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ABSTRACT

THE TIME DEPENDENT FINITE ELEMENT MODELING OF THE ELECTROMAGNETIC i

FIELD IN ELECTRICAL MACHINES - METHODS AND APPLICATIONS

Elias G. Strangas, Ph.D.

University of Pittsburgh

A method is developed to calculate the field quantities at a cross

section of an electrical rotating machine, and to use these quantities

to calculate the machine parameters and performance. The method includes

the effects of eddy currents and saturation and calculates the inductances,

torque and losses due to eddy currents. It is applicable to cases which

cannot be described by a constant set of parameters, but rather where

these parameters become functions of time and field solution.

The method of time dependent finite elements is used, and a technique

is developed to describe the airgap when the rotor is moving with respect

to the stator. The solution techniques that can be applied to the resulting

system of equations are investigated, and the method of the preconditioned

conjugate gradient is described and applied. The underrelaxation method

is applied to the calculations of the saturation levels in iron parts.

iii



The solution of the magnetic potential at the cross section of the

machine is used to calculate inductances through flux linkages, and torque

through the application of the Maxwell stress tensor at a surface in the

airgap. The techniques developed are used to calculate the performance

of chopper controlled DC series machines used in electric vehicles and

to predict torques and currents during the asynchronous starting of

synchronous salient pole motors.
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1.0 INTRODUCTION

Availability of modern, high speed digital computers with large

storage capacity and speed of operations has had a dramatic impact on

the methods of treating electrical machinery problems. Sophisticated

numerical techniques, yielding accurate results, have replaced the

approximate analytical approaches of the past.

The modern techniques are based upon rigorous mathematical analysis

methods; also they have stimulated the further development of the methods.

A case in point is the problem of calculating the electromagnetic field

of a machine. Initially only the field in small regions was calculated

by rather crude means based on the fundamental magnetomotive force and

flux waves. Then, the finite difference method emerged, providing a

powerful tool with capability and accuracy exceeding that of the earlier

methods. Following this, the finite-element approach to machine analy-

sis was introduced, providing a still more capable analysis technique.

In addition to the fact that numerical solutions are more elegant,

fast, and accurate than analytical calculations or hand flux mapping,

they are able to yield solutions to new problems which, because of their

complexity, could not be treated with the old methods. A typical example

discussed in this dissertation, is that of the performance of motors

operated from a controller which produces a complex voltage waveform.

An analytical treatment of such a problem requires many simplifications

which introduce relatively large errors and which do not provide accu-

rate knowledge of the internal conditions of the machine. The problem

of starting a synchronous motor, although entirely different, has the



same characteristics as the operation of a machine from a controller,

since the varying saturation and speed result in continuously changing

operating conditions and parameters.

1.1 Numerical Calculation of the Electromagnetic Field

The first numerical techniques applied to the solution of the

electromagnetic field in a machine were derived not from a mathematical

theory which would provide an approximation to the exact solution of the

field, but instead from the development of an equivalent circuit that

used capacitors and resistors to represent conductivities and reluctances.

The voltages calculated from this circuit were equivalent to the value

of the magnetic vector potential in a cross section of the machine.

Later, the mathematical method of finite differences was used to provide

the systems of equations that would yield the field quantities. Erdelyi

(1 2)*and Fuchs ' presented a series of papers using this method for the

calculation of the field distribution in DC machines, accounting for

saturation in the iron regions. They later applied their technique to

(3-5)synchronous machines. This approach resulted in flux plots from

which self and mutual inductances could be calculated as well as steady

state, transient and subtransient reactances. Demerdash and Hamilton '

demonstrated that by using an effective permeability which yields the

same energy in the field as does the integral /BdH over one half of a

^Parenthetical references placed superior to the line of text refer
to the bibliography.



period, one may assume a sinusoidal flux density and magnetomotive force
fo\

and solve the problem in the frequency domain. Salon used the finite

difference method to calculate eddy currents in generator rotors by

solving for the field distribution in the time domain. He used the

solution in the frequency domain to calculate voltages, currents and

inductances and to solve a plethora of problems related to the operation

of synchronous cylindrical rotor generators.
(9)

In 1971, Chari introduced the finite element method to the sol-

ution of electromagnetic fields. Although much more complicated to pro-

gram than the finite difference method, it was proved superior for the

modeling of boundaries and contours of materials and for giving detailed

information about the field in specific areas of interest. Demerdash

and Niehl demonstrated in 1977 the superiority of this method in

accounting for the saturation of iron. In 1975, Foggia, Soboimadiere and

Silvester presented a time dependent solution for the saturated eddy

current case. A theoretical analysis of the time dependent finite ele-

ment method is found in the thorough treatment of the subject by Douglas

(12)and Dupont , where the nonlinearity is taken into consideration with

the use the of Crank-Nicolson-Galerkin approximation.

1.2 The Calculation of Voltages, Inductances and

Saturation of Iron Domains

The solution of the electromagnetic field in an electrical machine

requires knowledge of the current densities in the conductors. This



presents difficulties since what is known in most cases are the voltages

at the terminals of the machine, rather than the currents. When the

performance of the machine is to be determined, one has to resort to the

use of self and mutual inductances. These are calculated by injecting

currents into the conductors, solving the electromagnetic field and from

that calculating the voltages induced in all of the windings. In DC

machines this is quite straight forward. In AC machines it is simpler

to use the'"two Reaction" Theory and to calculate d- and q- axis para-

meters for various current and saturation levels. This is a model

developed from the Blondell-Park transformation and results in a system

of differential equation, which can be used to predict the machine

performance.

The above approach contains certain unavoidable approximations.

Firstly, the inductances are considered constant, whereas they actually

depend upon the saturation level and thus are functions of the currents.

Secondly, the two reaction theory presupposes linearity, so that super-

position can be possible, which is not the case when saturation is

present. Thirdly, the effect of eddy currents and skin effect on the

inductances and the field solution is neglected, but usually this cannot

be done without significant loss of accuracy.

In the time domain solution, one can do away with inductances by

incorporating in the system of equations resulting from the finite

element method, the dependence of the current on the applied and induced

(8)
voltages . This technique, however convenient, increases drastically

both the storage requirements and the number of the operations needed

for the solution of the resulting system of equations.



1.3 The Asynchronous Starting of Synchronous Motors

The main consideration in the design of a synchronous motors is

obviously the performance during synchronous operation, while the

starting performance often receives less attention. A synchronous motor

is usually started by connecting across the line or through an auto

transformer. Only in the case of very large motors are they brought up

to near synchronous speed by a smaller "pony" motor before the armature

is energized. In the case of direct starting, the field excitation

terminals are not energized, but are connected through a resistor of

comparatively large ohmic value for the starting up period and the field

is energized at near synchronous speed. The torque developed during the

start-up is that of an asynchronous motor, but due to the dissymmetry of

the rotor it contains an oscillation of twice the slip frequency (120-0

Hz for a supply of 60 Hz). These torque oscillations can be in resonance

with the connected load, resulting in severe stresses on the shaft and

gear teeth used to connect motor and load. Also, the currents induced

in the damper bars may increase the temperature to the point that the

bars and pole faces are overheated and distorted.

These problems have been recognized and addressed for a number of

(13)years. As early as 1930, Linville wrote a classic paper in which he

derived equivalent circuits for rotor and stator; resolved the starting

currents and magnetomotive forces into forward and backward components

and applied the Blondell-Park equations to calculate currents and torque.

Since then, numerous studies have been conducted to cover both the

mechanical and electrical aspects of asynchronous starting . The



majority are along the lines of Linvill's work. Barret recently

(1980) presented a technique for predicting the starting performance of

a motor with solid, salient poles, by calculating, in the time domain,

the magnetic field using the finite element method in the airgap and an

analytical one in the rotor iron.

The technique of developing equivalent circuits for the rotor and

stator, in the d- and q- axis, has been refined with the use of numeri-

cal tools, and more lumped elements have been added; some, time and slip

dependent to account for the space harmonics of the magnetic field and

skin effect. Goodman included higher current harmonics and corres-

ponding inductances in the model of the machine for which he calculated

(27-30)the torque during asynchronous starting. The work of Jovanovski ,

strongly supported by experimental results, gives an insight in the cur-

rent distribution in the damper winding, both in the case of squirrel

cage and grill connections of the damper bars.

1.4 The Problem of Complex Waveform of the Imput

Voltage of DC and AC Machines

This problem is of relatively recent orgin, since it is only in the

last few years that controllers have been developed utilizing solid

state components (thyristors or transistors) for supply, switching or

chopping to yield a lower voltage level. However, some analytical

(31)work was done as early as 1912 on the operation of DC series motors

from an AC power supply. The performance of DC series motors when

(32 33)controlled by pulses was extensively examined by Franklin '



with the aid of analytical tools. In this treatment the inductance and

resistance of the machine was assumed to be constant, independent of

frequency and saturation. A simple model of the machine was developed,

which describes the operation under various speeds, pulse widths and

periods.

Such a model, although useful to describe the machine from a user's

viewpoint does not appear to accurately predict the performance of a

machine. Recently, DeWolf^ ', and Hamilton et alA ' demonstrated that

the inductance and apparrent resistance of a DC machine are functions of

the current level and the frequency, and noted the need for a model

which would encompass this phenomena. The external manifestation of the

eddy currents is an increased resistance resulting from eddy current

losses in both conductors and in iron portions in the magnetic circuits

and the saturation effect is that of changing inductance as the currents

change.

1.5 The Continuous Modeling of the Electromagnetic

Field - Incremental Inductances

In both cases, of synchronous motor starting and of complex input

waveforms, the problems associated with predicting; from design para-

meters , the performance of the machine stem from the nonlinearities

involved. These nonlinearities are caused by the eddy currents induced

in the solid iron parts and the conductors and by saturation of the

magnetic circuit. At any instant, the rate of change of induced volt-

ages and of currents will depend on the input voltages and also on these

nonlinearities to an extent that can be determined only by the knowledge



of the electromagnetic field at that instant. Incremental, or small

signal, inductances can be calculated from the voltages induced in

conductors due to small changes of currents. These inductances, together

with terminal voltages, can be subsequently used to predict currents and

voltages after a small time increment, and this process can be repeated

and the machine performance calculated for any desired length of time.

1.6 Statement of the Problem

As has been discussed in the previous articles, the performance

of a machine under continuously changing operating conditions poses a

problem, both to the user and the designer which cannot be treated using

traditional tools. The main causes of such an inability of conventional

methods to deal with this problem are the presence of nonlinearities,

namely the eddy currents in conductors and solid iron portions of the

machine and the magnetic saturation of the iron of the magnetic circuit.

In this dissertation this problem is addressed to as basically a

transient problem from the viewpoint of the calculation of the electro-

magnetic field. The method of time dependent finite elements is utilized

to model the field in the time domain, and both mathematical models and

computer techniques are developed to solve efficiently the resulting

systems of equations and to calculate parameters which describe the

performance of the machine, as currents in conductors, induced voltages

and torque.

While doing so, it becomes clear that electric machinery problems

which appeared to be entirely unrelated, can be treated with the same



techniques. Two such transient problems are discussed in this disser-

tation, the asynchronous starting of synchronous motors and the operat-

ion of a chopper controlled DC machine, and essentially the same tech-

niques are used on both to predict their performance. Such a uniform

way of analyzing the operation of a machine gives a deeper understanding

of the principles on which the theory of electrical machinery is based,

and at the same time makes possible the calculation of such parameters

as the proper shift of the brushes in a DC machine and the current dis-

tribution in the damper bars of a synchronous motor.
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2.0 THE MAGNETIC VECTOR POTENTIAL AND THE QUANTITIES

OF THE ELECTROMAGNETIC FIELD

The solution of the electromagnetic field inside an electrical

machine is a difficult task, even when one is to use numerical tech-

niques, because of the fact that the field is three dimensional and the

geometry changes with time. In order to simplify the problem, the

machine is assumed to be infinitely long and all the currents parallel

to its axis. These assumptions mean that the field is two dimensional

at any cross section of the machine, and simpler techniques can be used

for its solution. The field in the end region cannot be considered two

dimensional, at least at cross sections perpendicular to the axis of the

machine. It has to be calculated separately, and the portion of the

inductances due to it - the "end-turn inductances" - evaluated. The

currents and voltages can be subsequently adjusted by taking these

end-turn quantities into consideration.

A similar problem is encountered when dealing with the eddy currents

both in solid iron portions of the machine and in laminated steel. The

eddy currents induced have to travel a distance longer than twice the

length of the machine, since they have to form a loop by following a

route transverse to the axis of the machine, as is shown in Figure 2-1.

The conductivity assigned therefore to iron portions must not be the

actual but a corrected one equal to:

- , • ! . (2-1)
corr $, + 5L
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where a is the actual conductivity of the medium, a the corrected
' corr

one and £, and $,„ defined in Figure 2-1.

(a) Z

(b) Z'

3 €

e

rQ-

0

Figure 2-1 Envelopes of the frame for the calculation of the con-
ductivity of magnetic materials in (a) solid iron and (b) laminations.
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2.1 The Magnetic Vector Potential

From Maxwell's equations , in a domain without electric charges or

polarized media, and neglecting displacement currents:

V x B = |J (J+VxM) (2-2)

where |J is the magnetic permeability of the medium, B is the magnetic

flux density, J is true density, M the magnetic moment density and VxM

the atomic magnetization currents . In the absence of permanent magnets

this term can be dropped, and equation (2-2) becomes:

V x B = M (J) (2-3)

Also, from Maxwell equations:

V • B = 0 (2-4)

Equation (2-4) implies that B can be written as the curl of a function:

B = V x A (2-5)

where A is defined as the magnetic vector potential. In terms of A,

equation (2-3) can be written as:

V x (- V x A) = J (2-6)
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The current density J may be either a known quantity, as is the case of

applied currents in conductors, or unknown as is the case of eddy currents,

Again, from Maxwell equations:

V x E = - || (2-7)

From equations (2-7) and (2-5):

V x E = - a| (V x A) (2-8)

o
Thus, E and - a— A differ by a function, the curl of which is zero. This

function, therefore, can be written as a gradient of another function $:

E = - £ A + grad * (2-9)

This last equation means that the actual electric field which can

be measured by any suitable method, can be considered to be due to the

rate of change of the magnetic field (as given by the first component of

the right hand side of eq. 2-9), and to an applied electric scalar

potential 4> (the second part of the right hand side of eq. 2-9).

On the other hand, the current densities can be calculated from the

strength of the electric field as:

J = a E (2-10)

where a is the conductivity of the medium.



14

From the above equations, it is clear that when instead of the true

current densities, the applied electric field is known, equation (2-6)

can take the form:

V x (j V x A) = - a (3| A - grad*) (2-11)

c\ *

The first term of the right hand side of eq. (2-11), ~̂ r̂, is the den-

sity of the eddy currents, while the second part,-3 grad$, is the super-

imposed current density due to a voltage, either applied, or present due

to electrostatic phenomena.

In the two dimensional case addressed here, equations (2-6) and

(2-11) can be further simplified, since the only component of the current

densities present is the z component, parallel to the axis of the machine.

This means that the z component of the flux density, B , vanishes from
, z

equation (2-4), and from (2-5):

B = ,- A (2-12)x 3y z ^ J

By = " a Az

and,

V x (jj V x A) = - V(- V • AZ) • k (2-14)

k being the unit vector in the z direction.
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Equations 2-7 and 2-12 then become:

V ( V Az) = Jz (2-15)

< v v =

These two equations can be solved over the entire cross-section of the

machine. Knowledge of the value of A makes it possible to calculate
z

flux densities, induced voltages, eddy currents, losses, forces and

torque.

2.2 The Calculation of Induced Voltages

and of Eddy Currents

If a conductor is located in an electromagnetic field and is either

moving with respect to the field, or the field quantities are changing

with time, an electrical field results in the conductor, of magnitude:

ft + grad<D (2-9)

grad$ is the component of the field strength due to charges or external

connections, whereas the induced voltage is - ••$—. If the field solution
dt

holds for a length SL the voltage along this length will be:

V = £ (grad*) (2-17)
Z
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If that part of the machine which was called a conductor above, is

a line in the iron of the rotor or stator parallel to the axis of the

machine, this voltage must be zero. This can be shown with the aid of

Figure 2-2. Assume A and A* to be lines symmetric with respect to the

axis of a two pole machine, and parallel to it. Due to the symmetry the

voltages, currents and magnetic vector potentials at A and A', and B and

B1 will be opposite. On the other hand, all points at every cross

section are connected together; therefore, they have the same potential.

It follows that this voltage should be zero. This means that the eddy

current density in solid portions of rotor stator are given by

eddy 3t (2-18)

Figure 2-2 The grad <t> at symmetrical points.

In an actual conductor, the value of grad<J> is not identically zero.

The field strength is given again by equation 2-9. When the current
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density is constant over the cross section of the conductor, E is also

constant. The grad*, since it is externally applied, it is also uni-

form over the cross section.

In the case of solid conductors of relatively large cross sectional

area, eddy currents can be induced, and the resulting skin effect can be

pronounced. The skin effect can be treated in the same fashion as eddy

currents. These eddy currents sum to zero and the total current remains

the same as if there were no eddy currents, with an increased apparent

resistance.

0

J

J

A cross section of a conductor

r " " ' " " '

Initial uniform current density across line o-d

lnduced eddy currents of zero total value.

Exact current density across line o-d. ...

Figure 2-3 The effect of eddy currents on the current
distribution in a conductor
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In order to account for these eddy currents, revisions are needed in the

way in which the magnetic vector potential is calculated:

Total current in a conductor, of cross-section S, is given by:

I = /J dS = - o j dS + a J grad * dS (2-19)

S S S

I = - a a | / A d S + a grad * S (2-20)

S

If the total current is known, the current density in a conductor

takes the form:

J = - a + a grad 4>->j = -o + - . j A d S (2-21)

and the average induced voltage in the conductor is:

Vind = - t 3? -T A dS 1 • I

These last equations can be simplified when numerical methods are

used, as will be shown later.

2.3 The Maxwell Stress Tensor^ '

In field theory it should be possible to calculate the net force on

a given volume element within a magnetic field, using only the field

conditions on the surface of the volume. This implies that the field is
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a stress transmitting medium in the same sense that a string tying two

weights together is the medium that transmits a force from one weight to

the other.

Following this procedure and considering that the force of a given

volume is transmitted through the surface of this volume, the transmit-

ting force can be formulated in terms of a quantity known as the Maxwell

stress tensor, T. The a|3 component of this sensor, T R, is constituted

so that the a component, dF , of the force, dF, transmitted across a

surface element, dS, and whose component is the P direction is dSft, is

given by: ••

=i

When the following restrictions are imposed for the medium through

which the forces are transmitted:

1. B is linear, i.e. permeability is not a function of the field.

2. No permanent magnets are present.

3. There is no magnetorestriction.

then the stress tensor components take the form:

= Ha Bp - H
Y

where 6ap is the Kronecker delta.
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The matrix corresponding to this tensor is:

2 2 2
\ (B - B - B )z v x y z

B Bx y

B Bx z

B B B Bx y x z

2 2 2
1 f "n TJ 15 "\ TJ 15
^ S l i S ~ IS ~DI 15 o* ^ y z x' y z

2 2 2
BB % (B - B - B )y z x x y

(2-25)

This tensor can be reduced to three components by transformation to

principal axes. These axes are oriented so that one is parallel to the

vector B and the two other are perpendicular to each other and the first

axis:

i
T" —

2
B

0

0

0
2

B

0

"

0

0
2

B

(2-26)

To illustrate, assume such a system of axes. One will be parallel

to B and the other perpendicular to B, in the plane defining by B and

the normal to the surface element as shown in Figure 2-4. It is seen

from this figure that the magnetic field bisects the angle between the

normal to the surface, and the direction of the resultant and force

acting on the surface.

In the application to electrical machines, the main concern is the

torque acting on the rotor of the machine, rather than forces. A

surface on which such a calculation can be carried out, is a cylinder

lying in the air gap and enclosing the rotor as shown in Figure 2-4.
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TdS

Figure 2-4 Stresses at a surface element.

From the solution of the magnetic vector potential in the cross-section

of the machine, the flux density can be calculated everywhere in the

machine. In the two dimensional case, equation (2-23) and (2-25) become:

dS

T = -

2 2
MB -

B B
x y

(2-27)

B Bx y

2 2
\ (B - B )y x

(2-28)



. the rotor> M> can

the surface of the cylinder by:

M = r . d F

22

(2-29)

Figure 2-5' A surface on which the calculation of the torque1 - can be carried out.
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3.0 THE FINITE ELEMENT METHOD AS APPLIED TO THE

ELECTROMAGNETIC FIELD CALCULATIONS

Since 1970, considerable research has been devoted to applying the

Finite Element Method to the solution of equations 2-15 and 2-16 at the

cross-sections of electrical machines and to utilizing the result for

the prediction of their performance. A general overview of the appli-
(37)

cations and of the theoretical background is given by Chari . What

follows is a brief description of the general method, the mathematical

analysis and the techniques that utilize the solution to calculate the

field quantities and machine parameters. Both the time independent and

time dependent solutions are discussed, since the electrical machinery

problems are solved in the time domain.

3.1 The Variational Method

Consider a class of problems characterized by equations of the

form:

A(x) . u(x) = f(x) x € ft (3-1)

where u(x) satisfies the boundary conditions:

TT- = 0 (or u=0) on the boundary 3Q
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and A is a strongly elliptic 2n order partial differential operator,

i.e. it can be written as: •

A(x) = Z (-I)" Da a (x) DB (3-2)

,a .IIwhere the operator D is defined as

a a2 n

_a
D u(x)-= /a'"- a0 ' ' * a

| % ^ Tl

Xl X2 Xn

A bilinear form B(u,v) can be associated with A, where

B(u,v) = / Z ^ a g(x) D
av D u dx . ; -- (3-4)..

It is possible now to replace the original problem of solving (3-1)

with the equivalent variational one of finding a u, such that:

B(u,v) = (f,u) ¥- u € H 2 (ft) (3-5)
Q

2
where the operation ('.,.) denotes the L_ (ft) inner product and H (ft)

is a Hilbert space of second order.

The Galerkin method for the solution of (3-5) can be now described.

Identify a subspace, S, (ft) of H m(ft), spanned by a system of lin-

early independent functions {<)>..(x)} . Each element of S, (ft) is of

the form:
0

G .
V(x) = I C1 <|>.(x) (3-6)
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where C i = 1, ..., G are constants.

The Galerkin approximation to u(x) is then a function

U(x) = I A1 4k (x) (3-7)

which satisfies:

B(U,V) = (f,v) v ve Sh (fi) (3-8)

Thus, by introducing (3-7) in (3-8) a system of linear equations is

obtained:

I K±. A
J = f± (3-9)

where

K. . = B (<]>., (().)
ij yi J

(3-10)

For the time dependent case, equation (3-1) becomes:

3u(x,t)
3t + A(x) • u(x,t) = f(x,t) (3-11)

u (x,o) = UQ(X)

and the Galerkin approximation at every t becomes:

u(x,t)= I A1 (t) • 4. (x) (3-12)
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which satisfies:

+B(U(t),V) = (f(t),V) (3-13)

te (o,T]

and the initial condition

(U(o), V) = (uo,v) (3-14)

Again, by introducing (3-12) into (3-13) it is possible to obtain a

system of first order differential equations:

G
I [G.. AJ(t) + K.. AJ(+)] f.(t) (3-15)

where:

K. . = B (<|>., 4.) - - - - - (3-16)

fi = (f' *P

The system of linear equations (3-8) can be solved using various met-

hods; an overview of these methods is given in the following chapter.

The system of first order differential equations, (3-15,) requires

further consideration.

In the case of linear coefficients, the Crank-Nicholson-Galerkin

approximation can be used. To start, a partition P o'f the time interval

(0,T) is introduced, composed of the set {t-, t,, ..., t_} where
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= At ; also the sequencen0 = t < t^ < . . . <tR = T with tnl -

{un} __ is introduced to denote the value of the function U(x,t) at all

the points of the partition P. Then, a family of finite-difference

Galerkin approximations is introduced, associated with 0(0 £ 9 £ 1)

which represents solutions to:

7n+l( u
n+1-un

>V) + (1-6) B (U ,V) +6 (Un,V) = ( f (+) ,V) (3-17)
At

Expansion of (3-18) using (3-14) yields:

I[G.. + A-t(l-6)K..]An+1= Z (G^-At-B-K. .)An + At f. (3-18)
^ J J J -j J J J

which for every n is a system of linear equations that can be solved

with the same methods used for (3-9). In nonlinear cases, the differ-

ential operator (3-2) becomes a function of the solution u. Denoting

B(w;u,v) - (3-19)

then, a two level predictor corrector version of the previously described

Crank-Nicholson-Galerkin approximation is given by:

m+1 m „
At ' 7

1
m'2 i

/

,

m+1 m „
At ---•.*_ / + B(| (146) Ŵ

;
i

I T _l_/~\ 1 TT
"7C" \ J-'^J ) U2 m+

1
n+1 2 m'

+ y (1-9) U ;
1 2 . m

+ y (1-0) Um, V) = 0L 2. m

CQ 901^j f.\i )

./•• ;- r

(3-21)

Such an approach requires the solution of two systems of linear alge

braic equations, for W , and U ,, at each time step.
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3.2 Computing Considerations and the Formulation

of the System of Equations

Throughout this investigation, linear triangular elements have been

used, since they can be easily defined over any domain, and simple

enough to be handled in a computer program. The details of the cal-

culations associated with them are presented herein.

3.2.1 The Local Matrix and Vector of a Linear Triangular Element

Assume a triangle with vertices at (x,,y,), (x2,y2), (x.,,y,.). The

linear interpolation functions 3.:

<t>. = a. x + b. y + c. (3-19)

should be 1 at the point i and zero at the other two points. From this

consideration, the constants a., b., c. can be calculated as:

al bl Cl O O

y2 y3 (3-22)

From equation (2-5), the quantities B(<|>.,<1>.) are given by:

B(A,,v v . - 4. 6.p dx y.j_ dy yj
JL
M

1 A .- a. a. ̂
M 1 J 2 (3-23)

where:

A=2 /ds = xx (y2-y3) (3-24)
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Defining the integrals over an element:

Then,

I = Jx ds = (x +x2+x3) A/6

I0= Jy ds = (y,+y0+y0) A/6 (3-25)/ J. / J

13= Jxy ds = [(xn+x0+x») (y,+y0+yo) + <x y +x0y9+x,y.J] A/24123 i 2. 5 i i 2. £ 5 5

I ~" I V /i Q """ I Y ^Y ^V ^Tf "V "t~ V V "^ Y Y I /\ I \Ji J" *-»o ^ A ^ ' A ^ I A A ' A ^ A A ' A ^ A A ' A ^ ^ V ^ , / <^/ ^A.

ic= / ds = (y-i+y0
+yo+yiyo+y9yo+yoyi) A/i2

(<t>r <t>.j)= /(ajX+b^+c.^) (a.-x+b.-y+c..) ds=

=[a .a . I , + b.b.Ic + c .c . I A + (a.b. + a .b . ) I0I i j 4 i j 5 i j O i j J i 3

+ ( c a . + c.a I + (b.-c. + b.c I] (3-26)

and for f constant over the element:

JK ,f) = J(aiX + bty + c..)f = f (a . I + b£I + cj A/2 (3-27)

If:

K. . •= B (((). , <)>.) (3-28)

f± = (f , (1)..̂)

the local matrix has as its ij entry the term G.. + At(l-0)K.. and the

local vector has as the i entry the term f. + (G.. - At0K..)A..
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3.2.2 Boundary Values and Negative Coupling

It is a characteristic of electrical machines that at points having

the same radius and differing in angle by one pole pitch, the flux den-

sities are of equal value and opposite direction, and that the flux

lines (equipotential lines) run parallel to the outer shell, which means

that the whole shell surface is at a constant magnetic potential. By

assigning zero values to the potential of the points of this surface,

the potential at points shifted by one pole pitch assumes opposite

values, with the result that calculation of the potential of points of

the machine which lie outside an angle corresponding to a pole pitch is

redundant.

Figure 3-1. For the determination of the periodicity conditions,
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In Figure 3-1 the value of A at 3ft.. and 3fte is zero. This results:

A(r) 3ft3 = - A(r) 3ft£ = A(r) 3ft4 (3-29)

This case is treated by constructing compatible boundaries at Sftg

and 3fta, i.e. the grid is such that the nodes at the two boundaries

correspond one-to-one and the corresponding ones have the same radius.

Assume an element having distribution functions <)).. , <)>„, ty~ and

values at the nodes of A,, A2 and A.,- The solution inside the element

is then given by:

A = A (j> + A 4> + A <|> (3-30)

The ij entry of the local matrix is:

and the i entry of ,the local vector, is

Si-t±=(f, <])i) + [-a (((),, $.)-& Atn .B(̂ , (Jij)] An (3-32)

When the value of the magnetic vector potential at one point, A, ,
i

is the opposite of that at another point, A, , equation (3-30) becomes:

A = -A1((.1 +A2(|)2 + A3(|)3 = A^-^p + A2(|>2 + A3<j)3 (3-33)
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which means that a new shape function <|> =-<)).. can be used, and since:

B OIK, <]>..) =-B HK, 4,..) =-B (cjK, -$.. (3-34)

., .. .. , -.. (3-35)

the local matrix and vector become

A =

V =

"a
21

"a
31

"3
21

22

32

"a
!3

~a
23

33

(3-36)

" - B ~

S2

S3_

^1 ^13 ^13

-t21 t22 t23

-t31 t32 t33_

Al
n
2
n

_ 3

when A, = -A1 and -A_ , it follows easily from the previous

considerations that:

A = 21

!2

22

"a
!3

~a
23

(3-37)

"a
31

"3
32 23

V =

!2

22

"t
!3

(3-38)

.n
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3.2.3 Modeling the Airgap and Rotor Movement

For the purposes of this study and the computer programs developed,

the rotor and the stator are considered defined by coaxial cylindrical

surfaces and include iron, copper, insulation and also air regions.

Also, of course the airgap is defined by two coaxial cylindrical surfaces.

The air gap links two regions which move with respect to each other with

the passage of time. For this reason, the whole domain - rotor, stator

and air gap - cannot be discretized in a unique, time independent fashion.

If the air gap is excluded, the remaining two regions (rotor and stator),

although moving in space, can have unique discretizations and global

matrices, since they are independent of the position of the domain and

its movement.

In Figure 3-2 the discretization of the air gap is shown for three

consecutive time instants. Assuming a discretization of the rotor and

stator such that the number of points on their surfaces interfacing the

gap are equal, SI is defined as the point on the stator slice modeled,

which is the leftmost on the surface interfacing the gap, and Rl the

corresponding point on the rotor surface. Gl is then defined as the

midpoint between SI and Gl. Figure 3-2(a) then, is enough to define a

discretization of the airgap for this initial position of rotor and

stator. It must be noted that the points at the right hand side of the

boundary of the slices, SN, GN and RN are to be coupled with SI, Gl and

Rl.
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S1 S2

G1

S3~

G2

R2

G3

R3

G4

S4 stator

air gap

rotor

( a )

51 52 S3 S4

(b )

R4

51 S2 S3 S4

Figure 3-2 Modeling the air gap

As the rotor moves, the elements of the air gap are reconstructed

but are still defined by the same nodes. It is evident that the rec-

tangles and elements of the air gap will be skewed for a period of time,

but after the angle of point R2 has become closer to the angle of SI,

the nodes defining the elements of the air gap must change, in the

fashion shown in Figure 3-2(c). The negative coupling will remain as

before, since the solution is sought for the initial slices of the rotor

and stator.

The initial relative position of the rotor and stator slice is

• shown in Figure 3-3(a). As in Figure 3-3(b), after a short time R2

corresponds to SI and corresponding to -SI is point -R2. After some

time lapse the slice of the rotor modeled is shifted completely outside

the corresponding slice of the rotor. The correspondence of point will
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Figure 3-3 Modeling the rotor movement in the global matrix



36

be as shown in Figure 3-3(c) and it will be necessary to solve for the

opposite of the values of the rotor surface.

Such a movement results in changes in geometry of the gap, which in

turn causes changes in the nodes and the local matrices of the gap

Clements. These changes do not markedly affect the global matrix; they

only affect the entries related to the points at the surfaces of the

rotor and stator, and the points in the air gap.

Programming this movement in a computer is not as complicated a

problem as it first appears. The treatment is based on a pointer, which

shows which point on the rotor surface is corresponding to SI and

whether it is coupled positively or negatively to the gap points. If at

time zero, an angle of zero is assigned to all the points at the right

side of the rotor and stator slices, and the angle of the points at the

left hand side is ot, and if 8 is the minimum angle between two consecu-

tive points on the rotor surface, then the pointer moves down the rotor-

air gap interface when the angle of point Rl exceeds or+6/2 (for clockwise

movement) and changes sign every time it reaches the point 'which was

originally the rightmost.

The local matrices of the airgap elements are formulated taking the

negative couplings into account. Such a technique makes it unnecessary

to solve in the whole rotor domain, which for a six pole machine would

give a matrix prohibitively large to manipulate within a reasonable

computer time.
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3.2.4 The Formulation of the Global Matrix

In every time step of the solution, the permeability of many of the

materials and the conductivity of some of them may change. In order to

avoid unnecessary calculations, the values of G../a and |J K.. in equations

(3-28) must be stored, since they are independent of a and |J. Each 3x3

local matrix is symmetric, therefore, only six of its nine entries have

to be stored. After every time step, (J and possibly a are recalculated

for each element, and subsequently the local matrices. The global

matrix is then assembled, taking into consideration the negative coupl-

ings of boundaries. The following example illustrates the way the

matrix is assembled.

Assume local matrices and vectors for the elements in Figure 3-4.

Figure 3-4. A collection of finite elements; the node
numbering outside the elements is global, inside is local
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\(a)=
all a!2 a!3

a21 a22 323

a31 a32 333

V(3)=

\ \*^JA —

bll b!2 b!3

b21 b22 b23

b31 b.32 • b33
~ ' ,

v(b)=

*(c)=

(d)A. —

p r* p
11 12 13

C21 C22 C23

C31 C32 C33

v(c)=

dll d!2 d!3

d21 d22 d23

d31 d32 d33

v(d)=

al

a2

33

" bl '

b2

b3

(3-39)

" cl

C2

C3
~

' v"
d2

d3

The global matrix and vector become:

A =

a33 323 ° ° ° 313

a32 322+b33 b23 ° ° a!2+b!3

0 b32 *>22+C22 C12 ° b!2+C23

0 0 c21 cn+d22 d12 c13+d23

0 0 0 d 2 d n d 1 3

a31 321+b31 b21+c32 C31+d32 d!3 all+bll+a33+d33

(3-40)
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V= b2 + C

Cl + d2

bl + C3 + d3

(3-41)

3.3 Numerical Calculation of Torque

As discussed in the previous chapter, the torque can be computed in

the air gap, half way between the rotor and the stator surfaces. For an

element in that area with nodes at magnetic potential of A,, A» and A~,

the potential over the surface can be given by:

A= (3-42)

d>. = a. x + b. y + c. i = 1,2,3T J ' ' (3-43)

where a., b., c. are given by eq. (3-22). From equations (3-42), (2-12)

and (2-13), the flux density components inside the element can be cal-

culated:

Bx = Al bl + A2 b2 + A3 b3

By =- (Al ̂  + A2 a2 + A3

B = 0z

(3-44)
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The stress tensor in Cartesian coordinates is:

T = 1
2Mo

2 R2
x y

2 B B
V X

-

2 B B
x y

2 R2
v x

(3-45)

Then the forces applied on an elementary surface, dS, with components

dS and dS are:

dF '= T dS + T dS = -|— [ (B2 - B2) dS + 2B B dS ]'•x xx x xy y 2y x y x xy y

dF = T dS' + T dS = ̂ — [2B B dS + (B2 - B2) dS ]
y yx x yy y 2y y x x y x y

(3-46)

-dFx

Figure 3-5 The calculation of torque in a machine

The torque contributed by this elementary surface is:

d M = r • sin • cos ty • dF = ydF -xdF (3-47)
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and the total torque is given by the integral over the whole rotor

surface, thus:

M = QdF
1
2y

JL 2 2- v ds* + 3J» B
x

B/sy

^ . . --- ' ""S^* •̂ ••»

+ 2/x B B dS + (jTx (B2 - B2) dS ] (3-48)
J * y x J x y y

The rotor surface is represented by small linear segments, AS. The

values of B and B are constant on each segment, therefore:
x y .

M = -±- E [ (B2 - B2) / ydS + 2B B ( / ydS + /xdS )
2% AS6c X y AS X X y AS y AS x

+ :(B2 - B2) / xdS ] •

Equation (3-49) defines an algorithm by which the torque can be computed

from the knowledge of the magnetic vector potential at the nodes of a

grid, as calculated from the finite element! method:

1. On an element, calculate B and B from (3-44)
' x y

2. Calculate the torque contributed by the linear segment of

the surface, AS, defined by the element

3. Repeat steps 1 and 2 over the whole slice of the rotor that

is modeled, adding the torque contributions.

4. Multiply the result by the number of poles.
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3.4 Calculation of the Permeability of Elements

The permeability of each element is assumed to have a constant

value over the element but it is also assumed to change (for magnetic

materials) with a passage of time, depending on the flux density in the

element. The simplest way to deal with this characteristic is to cal-

culate the flux density from equations (3-44) and calculate the permea-

bility from that and the saturation curve of the material. The solution

(with the same force vector) is then repeated, and the permeabilities

are recalculated. This procedure is repeated until the permeabilities

calculated in the previous iteration are close enough to the new one.

Various methods have been devised which accelerate this iterative tech-

nique, the simplest of them being the underrelaxation method. In this,

instead of the newly calculated value of permeability, |J , a linear

combination is used, of p and the previously calculated permeability

(3-50)

0 < a < 1 , usually 0.9 < a < 1

This method appears to be rather slow in the time independent problem,

but gives good results for the time dependent problem and for iterative

solution of the system of equations resulting from the finite element

method, as Figures (3-6) and (3-7) show:



1

0 150

i-

c ! 0.100
*rH [

o i
M

I 0.050

i

o.ooo
i

j

1 — —

r— "

, i

:
;

/"

c- \ \

I— ..;
=t=

— +—

3

••• •

: 1

— i

! 1

3

— ' ' i

=^
1 :

1

A

- — i- | : I i i i — '•

t=̂ =s==F=i==jF==̂ ==
'• l : ' • i ! i ..-m

t=-— • ~~! : i — ; — — — =i
— i : — j — :.- ..i 1 • .- -

• : i 1 i 1 : '

L-- ^ : 1 : | '-

: i . 1 '. j '
K '• • = 1 '•• i '•• '

( 5 6

to

cfl
to
(!)
0
CO

o c
!a -H

Figure 3-6 Error in |J versus solution number

50

25
=*~

X - : -- -.

1

43

Figure 3-7 Number of iterations in conjugate gradient
versus solution number
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The case of laminated materials requires some special considerations.

The effective permeability of such a material will be less than the per-

meability of iron, while the saturation level will be based on the flux

density in the iron only, and not on the average flux density. The

value of H will be the same in both iron and air. Assuming a stacking

factor s, an iron permeability p, air permeability |J , the average flux

density B can be obtained using Figure 3-8:

B •= s • (J • H + (1-s) • |J • H (3-51)

B = [ s • H + (1-s) M ] H

From which the effective permeability will be

Meff = [s • M + (1-s) MQ ] (3-52)

Conversely, when the average flux density is known from the solution of

the electromagnetic field, as given in (3-42), the flux density in the

iron, B. , can be calculated from (3-49)

B= s • B. + (1-s) M Hiron v J *o

B= s B. + (1-s) H B. /M (3-53)iron *o iron M

Biron= B/ [ s + (1-s)
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This value of the flux density in the iron, based on the previous value

of the permeability, can be used to calculate a new value of the permea-

bility

5

H

B

1
air

i-s

Figure 3-8 For the calculation of the effective
permeability of laminated materials.

3.5 Calculation of Eddy Current Losses

The losses due to eddy currents are of importance, particularly

these in the iron portion of the machine. There, the current density

is:

T- n
 9AJ- - CT at (2-18)
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and it can be calculated for each element from equation (3-40) and-

(3-41):

9A3

—o~ r . . , , n + l n. /An+l An.. . , ,.n+l n. , , .
— [^(A-L - AX) + <|>2 (A - A ) + <j>3 (A3 - A3)] (3-54)

n

The losses in this element can be calculated from:

dW= i J2 dV dt (3-55)

where dW is the Joule loss in an element of volume dV. For the case of

two dimensional field, the losses in an element during the time step At

are:

j r n+1 n -. . ...n+1 An ,. , n+1 n 2
— £ / LAX - A1 ; <|>1 + IA2/ - A2 ; $2 + (A3 - A3)<},3] dS (3-56)

' ' (3-56)

where 2 is the length of the machine and the integral extends over the

cross section.

In case of current carrying conductors, equation (2-18) becomes,

al
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where I is the current flowing in the conductor due to external sources,
o

Then equation (3-56) becomes:

AW = --'1 f { +1 '

IQ}
2 dS (3-58)
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4.0 SPARSE MATRIX ALGORITHMS APPLIED TO THE SOLUTION OF

THE SYSTEM RESULTING FROM THE FINITE ELEMENT METHOD

The system of linear equations derived from the application of the

finite element method to an elliptical differential equation possesses
*

certain properties, which can be utilized so that the solution is

carried out in an efficient and accurate way.

From the structure of the grid used in the finite element method,

it is evident that every node is coupled directly only to the ones with

which it is in the same element. In Figure 4-1, for example, node 1 is

coupled <to nodes 2, 3, 4, 5 and 6, not to 7, 8, 9 or any other in the

grid. As a result, the only possibly non-zero entries in the first row

of the global matrix will be (1,1), (1,2), (1,3), (1,4), (1,5), and

(1,6), no matter how large the total grid may be. Such a construction

creates a global matrix of very large order (equal to the number of

nodes), but also very sparse (very small percentage of non-zero entries)..

Theoretical considerations also guarantee that this matrix is symmetric

and positive definite.

The computational techniques which can be used to solve this system

of linear equations can be classified as either direct"or iterative.

Direct methods reach a solution after a fixed and predetermined number

of computations, while in iterative methods, an initial guess solution

is successively improved through a repetition of rather simple matrix-

vector operations. These iterations are stopped when a specified

accuracy is reached.
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Figure 4-1 A typical grid

4.1 Storage Techniques

The structure of the global matrix is of importance for the deter-

mination of the method of storage. Two types of matrices can be encoun-

tered; broadly classified as the banded and the generally sparse matrix

(see Figure 4-2). In a banded matrix a pattern of non-zero terms occurs

along the diagonal and both the storage scheme and the algorithm used

for the solution can take advantage of this characteristic in order to

decrease the storage area and increase the solution speed.

The matrix is always stored in a compact fashion. This means that

besides the non-zero entries, none, or only a few zero entries are stored.

Markers are used to point to the first and last non-zero elements in
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Banded matrix . Generally sparse matrix

Figure 4-2 Types of matrices

each row in the case of a variable bandwidth matrix, whereas for a
Si.-

constant bandwidth matrix, the number of vectors used is equal to half

the bandwidth and each contains the entries of the matrix which lie on

lines parallel to the diagonal.

In the case of a generally sparse matrix, the storage scheme becomes

more complicated. Three vectors are used to store the values of the

.matrix Gentries and the location of each within the matrix. One vector

is used to store the non-zero entries in the order that one would find

them in the matrix while moving from left to right within a row, scann-

ing rows from top to bottom. Another vector of integer values is used

to point to the first entry of each row. A third integer vector indi-

cates the column in which each entry lies. Since the matrix is sym-

metric, only the upper triangular part must be stored.

In Figure 4-3 an example is given of the storage scheme for a

matrix 6x6. Vector A contains the values of the entries, vector JA
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shows the row to which each entry belongs and vector IA points to the

location of the first entry of each row. This storage method is very

efficient from the storage space viewpoint, but the handling of the

matrix requires many manipulations of the local index vectors, thus

increasing the execution time.

52
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53
54
0
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0
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52
0
56
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53 54
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51
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the matrix to be stored
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f

5 6 . 3 6 5 5 6 6

56 55 '54 52 51 /! 52 54 60

5" 67 8 9 10 11 12 13- 14
^ 4 -4 4T T T

11

i
1 ., . . 1

13 14

Figure 4-3 Storage of a generally sparse symmetric matrix

4.2 Direct Methods of Solution

A direct solution process can almost always be divided into three

subprocesses:

1. Triangularization of the matrix by factorization or elimination.
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2. Back substitution on the right hand side.

3. Iterative refinement to improve accuracy.

Triangularization becomes more complicated, and the data handling

more time consuming, as the form of the matrix departs from the constant

bandwidth structure. It usually requires the storage on magnetic disk

of the rows of the matrix - including some zero entries - and the con-

secutive retrieval of a number of these rows at a time, so that the

Gaussian elimination or the Choleski factorization can be carried out.

The number of the zero entries that have to be stored also increases

when the matrix is not banded.

4.3 Iterative Methods of Solution

These methods have the advantages over the direct methods in that

their programming is simpler and that they efficiently utilize the

sparsity of the matrix. The simplest iterative method, and the most

widely used, is the Successive Over Relaxation and its variations. For

a system of equations:

A • u = b (4-1)

with

A= D-L-U (4-2)
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where U vnd L are upper and lower triangular matrices respectively and D

is a diagonal matrix, the following equation is applied:

un+1 = Û tuD'1 • (L-un+1 + U un- D un + b) (4-3)

where u is the n approximation to the solution and U) is a real number

between 1 and 2. This method is always convergent for symmetric positive

definite matrices. The optimal selection of the parameter uu is of

practical interest, since it should minimize the spectral radius of the

(39)iteration matrix. For matrices possessing a special property A , the

spectral radius is minimized for an U) given by

U) = 2 / (1 + l-M ) (4-4)

where (J is the spectral radius of the related Jacobi matrix D (L+U) .

However, in practical problems, seldom is a matrix obtained having

property A. An increased convergence rate can be achieved by Successive

Line Over Relaxation (SLOR) , where the computational molecule groups

points along rows or columns of the mesh, thus forcing the system to

have property A. When two rows or columns are included, the method is

called the Successive Two Line Overrelaxation (S2LOR) , and when both

columns and rows are included in a form of a peripheral block, the

method becomes the Successive Peripheral Overrelaxation (SPOR) . These

last three methods (SLOR, S2LOR and SPOR) require for their implementa-

tion, a fairly regular grid, where the nodes are arranged in columns,

rows, or circular patterns and the construction of the global matrix is
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based on the shape of the grid. On the other hand, SOR, although rela-

tively slow, does not require a regular grid and is often used for large

irregular domains.

(40 41)4.4 The P-condition number and-the Preconditioning of a System '

The asymptotic convergence of a system of linear equations with a

symmetric positive definite coefficient matrix, has been shown to depend

inversely on the P-condition number of the coefficient matrix, defined

as the ratio of the maximum eigenvalue to the minimum eigenvalue of a

positive definite matrix. Thus, to improve convergence, it is required

that the P-condition number of the matrix be very small. When this does

not happen it is desirable to "prepare" the system so that its condition

number is minimized. This means that instead of solving the system of

equations (4-1), it would be easier to solve system:

Q • A • u = Q • b (4-5)

where Q is a non-singular matrix and the condition number of the result-

ing system is less than that of the original system. One such matrix is

(I-U)L) , and the system (4-5) can be rewritten as:

[(I - U)L) -1 • A • (I - ojLT) 1] [(I - u)LT) • u] = (I - o>L) Xb (4-6)
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Denoting:

v= (I-u)LT) -u

d= (I-wL)"1 'b (4-7)

B= (I-ioL)"1 -A-d-iuI/V1

then B can be shown to be also a symmetric positive definite matrix. A

minimum of the value of the P-condition number exists for iu between 1

and 2, where'as for U) = 0, the system reverts back to its original form.

4.5 The Conjugate Gradient

In gradient methods in general, instead of solving the system of

equations (4-1) as is, a variational method is derived based on the

observation that the solution of (4-1) is the same vector that maximizes

the quadratic functional:

F(u)= - uT • A • u + uT • b (4-8)

This functional defines a family of similar ellipsoids in a Euclidean

n-space with center at A b. The solution, therefore, can be attempted

by proceeding to this center, using a sequence of displacements, achiev-

ing after each, a better approximation of the maximum:

u(n+1)= U
(Q)
 +
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where u is the n approximation, p is the direction followed in

the n step and a is a real number selected so that F(u ) is

minimized. At the n step a residual, r , can be calculated as:

(4-10)

The way that the direction vector p is determined defines the

method used. The most obvious choice is the direction normal to the

surface of the ellipsoid, i.e. p is chosen to be -r . This tech-

nique defines the steepest descent method and it is illustrated for a

two dimensional case in Figure 4-4.

Figure 4-4 Steepest descent method.

This is an iterative technique, and the rate of convergence and
\

number of iterations depend on the form of the equations and the accur-

acy desired.

A better method results when advantage is taken of the property of

quadratic functionals, that the center of the ellipsoid lies on a plane

conjugate to a given cord.
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4.5.1 Conjugate Directions

Given a symmetric matrix A, two vectors, d, and d_, are A-orthogonalj

or conjugate with respect to A if:

d1 • A • d2 = 0 - (4-11)

If a set of vectors d ,... ,d, are A orthogonal, then these vectors
O K

JU

are linearly independent. A solution then, u , of Au=b, or equivalently

T Tthat maximizes (-1/2 u Au-u b), can be expanded in terms of n vectors d

... d 1 (A is a nxn positive definite matrix) as:

u = a d +... + a , d . (4-12)o o n-1 n-1

Multiplying by A and taking the scalar product with d., yields a. as:

jT . , * T
d.^ • A • u d? • b

ai.= TT ~. ~ = ~T . (4-13)
d, • A • d. dt • A • d -
i i i i

The last equation indicates that the coefficients a. of equation (4-12)

•if
can be evaluated without knowing u , which, however can then be calcu-

lated from (4-12). Thus:

. . .
^ n-1 d • b

u = £ -^ d . (4-14)
i=0 d! • A • d.

i i
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The basic idea imbedded in (4-14) is that when a set of d 's is
i

selected, the unknown vector u% can be calculated from it. This

expansion of u can be considered as the result of a process of n steps,

where at the i step, c.d. is added.

Viewing the procedure in this way, the conjugate direction method

>e

(4-15):

can be formulated in n steps; the k of which is described by equation

Uk+l = uk + °k dk

where:

T
rk '

' °U = " dk

dk

Adk '

and

rk = A ' uk " b

This holds true because the difference between an initial guess,

UQ, and the solution, u , can be written as:

*
u - u = o d + . . . + o - d . 1o o o n-1 n-1
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Multiplying by A and taking the scalar product with d, , as in (4-13)

yields:

d, • A (u - u )
, .-t —2_ (4-19)

dk' A dk - • " • • • ' •

Following the iterative process (4-15) from u up to u, , one obtains:
O K

U, - U =a d + a. dn + ... + a. , d. , (4-20)k o o o 11 k-1 k-1

and because of the A-orthogonality of the vectors d, :
K

A •• (uk - UQ) = 0 (4-21)

Substituting (4-21) in (4-19) produces:

dk ' A ' (U* " V rkdk (4-22)
T T
d.• A • d. d. • A • d.k k k k

An important property of the conjugate direction method is that in each

step the functional (4-8) is maximized on the line:

(4'23)
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where a is a real number, as well as in the linear space u + B, , where
O K'

B, is a linear combination of d , ..., d, , meaning that the remainder,
K O K~" J.

r, is perpendicular to the space B, as shown in Figure 4-5.
K 'K

Figure 4-5 Conjugate direction method

4.5.2 The Conjugate Gradient Algorithm

The conjugate gradient method is obtained from the conjugate

direction method by selecting the successive direction vectors as a

conjugate version of successive gradients which are obtained as the
*

method progresses. Thus, the directions are not specified before the

solution starts; they are determined sequentially at each step of the

iteration. At step k one evaluates the current negative gradient vector
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and~adds to it a linear combination of the previous direction vectors in

order to obtain a new conjugate direction vector along which to move.

The distance to move in this direction is given, as before, by

equation (4-22), while the coefficients T, which will give the new

vector d, , from equation (4-24),

Tk dk '

are given by equation:

J •*-'-' A Jd, • A • d.
k k

(4-25)

The algorithm derived from the previous considerations can be

described by the following steps:

_ 1. Start with the initial guess u , with initial remainder

r = b-Au , and initial conjugate direction d = -r

2. a = r T d /(dT . A . d )n n n' ̂ n

3. u ., = u + a dn+1 n n n

4. r ,, = r -a A.dn+1 n n

5. T ., = -rT ., A d /(d T ..A . d )n+1 n+1 n' v n n'

6' dn+l = rn+l ' Tn+l dn

7. If | r , is less than the maximum allowed error, stop.

Otherwise continue from step No. 2.
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The last step of the algorithm is of particular importance when the

coefficient matrix is of large order. From the theory of the conjugate

direction method it is clear that the solution will be reached after a

number of iterations equal to the order of the matrix. But, because the

method is based on gradients, the algorithm makes good uniform progress

towards the solution at every step, in contrast to the case of arbitrary

conjugate directions, where the progress may be slight until the final

few steps. In the conjugate gradient method, therefore, the progress is

quite good at the first steps, whereas the last steps improve the solu-

tion only slightly, making the last iterations unnecessary when the

desirable accuracy has already been achieved. A measure of the distance

of an approximation from the exact solution is the gradient. When the

solution is obtained, the gradient vanishes and a norm of it can be used

to evaluate its length and be compared to the desired accuracy.

A very important advantage of the conjugate gradient method is the

very simple formulae which are used to determine the new direction

vector. This simplicity makes the method only slightly more complicated

than the steepest descent method.

4.6 The Preconditioned Version of the

Conjugate Gradient Method^40'41^

When the matrix A in the functional (4-8), is ill conditioned, the

ellipsoids, as in Figure (4-4), become long and thin, and thus the

normals to the surface become coplanar. Preconditioning reshapes these

ellipsoids, so that they take a less prohibitive form, thus enabling the
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solution algorithm to lead more rapidly to a good approximation. An

example is given here of the effect of preconditioning on the form of

the quadratic functionals and the shape of the corresponding ellipsoids :

Assume the system of equations:

1 -0.98

-0.98 1

Xl

X2

=

1

1

, . ,

(4-26) .

The solution of this system is equivalent to maximizing the

functional:

X

1
;2

-0.98

-0.98

xl X2

= c

(4-27)

or

xl X2 = 2c (4-28)

The ellipsoids corresponding to equation (4-28) are shown in Figure

4.6(a).

When preconditioning is applied, the system of eq. (4-26) becomes:

•

1 0

.98u) 1.

1 -0.98

-0.98 1

1 .98u

0 1

=

1 0

.98(0 1

1

1
m. •

(4-29)
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and the corresponding functional is:

0.98(l-J))x1x2+(0.982-2-0.98(o+l)x^-2Xl-2(1-0.98u>)x2=2c (4-30)

which has as corresponding ellipsoids for u> = 1.05 the ones in Figure

4-6(b), and.for u> = 1 the ellipsoids in Figure 4-6(c) which are circles.

Figure 4-6 A family of ellipsoids before and after preconditioning

When preconditioning is used, the arithmetic operations per iterat-

ion are increased drastically, but, due to the faster convergence, the

1 T 1overall speed is improved. The ̂ matrix B = (J-uuL) A(I-tuL ) is never

calculated-, since such a transformation would destroy the sparseness of

the matrix and make storage requirements prohibitively large. Instead,

back-and-forward substitution is used every time the matrix B is to be

multiplied by a vector. The algorithm described in section 4.3.2 re-

mains essentially the same, while certain manipulations are added to
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account for the preconditioning. The system has to be prepared so that

the entries along the diagonal become one. The final algorithm takes

the following form:

1. Prepare the system by multiplying both sides with matrix G:

G.. = 0 for ±

G - -==: _. (4-311..
J.-L /A ~ I/A77

Thus the system becomes:

(G • A • "G)' (G • u) = G • b

Using for simplicity the same symbols for system (4-27) as

for (4-1), but noting that the diagonal is now the unity

matrix:

2. Calculate v 5= (1-iuL ) uo ' o

3. Calculate d = (I-tuL)"1 b

4. Calculate the remainder of the system:

B • v = d as:

VQ = d - B . VQ = d - (I-wL)
1 . A . (I-uiLT) VQ

5. Find the first conjugate direction as:
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jO _ Od = -r

and store it in the place of d.

6. Calculate a = r • d/(dT • B • d)

as a = r • d/[d • (I-aL)1 • A • (I-uiL1)"1 • d]

7. Calculate the new approximation to the solution:

v: = v + 0 • d

8. Calculate the new residual

r: = r-a • B • d = ra • (I-wL)1 • A • (I-wL1)"1 • d

It must be noted here that B • d has already been calculated

in step 6.

9. T = -r - d/dT • B • d

10. The new direction vector, d, can be calculated as

d - r + t • d

11. The distance of the current approximation to the solution, V,

from the exact one can be checked by finding the norm of the

remainder. If it is larger than the desired accuracy, the

algorithm is repeated from step one. Otherwise, the solution,

u, is calculated in the next step;

12. u = (1 - wL1)1 «v and u: = G • u

4.6.1 Computer Considerations

The preconditioned conjugate gradient method requires the storing

of four vectors, v, r, d and B • d. Involved in the preparation of the

matrix are two matrix-matrix multiplications and two scalar-vector

products for the determination of A, u and B in step 1. In step 2, a

matrix-vector product is involved, and in step 3 one back substitution.
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At the exit (step 12), a back substitution is required, as well as a

scalar-vector product. In each iteration, a back substitution, two

inner products and three scalar-vector products are involved in compu-

tational effort.

As later discussed, often solutions are required using the same

stiffness matrix A and entirely different force vectors b. In these

cases the initial multiplication is not repeated; instead the values of

G are stored in the diagonal of the matrix A, while the adjusted values

of L are stored in the lower triangle of the same matrix. Therefore,

only vectors d and u have to be multiplied by G and G respectively.

When the saturation level of the iron parts in the machine is to be

determined, the linear system is solved repeatedly with the entries of

the matrix changing slightly, and the force vector remaining constant.

These conditions cause the'solution vector of the previous repetition an

excellent guess for the following. This policy drastically decreases

the number of iterations required for each solution.

4.6.2 Determination of the Solution Technique for the Continuous

Modeling of the Electromagnetic Field.

The fact that the solution at each time step is close to the solu-

tion of the previous time step makes iterative solutions more attractive

than direct ones, since the number of iterations is decreased by the

introduction of a good guess solution. The storage requirements are

less restrictive in the iterative techniques, since no space needs to be

allowed for fillings during the triangularization. This is of special

importance in this case, since the grid is quite irregular and the
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number of fillings would be large. The simplicity of programming is

also a significant factor in deciding in favor of an iterative scheme.

Among the iterative techniques which are commonly used, SOR, is the

simplest and usually the first choice. The matrix from the finite

element method, though, does not possess the property A, and it is

difficult to find the optimal parameter UK When the grid is regular,

the matrix takes a very convenient form, making the variations of SOR

very attractive. However, the limitation of a regular grid deprives the

finite element method of the ability to utilize a fine mesh only where

it is necessary,'while using a coarser grid where the solution does not

vary greatly in space.

The electromagnetic problem has the peculiarity that the entries of

the local matrices of neighboring elements can differ by two or three

orders of magnitude when the material is magnetic in one element and

non-magnetic in the other since these entries are inversely proportional

to the magnetic permeability. Such vast differences in numbers which

are added together in the global matrix, make the global matrix ill

conditioned. This characteristic makes it necessary, when SOR is used,

to alternate between SLOR and SPOR . Preconditioning appears to be

an elegant way of rectifying or improving this situation.
(43)

Reid has shown that the conjugate gradient method in its origi-

nal form (m=0) is a powerful algorithm, and with the further application

of preconditioning, both in this work and other ; it has been proven

both fast and convenient, especially in the case of time dependent

solution of electromagnetic fields.
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5.0 THE OPERATION OF CHOPPER CONTROLLED DC SERIES MOTORS

Both experimental work and problems noted with the application of

DC motors have made it clear that there exists a discrepancy between the

analytically calculated inductance of DC machines and that observed when

the motors are driven by a chopper. Also, recent experimental work
(34 35)

' has shown that a single value of inductance cannot be assigned

to the machine; rather, both apparent resistance and inductance vary

greatly with the frequency of the current which is used to measure them

and with the value of the DC current on which the AC current is super-

imposed. These effects are attributed to the combined phenomena of

magnetic saturation of the iron parts of the machine, eddy currents in

both solid and laminated iron and the eddy currents and skin effect in

solid conductors in the machine.

These phenomena cannot be adequately described by a small set of

equations except in an incomplete and empirical form. Instead, the

solution of the field inside the machine should be sought at every

instant, and the values of the inductances and other parameters should

be calculated from it and be used to calculate the quantities of inte-

rest to the designer and analyst.

When the inductances are known as a function of input and time, the

currents can be calculated as well. The theory of the two axes cannot

be applied for the calculation of the torque since voltages are induced

in parts of rotor and stator which are not part of the windings. Instead,

the theory of the Maxwell stress tensor is used, as applied to a dis-

cretized grid (section 3.3). The radial flux density at the air gap can
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be calculated in order to determine the optimal location of the brushes

for linear commutation and the electromagnetic field can be solved based

on that position of the brushes.

5.1 Calculation of Inductances and an Algorithm for the Calculation of

Currents and Torque

In the absence of eddy currents, the small signal, or incremental

inductance around an operating point of the machine, can be found by

first solving the electromagnetic field for the actual current at that

operating point, obtaining in this way both the values of the magnetic

vector potential inside the machine and the permeabilities of all the

elements which correspond to that current level. Then, the current

changed by a small increment, the field calculated again and the flux

linkage (with all windings) calculated. The ratio of these flux link-

ages to the change in current gives the incremental self and mutual

inductances, on which the calculation of the actual change of current

can be based, for a small time step, provided the changes in time and

current are relatively small (so that the slope of the saturation curve

remains constant for this change), the change of currents calculated on

the basis of this incremental inductance will be accurate. Thus

.
'-incr AI.

incr

= V/ - (5-2)

where AI. is a small change of current, AX the corresponding change
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in flux linkages, V the induced voltage, and AI the actual change in

current.

However, when eddy currents are present and of a magnitude which

greatly affects the performance of the machine, the current change, AI,

cannot be based on the same formulae described above.

The reason is that in this case, the machine, in addition to the

current carrying winding, has an infinite number of other windings

representing the paths that the eddy currents can follow. These

windings are not open circuited; rather each is short circuited through

the resistance corresponding to that current path. Each of these

windings has a self inductance and a mutual inductance with every other

current path, as well as with the real winding of the machine. Even in

the case when all these current paths are replaced by a finite number of

circuits, in order to make the problem less formidable, the number of

independent windings required is still too large to give an inductance

matrix which can be handled efficiently.

If, in some way, the current change had been known (either measured

or calculated), then a value of inductance could be obtained, depending

not only on the saturation level, but also on the actual change of

current, AI, and the time step, At:

L. - - T?- (5-3)incr AI
At

Equation (5-3) can be used in an iterative way in order to calcu-

late the change of current from the finite element solution. Initially
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a "guess" change of current is applied and the field is solved, assuming

this change to be the exact one for the time step examined. From the

solution, the voltage induced in the winding is calculated and a value

of the incremental inductance is obtained from (6-3). It is then sub-

stituted in equation (5-2) to yield a corrected value of the change in

current. The process is then repeated to yield a closer approximation

to the correct incremental inductance. The iterations are stopped when

the values of inductance obtained from two consecutive iterations are

sufficiently close.

This process can be very slow, with the values of inductances

approaching asymptotically the final value, but for the calculations of

each, the field has to be solved. When the field is solved in an itera-

tive way, however, the previous solution is a good approximation to the

next, decreasing the amount of the iterations needed for convergence.

The number of iterations for the inductance calculations can be decreased

(44)if the Aitken extrapolation is used to accelerate the convergence.

5.1.1 The Aitken Extrapolation

When the differences between successive values of the incremental

inductance form a geometric progression, of ratio Of:

L2 " Ll = S ^2
L3 - L2 = L4 - L3

= a (5-4)
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where LI L_ L- L, are the values of the incremental inductance calcu-

lated in the respective iteration; then the final value of L will be:

(L, - L )

L = Ll + a- 1 ' (5~5)

Application of this technique decreases the number of the itera-

tions for the inductance calculation. There are three solutions of the

field required for the calculation of a (two of which require fewer

iterations in the preconditioned gradient method), and one solution

after the final value of the incremental inductance is calculated, so

that the accuracy of it is checked and the field is solved for the final

value of current so that eddy losses and torque can be calculated.

5.1.2 The Rotational Voltage

When the flux density is known in the machine, then the rotational

voltage can be calculated for each conductor as:

V = B • u • r • A (5-6)
r

where B is the radial component of the flux, r the distance of the con-

ductor from the axis of the machine, £ the length of the conductor and a

the angular velocity of the conductor. When the magnetic vector poten-

tial is known, B can be obtained from it as:

1 9A .:„!.. : ft^-~}\
B = ' TT O-/;r r 8cj>
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n
v = - i 9<f>

(5-8)

where n is the number of conductors in the armature and jr-r,the deriva-
i

tive of the magnetic vector potential at the conductor. If the distri-

bution of the winding is assumed linear over the armature,then:

V = - n a) = - n £ (An - AI) (5-9)

where 1 and n are the .first and last conductors of.the uniform distrib-

ution of the winding and <j>, and <() their respective angles.

5.1.3 The Voltage Input and External Connections of the Machine

The previously described method of handling the operation of a DC

machine can be applied, to any case where the waveform of the input -

voltage is complex. Here the case of a series traction motor is

examined when driven from a s,et of batteries through a chopper

controller of relatively low frequency (100-400 Hz). The connections of

the machine are shown for this case in Figure 5-1.

The armature terminals are shunted by a reversely biased

(freewheeling) diode, D2, and the armature plus series field shunted by

Dl. The first freewheeling diode, D2, does not carry any current in the
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case that is being examined here, whereas the second diode, D,, conducts

during the time that the chopper is not conducting.

Chopper

Batteries

02:

Field
Winding

Figure 5-1 The external connections to a chopper controlled DC series
motor.

The open circuited voltage of the batteries is known and is assumed

to remain constant during the simulation, i.e. the batteries are not

supposed to discharge significantly. The battery impedance cannot be

generally considered a constant, but for the purposes of this simulation

it was ignored, since its value does not greatly affect the performance

of the machine.

5.1.4 The Algorithm

The algorithm that was used for the calculation of the currents in

a DC machine makes repeated use of the procedures described previously
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in this section. After every time step the value of the resulting

current is injected into both the field and the armature windings and

the field is calculated. From this solution the Maxwell stress tensor

can be calculated in the air gap, and the torque computed. Then the

procedure of calculating the inductance and change of current is repeated.

The iteration stops after as many cycles as are needed for the current

waveform to come to a quasi-steady state. The algorithm used is:

1. Start with an assumed current increment, I. , and an old' incr'

value of current I , ,:old

: = 'old

2. Solve the electromagnetic field based on current in the arma-

ture and field, equal to I.

3. Calculate the voltage, V. ,, induced in the conductors due to

the change AI in the time interval At and compute the

incremental inductance:

L. = V. ./ (r) (5-11)incr ind At

4. Calculate a new change in current based on the new incremental

inductance and a rotational voltage constant, K, calculated in

the previous time step
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where L . is the external and end turn inductance and R theext

resistivity of the winding

5. Repeat from steps 3 three times for I = I , , + AI; calculate

three values of incremental inductance and the final value

from Equations (5-9) and (5-5) (Aitken Extrapolation)

6. Repeat steps 2, 3 and 4 for the new value of L.

7. Calculate the air gap torque and the eddy current losses in

the iron.

8. Calculate from (5-9) the rotational voltage, V . and the

constant K as:

K =

9. Repeat from step one using, as I -,,, the new value of I and

as the initial guess of AI, that one calculated last.

5.2 Application to an Electric Vehicle Motor

The algorithm of Section 5.1.3 was applied to a motor which was de-

signed for operation in electric vehicles, operated from an 84 volt

battery supply, utilizing a chopper with maximum frequency of operation

of 400 Hz and a minimum time on of 1 ms to control the average voltage

applied to the motor. The machine was connected to a dynamometer instru-

mented to measure the average current, output torque, and the revolutions

per minute and loaded. Oscilloscope pictures were taken of the current
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and voltage waveforms for various values of load, speed, chopper period

and chopper conducting time.

5.2.1 Characteristics of the Motor

Prior to testing, the motor was dismantled and its dimensions

measured and recorded. After reassembly, the friction and windage

losses were measured and an interpolation technique applied to the

results yielding the curve shown in Figure 5-2. Table 5-1 lists the

main parameters of the motor.

The armature was wave wound and the pole windings series connected.

The brush holder was moveable, allowing the brushes to be offset up to

30 electrical degrees from their neutral axis in either direction. The

computer simulations presented here were with the two field windings

connected in series and the brushes at the neutral position.

Figures 5-3 to 5-5 show the significant dimensions of the rotor,

stator, field winding, armature slot and armature conductors.
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Figure 5-2 Friction and windage losses
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No. of poles

Field winding
turns/pole

No. of'Slots

No. of conductors
per slot

Length

No. of
commutator bars

Frame material

Pole material

Armature Iron

20

27

96 mm.

81

wrought iron

M 27,.0.47.mm
Laminations

M 27, 0.47 mm
Laminations

Table 5-1 Parameters of the motor

Figure 5-3 Dimensions of rotor and.stator (in millimeters)
' '



r
81.

M.

I '•

00 00

Figure 5-4 Dimensions of the field winding (in millimeters)

Figure 5-5 Dimensions of slot and armature conductors (in millimeters)
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5.2.2 Approximations and Assumptions

The total number of slots in the armature of the machine is 27,

making the number of slots per pole equal to 6.75. Since this number is

not an integer, an accurate representation of the machine would be

obtained only if the complete cross section was modeled. The accuracy

would not be significantly decreased if only one pole was modeled using

an integer number of slots, and keeping the ratio of the length of slot

to tooth the same as in the actual machine.

In doing so, the number of Ampere-turns of the armature would be

increased if the actual current of the machine was to be injected in the

slot conductors. In order to simulate the field correctly and to main-

tain in the model the same magnetomotive force as in the real machine,

the current in the armature winding should be multiplied by the ratio of

the actual number of slots per pole to the number of slots in the model;

in this case by 6.75/7.00. This would ensure that the calculated values

of the magnetic vector potential values and flux densities would be

correct.

After the field is calculated, the voltages induced in the armature

due to the field winding (and its self inductance) can be computed.

These voltages will be the sum of the voltages induced in the conductors.

A correction is needed here also, since the number of conductors in the

model is larger than in the actual case. The corrected voltage induced

in the armature, due either to rotation or self inductance should be the

voltage calculated from the model, multiplied by 6.75/7.00.
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Commutation is a rather complicated phenomenon and it should be

treated as such when it is studied alone. In that case the self induct-

ances of the coils undergoing commutation are to be calculated, as well

as their mutual inductance with each other and with the armature. Then,

a model (consisting of differential equations) can be constructed based

on these inductances and the resistivities of the various current paths.

The problem is even more complicated by the fact that the brush resis-

tivity is both nonlinear and dependent upon the brush pressure. On the

other hand, if high resistivity commutation is assumed, its effect on

the overall performance of the machine becomes minimal and can be

neglected; i.e. the commutation assumed linear in the calculation of the

currents of the coils undergoing commutation.

The conductor portions of the machine require more considerations.

As described in section 3.2, when no eddy currents are anticipated, the

real current densities can be assigned to the elements in the conductors

and their conductivity assumed zero for the eddy currents. This is the

case when a conductor is composed of many fine strands. When eddy

currents and^skin effects are anticipated, _as is the case of solid

conductors of relatively large cross sections, there are two possible

ways to take their effect into account. One is to calculate the eddy

currents in each individual conductor, by defining a relatively fine

grid and applying equation (2-21) to all such conductors. The alterna-

tive procedure is to assume that all slots are going to behave similarly

and solve, in a separate grid, the problem for only one slot at the same

time that the main grid is solved, and from that solution calculate the

changes of apparent resistance. In this investigation, the skin effect
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was neglected and the apparent resistance of the windings used was the

resistance that was measured at 100 Hz.

Figure 5-6 shows the discretization of one pole pitch. As can be

noted, the discretization of the air gap is not shown. It is rather

generated by the program as described in section 3.2.3. All conductors

in the armature carry current in the same direction. Shifting of the

brushes is accomplished by rotating the armature grid accordingly and

letting the program define the airgap grid.

5.2.3 Results of the Computer Simulation

The program was run for various cases for which experimental results

had been obtained previously. In Figure 5-7 the flux lines and the

outline of the material boundaries are shown for the case of solid frame

stator, where eddy currents are allowed to flow. In Figure 5-8 the same

cross section is solved with the exception that the frame is assumed

laminated. This is not the case of the motor discussed here, but the

flux density distribution was examined because of interest in the

characteristics between motors with laminated and those with solid

frames.

In Figures 5-9, 5-10 and 5-11 the results of the simulation are

presented for a sample case, where only ten points were used for one

cycle. These results are presented here for comparison with experi-

mental results.
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Figure 5-6 The grid for the electric vehicle motor
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Figure 5-7 Solid Frame

Figure 5-8 Laminated Frame
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3s.
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TIME *10'!

0.48

Figure 5-9 Voltage waveform

In Table 5-2 both observed test results and results of the simu-

lation are given for a number of operating modes of the machine. The

coarseness of the grid used does not seem to greatly affect the induct-

ance and currents, but it obviously makes the eddy current calculation

inaccurate, .as can be observed from Figure 5-7. -It also affects the

accuracy of the torque as calculated from the Maxwell stress tensor.

The discrepancies between actual test data and results from the

computer simulation can be attributed to the lack of knowledge of cer-

tain material parameters. The torque and current calculations depend

not only on the coarseness of the grid, but they are also very sensitive

to the resistivity and permeability of the frame. Typical values were

used in the simulation from which the results of Table 5-2 were obtained,

although significantly better results were obtained when other values of
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resistivity and permeability of the frame were used. Also the effect of

the batteries was completely ignored, although battery characteristics

affect markedly the performance of the machine.

5.2.4 Airgap Radial Flux - Brush Positioning

The magnetic field due to the field winding in a DC machine is

symmetric around a pole center line and almost uniform under the pole

face because of the constant reluctance of the air gap (provided that

the slot effect is neglected). Outside the pole face, the radial flux

density drops rapidly, becoming zero in the middle of the interpolar

space. When the brushes are at the geometrical neutral axis, the arma-

ture cross field is also symmetric with respect to the point between the

two brushes. The radial flux density of the airgap due to the field

winding, the armature cross field and the resultant flux density are

shown in Figure 5-12 a. As can be observed, a remaining flux density

exists under the brushes. This flux induces a voltage in the coil

undergoing commutation with the result that the commutation process is

.nonlinear. In order to achieve linear commutation this voltage should

be equal and opposite to the direction of the voltage induced to the

coil due to its self inductance, thereby achieving cancellation.

Therefore, the brushes (and the cross field) must be shifted as shown in

Figure 5-12 b. When the magnetic vector potential is known, at a cross

section of the motor from a finite element or other numerical method,

the radial flux density can be calculated, since:

= - 1 M (5_14)
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In Figures 5-13 and 5-14 the magnetic vector potential and the radial

flux density are shown for the rotor surface, Figures 5-15 and 5-16 show

the same quantities for the stator surface, the reason the flux density

curve is not smooth is the presence of teeth on the armature surface,

which cause the concentration of flux in them. From these figures, the

optimal location of the brushes can be calculated. In Figure 5-17 the

field solution is shown for the brushes shifted 30 electrical degrees.

In Figures 5-18 and 5-19 the magnetic vector potential values and the

radial flux density on the rotor surface are presented for the 30° brush

shift condition. The small amount of flux assisting the commutation can

be observed (note arrows in Figure 5-19).
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Figure 5-12 Effect of brush position on resultant field distribution
(a) brushes at neutral axis, (b) brushes shifted opposite to the
rotation of the motor
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Figure 5-17 The magnetic field for brushes
shifted 30 electrical degrees
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6.0 THE STARTING OF SALIENT POLE SYNCHRONOUS

MOTORS WITH DAMPER BARS

The practical aspects of this problem are primarily the oscillatory

torque and the sustained currents in the damper bars. Also of interest

are the magnitude and waveform of phase currents and the possibility of

the motor operating as a generator during the oscillatory cycle. The

oscillatory torque can cause the destruction of gears and torsional

failure of the shaft of the machine when the torque frequency coincides

with one of the natural frequencies of the system. The currents in the

damper bars, if sustained over a relatively long period, can increase

the temperature of the pole face to levels which can result in mechanical

damage. The complex waveform of the input current, and/or the operation

of the machine as a generator Can cause disturbances to the power circuit

and possibly undesired operation of protective devices. The induced

current in the field winding can cause elevated temperature, but the

effect can be controlled by connecting a resistor across the field

terminals. This resistor must be properly selected based on the prob-

lems of controlling the voltage across the field terminals and current

heating effects, and the performance of the machine must be evaluated

with this value of resistor.

6.1 The Electrical Equations of the Salient Pole Synchronous Machine

Let U) be the synchronous electrical speed of the machine, i.e. the

angular frequency of the voltage applied to the terminals:
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o

If the machine was not in the starting period but operating normally,
I

the angular velocity of the rotor would be uu :. mo

or = 2rrf A (6-2)
mo . p

where P is the number of poles of the machine. During the starting of

the machine, the rotor is revolving with a speed, u> , lower than uj
' m mo

-(0=0) (1-s) 0 < s <. 1
m mo

where s is the slip. Defining uu the electrical speed of the rotor:

U = o ^ = 0) Ie' •/ m o

This quantity, uu , is fictitious and does not represent the mechanical

angular velocity of an equivalent two pole machine operating at the same

slip.

Figure 6-1 depicts the three phase salient pole synchronous machine

with a field winding, f, and damper bars. In this investigation the

number of bars per pole has been arbitrarily chosen as 9 without signi-

ficant loss in generality.
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Figure 6-1 Salient pole synchronous machine

Kirchoffs equations J for the machine circuits are:

I = L • 'I + L • I + R • I (6-5)

where V is the vector of the voltages at the terminals of each of the 13

current paths (3 phases, 1 field, 9 damper bars), i|> is the vector of the

flux linkages of the windings, L is the inductance matrix, R the resist-

ance matrix and I the current vector.
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The entries of the inductance matrix are denoted by L.. and of the
ij

resistance matrix by R.., where i,j = a,b,c,f,1,...,9. The values of

self and mutual inductance of the rotor circuits, L.., i,j = f,l,...,9,

are constant, due to the fact that the stator is cylindrical, and the

self and mutual coupling does not vary with the angle 0. However, the

self and mutual couplings between the stator circuits and between the

stator and rotor circuits vary with the angle 0 due to the saliency of

the rotor. These inductances can be expressed as:

L = L + L _ cos 2 0
aa aao aa2

L. = L + L _ cos 2 (6-120°)
bb -aao aa2

L = L +L " c o s 2 (0+120°) " " ~
cc aao aa2

L = -[L , + L „ cos 2 (0+30°)]
ab abo aa2 ' J

L, = -[L , + L _ cos 2 (0-90°)]
be abo aa2

L = -[L + L 0 cos 2 (0+150°)]ca abo aa2

Laf ' Lafo COS 9 (6~6)

Lbf = Lafo COS

Lcf - Lafo COS

L . = [L ,. cos 0 - L . sin 0]
ai adi aqi

L, . = [L ,. cos (0-120°) - L .sin (0-120°)]
bi adi aqi

L . = [L ,. cos (0+120°) - L .sin (0+120°)]
ci adi aqi

i = 1 9

The terms L , L , are the components of stator self and mutualaao abo

inductance, and they are constant; L 0., L ,. are the maximum excursionscllO



101

of inductances from their average values. L ,. and L . do not represent0 adi aqi f

actual inductances; they are constants which have to be evaluated together

with L , L , , L 0 and L , .aao' abo' aa2 afo

The angle 6, as shown in Figure 6-1, is defined as the angle between

the axis of the rotor and the axis of phase a in the equivalent two pole

machine:

= 0) t+0 =.u> (1-s) t + 0 . (6-7)e o o o ^ '

where t is the time and 0 the initial value of Q.o

From these definitions, the entries of matrix L- can be calculated:

L = -2uj L „ sin 2 0
aa e aa2

-2we Laa2 sin 2 (0-

\c m -2we Laa2

L , = 2o) L „ sin2 (0+30°)
ab e aa2

L, = 2u L 0 sin 2 (0-90°)be e aa2

L = 2u L , sin 2 (0+150°)
ca e aab

L c = -a) L ,. sin 0 (6-8)af e afo

L, , = -CD L _ sin (0-120°)
br e afo

L , = -a) L , sin (0+120°)
cf e afo
•

L . = -<o [L ,. sin 0 + L . cos 0]
ai e. adi aqi J

L, . = -a) [L ,. sin (0-120°) + L .cos (0-120°)]
DI e adi aqi
•

L . = -a) [L ,. sin (0+120°) + L .cos (0+120°)]
-ci e adi aqi

The matrix R is a diagonal matrix, containing the resistivities of theT
•:il-'

circuits.
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6.2 The Effect 'of the Damper Bar Connections

The damper bars in each pole are connected together at each end of

the field pole so as to form a grill. Often this connection extends

between poles to form a squirrel cage winding, similar to that of an

induction motor. The type of connection has an effect on the starting

and the transient performance of the synchronous machine, and the system

of equations that describes it must be modified accordingly. In both

cases the voltages of the terminals of the three phases are known and

the voltage of the field winding terminals is zero since it is short

circuited. The value of the field resistivity in matrix R, though, has

to be increased by the value of the external resistor. Neglecting the

resistance of the end ring between adjacent bars, the voltages across

the damper bars, V,, V_, .. ., V_ have the same value, V,.

6.2.1 Closed End Rings (Cage Winding)

As shown in Figure 6-2, the currents and voltages at opposite poles

are of opposite values.
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The resistance of the pole to pole connections is taken as 2R, , yielding

a combined resistance of R,. Thus, from Figure 6-2:

V, = I , R, .d a d

, T \ (6-10)

i
The voltages induced in the damper bars, V. , are given by:

Vl

i
Vl

Lla Llb Llc Llf Lll ' ' ' L19

• I

L9a -L9b L9c - L9f L91 ' ' ' L99
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ila Jlc

L9a L9b L9c

(6-11)

Since V, = V- = ... = Vq = V,, equation (6-11) can be substituted for

equation (6-5), which becomes:

V

V,

V
= L • I + L • I + R' (6-12)

where the entries r .. of the modified matrix R are given by

r! . =: r.. i = a,.b.,.c.,f or j = a,b,c,f

and (6-13)

6.2.2 Open End Rings

The case of open end rings presents a more complicated problem.

The determination of the voltage across the damper bars is based on the

fact that the total current of the damper bars in each pole sums to

zero.
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V,

r

V2

L_ !
5 N

Figure 6-3 Damper windings with' open end rings

Neglecting again the resistivity between adjacent bars and assuming

the same voltage V,, across all the damper bars of a pole, equation

(6-5) can be written as:

*
V =

Va

*b

Vc

0

0

= Jj * i, "T" J-» * -L 1 K * i ^

cr

0

0

0

vd

\

(6-14)

Denoting:

. , - . - •
•* _i

I ='I - L •

0
0
0
0

Vd

.
' (6-15)
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then, l" can be calculated from (6-14) which is modified to:

V = L • I + L • I + R • I

• * _i *
I = L [V - (L + R) • I]

(6-16)

(6-17)

Since the currents of all the damper bars in each pole sum to zero:

X I. = 0 (6-18)

the voltage V, can be calculated from (6-15) as:

--'9"' 9

1=1 j=

(6-19)

A.

where A^ are the entries of the matrix l"1.

be calculated as:

Finally the vector I can

1 = 1 + L

0
0
0
0

V.

(6-20)

6.3 Calculation of Constants

The constant entries of the matrices L and I and the constants in

equations (6-6) can be calculated from flux plots and from analytical

considerations.
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6.3.1 External Connections

The machine is connected to the electrical network considered an

infinite bus through an equivalent line and a power transformer. The

inductances of these components can be calculated from the per unit

impedance of the transformer 'and the short circuit apparent power at the

end of the line.

i
i-fYifin

bus

crrr\ t
transmission 3

, l in<? ' fTranG

F r^
c^l ^
former | J

i G • • . i ..

motor

Figure 6-4. Equivalent circuit for the supply of the motor.

The value of the inductance of the transmission line and the trans-

former must be added to the value of L which is calculated from theaao

flux maps of the machine.

6.3.2 Self and Mutual Inductances of the Salient Pole Machine

In order to calculate the constants of the machine inductances, the

electromagnetic field must be solved for several excitations at various

operating conditions. Initially the field is solved for a certain rotor

position and the actual currents in the phase windings, the field and

the damper bars. The solution, besides giving the magnetic vector

potential at every point, also yields the permeabilities of all the
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elements in magnetic portions of the machine. Then, the rotor is moved

so that its axis coincides with the axis of phase a. By applying current

to phase a and calculating the electromagnetic field without changing

the permeabilities assigned to each element, the self inductance of

phase a and its mutual inductances with the other circuits can be calcu-

lated for that position of the rotor and for the saturation of the

current paths due to the actual currents.

The inductances thus calculated are the inductances in equations

(6-8) corresponding to angle 6=0.

The rotor is then revolved by 90 electrical degrees and the

previous process repeated again without changing the saturation levels.

The same parameters are calculated again, this time corresponding to the

angle 0= 90°. Always keeping the permeabilities of the elements the

same as resulted from the initial field calculation, current is applied

to the field winding and each damper bar, and the field solved for each

case. From the information gathered from the field solutions, the

constant values of the self and mutual inductances are then calculated

.for the specific operating condition defined by the original current

vector.

In addition to the external inductance, L , the end turn induct-
( CA U-

ance should be added to the calculated value of L , and the field andaao

damper bar end inductances added to the corresponding inductances.

These inductances were obtained for the case investigated here, from

(47)Kilgore's formulae . It is understood that they are not accurately

determined, but their value is too small for a significant error to be

introduced.
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The procedure described above was applied to a 300 HP, 6 pole

synchronous generator with open end ring (grill). Figure 6-5 shows the

grid used for the solution of the magnetic vector potential and Figures

6-6 to 6-13 show the equipotential lines for currents applied to the

field, the damper bars and phase a at zero and ninety electrical degrees.

Due to symmetry, the field was solved for current applied to only five

of the nine damper bars since the parameters of the rest would be the

same.
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Figure 6-5 The grid for a six generator
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Figure 6-6 Current in phase a, 0 =0

Figure 6-7 Current in phase a, 0 =90*
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Figure 6-8 Current in field

Figure 6-9 Current in damper bar No. 1
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Figure 6-10 Current in damper bar No. 2

Figure 6-11 Current in damper bar No. 3

O
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Figure 6-12 Current in damper bar No. 4

Figure 6-13 Current in damper bar No. 5

r
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START
J

Solve the magnetic
field in the machine

using present currents.
Recalculate permeabilities.

Apply current to phase a for
©=0°and 90°, to the field

and each damper bar. Calculate
the field for each situation

Calculate self and mutual inductances

Integrate the system of differential
equations 6-1 for 1/10 of the

time of a pole pitch rotor movement

NO X
~̂ \

I
Has steady state been achieved? f k. S

STOP

Figure 6-14 The algorithm for the starting of a synchronous machine
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6,. 4 The Algorithm and the Integration Scheme

The saturation levels in the machine must be evaluated several

times within a cycle, since, as is shown in Figures 6-23 to 6-31 the

flux densities within the machine vary significantly during the movement

of the rotor over one pole pitch. After the determination of the saturation

levels, the self and mutual inductances must again be calculated as

described in section 6.3. The system of differential equations (6.5) as

modified in 6.3.1 or 6.3.2 to account for the voltage at the end rings

is solved in the time domain using a predictor corrector method .At

each time step the currents are printed and prepared for plotting, and

the integral of their square calculated. .The integration is stopped

when steady state is reached.

Since there are no eddy currents in the iron portions of the machine,

the torque, M, can be calculated faster and accurately by taking the partial

derivatives of the coenergy of the field with respect to the angle:

M- 8W - 1

" 80 2

and finally

V V L,--j
-J T T

1J " ± J

\^ i, j = a ,b ,c , f , l , ...,9

(6-21)

|

.1

The -flow chart of this algorithm is given in Figure 6-14.

The currents and torque computed using this algorithm were compared

to the results of a simulation of a start up of the same machine, based
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(49)on test data by J.R. Misage . The phase currents and torque from

this simulation and results of sample runs are shown in Figures 6-15 and

6-16.

In Figures 6-17 to 6-20, the steady state currents in the phases

the field and the damper bars are plotted as functions of time. They

compare favorably with the current waveforms published by Jovanovski in

(27-30)1969 , from test data and analytical calculations.

Figures 6-24 to 6-31 show the field in the machine for consecutive

time instants when the angular velocity of the magnetomotive force is

not the same as the angular velocity of the rotor; rather the machine is

operating at a slip of 0.5. The time between two consecutive instants

is one tenth of a cycle.

Figure 6-32 shows the torque oscillations for this case and for

other slip values.
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Figure 6-15 RMS values of current. The solid line depicts current
calculated from a computer simulation based in test
data, and x points resulting from this study
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Figure 6-16 Average value of torque
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Figure 6-17 Currents in all 13 circuits
Slip = 0.15
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Figure 6-18 Currents in all 13 circuits

Slip = 0.25
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Figure 6-19 Currents in all 13 circuits

Slip = 0.45
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Figure 6-20 "Currents in all 13 circuits"
Slip = 0.5
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Figure 6-21 Currents in all 13 circuits
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Figure 6~22
The field at a cross section. Step 1

Figure 6~23
Step 2

Figure 6-24
Step 3

Figure 6-25
Step 4
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Figure 6-26
Step 5

Figure 6-27
Step 6

Figure 6-28
Step 7

Figure 6-29
Step 8
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Figure 6-30
Step 9

Figure 6-31
Step 10
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7.0 CONCLUSIONS

The effects of saturation and eddy currents in magnetic materials

render the conventionally defined inductances and other parameters of

electrical machines inadequate to describe and predict the machine per-

formance for modes of operation which cannot be categorized as steady

state. The time dependent solution of the magnetic field was introduced

in this investigation as a method for accounting for the variation, in

time, of the machine parameters in predicting and analyzing the perform-

ance of the electrical machines.

In. order to continuously model the electromagnetic field in the

cross section of a machine, the method of time dependent finite element

method was used, combined with an also time dependent construction of a

grid for the air gap region. The Maxwell stress tensor was used to

calculate the airgap torque from the magnetic vector potential distribu-

tion. Incremental inductances were defined and calculated as functions

of time, depending on both eddy currents and saturation. The currents

in all the machine circuits were calculated in the time domain based on

these inductances, which were continuously updated. The method was

applied to a chopper controlled DC series motor used for electric vehicle

drive, and to a salient pole synchronous motor with damper bars. The

simulation results were compared to experimentally obtained ones.

This technique, of continuously modeling the electromagnetic field

in electrical machines was shown to provide an insight in the operation

of machines and account for the effect of the eddy currents and saturat-

ion on the overall performance. The cases examined here do not exhaust
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the capabilities of the method; neither do they define its limitations.

The time dependent finite element method, although it requires repetitive

solution of a system of linear equations, was shown to be a very powerful

tool in taking into account nonlinearities and complex waveforms, and

becomes more attractive when combined with a fast iterative solution

scheme which reduces the overall computer time.

The application and suitability of such a scheme, i.e. the pre-

conditioned conjugate gradient method, was investigated. The method was

applied to the system of linear equations resulting from the finite

element method and it was shown that it combines both the speed required

for the solution of time dependent problems and the ability to handle

the ill conditioned matrices resulting from elements in iron and air

domains.

This work, as noted earlier, does not cover all the possible appli-

cations and aspects of the continuous modeling of the electromagnetic

field. The accuracy of the solutions for the cases already examined can

be increased by using a finer grid, both in the solid iron regions, to

improve the calculation of eddy currents, and in the airgap to provide a

finer distribution of the flux densities resulting in a more accurate

evaluation of the torque through the Maxwell stress tensor.

The techniques used here can be applied to the skin and eddy current

effects in solid conductors, either by constructing a finer grid for

each of them, or by solving separately a small grid for one conductor

bundle or one slot, every time the larger grid is solved. Application

to separately excited or shunt DC machines and to the study of commuta-

tion, would be a further extension of this work, since two or more



130

circuits inductively coupled would be involved. Another possible

application would be the case of solid salient pole machines during

starting or transient mode. The calculation of the field, in many small

machines in which neither the rotor is cylindrical nor the stator

uniform, would be an interesting application of the time dependent

computer generated grid for the airgap.

A final improvement to the techniques described here, would be the

application of the Newton-Raphson method to the calculation of the

permeability of the iron. The underrelaxation method was preferred here

merely because of the simplicity of the involved programming, but at the

expense of computational time.
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