  parabolic 

d i s t r ibu t ions  (dashed l ines) .  iJe have assmed an i n i t i a l  condition of uniform 

temperature a t  3000 K. The material  pa rmete r s  a r e  A = 1.0W/an0K, 

3 PC = 3.0 J / K m c m  , and € = 0.3, values tha t  coirrespond t o  tungsten and a r e  

r e l a t ive ly  typica l  of most ref rac tory  metals. When the  sphere i n i t i a l l y  

s t a r t s  t o  cool,  t he  surface  temperature drops rapidly m t i l  che temperature 

d i s t r ibu t ion  within the  sphere becapes parabolic and then the  e n t i r e  sphere 

c-ences t o  cool mifoxmly. This system reaches the  l imi t ing  parabolic d i s t r ibu t ion  

i n  s l i g h t l y  over 0.5 seconds and a f t e r  the  t-perature has f a l l e n  only about 2 112%. 

It is in teres t ing  t o  note  tha t  the  l imit ing terpera ture  d i s t r ibu t ion  depends on ly  

on the  thermal conductivity and not on the  heat capacity. Once the  l i n i t i n g  

d i s t r ibu t ion  is established,  the  heat capacity determines the  rate of cocling only. 

The solu t ion  of the  p a r t i a l  d i f f e r e n t i a l  equation is needed t o  describe how the  

i n i t i a l  conditions d i e  away and a t  what point the  l imi t ing  parabolic behavior 

is applicable. 

Shkia i n  Pig. 4 are r e s u l t s  for  spheres of three  d i f fe ren t  r a d i i  f o r  a 

hypothetical n o m e t a l  where the  mater ia l  p a r a e t e r s ,  A = 0.046 i i / a ~ * ~ ,  

pc = 4.6 ~ / i C * c m ~ ,  and r - 0 . 3 ,  are similar t o  those of s o l i d  a l u i n a .  The 

i n i t i a l  condition is again a t m i f o a  -peratare of 3000 K and the  material 

p a r a e t e r s  a r e  considered t o  be independent of tcrperature.  In the  ffgure 
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the  time variable is reduced by dividhag by che radius or  the spherical 

specimen (see Eq. (3)) which permits a bet  :er carparison of the e f fec t  of 

the radius. d c  see tha t  i n i t i a l l y  the s u r t a ~ r  temperature of the larger 

s a p l e s  f a l l s  more rapidly (on our reduced time scale) -ti1 the limiting 

parabolic gradient is reached. The l h i t i n g  distributicnre for  the spheres are reached 

when t / R  is approximately 3, 6, and 12 s / o  for  the 0.125, 0.25, and 0.5 cm 

radi i ,  respectively. A t  t / R  = 20 the surface temperatures a re  nearly 

identical  and the proportionality of the temperature diffezences t o  the r a d i i  

is obvious. That the three surface t epe ra tu re s  a r e  the scre a t  this t i r e  

is only coincidental, for  once the s a p l e s  have achieved the lipitsg 

parabolic distr ibution,  the surface tmpe ra twe  of the smaller sphere is always 

cooling fas te r  ( i n  t / R  U t s )  than the larger  sphere. This is a consequence 

of the i n i t i a l  rapid cooling of the surface of the larger  sphere, so that  

i t  was losing proportionately less heat during subsequent periods than the 

e a l l e r  sphere. As a resul t ,  the  average temperature of the larger  sphere 

w i l l  alvays be greater  than tha t  of the a a l l e r  sphere. A t  lower tmperaures, 

vhen the  temperature gtadieate are eull, the surface tamperature of the 

larger sphere w i l l  be higher than that of the aaller  sphere. 

The magnitude of the  change i n  the apparent heat capacities caused by 

the t a p e r a t u r e  gradients can be readily calculated when the gradients have 

the limiting parabolic forr. The observed temperature change durisg a 

given time interval  is that  of the surface tenperature, Ts. The heat evolved 

during that  interval ,  however, w i l l  depend on the chame i n  the average 

t a p e r a t u r e  of the scrrple. The change i n  t h i s  average temperature, 

'av* on cooling w i l l  always be greater than the chaage i n  T because of the s 

diminishing gradient with dh in i ah i lg  tapera ture .  A s  a resul t ,  the apparent 

heat capacity, i.e., the observed energy radiated divided by the change i n  

w i l l  always be greater than the a c t w l  heat capacity. The average 



temperature for  a sphere a s  determined by 

and using Eq. (14) for  T(r)  gives 

3Ts = -  I - -  I tan -1 b R  , 
Tav blt3 b a 

- R 
a 

3 
where a = 1 - coTs R / ( ~ X )  and b = mT 3 / ( 2 ~ ~ ) .  t63 

s 

In Table 1, changes i n  TaV a r e  given for  each of two d i f fe ren t  r a d i i ,  

c o n d u t i v i t i e s  and surface temperatures. The r e s u l t s  show t h a t  the  increase 

i n  the  apparent heat capacity over the  ac tual  varies ,  a s  might be urpected, 

Table 1. Changes i n  Tav r e l a t i v e  t o  changes i n  T s for  spheres of two 

d i f fe ren t  r a d i i  and two d i f fe ren t  thermal conductivi t ies  including 
the  percentage increase i n  the apparent heat capacity over the  
ac tua l  heat capacity 

l inea r ly  with R, inversely with A ,  and a s  the tenperature cubed. The increases 

fomd for  A = O . l ~ / ~ * c m  a r e  d is t ress ingly  large  for  the  conductivi t ies  of most 



mls~etalr will lie at or below this value. The conductivities of refractory 

metals tend to lie between about 0.3 and 1.2 W/Kacm, so the increase in 

apparent heat capacity will be sizable even for many metals. 

Because the heat capacity incrwrlle is nearly an exact linear function 

of the sample radius, it should be a relatively simplu matter to correct 

for the increase by measuring samples of different size. Indeed, when the 

apparent heat capacity increase is large, it should be possible to determine 

thermal conductivities from a set of precise data. This process could be 

appreciably complicated by the temperature dependence of c, A, and 

E; these quantities were taken as constants in the above analysis, but they 

are usually relatively weak functions of T. This will work for solids but 

may break down completely for liquids if there is any stirring of the 

sample. If a sample is heated inductively, appreciable stirring action 

will occur during the heating period which may take time to die away. If a 

eample were radiantly heated in a low-gravity envirorrnent it may remain 

quiescent, but this will have to be determined. It is our intention, 

however, to use induction coils, operating at low power levels, to electro- 

magnetically p~sition the samples vithin the apparatus. Thie action alone 

would probably add some stirring action to a liquid sample. 

Sample Vaporization 

In the high-temperature levitation calorimetry carri ed out by Davld 

Bonnell with John Margrave,'" the upper temperature lhlr of the cqerirnts 

war determined by the vaporization of the refractory wtal w l m .  In 

their case, the samples were in an inert-gas atmosphere aud the v a p o r i z ~  

atom condenring into a mke which physically obscured the rcrqle. This 

occurred at vapor pressures of about 10 Pa, M c h ,  In general, correspoad. 

to temperatures about 200 It above the vltirrg point of the metal.. 
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The free-cooling experiments will be in a vacuum so there will not be 

any smoke formation; sample vaporization, however, will still cause difficu1ti.e~ 

and determine the high temperature limit for the experiments. Assuming the 

evaporation coefficient for metals to be D = 1, the rate of evaporation at 

2 3 10 Pa will be about W = glcm *s. Using a &ample density of o = 12.5 glen . 
the rate of sample loss will be Wlp = 8 x cmls. -4s a fraction of the 

2 3 -5 -1 total sample, this will be F = W4rR l(413nR 0) = W/(Rp) = 8 x 10 /R s . 
For R betwezn 0.1 aad 1 cm the loss will be less than O.1Xis and can probably 

be ignored. This vaporizing material will, however, be condensing on the 

apparatus. Consider a detector or detector objective leuse 10 cm from a 

sample of R = 0.5 cm, the rate of deposii~on of the metal coating on these 

objects will be about 2 nm/s. This may seem a small amount but considering 

that an opaque metallic coating has a thickness of about 50 rim, indicates 

that the detectors will have to be protected if exbosed to samples vaporizing 

at thea: rates for periods of a few seconds or more. 

The heat loss from a sample will be .ri.gnificant at vapor pressures of 

10 Pa. Using AHv = 750 k~imol for the heat of vaporization of refractorv 

3 metals,[81 and V = 10 cm 11.01 as the molar volume. the power of heat loss 
m 

2 by vaporization at a vapor pressure 10 Pa is Pv = WAH~/(PV~) = 6 Wlcm . 
In Table 2, P is compared with the radiative power, PR, for surf?-es at 

v 

three different temperatures. 

Table 2. Power of evaporative heat loss (vapor presswe = 10 Pa) compared 
with radiative power (2 = 0.3) at various sutface temperatures 



~ t '  is apparent tha t  with samples a t  temperatures where the  vapor pressure 

is 10  Pa, a s ign i f i can t  correct ion w i l l  have t o  be made f o r  sample , * . , ,  !- 

zation, and f o r  those sample mater ia ls  reaching t h a t  pressure a t  :. .w 

temperatures, the  correct ion w i l l  have t o  be of f a i r l y  high accuracy. 

There are a l s o  po ten t i a l  prableas from the  sample vaapor due to  its 

absorption spectrum. Nearly a l l  materials  w i l l  have absorption bands i n  

the  region of i n t e r e s t ,  0.3 urn t o  15 pm f o r  the  t o t a l  radiance measurement. 

The atomic absorption l i n e s  of metal vapors w i l l  probably remain sharp up t o  

pressure of 10 Pa and block out very l i t t l e  of the  t o t a l  radiat ion.  Above 

tha t  pressure, however, :he l i n e s  w i l l  begin t o  broaden and an appreciable 

amount of radia t ion  from the  sample would be blocked from the  detector.  For 

the  radia t ion  pyrometry, which w i l l  use narrow bandwidths between 0.4 and 

1 pm, care w i l l  have t o  be taken tha t  absorption l i n e s  do not occur a t  the  

wavelengths being used. 

This discussion on vaporization has been r e s t r i c t e d  t o  metals because of 

the  a v a i l a b i l i t y  of da ta  and the  general izat ions t h a t  can be made. The same 

type of problems and l imi ta t ions  w i l l  occur with nonmer..llic samples and w i l l  

probably be much more involved and stringent. ?'he evaporation coeff ic ient  w i l l  

most lilcely be l e s s  than 1 and vaporization can be accompa~ied by dieaociat ion 
, 

of the molecular s ec ies  so  tha t  quan t i t i e s  such a s  r a t e s  and heats  of P 
vaporization a r e  less w e l l  defined. Molecul.ar species i n  the  vapor w i l l  make 

the  absorption spectrum much more complex with numerous broad absorption bands. 

Finally,  i f  decomposition is occurring a t  the surface, the  radia t ive  proper t ies  

of the  surface could be a l t e red  considerably and introduce e r r o r r  i n  interpre-  

tatiorr of the  radia t ion  measurements. 



Total  Radiance Measurement 

The unique aspect  of  t h e  free-cooling experiment and t h a t  with l e a s t  

precedent, is t h e  proposal t o  use pyroe lec t r ic  de tec tors  t o  measure the  

t o t a l  rad lan t  heat l o s s  frcm t he  sample. The de t ec to r s  must be uniformly 

black over t h e  wavelength 0.4 t o  14 pm which w i l l  include 99% of the rad ia t ion  

from samples at  temperatures between 1500 and 4000 K. When the  f i e l d  of 

view of t he  de tec tor  encanpasses the e n t i r e  sphere of t he  sample, the 

s lgna l  w i l l  be  proport ional  t o  the  t o t a l  hemispherical a i t t a n c e ,  [ I1  t he  

propor t iona l i ty  w i l l  be t he  a r ea  of t he  de tec tor  r e l a t i v e  t o  t he  a rea  of 

the sphere whose rad ius  is the  d is tance  from the  de tec tor  t o  the  center  of 

the sample. 

A pyroe lec t r ic  is a poled f e r roe l ac t r i c ,  which, when heated, changes 

its spontaneous polar izat ion.  LiTaO de tec tors  ? 11 be used because the  
3 

883 K Curie temperature of  t h i s  ma te r i a l  makes i t  well  su i t ed  fo r  a hici. 

temperature apparatus and they a r e  ava i l ab l e  i n  a wide range of produci-.s 

from seve ra l  manufacturers. A pyroe lec t r ic  de tec tor  has e lec t rodes  on two 

s ides  of a t h i n  wafer of ma te r i a l  forming a capac i tor ,  a change i n  po la r i za t ion  

of the  m a t e r i a l  can then be used t o  generate  a cur ren t  i n  an ex te rna l  

c i r c u i t .  The cur ren t  is  proport ional  t o  the  r a t e  of change of temperature 

so  t h a t  r ad i a t ion  from a continuous source must be chopped t o  g e t  useable 

response. A black coating is appl ied t o  t he  f ron t  sur face  of the  pyroe lec t r ic  

t o  enhance the  l i g h t  absorpt ion and the  back sur face  is bonded t o  the  

mounting which serves  as a hea t  sink. Fig. 5 shows t h e  thermal response of 

an idea l ized  py roe lec t r i c  detector .  The diagram a t  t h e  top of t h e  f igu re  

descr ibes  t he  model used; P i s  the  power of the  inc ident  r ad i a t ion ,  c is 

the thermal capaci ty of  t h e  py roe lec t r i c  which is a t  temperature T,  h is 

the t h e r m ~ l  conductance t o  t h e  heat s ink  at To. The response of the model 



is given by 

which is plo t ted  a s  curve A i n  Fig. 5 with P -- 0 and the  i n i t i a l  temperature, 

T > T and aa curveB with P = P and Ti = To. Tht thermal response of the  detector  
i 0 

t o  chopped radia t ion  is represented F.y the  saw-toothed curve which r i s e s  from T when 
0 

the  radiat ion is turned on u n t i l  reaching a steady s t a t e .  A t  the  steady 

s t a t e ,  the  temperature of the  pyroelectr ic  w i l l  be followillg the  path 

indicated by the  arrows a t  the  in tersec t ion  of curves A and R i n  Fig. 5. 

For t h i s  ideal ized example, ihe e l e c t r i c a l  response w i l l  be a square wave 

when the  chopping period 2s su f f i c i en t ly  small compared with the  thermal 

relaxation of the  device, T = c/h. A s  the  chopping period is made longer, 

the  curvature i n  the  thermal response w i l l  becomemore evident and the 

square wave w i l l  begin t o  droop. 

The model fo r  the  thermal response is ideal ized i n  severa l  ways. 

Foremost is tha t  the  model implies tha t  the pyroelectr ic  is uniformly 

heated whereas i t  ac tual ly  responds t o  the  thermal pulse a s  f t  propagates 

thrmqh the material.  Also, the  black coating introduces a thermal lag 

whicl~ together with e l e c t r i c a l  response of the  c i r c u i t  produce a s i zab le  

rise-time fo r  the  device. Fig. 6 show oscilloscope tracings of the  response 

of a pyroelectr ic  d e t e c t ~ r  a t  four d i f f e ren t  chopping frequencies. A t  300 

Hz the  rise time of the  response is very evident but par t  of t h i s  is due t o  

the  t r ans i t ion  period of the chopper. The constant voltage period is 

somewhat l e s s  than amil l iaecond.  A t  150 Hz the  voltage is  essen t i a l ly  

constant for  more than 1 I/? ms. A t  75 Hz the  droop i~ che voltage s ignal  

is widen t  and from the  15 Hz curve the  thermal time constant fo r  the  
L ; 

. . device of 15-20 m s  can be dedv- .d, It was intended tha t  t h i s  pa r t i cu la r  



detector could be lu.d at 300 Hz vith the voltage sampled for 1 u, during 

each half -cycle. fie 300 Ilr curve in Pie. 6 ohovcl that either the sampling 

period or the choppins frequency will have to be reduced to get the full 

signal. 

Cold black is used for the absorptive coathg on the py-roelectric 

detectors and numerous reflectance measurements have shown these coatings 

to be uniformly black to between 98 and 100% for wavelengths from 0.3 to 

10 m. Bsginniag betveen 10 and 20 pm there is a drop-off to values as lov 

as 90% vith the positio~ of the drop-off varying from sample to sample. At 

wavelengths above 10 p, however, we are concerned only with the long wavelength 

tail at the lowest temperature so the errors introduced should be small. 

Because of the smallness of the detectors and the degree of difficulty in 

making accurate reflectance measurements, the blackness of indFvidua1 

detectors cannot be determined directly and must be assumed to be similar 

to the measured coatings. 

The calibration of the pyroelectric detectors will present some diffi- 

culties. The response of the detectors are supposed to be linear over the 

range of power to be covered by the experiments for samples of 0.1 to 1 cm 

radius and temperatures from 1500 to 4000 K. The linearity and magnitude 

can be established to a fair degree of precision using standard tungsten 

filament lamps. There will be, however, uncertainties of several percent 

arising from the transfer of the calibration as well as the originhl lamp 

calibration f tself . 

Cbrrent Exper-tal Plan 

Because of the untried nature of the pyroelectric detectiazl system in 

particular and the free-cooling experiment in general, we are proceeding 



with a aromd based simulation of the space aperimcat. The setup t o  be 

wed is ahown in Fa. 7 u h u e  in place of the e r p l e  behq~ levi ta ted v i t h l r ~  

the  apparatus, it is s i rp ly  suspended f r a  a wire of the l l r e  material. 

Tungsten is the material of choice since with its high reltlsg point, 

3650 A, experiments could probably be run at tapera turea  q a  t o  3500 K or, 

as is more l ikely ,  up t o  the l l m i t  of the available pouer fo r  induction 

heating. The heat capacity and emittance are reasonably weil known for  

so l id  tuugsten so that the observed results for  the free-cooling of the 

aarple can be capared  with calculated results. The correction for  the 

heat leak t o  the  suspension vire wfll probably be re la t ively  aa l l  and, in 

any case, it can be rialmized by e lec t r ica l ly  heating the wire. A hole , 

dr i l l ed  in the sarple can -.e used for  blackbody t a p e r a t w e  measurerents so  

tha t  it  w i l l  not be necessary t o  re ly  on any assamptions about the srnface 

e r i t t ance  in order t o  deteraine the a a p l e  t a p e r a t m e .  The simulated 

experiments w i l l  a l l w  investigation of many of the problem areas such a s  

reflected l i gh t  gett ing into  the widr aperture of the pyroelectric detector 

and l i g h t  reflected f r m  the co i l s  back onto the smple.  

A high-speed, 12 b i t ,  d i g i t a l  voltmeter w i l l  be used t o  record the mp l i f i ed  

pyroelectric detector signals. The mit is controlled and the data logged 

by a desk-top ccmputer. Pyranetry w i l l  i n i t i a l l y  be carried out with an 

exist- millisecond pyrameter, but we a r e  about t o  s t a r t  designing a new 

pyrometer which w i l l  be dedicated to  the free-cooling experiments. The 

pyrometer w i l l  be a two or three color ins t rment  sampling a t  millisecond 

intervals. Control and data losging w i l l  be handled by the same syster  

used for  the pyroelectric detector. 



Conclusions and Discussion 

The upper temperature lhlt of the free-cooling experiments vill be 

limited by the vaporitation of the sample. This will occur when the vapor 

pressure of the material reaches the vicinity of 10 Pa. 

For nonmetals there w M 1  be problems from numerous sources. m e  l w  

electrical conductivity may preclude inductive heating and limit the ability 

to use radio frequency fields for positioning the samples. The transparency 

of some nonmetallic materials will cause difficulties in temperature 

deteninations'll . Teuperature gradients, determined by the thermal conduc- 
tivity of the material, will linit the precision of the derived physical 

quantities. For X C 0.01 W/K*cm, it uay be difficult to extract any 

~eaningful results from the data. For 0.01 < A < 0.1 W/Kocm, it should be 

possible to obtain both heat capacities and thermal conductivities of 

mderate precision for solid sanples. For X > 0.1 W/Kocm, relatively 

precise heat capacities should be obtained together with a lc* precision 

value of A, again for solid samples. Heaningful data on liquid samples 

with A much below 1 W/K*cm could only be obtained in the limits of rapid 

stirring or no stirring. It vill probably not be possible to derive heats 

of fusion from the cooling curves of poorly conducting materials. 

With metals, vaporization of the sample appears to be the only irpediment 

to heat capacity measurements by the free-cooling technique. The Ugh 

thermal conductivity of the samples will keep the gradients small enough 

that stirring within liquid samples will produce only a Pinor perturbation 

on the measurements. It is unfortunate that with few exceptions (Ef, Zr, 

and Pt), the vapor prescrure of high-melting apletals will limit the experiments 

to temperatures just slightly above their melting points, because it would 

be of great vplue to obtain the heat capacities of liquid metals over a 



I wide temperature raqe. The f ree-cooling experiments do, however, open a 
I 
I 

, new prospect; t o  reasure the heat capacit ies of the l iquid metals in to  the 

supercooled range. Container'!.ess samples should, and have been observed (91 

to ,  supercool t o  a considerable extent. The f reecool ing  experirent vill 

permit t t 2  heat cape-lty t o  be deterctned a l l  the way t o ' t h e  point where 

sol idi f icat ion comences and the sample recalesces. It w i l l  a l so  be possible 

t o  change the sarple s i ze  and thus the r a t e  of cooling, which may produce 

variat ions in the extent of supercooling and even possibly the heat capacity. 

The prospect of the supercooling experireat8 with metals makes the  developrent 

of the free-cooling technique vo r thdd le  even I f  the de te raha t ion  of 

noaretal heat capacit ies were  t o  turn out t o  be infeasible. 
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PQ. 1. The rate of :-ratur. change and total radhnt pavrr for a 
free-cooliw 1 u sphere of refractoq ureri.1. c - 0.3. 
PC = 3.0 J / K * ~ ' .  
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F i g .  2. Diagra for the dcrivrtlcm of the l r i t i n g  prabolic taperature 
dlstribut ion. 



~ 1 ~ .  3. T g p e r a t u r e  g r a d t e a t s  i n  a sphere  o f  1 CA r ad ius  f r e e l y  c o o l i q  by 
r a d i a t i o n  Era an  i n i t i a l  cons tant  temperaturp of 3000 K. The 
m a t e r i a l  p a r a e t e r s .  E - 0.3, @c - 3.0 J I K - ~ ~ ,  and 1 - 1 Y 1 K . a  
correspond c l o s e l y  t o  those  of  t m g s t e n .  The s o l i d  curves  a r e  
s o l u t i o n s  of  t h e  p a r t i a l  d i f f e r e n t i a l  equat ion  d e s c r i b i ~  t h e  system. 
The dashed curves  a r e  t h e  l lmit irrg parabol id  t s p e r a t u r e  
d i s t r i b u t i o n s  f o r  t h e  sme s u r f a c e  t cnpe ra tu res .  



P i g .  4. Taperature ~ r d i e n t s  in freely  cooling spheres of three different 
radi i  o f  8 hypothetiul u t e r i 8 1  with c = 0 .3 ,  PC - 4 .6  J / K - ~ B '  and 
X = 0.046 d / K m a .  The i n i t i a l  condition is a miform tmperature 
o f  3000 K. The dash-dot l i n e  a t  the b o t t a  is a reference l i n e  t o  
h l g h l u h t  the direct  proportiomlity o f  the magnitude of the 
~ r a d i e n t s  t o  the radi i .  





Fig. 6. Oscillograph tracing of the output of a pyroelectric detector a t  four 
different ligIit chopping frequencies. 
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Fig. 7. Diagram of simulated space free-cooling experiment. 
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