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INTRODUCTION

Quantitative soil moisture measurements on a global basis are essential
for planning and modeling in agriculture, ciimatology, and hydrology. A major
part of the soil moisture information currently used for these purposes is
derived from measurements of precipitation. These precipitation measurements,
in general, do not provide sufficient coverage and are not uniquely correlated
to soil moisture content. With the spatial and temporal coverage require-
ments, it would be highly desirable to obtain soil moisture information from
satellites. A likely candidate for a sensor system to measure soil moisture
from space combines passive microwave and thérmal infrared (IR) detectors. It
is now possible to orbit large microwave antennas which can provide sufficient
surface resolution at the lower frequencies to enable meaningful measurements
of soil moisture content to be made. Thermal infrared data can be obtained
simultaneously to improve the soil moisture determination algorithms.

The potential of microwave radiometry for soil moisture sensing lies in
the marked increase in the dielectric constant of wet soil over that of dry
soil, due to the presence of moisture. The resultant decrease in emissivity
leads to a pronounced decrease in the microwave brightness temperature which
is measurable by remote sensors. This has been confirmed in the past-by a
series of ground-based and aircraft measurements which show an approximately
linear decrease in brighiness temperature as a function of increasing moisture
content. These measurements exhibit a rather large scatter, however, due to
the numerous other surface features which also affect the ‘microwave emission.

This study is an attempt to better quantify the effects of these surface
features such as variations in the moisture and temperature profiles, sub-

surface layering, surface roughness, and vegetation cover. Theoretical models



have been developed starting on a simple basis, and are being extended to
account for the significant features found in natural terrain,.

The microwave brightness temperature is affeceéd by surface temperature
as well as the other surface characteristics discussed above., Thus, surface
temperature measurements by thermal infrared will improve the soil moisture
determination accuracy of a microwave instrument alone. Furthermore, an
indication of the soil thermal inertia made possible by such infrared measure-
ments provides additional information on‘the moisture content. A coupled soil
heat and moisture flux model has been developed to aid in interpretation of
the infrared data. A major ébjective of this study is to examine tg; inter-
relationships between the microwave and infrared models, and ultimately to
derive algorithms for retrieving near-sufface soil moisture information from
combined microwave and infrared remotely-sensed data sets.

Field experiments have been undertaken in the southern San Joaquin
Valley, California, td acquire data to enablé verification and improvement of
both microwave and thermal-moisture models. Data were obtained using micro-
wave and infrared ground-based systems. The test sites consisted of bare
fields with the capability of being ploughed, irrigated, and instrumented at
will., The field work was undertaken in cooperation with Dr. John Estes,

'S. Atwater; P. O'Neill, and other students of the Geography Remote Sensing
Unit, U, C. Santa Barbara. Measurements with the microwave radiometric system
- consisting of UHF (0.6 to 0.9 GHz/50.0 to 33.3 em), L band (1.L42 GHz/.

21.4 em), and X band (10.69 GHz/2.8 cm) channels - were made at horizontal and
vertical polarizations as functions of view angle, soil moisture and temper-
ature conditions, and surface roughness. Measurements of surface thermal

infrared emission were made from 8 to 14 um,



Soil samples were obtained at frequent.intervals during the experiment
for analysis in terms of moisture content, bulk density, and texture., Temper-
ature probes were used at various depths to monitor the changing temperaturel
profiles. The net result was a complete set of subsurface temperature and
moisture profiles as a function of time during the course of the_experiment.

Measurements of the micrometeorological ponditions in the lower (surface)
boundary layer were also made.

This report describes the two modeling efforts, the data acquisitioﬁ and
interpretation, and future plans for combining measurements and models of the

two spectral regions into a valid soil moisture measurement technique.



MICROWAVE EMISSION FROM BARE SOILS

Introduction

Microwave emission from soils depends on soil characteristics that can be
divided into two groups: (a) volume characteristics, and (b) surface charac-
teristics. Volume characteristics are those which determine the thermal and
dielectric properties of the bulk medium (e.g., moisture content, soil type,
and inclusions such as rocks and organic matter). Surface characteristics
include roughness and vegetation cover, and can be natural or man-made (such
as agricultural fields). The effects of these soil characteristics have been
studied in the past using both theoretical and experimental approaches. At
the frequencies of interest (~ 1 to 10 GHz) soil moisture content is the
dominant characteristic affecting emission from bare soils.

Various theoretical models have been developed to compute microwave
emission from surfaces. These models include emissivity calculations (Peake,
1959; Tsang and Kong, 1976), radiative transfer models (England, 1974; Tsang
and Kong, 1975; Burke et al., 1979), and more rigorous coherent models
(Stogryn, 1970; Tsang et al., 1975; Wilheit, 1978). 1In general, these models
treat idealized situations, since some soil characteristics are too complex to
be accurately modeled. In particular, surface roughness and vegetation have
not so far been adequately represented in the models. Even in simplified
form, however, the models have provided an understanding of the basic soil
emission characteristics to be obtained, and can be used to obtain approximate
results for situations ;n‘which experimental data are unavailable.

Experimental programs in soil moisture remote sensing have provided
_microwave data from ground-based radiometer measurements (Poe et al., 1971;
Blinn et al., 1972; Newton, 1976), aircraft measurements (Schmugge et al.,

1974, 1976), and satellite measurements (Eagleman and Lin, 1976; McFarland,



1976; Meneely, 1977). These radiometer measurements, in conjunction with
simultaneous ground-truth measurements of moisture and temperature._have
enabled empirical relationships to be obtained between microwave brightness
temperature and soil moisture content. Other soil characteristics such as
soil type, roughness and vegetation cover are observed as perturbing effects
on these relationships. The limited nature of the radiometer measurements,

- and the difficulties encountered in obtaining accurate ground-truth measure-
ments for comparison, have been the main limitations to the experimental work
so far.

Understanding the effects of soil characteristics on microwave emission
Wwill enable techniques to be devised for retrieving surface soil moisture
information from analyses of remotely-sensed microwave data. The success 6f
the procedure depends on understanding which moisture parameters primarily
affect the microwave emission (e.g., surface'moisture. sub-surface moisture
profile, etc.), and how these parameters are to be interpreted when roughness
and vegetatioﬁ are present, or when several different terrain types fall
within the field of view. A further step is to evaluate the usefulness of the
derived moisture parameters in their application to problems in agriculture,
hydrology and climate, which is the ultimate goal of these studies.

The microwave soil moisture studies carried out at JPL have emphasized
aspects of both theoretical modeling and experimental measurements. Theoret-
ical models have been developed for bare soil surfaces with vertical moisture
and temperature profiles. Experimental data have been obtained using JPL's
van-mounted radiometers, operating at 0.6 to 0.9 GHz (tunable), 1.42 GHz and
10.69 GHz, The experimental data have been used to verify the calculations of
the smooth surface model, and are being used to make empirical modifications

to the model to account for effects of surface roughness.



Theoretical Background

Most soils can be adequately modeled at microwave frequencies as being
isotropic and non-scattering, with vertically inhomogeneous dielectric
constant and temperature profiles (figure 1). The dielectric constant profile
is determined by the moisture profile, soil texture, an& any discontinuities
such as rock straﬁa. etc. The most general approach to deriving a theoretical
formulation for the brightness temperature of such a medium uses the theory of
electromagnetic fluctuations and electromagnetic wave propagation. This
approach was formulated by Stogryn (1970) for a medium with continuously
varying vertical profiles. Stogryn's formulation can be modified to give the
following expressions for the brightness temperature as a function of viewing

angle for horizontal and vertical polarizations (Njoku and Kong, 1977):

0
k
TBh(a) ~  cos$ !

T(z) € "(2)1K2)|° dz (1a)

2
1 de(2)| 1 . 2
s dz| *| e Ksind ¢‘Z’| }dz

0
1
TBV((S) = m .{m T(Z) Er"(Z){

(1b)

In these expressions T(z) is the temperature profile, er(z) = er'(z) + ier"(z)
is the complex dielectric constant profile, k is the free-space wave number
(2m/)), and § is the angle of observation from nadir. The functions {(z) and

¢(z) are obtained as solutions to two second-order differential equations:



9—955; + e (2) - sin° §} Kyz) = 0
dz

(2)
1 -d¢(z)

e (z) dz
r

e () =2 | b+ {e.(2) - sin® §} KPp(z) = 0

These are the wave propagation equations within the medium, and must be
solved in conjunction with appropriate surface boundary conditions. For a

smooth surface, these boundary conditions are given by:

Qlésl + i {2-y(z)} kcos§ = 0, atz = 0

(3)

Eiéél +1{2-¢@)} e (2) kcoss = 0, atz =0

For a rough surface the boundary conditions become complicated, and even the
simplest forms of roughness result in solutions which are intractable for most
applications. Thus, solutions of these general equations are usually re-
stricted to the smooth surface case. For the smooth surface, solutions to
equations 2 for y(z) and ¢(z) can be obtained in terms of known functions only
for certain simplé analytic profiles of er(z). Some of these general solu-
tions have been described by Wait (1962). In most practical situations,
profiles of e.(z) as determined by the soil moisture profile 6(z) may be quite
arbitrary, so that solutions for P(z) and'¢(z) cannot easily be obtained, and
much less be integrated in equation 1 to obtain brightness temperature. The
above formulation does however provide a useful framework against which to
evaluate other models which may not be as accurate but afford much simpler

computation in practical cases. These approximate models are discussed below.



Emissivity Model

The emissivity model is the simplest to use in concept. It assumes that
the temperature in the medium is uniform, T(z) = T, so that the temperature
can be removed from the integral of equation 1, and the brightness temperature
expressed as:

TB (8) = ep(G)T 4)

p

where ep(ﬁ) is the emissivity, and p refers to either vertical v or horizontal
h polarization. Due to the reciprocal nature of the boundary conditions
(Peake, 1959; Tai, 1971) the emissivity can be related to the reflectivity
rp(G) by the relation:

ep(d) = 1 - rp(d) (5)

In the case of a smooth surface over a homogeneous medium, rp(G) is obtained

from the Fresnel reflection coefficients Rp(G) (Kong, 1975):
r (8 = IR (81° (6)
p p

In the case of a rough surface, scattering coefficients can be used to compute
the reflectivity using Peake's approach (Peake, 1959):

pp(o,s) + qu(o,s)] aq (7

1
rp(G) = ff [Y
where the integral is over the upper half-space, the y(o,s) are bistatic
scattering coefficients from direction (s) into direction (o), and q refers to

the polarization orthogonal to p.



For inhomogeneous media, techniques for computing reflectivity outlined
by Wait (1962) can be used if the surface is smooth.

The emissivity model can be used with reasonable accuracy even for situ-
ations where the temperature profile is non-uniform, provided ﬁhe temperature
variation is small in the near-surface sensing depth region. 1In this case‘the
temperature T can be taken as the surface temperature, or an "effective"
average temperature over the sensing depth. For the lower microwave fre-
quencies, significant soil temperature variations can occur within the greater
sensing depths at these frequencies, hence the emissivity approach should not

be used in these cases.

Radiative Transfer Model

The radiative transfer approach can be used to obtain approximate values
of brightness temperature for media in which the dielectric constant profile
is slowly-varying and in which the absorption is small (Njoku and Kong, 1977).
It is fairly straightforward to implement, and is thus commonly used. To
illustrate its applicability, it will be derived here as an approximation to
the rigorgus expression given in equation 1.

The differential equations (2) can be written in the concise form:

2
42, Pz = 0 (8)
dz
where,
v(z), horizontal polarization

x(z) = (z)
/EQTEY , vertical polarization
r



and,

k2[er(z) - sin26], horizontal polarization
ge(z) =

2

2 2 —r 4 (=) |
l\k [e.(z) - sin®§] - Ve (z) —5 \/e (2) /, vertical polarization
dz

Equation 8 can be solved approximately using the WKB approach (Wait, 1962),
which is valid in cases where the profile er(z) varies slowly over distances
comparable to a wavelength in the medium. It can be shown that solutions of

the form

x(z) =

z
1 - fo g(z') dz' (9)

vg(z)
will satisfy equation 8 under the slowly-varying conditions:

1 d
/er(z) dz

{Ve.(2)} << g(z)
Using the boundary conditions of equation 3, and substituting into equation 1

the expression for brightness temperature is obtained:

0
O ?
T, = (-r) | {2’1‘(2) p(z) e2 fz 8'(S)ds}dz (10)

-0

10



where:

2
Ik cosé - g(0) , horizontal polarization

r = k cosé + g(O) |~

e (0) k cosé - g(0) 2
e (0) k cos§ + g(0)| vertical polarization
1
1g(0) | g'(z) g"(z) . horizontal polarization
p(z) = fg(z)| g'(0) A
B a2 2 '
(k 3in8)” + l(g(z)l {g(o) g'(z) g"(2), vertical polarization
| 2 lg(z)I g'(0)
€.(z)|
' i g" 2 . 2
g(z) = g'(2) + ig"(z) = Kk° e (2) - sin®$

In this case, r is the surface reflectivity computed using the dielectric
properties at the air-medium interface,

If the assumption is made that the imaginafy part of g(z) is small so
that g"(z) << g'(z), then equation 10 can be reduced further to give the
familiar equation (which can be derived directly from radiative transfer
principles):

0 0

T, o= (o) [ {one g 62 ] 8(s) dsyy, (11)

-0

That this result can be obtained using WKB solutions is to be expected, since
radiative transfer theory is derived from concepts in geometric optics which
provide first order solutions to electromagnetic wave propagation in inhomo~
geneous media (Bekefi, 1966).

For a given dielectric constant profile, equations 10 and 11 can be

evaluated directly by numerical integration, or equivalentiy the medium can be

1



approximated as being made up of a large number of horizontal layers, within
each of whiéh the temperature and dielectric constant are assumed constant.
By summing up the contributions from each layer the brightness temperature can
bé obtained. This approach has been used by Burke et al. (1979). Since
propagation of radiation intensities only are considered ip the radiative
transfer aﬁproximation, coherent effects of .layers in the medium and rapid
profile changes are unaccountéd for, This can lead to erroneous results in
some cases when computing brightness temperatures from simulated moisture and
temperature profiles. In practice, problgms may arise where rapid drying in
the top centimeter of soil has occurred, resulting in sharp moisture gradi-
ents. This is difficult to verify, since measurements of moisture variations
within the top centimeter of soil are rather unreliable using currently avail-
able teghniques. However, for many naturally-occurring moisture profiles,
which do not vary too rapidly with depth, the radiative. transfer approach
should g;ve valid results. |

If rough surfaces are to Be treated, then modifications must be made in
the models for the surface reflectivity r. Valid theoretical expressions for
r are in general very difficult to obtain. A simplified model for rough
surfaces using the radiative transfer approach has been described by Choudhury

et al. (1979).

Coherent Model

As discussed above radiative transfer soluti&ns equivalent to equation 11
can be obtained by stratifying the medium into a large number of horizontal
layers. Solutions can similarly be obtained, by stratification, to the
precise formulation of equation 1. The difference is that coherent effects of
reflections between layers are accounted for. By using a large number of thin

12



layers, arbitrarily-varying profiles can be approximated to ﬁigh accuracy, and
precise solutions for brightness temperature can be obtained.

The coherent stratified model can be described by reference to figure 2,
which shows the medium divided into a large number n of horizontal layers.
The lower region t, (extending theoretically to infinite depth), is at a depth
from which.very little radiation reaches the surface. Hence, it may be
approximated as having a constant profile or some easi}y computed brightness
temperature contribution, Within each %th layer the permittivity €g and
temperature T2 have constant values. The derivations of the expressions for
brightness temperature are analogous to those for equation 1. They have been
described by Tsang et al. (1975), and thus only the results will be provided

here.

iz 8
"
2k22

T, (8) =

iﬁ £ "T (lAzexp(-ik d )12

cosG {1 - expl2k "(d, ; - d)]}

IB exp(ik _d )2
L 2z 2
- = {1 - exp [-2kzz"(d2_1 - dz)]}

2kkz
-i i *
i [Az exp( lkzzdg)][BgexP(lkgzdg)]{1 Cexo [oiok 'a e
21k, P l-dcKp, te1 7 9
' (12a)
(Azexp(-ik )]*[B exp(1k2 dz)]
- i ' -
+ Zik ; {1 exp[12k£z(d2_1 dz)]})
Lz
" 2 - "
. K € Tt IThI exp( 2ktz dn
coséd € 2ktz"
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N e "T IC exp(-ik, d )|?2
k L £ iz %
T, (8) = (lk, 12 + k_2) = {1-exp[-2k, "™(d - d, ,)1}
Bv cosé & 0|k2l2 Lz X 2k2z Lz L 2-1
ID exp(ik, d, )12
__ 2 2z L _ " _
2kgz" {1 exp[2kgZ (d2 d2-1)]} (12b)

2 2 -3 i *
lkzzl _ kx [Czexp( 1klzd£)][D2exp(1kzzd£)] ' :
+ ik {1-exp[12kﬂ'z (dz-d£_1)]}
Ik, 12 + k. 2 2z
Lz X
[C,exp(-ik,_d )I*[D exp(ik,6_d,6)]
R 2z % L 2z 4 _ » .
ST {1 - expl ik, (dz-dz_1)]})
Lz
" 2 2 - " '
K e, "Clk 1%+ k T, ) exp(-2k, _"d )
IT, | o
cosé (k. 12 v 2ktz
0" ¢t
The notation is explained below:
) = viewing angle from nadir
k = 2n/x = w#uoso, wave number in free-space, () = wavelength,

w = frequency in radians/sec)

€0 = permittivity of free space
Uy = permeability of free space
1 ”
€g = g+ iez = complex permittivity of fth layer; (ey /e, =

dielectric constant of £th layer)

T2 = temperature in the %th layer

m/uoez = wave number in fth layer
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1 "

- - v
ko, = kzz+ 1kzz = k /ez/so - sin4§ = 2z component of wave-

number in £th layer

d, = depth below surface of interface between fth and (g+1)%P
layers
N = total number of layers

The constants Al,-BQ’ Cz, Dl. Ty, and T, are wave amplitudes, and are related
to one another by prqpagation matrices (Kong, 1975; Tsang et al., 1975). It
~1s assumed that the surface of the medium is smooth.

| The expressions 12a and 12b have been programmed on the JPL Univac 1108
computer, and require as basic inputs §, A, and the profiles €y and Tz. An
equivalent formulation of the coherent stratified model has been developed
independently by Wilheit (1978)‘. |

The model described above is moét useful for calculations in which high
accuracy is required for media with arbitrary profiles. Various concepts such
as temperature sensing depth, moisture sensing depth, and effects of different
profiles as functions of frequency, polarization and viewing angle can be
studied using the model. As yet, only a smooth surface can be treated by the
coherent model. Future work is being directed towards the addition of rough
surface parameters based on theory and experimental data.

Coherent models are also required to explain the interference effects
which occur in emission from layered media. These interference effects were
first observed radiometricaily in the experiments of Blinn et al. (1972), and
were later thought to explain the anomaiously low brightness temperatures

measured by Skylab over the Utah Great Salt Lake Desert (Ulaby et al., 1975).
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In some practical situations. problems may arise with the use of coherent
models, duelto imprecision in determining the moisture profile. Soil samples
collected during field experiments are-usually measured for average moisture
content in given depth intervals. These measurements are then used to
reconstruct as accurately as possible the true moisture profile by linear
interpolation, polynomial fitting, etc. Any artificial discontinuities or
sharp changes in profile caused by errors in profile reconstruction will be
reflected as errors in calculated brightness temperatures, to a higher degree
using a coherent model than using an incoherent model such as radiative
transfer. Weighing these considerations with‘the reservations mentioned
earlier against using the radiative transfer approach, it is clear that both
coherent and incoherent models have their respective merits, and the models

should be used with caution as appropriate to each particular circumstance.

Soil Dielectric Properties

The models described in the previous sections all require knowledge of
the medium dielectric properties in order to compute brightness temperatures.
Since moisture content is the soil parameter measured in the field and to be
ultimately determined from the microwave data, relationships between moisture
content and dielectric properties must be established. In these relationships
soil texture (as determined by the three main components: sand, silt, and
clay) plays an important part.

Laboratory measurements of dielectric constant have been made for a
number of different soils, usually as a function of moisture content by weight
(gravimetric), and at a limited number of frequencies (see for example Cihlar
and Ulaby, 1974; Wang and Schmugge, 1978). From these measurements best-fit

curves can be derived, some of which have been compared to theoretical and
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empirical mixing formulas to undefstand the effecté of the various soil compo-
nents (Wang and Schmugge, 1978). The effects of the three components (soil,
air, water) on the dielectric properties are complex énd difficult to measure
experimentally; as evidenced by differences betwéen dielectric constant mea-
surements of different investigators and the various mixing formulas. Uncer-
tainties in the moisture-dielectric éonstant relationships are a significant
factor in the overall modeling errors. It has been found that the variability
in the relationships between different soil types.can be reduced by expressing
the moisture content as a‘percentage by volume (volumetric), rather than
gravimetrically. This, however, requires a knowledge of the soil bulk
density, which is difficult to measure accurately in the field and may thus
add error tb the data. More receﬁtly, it has been found that the variability
due to so0il type can also be reduced by relating the soil dielectric proper-
ties to the soil water pressure potential, expressed as a percentage of field
capacity (Schmugge, 1980). As before, a certain amount of error may be intro-
duced due to the uncertainty in the dependence of field capacity on soil
texture. The advantéges to be gained are significanf however since universal
curves for soil dielectric properties, independeht of soil texture, may be
obtained. There is a continuing need for more laboratory measurements to
increase the data base from which reliable curves can be derived.

For illustration, a set of average curves of dielectric constant depend-
ence on volumetric soil moisture content at 1.3 GHz is shown in figure 3.
These average curves were derived from mea;urements on different soil types
made by various investigators (Cihlar and Ulaby, 1974). Superimposed on these

curves are data points from measurements of sand made independently by Njoku

and Kong (1977).
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Model Results for Theoretical Profiles

Results using the coherent stratified model to calculate brightness
temperature of smooth surfaces with various moisture and temperature profiles
have been summarized by Njoku and Kong (1977). Some of the important features
will be discussed here. Figure 4 shows six moisture profiles of exponential

form, roughly approximating conditions found in nature:

: (eBz—1
8(z) = es + AB ( 2d ) ; -4 <z< 0 (13)
e -1
6(z) =

0(-d) ; 2z < =d

In these expressions, 68(z) is the volumetric moisture content expressed in

decimal fraction, in percent, es is the surface moisture content, A6 is the

increase in moisture content from the surface to depth d below the surface.
The moisture content below depth d is considered to be uniform. Parameters
A8, B, and d for the six profiles are gi?en in Table I. To calculate

brightness temperatures an exponential teéemperature profile, T = 290 + 15

.es'
exp(0.12z), is assumed for illustration (figure 5). The calculated brightness
temperatures for the frequency range 0.25 to 25 GHz are shown in figure 6.
The calculations were performed for § = 0° (nadir viewing), and dielectric

constants for sand were used (Njoku and Kong, 1977).
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Table I

Illustrative Moisture Profile Parameters

Profile By A8 B.m'l d,m
1 .30 -.05 10 0.5
2 .15 .10 | 50 0.5
3 .05 .18 20 0.5
4 .02 .18 5 0.5
5 .02 .10 30 0.5

6 .02 .20 =10 0.5

At the higher frequencies, the surface s0il moisture and'surface temper-
ature are the factors that primarily determine brightness temperature. At
lower frequencies however the moisture content and temperature variations
below the surface have an increased effect on the brightness temperéture.
Thus, for example, profile 5 results in lower brightnesé temperatures than
profile 4 at low frequencies, due to its greater near-surface moisture grad-
ient, even though both profiles have the same surface moisture value, At high
frequencies profile 5 results in higher brightness temperatures than profile
4, because the sensing depth is smaller, and the high surface temperature
contributes more. These rather subtle combined effects of moisture and tem-
perature profiles are discussed further in the following section on sensing
depth. The generally lower brightness temperatures at lower frequencies for
all curves in figure 6 are also partly due to the lower soil temperature below
the surface as assumed by the model. To show the potential problems with the

radiative transfer approach, brightness temperatures for profiles 5 and 6 have
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been calculated using the radiative transfer model and compared with precise
results using the coherent model (figure 7). It is apparent that below about
4 GHz the radiative transfer result for profile 5 does not acéount.for the
sharp curvature in the subsurface moisture profile, and for profile 6, does
not show the oscillations caused by the discohtinuity in moistﬁre profile

slope at 50 cm depth.

Sensing Depth

The results discussed above clearly point to the fact that the lower
frequencies respond to moisture and temperature variations at greater depths
in the soil than do the higher frequencies. From equatioh 1 it is evident
that the moisture and temperature profiles have independent effects on the
brightness temperature (ignoring second-order effects such as the dependence
of dielectric constant on temperature). The depths below the surface over
which moisture -and témperature variations separately affect the emitted radia-
tion are in general related though different. This gives rise to the concept
of different moisture and temperature sensing depths.

The temperature sensing depth can be determined for different moisture
profiles by studying the temperature weighting functions. These are deter-
mined by writing equation 1 in the form:

0
Tg(8) = / T(z) Fle (z), 6} az aw)

where F{er(z). 6} is the polarization-dependent weighting function, and is
determined by the dielectric constant profile er(z) and viewing angle 6. By
normalizing the weighting functions to have unity maximum value they can be
compared on the same scale, as is shown foé moisture profile 3 (figure 8).
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For uniform moisture profiles, the weighting functions would be decreasing
exponentials. However, this is not the case for non-ﬁniform moisture pro-
files. Figure 8 shows that at lower frequencies, the weighting functions for
profile 3 increase with depth.below the surface to a peak value, and then
decrease at greater depths. Thus, for example, 1.0 GHz radiation from a depth
"of 7 cm, at which the weighting function peaks, is the main contributor to the
brightness temperature. The depth from above which (1 - 1/e) of the emitted
radiation originates can be defined as the temperature sensing depth, and is:
obtained by integrating the normalized weighting function to the depth at
which a value of 63% of the total integral is obtained, i.e. for sensing depth

ds:

0
J_yg F e (2), 8} dz

-2 = 0.63 (15)
[ F {e (2), &} dz '

For an exponential weighting function the sensing depth would correspond to
the depth at which the weighting function had decreased to 1/e of its value at
the surface. The temperature sensing depths as functions of frequency for
moisture profiles 1 to 5 are shown in figure 9. Note that these sénsing
depths are for sand, and will be somewhat different for other soil types,
although the shape of the curves will be qualitatively the same.

Only a fraction of the radiation emitted in the bulk medium actually
leaves the surface, the rest is reflected back and/or reabsorbed in the
medium. The fraction that leaves the surface is determined by the medium

reflectivity, which in turn depends on the dielectric constant variations in
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the near-surface region. The question arises as to the depth below the sur-
face over which moisture (i.e., dielectric constant) variations affect the
reflectivity, and hence the surface emission. This moisture sensing depth is
distinct from the temperature sensing depth, and is of primary interest in
remote sensing. It is difficult to obtain a straightforward expression for
moisture sensing depth, but some insight can be gained by plotting combuted
brightness temperatures agaihst the average moisture in different depths of
the soil. This has been done for the theoretical moisture profiles 1 to 5,
and for three frequencies 0.25, 1.0, 5.0 GHz (figure 10). For each frequency,
four curves have been plotted, corresponding to average moispurg in depths 0
to 1, O fo 2, 0to 5, and 0 to 10 em. There are five setsmbf péints used to
generate the plots corresponding to profiles 1 to 5. Straight line relation-
ships are best obtained at 5 GHz by plotting brightness temperatureragainst
average moistufe in the 0 to 1 cm layer (or less), whereas at 1.0 GHz it is
the 0 to 2 cm layer and at 0.25 GHz the 0 to ~ 8 cm layer that provide the
best linear correlations. Despite the limited number of points used to gener-
ate these plots, it is clear that the depth providing the best linear corre-
lation with brightness temperature (which may be used to define the moisturé
sensing depth) is significantly less than the temperature sensing depth.

The conclusion to be drawn from this discussion is that the moisture
content within the moisture sensing depth is the appropriate moisture param-
eter to be derived from microwave remotely sensed data, but in this derivation
account must be taken of soil temperature variations within the temperature
sensing depth. It is for this reason that we are combining the microwave and
thermal infrared approach. The next section discusses the modeling designed
to determine the soil temperature and moisture variations as a function of

depth from infrared measurements.
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A NUMERICAL MODEL FOR HEAT AND MOISTURE FLOW IN SOILS

Equations, Boundary and Initial Conditions

Soil is a mi*ture of substances that occur in three phases: solid (rock,
mineral particles, ice, organic material), liquid (water), and gas (air, water
vapor). The flow of heat and moisture in soils is described by a second order
partial differential equation of parabolic form, viz.,

1t
i = 2 -\ = =
—= = ai(x,t)V Ui-2bi(x,t)VUi + ci(x,t)Ui - di(x.t). (16)

ot
with ai(;,t) > 0. For Uj, the subscript i denotes temperature when i = 1 and
volumetric water content when i = 2, Actually, the heat and moisture flow

equations are coupled through the coefficients aj, b dj which are

i civ
functions of temperature and moisture (see below). Assuming horizontal
homogeneity in the temperature and moisture fields, equation 16 reduces to a

one-dimensional form in the vertical (X + z = z) whose solution is uniquely

specified when the initial and boundary conditions are given,

fi(Z) (173)

Ui(Z,O) =
U;(0,8) = gy (t) (17b)
U; (D) = hy(t). (17¢)

Figure 11 shows a block diagram of the soil model that is described by
equations 16 and 17. The transport equations pertain to a medium composed of
solid material, water, and air. Depending upon the moisture content, the

model consists of a medium (water or air) in which soil particles (solid
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material and air or solid material and water, are imbedded. For moist soils
the medium is water, and for dry soils, air. .

The upper soil boundary (z = 0) condition on femperature is préscribed‘by
an energy balance equation |

Ry = Qg + Q5 + Q¢

where,
RN = net radiative heat flux,

= latent heat flux,

>
. m
]

QS = sensible heat flux,

= soil heat flux.

0
«
1

Then, equation 17b is expressed as Ui(O,t) = gi(RN' Qe,» Qg QG). Figures 12
and 13 show, respectively, how RN is partitioned and how each of the fluxes
typically behaves day and night. Ry has solar and terrestrial components. For
clear skies, Ry (solar) depends, in part, upon the ambunt of solar radiation
incident at the top of the atmosphere, the ground albedo, zenith angle of the
Sun, and the amount of atmospheric scattering and absorption: The upWard
surface flux of Ry (terrestrial) depends only upon the surface temperature
when the ground is assumed to be a perfectly black radiator. The downward
flux of RN (sky), or long-wave sky radiation, can be estimated from the near
Asurfaée temperature and water vapor content. During the day, RN is generally
directed toward the ground while the other fluxes tend to remove either heat
or moisture, or both, from the surface. At night, the upward component of RN
(terrestrial) dominates RN so heat is lost from the surface, while the other
fluxes tend to add heat to the surface. The parameterization of RN, QE' and
QS is given in Appendix I. The calculation of QG is given in the section on
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heat flux. For moisture, q = E, at the surface. Here q is the moisture flux
density in the soil and E is the evaporative flux density.

At the lower boundary (z = D), it is assumed the diurnal variations of
heat and moisture do not penetrate that far (D = 2 m). This means the
temperature and moisture content are constant at the lower boundary.
Therefore,

Ui(D,t) = constant.

Moisture Flux

The variation of soil moisture is described formally by equation 16,
which is obtained from the requirement of mass continuity,
36 = =
T Vz (q/p), (18)
where p is the density of liquid water (= 1 gm cm'3), 8 is the volumetric soil
water content (fractional volume of water in total volume of soil), and E is

the moisture flux density,

q = -p(DeVZO + DTVZT + Kz). (19)

DO and DT are the moisture and thermal diffusivities, respectively; both have
liquid and vapor components, and both depend upon moisture and temperature
variations,

Dg = (De)liq + (Dglyap
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K is the hydraulic conductivity (em/sec). Substituting equation 19 into

equation 18 gives

3 - Vz-(DOVZO) + VZ-(DTVZT) * oot (20)

Expanding equation 20 produces an equation identical to equation 16:

U2 = 0

3, = Dy

b, = =Y>(aDy/d2)

02 = 0

dy = -4 (0,2 X (21

Note that equation 20 depends upon T as well as ©. In the next section, a
similar equation for the heat flux is develobed which also depends upon both T
and 0. This requires that both equations be solved simultaneously. This is
shown in a later section.

The parameters D0 and DT are given below. Details concerning their

derivation are discussed in Philip and de Vries (1957) and Philip (1957).

Moisture Diffusivity (Dg)

The liquid component of the moisture diffusivity is

(D));q = K(©)3y/20 (22)

where ¢ is the capillary potential (cf. Hillel, 1971).
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The energy of the soil water is defined by y. ¢ is a potential function
(negative for unsaturated soils) based on a unit weight of water and has the
dimensions of length (em). For a solute-free solution of water, the liquid

and vapor phases are related by

=
1]

exp(gy/RT)

where h is the relative humidity, R is the gas constant of water vapor
(= 4.615 x 106 erg gm'1 °C'1) and g is gravitational acceleration (= 981
em/sec?) .

' The inverse of K is a measure of the soil's resistivity to the'flow bf
water. Some of the major factofs determining K are the total porosity of the
soil, the distribution of soil pore size,'soil tortuosity (or pore geometry),
fluidlconductivity, and fluid viscosity (cf. Childs, 1967). For saturated
soils K is constant while it varies with © for unsaturated soils. K varies
with 0 in a non-linear way: for © near saturation and decreasing 0, the
largest pores empty first so that K decreases approximately with the square of
the pore radius and K drops rapidly with 0. When 0 is small, K is low;
therefore, the flow of moisture is not very great over a small period of time,
e.g. a few hours, unless the gradient in 0 is ‘large.

The variation of K and ¢ with © has been modelled empirically for a
number of soil-types by Clapp and Hornberger (1978). Figure 14 shows curves
of K and ¢ versus O using their models.

The vapor component of the moisture diffusivity is

(D) = D mvagpw(BW/ae)/PRT. (23)

DO vap at
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where Datm is the diffusivity of air, v is the ratio of total atmospheric
pressure (P) to the partial pressure of dry air, a is the porosity (or
volumetric air content in,cm3 of air/cm3 of total soil volume) and Py the
water vapor density.

The elements in equation 23 were given the following values

- -4r2.3
Dotm = (5.89 x 107°'T )/P
where P is given in mb and T in 9K (Krishner and Rohnalter, 1940). Values of
porosity, a, for different soil types are given in Table II-1, Appendix II.

Because the partial pressure of water vapor (e) is ordinarily much less than
the total air pressure,
v = P/(P-e)z 1.
The water vapor density is obtained from
Py = hog
where Py is the water vapor density for saturated conditions,

Py = (fwes)/RT,

fw is a correction factor to account for the departure of moist air from ideal

conditions (= 0.622) and e
1955) :

s is the saturation vapor pressure in mb (Saucier,

(6.11 x 10%),

¢
"

(7.5 T - 2049)/(T-35.9)

Q
"

with T in °K.
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Thermal Diffusivity (Dr)

The liquid component of the thermal diffusivity is

(D = K(3y/3T). (24)

)liq
The derivative can be approximated by

2=,

where y = =2.11 x 10™3 °C'1, over the range 10 - 60°C which is éppropriate for

most conditions. This obtains from: 1) the equation of capillarity,
y = - 2u/r

where p is the surface tension of liquid water and r is effective radius of
the pore spaces (cf. Hillel, 1971); and 2.) by differentiating ¢ with respect

to T, i.e.,

n

9 _ _2
oT r oT °

Figure 15 shows that y is nearly linear between 10 - 60°C,

o:lcu
e

= Yy
where Y = A;/u. At 30°C, y = -2.11 x 10™3 °¢~1 and over the range 10 - 60°C,
Y does not vary from this value by more than 5%.

The vapor component of the thermal diffusivity is

(DT)vap = Da¢pvoahBn/p,. (25)
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The factor B is the coefficient of thermal expansion,

™
s

dps/dt

4098

1
S|(1-35.9)% T

where T is in °K. Figure 16 shows B versus T between 10° and 60°C. o is a
tortuosity factor = é/3, (Philip énd de Vries, 1957).

The factor n takes into account the interaction of water vapdr with the
liquid and solid phases in the soil; The simple theory of water vapor

transfer in soils assumes n = 1; calculations of (DT) with this value of n

vap
do not agree with experimental results (Philip and de Vries, 1957). When
liquid continuity is absent in the soil, moisture transport takes place by a
series—parallel arrangement of liquid and vapor movement. Simple theory
regards the separate pockets of liquid water as barriers to the vapor flow
when, in fact, they offer little resistance to 'it. It has also been found
that the heat transfer through air-filled pores is about twice the rate it is
through the soil medium itself.‘ These two considerations will cause n>1l.

An empirical éxpression is derived for n based on the work of Philip and
de Vries (1957) (Appendix III). Table III-1 in Appendix III shows the
variation of n with © for a sandy clay loam soil,

Appendix II. lists the physical characteristics of several soil types

used in the model.

Heat Flux

In unsaturated soils, heat flow is complicated by moisture movement in
both the liquid and vapor phases. The diffusion of water vapor from one point
in the soil to another is caused by differences in the local vapor pressure
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which are engendered by soil temperatue gradients. This creates a latent heat
transfer in the soil which results in an enhanced thermal conductivity in the
gas-filled, pore space. 'Furthermore; the vapor movement is accompanied by a
distillative process: 1liquid water evaporates in one place and reforms as a
éondensate'in another place. To account for this, a term is added to the

Fourier heat conduction equation, i.e.,
"C = = Vz-(XVZT)+Q(e,T) (26)

where C (Cal cm™3 °C'1) is the volumetric heat capacity of the.soil, A (Cal
sec! em~l °c-1) is the thermal conductivity, and Q is the distillative
term. Q is heat transferred from vapor diffusion by moisture gradients and is

a heat source (sink) when it is expressed as a convergence (divergence),

Q = VZ-(pL(DO)vapVZO) (27

where L (Cal/gm) is the latent heat of condensation (evaporation). L varies
linearly with temperature over the range 0°C to 60°C (Smithsonian
Meteorological Tables, 1951),

L =597.38 - 0.57 T

where T is in ©°C. In our calculations, we use L = 585 cal/gm over the whole

range which amounts to an error in L of not more than u4%.
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Expanding equation 26 produces an equation identical to equation 16:

Uy =T

a; = A/C

b, = -3 5 (MC)
e; = 0

d; = - Q(e,T)/C.

The thermal conductivity (A) is computed by the method of de Vries
(1963), denoted by DV in the following text. The bulk conductivity of the

soil is expressed as a weighted sum of the individual soil components,

)
i=0Ki%iM
g kixi
i=0

A= (28)

where N is the number of soil components, x; is the volume fraction-of

component i, A

i is the conductivity of component i, and ki is the ratio of the

average temperature gradient in component i to the temperature gradient in the
medium (i=0, either air or water), which can be expressed as:
A
1) i -1
kl T3 J‘-‘a)b)c[l * (Xg - l]gJ] T (29)
The expression for kj is based on the assumption that the soil particles
(solid material) are ellipsoidal in shape and that they are spaced

sufficiently far apart that their local temperature fieids are not distorted

by the presence of other particles.
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The shape factors (ga.gb.gc) correspond to the axes of the ellipsoids,

and their sum is

8y + 8 + & = 1.

For all calculations with solid material, we use the values g, = g, = 0.125,
8o = 0.750 which were obtained from DV(pg. 217). For water, we assume, that
over a certain range, it is the medium in which the soil particles (air,

solids) are imbedded so that kg=1. The range of 0, over which water is the
soil medium, is shown in Table II for different soils. Values for Osat* Of

0, are computed from the empirical models of Clapp and Hornberger (1978). The

Table II.

Soil Moisture Volumetric Constants

Soil type O Of % at
sand 0.020 0.173 0.395
loamy sand 0.024 0.178 0.410
sandy loam 0.041 0.247 0.435
8ilt loam 0.070 0.367 - 0.u85
loam 0.061 0.312 0.451
sandy clay loam - 0,087 0.204 0.420
silty clay loam 0.114 0.356 0.477
clay loam 0.139 0.390 0.u76
sandy clay 0.135 0.316 0.426
silty clay 0.175 0.408 0.492
clay 10.185 0.399 0.482
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range is from saturation (all pore spaces fillgd with liquid water, © = 0g,)
to critical content (value of O below which liquid continuity is absent,

0 = Oc). Between these limits, the shape factors for the air-filled pores
vary with 0. From DV, we use the following expressions for the g, of air

particles in soil of 30°C, which is representative of mean soil temperatures

in arid regions,

g, = 0.333(1 - a/esat) + 0,050 a/osat’ 0p <0<Q ¢
= 0.0165(1 -'O/Gf) + O.lO/Of, GE<O<Of.

Between Og,, and 6,, we define O, as the volumetric water content at field
capacity. Although the term field capacity is applied to the water content at
which internal drainage stops, it is not a true physical properéy of soils and
its meaning is arbitrary (Hillel, 1971). For our purposes, we define it as
the lower limit. Gf, of the range (Osat<o<ef) where the soil air is saturated-
with‘water vapor (i.e.,_h:l.OO). The values of O in Table II are calculated
by assuming that yp = -346cm (ef. Millar et al, 1965). Finally, we calculate
air

k,jpr from the above expression for g, and the equation, derived from equation

29,

k . 2 + !
air 7 31 + (r-1)gal 1+ (r-l)(1—2ga)
where r = Aj;i./Ayater @4 Aair = Apy air * Ayater vapor.

When 020,, A is calculated from equations 28 and 29; for O<6b. A is
calculated by linear interpolation between the values of A for 0=0 and 0=0,.

Quite often in dry soils, the ratio A;/A, exceeds 100. This causes an error
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of about 25% in the calculation of A. Therefore, whenever N/Ag > 100, A
computed from equation 8 is multiplied by a factor of 1.25.

In moist soils, heat transfer is affected by: (a) moisture gradients,
the Q term in equation 26, and (b) temperature gradients. The last effect
produces an apparent increase in the thermal conductivity of the air-filled
pore spaces. This must be accounted for in calculating the bulk conductivity
of the soil, and is done so by adding the term

Avapor = LDygp'hn8

to the value of the air's conductivity, i.e.,

A

Aair pores air * ANapor:

The volumetric soil heat capacity (C) is the algebraic sum of the
individual components in a unit volume (1 cm3) of soil. Each volume fraction
per unit volume is given by s (solid material of dry soil), © (water), and

a (air),

s+ 0+a=1,

The total pore space is defined when the soil is completely dry (0= 0), and

the air-filled pore space varies as a function of 6,

a=z(1-31s)-o0
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C is the product of soil bulk density (p,) and specific heat capacity ).
(Values of density (pi) and specific heat capacity (Ci) are given in Appendix
II, Table II-2 for a number of substances.) The bulk volumetric heat capacity

is comprised of the sum of the triple product of each soil constituent,

C = pec

= Spgeg + Oc, + ap,C, (30)

The last term is usually several orders of magnitude smaller than the first

two terms and can be neglected.

Numerical Solution of the Equations

The moisture flux and heat flux equations are written,

% _ 3 , 80, of
5t - 3z Podz tPrazt K _ (31
20 _ 3, 3T, o 20 | '
C at ~ a3z (A 9z f Q 9z x _ - 32

The parameters A and B are defined as,

oD aD

o 20 T T &K
A 3z oz T3z Tz oz - (33,
p oo B 2T, 30 20 (30

9z 92 M 9z 9z

Equations 31 and 32 are then rewritten,
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These equations, coupled through derivatives of 0 and T, are solved by the

(35)

(36)

Du Fort and Frankel method, which is an explicit finite difference technique

of unrestricted stability.
A grid is set up in t and z (logarithmic spacing). On the grid, each

point is specified by a pair of numbers (z;, t

The parameters h and j are constants which are defined by the interval

(distance) between consecutive periods of .time (points in space),

Figure 17 shows the computational molecule for solving equations 35 and 36

this grid. Note that h is rewritten as
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h, = 25, -2 .
h_ = 25 -25

For a logarithmic grid, the Laplacian at 04 i is approximated by

<l

(o]

ne
o3

The Du Fort-Frankel substitution

% ,5-1 * %, 541
2 L

i,]
is then substituted in the above equation with the result

2 . 841,5 "M%, 541 T P0% 50 P MO,
V.o =
z hoh+h_

The Laplacian in T is developed in the same way. Therefore, the finite

difference forms of equations 35 and 36 are

O, 901 = %5m1 _ p |P=Ce,3™0%, 50170% 51t O (37)
T2k = A+Dg hoh b_

Ti,j+1'hoT
- h.h h
0+ -

[h-T'+1.j'ho i,j—1+h+Ti-1,j]
+DT
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These equations are then solved for ei,j+1 and Ti j+1 subject to a given set
1]

of initial and boundary conditions.
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DESCRIPTION OF THE EXPERIMENTS

Introduction

The experiments were conducted to establish a satisfactory'data base in
order to initialize, parameterize, and validate the microwave and thermal
models. Three sepafate objectives were set: (1) to study the microwave (MW)
and infﬂared (IR) radiation emitted from a bare, dry soil, (2) to study the
effect of surface roughness on these emissions, and (3) to study these emis-
sions during a drying cycle. Each objective was accomplished in two parts.
The first experiment was done during a three week period in 1978, May 1-20, at
a test site about 16 miles south of Bakersfield, California. The second
experiment was done during a four week period in 1979, April 10 - May 10, at a
different site about 8 miles southeast of the first one (see figure 18). Both
sites were located on bare agricultural fields. During both experiments,
measurements, consisted of: (1) soil microwave emission (using the van radi-
ometers), (2) subsurface temperature and MOisture at several depths, (3)
micrometeorological factors, e.g., air temperature and humidity, and (4) -
emissions of soil infrared energy. The equipment used in the experiments and

the characteristics of the test sites are described below.

Equipment » .
Microwave Emission |

The JPL microwave radiometry field van is shown schematically in
figure 19. The van and equipment were originally used for ground—based
radiometer experiments in the early 1970's (Blinn et al., 1972), and have been»
upgraded since then for the present soil moisture applications. There are

three dual-polarized Dicke-type radiometers operating at center frequencies of.
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0.6 to 0.9 GHz (tunable), 1.42 GHz and 10.69 GHz. The two lower-frequency
radiometers share a 2,“ m parabolic reflector antenna, while a lens-loaded
circular horn is used for 10.69 GHz. The radiometer and antenna character-~

istics are summarized in Table III.

Table III. Radiometer and Antenna Characteristics

Center Frequency; GHz 0.6-0.9 1.42 10.69
Wavelength, cm 50-33 21 2.8
Bandwidth, MHz 30 220 220
Polarization V,H V,H V,H
Integration time, s ' 2_‘ 2 2

RMS sensitivity, K 0.3 0.6 : 0.3
Antenna type 2.4 m parabolic Lens-loaded
' reflector (log- horn

periodic feed)

The radiometer/antenna éystem is calibrated by a two-point external
calibration: viewing clear sky and then microwave absorber at ambient temper-
ature placed in front of the antennas. In addition, instrument temperatures
are monitored during the experiment and, together with prior knowledge of the
component losses, are used to calibrate the effects of instrument temperature
and gain variations during the experiment. Short-term calibration of the
. radiometers alone is accomplished by switching between two internal reference
loads. It is estimated that an absolute antenna temperature accuracy of 3 K
is achievable by this method.

The radiometers and antennas are positioned by a hydraulically operated

boom assembly mounted on the front of the van. Under normal operating condi-
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tions the antennas are positioned 3.7 m above ground level and 4.6 m from the
front of the van. . This places the viewing target in the far field of the horn
antenna but in the near field of the parabolic dish. The viewing angle can be
~continuously varied from 25 deg off nadir to zenith. The van contains the
radiometer controls and data processing electronics, including a PDP/8L com-
puter for real-time data reduction. Printed output consists of raw data,
calibration data, and calibrated antenna temperatures. Thé data is also
stored on computer-compatible tape for further.processing. The antenna tem-
peratures at this stage are not corrected for antenna pattern effects. A
backup system prints out raw data on paperltape, and in addition, the radiom-
eter output levels are displayed continuously on strip chart recorders. A
functional block diagram of the system is shown in figure 20.

The microwave van is fully mobile and self-contained. 1In field operation
the equipment is powered by two u—kilowatt generators. Over short distances
the van can travel with the antennas in the deployed position (figuré 21)
while for longer distances, the 2.4 m antenna is removed and towed on a sepa-

rate trailer, with the hydraulic boom folded back on top of the van.

SubsUrface_Temperature and Moisture

In 'the 1978 experiments subsurface measurehents were takeﬁ at two to four
sites on each plot. All temperatures were measured at depths of 3, 8, 15, 25,
40, and 50 cm. The latter reading was obtained at just a few sites in order
to mark the lower limit of the diurnal heating wave. Soil samples were
obtained by the gravimetric method. Cylindrical coring devices were used'to
obtain samples at 0-2, 2-5, 5-9, 9~15, and 15-30 cm depths; the samples were
placed in paper cups, sealed, dried in a 1000-watt microwave oven, and weighed

before and after drying to ascertain moisture content. Temperature measure-
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ments and soil samples were taken more frequently during the first week than
during the remainder of the period. Soil temperatures were measured on an
almost hourly basis from 0500 to 2100 LT with an additional measurement at
0100. Soil samples were taken about every three hours. After the first week,
temperature measurements were scheduled less frequently (10 times per day) and
mostly during the daylight hours; soil moisture samples were coliected 3 times
per day (0500, 1400, 2100 LT). Similar procedures for soil sampling were
followed in the 1979 experiments, except that the moisture content’samples
were obtained somewhat more frequently than in 1978, and a specially-designed
trowel was used in order to obtain the samples more accurately in the upper
soil layers. Complete descriptons of the data gathering procedures and
schedules, including site descriptions and a list of all soil temperature and
moisture measurements, are included in the reports on the experiments written

by the Geography Remote Sensing Unit of the University of California at Santa

Barbara (0'Neill and Atwater, 1978; Atwater and O'Neill, 1979).

Micrpmeteorology

The wind speed, air temperature, and humidity were obtained at several
different altitudes over an 8-meter layer above the surface. Two portable
weather stations were set up. The JPL Micrometerological Mast (Kahle et al,
1977) measured wind speed, dry-bulb air temperature, and wet-bulb air temper-
ature at the 1/8, 1/4, 1/2, 1, 2, 4, and 8 meter levels. The data were 16-
minute averages. A mechanical weather station (manufactured by Meteorology
Research Inc.) was located near the JPL Mast and continuously recorded dry-
bulb air temperature, relative humidity, wind speed, and direction at a 2-
meter height. Sensible and latent heat fluxes at the surface were calculated

as a function of time from both data sets by means of the methods described in
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Appendix I. Additionally, the net radiation flux and the soil heat flux at
the surface were monitored throughout the experiment by a Thornthwaite net

radiometer-recorder and a soil heat flux sensor-recorder, respectively.

Infrared Emission

The IR measurements were obtained concurrently with the sub-surface
temperature measurements. Either a Barnes PRT-5 Radiation Thermometer or a
Barnes Instatherm Radiation Thermometer was used to measure the IR surfaée
emission (8-14 um) as an equivalent black-body temperature. Both instruments

measured temperatures to within 0.5°C accuracy.

1978 Experiment

The weather during the 1978 experiment was characterized by warm days and
cool nights with mostly clear skies. The average air temperatures ranged from
a maximum of 30°C to a minimum of 15°C. No rain fell at the test site, al-
though Bakersfield recorded 0.02 inch on May 1 and no precipitation the rest
of the period. The test site was a flat fairly homogeneous agricultural field
bounded on the south by an asphalﬁ road and on the north, egst} and west by
vegetable crops (see figure 22), The soil was a sandy clay loam composed of
49% sand, 28% silt, and 23% clay. The micrometeorological instruments were
located on the south side of the site, while two plots about 20 by 20 meters
square were set aside on the north side for the MW and IR measurements.

During the first week, one plot was prepared by smoothing and tamping the
surféce. This was done to study the radiative characteristics of the MW-IR
emissions over a 48-hour period. For the second week, both plots were kept
dry but their surfaces were altered. First, they were ploughed into small

furrows (about 0.16 meters high from trough to crest and with "wavelengths,"
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crest to crest, of about 0.9 meter). The furrows on one plot ran north to
south, while on the other they ran eést to west. Next, after a series of
measurements, both were ploughed into large furrows (0.32 m high and 1 m
wavelength), again with north-south and east-west orientations. To conclude
the surface roughness studies; both plots were reploughed to produce two
surfaces of random roughness with large clods of soil (10-)5 em in size)
covering one plot and small clods (5-7 cm in size) covering the other. Final-
ly, the plots were wetted for 7 hours and then allowed to dry so that the
effect of the moisturé changes on the radiative emissions could be observed.
One plot was prepared with east-west furrows about 0.20 meters high and with a
wavelength of about 0.9 meter. The other was maintained as a relaively smooth
surface. Some problems developed during this phase and it proved difficult to
wet the surfaces uniformly. In particular, the crests dried more rapidly than
the troughs in the furrowed plot and the smooth plot was spotted with a few
dry areas. The experimental data are reported in detail in O'Neill and

Atwater (1978).

1979 Experiment

The objective of the 1979 experiment was to study the drying cycle of two
surfaces with different roughness characteristics, but with the same soil
composition. One surface was initially rough and the other smooth. Osten-
.8ibly, the effects of surface roughness and soil moisture content were to be
examined separately so that the_variation of soil moisture content on the
strength of the microwave emissions could be studied in detail. The weather
during the 1979 experiment was generally warm and dry with occasional periods
of cloudiness and drizzle or light rain. The temperature range varied from a

maximum of about 30°C to a minimum of about 7°C. The location of the test
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site was near'the'windward.(western) side of the Tehachapi Mountains and this
factor probably contributed to the occurrence of intermittent sprinkles there,
Not enough precipitation fell to cause any delay in proceeding with the exper-
iment. The test site was a section of field on the Tejon Ranch (figure 23).
The soil was a sandy loam with a composition of 65% sand, 19% silt, and 16%
clay. Two adjacent plots were prepared with clods raﬁdomly distributed on the
surface: one'plot was covered with clods about 5 to 15 cm in diameter and the
other with clods less than 5 cm in diameter. The plots were irrigated by a
sprinkler system until the soil was saturated to a depth of about 30 ém. As
in the previous experiment, some ponding of water occurred in small depres-
sions on the surfacé. and these were filled in with loose so0il to allow the
surface to dry uniformly. Furthermore, both plots became smoother as the
experiment progressed, particularly the rough plot, because of the effects of
wind énd occasional rain. By the end of the four weeks, weeds several cm in
height had spread over most of the field. Despite these problems, the data
were of a uniformly good quality. A detailed description of the experiment is

contained in the final ground truth data report of Atwater and O'Neill (1979).
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EXPERIMENTAL RESULTS

Microwa?e
Introduction

The data measured using the JPL microwave van radiometers during the 1978
and 1979 field experiments were obtained at nominal viewing angles of 25°,
35°, and 45° from nadir, vertical and horizontal polarizations, and frequen-
cies of 10.69 GHz, 1.42 GHz, and UHF. The tunable UHF radiometer affords some
degreg of frequency selectivity to avoid radio-frequency interference (RFI).
In the 1978 experiments the frequency chosen was 0.85 GHz (35.3 cm wave-
length), but significant amounts of RFI were unavoidable. Subsequently most
of the 1978 UHF data had to be discarded. 1In the 1979 experiments, a narrow-
band (30 MHz) filter was added, and the radiometer was operated at 0.775 GHz
(38.7 cm wavelength). This proved to be a major improvement and the majority
of the 1979 data were RFI-free.

The microwave and ground truth data analysis has proceeded in two parts.
The first part has been a comparison of the measured microwave brightness
temperatures with brightness temperatures calculated from a theoretical model
using ground truth data as inputs. The second part has been a direct correla-
tion of the microwave data with ground truth measurements 6f the soil moisture
content at specific deptﬁs. Initial results of this latter work have been

reported by O'Neill (1979).

Comparison of Observed and Calculated Brightness Temperatures
In order to establish the validity of the theoretical models, calcula-
tions of brightness temperature based on these models were compared directly

with brightness temperatures measured by the microwave van radiometers. Only

b7



data from the 1979 smooth fields have been included in thg initial compar-
isons, and the coherent model (discussed in a previous section) was used in
the theoretical calculations.

The ground truth measurements of moisture content and temperature were
made daily at different times. These times were interpolated to the same
times as the radiomefer measurements, for use in the brightness temperature
calculations. Continuous depth profiles of moisture and temperature were
generated from the ground truth data by piecewise polynomial fits. Figure 24
shows typical moisture profiles genérated from the ground truth measurements.
The measurements represent averages over depths of 0 - 2, 2 -5, 5 -9, 9 -
15, and 15 - 30 cm. Continuous profiles generated from these averaged data
may deviate somewhat from the true profiles. This is especially the case for
the near-surface region where the moisture profile gradient is an important
parameter, and errors may be introduced into the comparisons due to incorrect
determination of this near-surface gradient. The smooth fields had a residual
roughness (X 2 ém rms height variance), which had some effect on the measure-
ments, especially at 10.69 GHz.. Approximate dieléctric constants for use in
the calculations were obtained from soil dielectric data compiled by Wang and
Schmugge (1978), using soil types which closely approximated the textural
composition of the Bakersfield.soils. -

Figure 25 shows -the results of plotting the observéd vs., calculated
brightness temperatures for the three frequencies: 0.77%, 1.4 and 10.69 GHz,
at vertical and horizontal polarization. Each plot includes data over a range
of viewing angles between 20° and 45° from nadir. Since the fields were
fairly smooth, good agreement with the smooth surface model was expected (i.e.,
plotted points should lie along a 45° line). The 0.775 and 1.4 GHz vertical

polarization data plots (a) and (¢) show good linearity. The slope is greater
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than 45° however, "indicating that for high moisture contents the calculations
are somewhat overestimating the TB's. It is also possible that the cali-
-bration of the radiometers has an offset bias at low brightness temperatures
which would alter the slope of the comparisons. This possibility is being
investigated, and will be further checked in the forthcoming 1980 experiments.
At 10.69 GHz vertical (e) the scatter is greater and the slope somewhat non-
linear, possibly due to the fields appearing rougher at this shorter wave-
length. Similar features are evident in the horizontal polarization compari-
sons (b), (d) and (f), although in these cases the scatter is greater than for
the vertical. For off-nadir angles the soil surface is more reflective at
horizontal than at vertical polarization, and thus is more sensitive to model-
ing errors caused by neglecting roughness and small atmospheric contributions.
This may explain the larger.scatter'observed in the horizontal data plois. It
is also quite probable that a number of the high observed points at 0.775 GHz
horizontal in particular, may be due to low-level radio-frequency interference
(RFI) from local area transmitters. Considering the complexity of the model-
ing problem, the agreement exhibited by the plots of figure 25 is reasonable.
This agreement was obtained as plotted for a wide range of conditions: (1)
moisture profiles, with surface moisture contents ranging from 3% to 15% by
volume; (2) temperature profiles, with surface temperatures ranging from 14°¢
to 48°C: and (3) viewing angles of 20° to 45° from nadir. Future work will
generate similar comparisons using a radiative transfer model to determine
whether uncertainties in the near-surface moisture profile are adversely

affecting the coherent model results.
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Comparison of Measured Ty with Moisture in the Top 2 cm

In figures 26, 27, and 28 the measured brightness temperatures have been
plotted against average moisture in the top 2 cm of soil. It is expected that
a decrease in measured Ty should occur as a function of increasing moisture
content. However, these comparisons neglect variations in soil temperature,
hence plots of Tg vs. moisture will show some scatter due to these variations.
Figure 26 shows the results of the 1978 smooth field experiment at viewing
angles from nadir of: (a) 25°, (b) 35°, (c) 45°. The notations LK and LV
refer to the L-band (1.4 GHz) horizontal H and vertical V channels, and simi-
larly XH and XV refer to the X-band (10.69 GHz) channels. No data are dis-
played for the 1978 UHF radiometer channels UH and UV since they were contami-
nated by RFI. The 1978 data were measured during the night in the hopes of
avoiding RFI, thus the soil temperature variations during the measurement
period ranged only between about 7° and 25°C. The TB points thus show good
correlation with decreasing moisture content. No data points were obtained
between moisture contenté of 8 and 14 percent due to the short duration of the
experiment. The slope of TB with decreasing moisture content is fairly linear
. in the L-band case, except for the points clustered at the low moisture
content end. A knee in such curves at low moistures has been observed by
other investigators, and the hump may be contributed to by temperature effects
in the dry field. The X-band data show a smaller slope, with a knee extending
to higher moisture contents. The step-like appearance is artificial, however,
and may be caused by ground truth sampling problems. The 10.69 GHz antenna
footprint is less than a meter in diameter as compared with the approximately
3 m diameter of the 1.4 GHz antenna footprint. For the higher moisture

contents, the water tended to collect in localized areas. Hence, the
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ground truth moisture averages for the entire field may not have been a good
representation of the soil moisture viewed by the narrow 10.69 GHz antenna
beam. It is clear, however, that the sensitivity of X-band to moisture con-
tent is much less than at L-band, as evidenced by the smaller overall slope.
Of all the plots, the greatest slope (i.e., sensitivity) is sﬂown by the LH
channel at 25°. However, the disadvantage of operating at a viewing angle too
close to nadir is that little can be gained from using H and V polarizations
to obtain roughness information when viewing rough fields.

The smooth field data from the 1979 experiment are shown in figure 27,
including data from the UHF radiometers operating at 0.775 GHz. More scatter
is evident in these data than for 1978, probably due to two reasons: (1) phe
microwave data were measured throughout the day, during which time surface
temperature variations of about 14 to 48°C typically.occurred. (2) In order
to speed up the data taking procedure, less time was spent in positioning the
antennas at precise angles of 25°, 35°, and 45°. 1Instead, viewing angles were
clustered approximately around three angles as shown in figure 29. The accu-
racy of the viewing angle determination itself was estimated at about a half a
degree.

At L-band the general slope is about the same as for the 1978 experimeht,
except that a smaller range of moisture was obtained in 1979. This was no
doubt due to the higher clay content of the 1978 fields. The knee is not
particularly evident at L-band but is visible at about 7 percent moisture in
the X-band data. The UHF data appear to exhibit a knee in the opposite direc-
tion, i.e., the slope is steeper for moistures less than 7 percent than for
moistures above 7 percent, although there are uhfortunately fewer points at

the high moisture values. The non-linearities in slope are explainable on the
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basis of the calculated results shown in figure 10. The slopes are most
linear for 1.0 GHz (figure 10(b)) when plotted vs. moisture in ﬁhe 0-2cm
depth. At lower frequencies, however (e.g., 0.25 GHz, figure 10(a)), the 0 -
2 cm curve shows a much steeper slope below the 8 pereent.moisture level.
Conversely, the 0 - 2 cm curve for higher frequencies (figure 10(c¢)) shows a
decrease in slope at low moistures. These non-linearities indicate the need
to find appropriate moisture sensing depths for each freduency to obtain the
best linear correlations of brightness temperature with moisture content.

The rough field data from 1979 are shown in Figure 28. When initially
ploughed, the field had surface clods of approximately 5 - 15 cm dimensions.
However, after irrigating the field with sprinklers, and on further weathering
of the surface during the experiments, the rough fieid became almost'as smooth
as the smooth field (which itself was not quite smooth). For this reason the
data in figure 28 look very similar to those in figure 27. Another difference .
in the two data sets was that measurements of the smooth fields were always
made in the morning between 9:00 A.M. and 11:00 A.M., and the rough fields
were observed in the afternoon between 2:30 P.M. and 4:30 P.M. In-order to
study roughness effects adequately, future experiments will be performed on
soils with higher clay content so that the rough surface clods will be more
likely to retain their sizes without weathering for the duration of the exper-
iment. Further analysis of the 1978 and 1979 data sets is currently in

progress to quantify the roughness effects.

Infrared
The numerical model for heat and moisture flow in soils predicts the

temperature and moisture history of the soil from a given set of initial and

52



boundary coﬁditions. The results given below pertain to a three day period
during the third week of the 1978 experiment when the soil had been wetted and
was in the process of drying. The modei predictions are éompared with the’
field observations,

The initial soil temperature and moisture profiles and the near-surface,
meteorologicallboundary conditions afe shown in figures 30 and 31. The
initial conditions (figure 30) are for May 17, 1978 at 0100 LT (Local Time).
Initial conditions from the surface to 0.5 m are obtained from fiéld measure-
ments (cf. previous section); from 0.5 m to the lower boundary at 2.0 m,
initial conditions are obtained by extrapolation. The'temperature profile is
assumed to be isothermal below 0.5 m. The moisture profile from 0.5 to 2;0 m
is obtained by connecting a Straight line between the 0.5 m measuremenﬁ and
the 2.0 m value of 0.20 cm3/cm3 which is assumed to be constant with time.

Figure 3 shows the meteorological conditions at a height of 2 meters
above the surface. The sensible and latent heat fluxes are important compo-
nents of the surface boundary conditions and they are calculated from the

.meteorological conditions shown here. The sensible heat component is dominant
when the soil is dry; conversely, when the soil is'nearly saturatéd, fhe
latent heat componént is mofe impoftant. Then, latent heat not only éﬁpbliesA
most of the daytime surface heat loss, but also it modulates the distribution
and the rate of change of soil moisture in the near-surface layers.

The observations of the soil temperature and moisture content are shown
in figures 32 and 33. The temperature values represent measurements at six
discrete levels: 0.00, 0.03, 0.08, 0.15, 0.25, and 0.40 m. The moisture
content values are measurements of five layers of different thicknesées: 0.00

- 0,02, 0.02 - 0.05, 0.05 - 0.09, 0.09 - 0.15, 0.15 - 0.30 m. (The 0.15 -
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0.30 m measurement at 0900 LT on May 18 in figure 33 is anomalous and probably
an error.) The drying trend is evident in both figures. The temperature
curves show an increase in the diurnal maxima and minima as the soil dries.
The difference between maxima and minima also increases but this effect is not
as pronounced at the lower depths. This is because: (1) the thermal inertia
of water is higher than that of dry soil, and the lower layers contain more
moisture than the upper ones; and (2) the diurnal heating wave does not pene-
trate very effectively to these depths. Note that the 0.4 m temperature curve
has a small variation (< 2°C) in amplitude which supports the argument that
the damping depth of the diurnal heating is about 0.5 m.

Tbe results of the modgling are shown in figures 34 and 35. The computed
temperatures correspond qﬁite well with the observations, although they have
somewhat higher values than them. The trends are also similar. In both sets
of curves, there is a phase lag that increases with depth between the surface
and lower level values.

The moisture curves show less specific agreement. This is expected since
model results pertain to discrete levels and observations represent moisture
content in layers of finite thickness. Moreover, soil moisture content
measurements are inherently more difficult to make than soil temperature
measurements, and therefore they exhibit quite a bit of variability. Nonethe-
less, the general trends are alike. Both show the migratory character,
denoted by the series of maxima and minima superimposed oh the decreasing
trend line, of the near-surface moisture regime. In these layers, a moisture
gradient-directed toward the surface usually exists. During the day, more
moisture is lost from the upper layers, by evaporation to the atmosphere, than

is gained from below. The result is a net loss of moisture with a minimum in
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moisture coptent occurring in the evening hours. At night, evaporative losses
~ are usually small and moisture migrates toward the surface with a maximum in
moisture content occurring in the mid-morning houré. The model results show
this effect to be severely damped with depth, but the observations indicate
otherwise. This discrepancy is probably dueAto the simple parameterization
scheme that is used in the model to describe the evaporation process.

The variation of temperature and moisture profiles with time is shown in
figures 36 and 37. These are results of the modeliné. For the 20 hour
period, the moisture curves show less change than the temperature curves.

Both exhibit greater variability near the surface than at lower depths. The
temperature range is about 30°C at the surface and only 4°C at 0.4 m. The
moisture content varies by about 0.02 cm3/cm3 at the sqrféce and hardly varies
at all at 0.4 m. Again, the moisture curves‘illustrate the migration of water
toward the surface with a maximum occurring at night. |

Finally, figures 38, 39, and 40 show profile variations of the hydraulic
conductivity (K), and the moisture (De) and thermal (DT) diffusivities. All
three elements determine. the soil—moistﬁre flux density (see equation 19).
Note that the scales are different for each diagram. K is mainly a function
of soil-moisture content (8) and shows a‘decreése with time. Dg drives mois-
ture toward the surface in the upper layers, and does not vary much in the
lower layers. The powerful influénce of evaporative forcing is evident in the
profile at 1400 LT. Dy varies widely in the dry, upper‘layers. Under such
conditions, the vapor cdmponent of DT becomes important, whereas, at lower,
more moist depths, DT depends more on the liquid component.

When 6 drops below a critical value, 6., liquid continuity is not present

Q!

in the soil and the vapor component of Dy is scaled with respect to g, as
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discussed earlier. We have tried two values of £ in all our calculations:
first, £ is aséumed to be constant with a value representative of moist soils;
second, £ is calculated by the ﬁethod of Appendix III so that its dependency
upon 8 is taken into account. Neither calculation gave significantly differ-
ent reeults. Therefore, there seems to be no advantage in calculating & for
soil—moisgure studies of this kind.

Although the results described above are fairly good, we are continuing
to refine the s0il heat-moisture model. Improvements are being made in
_parameterizing the surface boundary conditions, especially the heat transfer
by sensible and latent processes and the moisture transfer by evaporation.
Currently, these elements are computed by use of an algorithm that employe
meteorological measurements made at one height abo?e the ground. A caleula—
tion of this sort is not generally as accurate as one that is obtained by an
algorithm employing meteorological measurements made at several levels (see
Appendix I). The latter kinds of caleulations are now being incorporated into
the model. Further experiments are planned to test the efficiency of the Du
Fort-Frankel numerical algorithm by eqmparing it with other numerical tech-

niques such as the method of lines, and the solution of diffusion-type

equations through the use of spline functions.

FUTURE WORK
During 1978 and 1979 separate efforts were made to develop (1) microwave
soil emission models, and (2) models for heat and moisture flux in soils. The
joint field experiments which took place in each of these two years enabled
data to be collected-for verification and refinement of the respective models.

These data were collected by microwave, infrared, and meteorological equip-

N
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ment, and by grouﬁd truth sampling of soil moisture content, temperature, and
texture. Although the data sets have been presented and analyzed séparately
in this report, this is only a first step in the joint project. Oncebthe
models have been individually verified, the objective is to use the microwave
and flux ﬁddels together to arrive at an improved technique for remotely
determining soil moisture.

As a general approach, the microwave model can be expressed as:

0
Tg (6, Py v, 8) = [ T (z,t) F {e (v,2,t), & p}dz (39)

—
where the brightness temperature cah be measured with variable viewing angle
8, polarizafion p, frequency 9. and time t. The integrand involves the'soil
temperature T (z,t) which varies with depth z and time t, and a function F of
the soil dielectric constant e, viewing angle, and polarization. The dieleE—
tric constant is itself a function of frequency, depth, and time, and can be

related to the soil moisture profile 6 (z,t) through a modeled function H:

e (v, z, t) = H {6(z,t), v, S} (40)
where S denotes the dependence of the relationship on soil type. The heat and
. moisture flux models impose a constraint on the independent variability of the
moisture and temperature profiles. This constraint can be expressed generally

by a function W, so that:

T (z,t) = W {8(z,t), S, E} (41)
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where E represents environmental conditions which affect moisture and heat
fluxes acroés the air-soil boundary. |

Analytic inversion of equations 39 and 40 is considered infeasible.
However, with a sufficient amount of representative experimental data, empir-
ical or regression techniques may be used to derive a moisture parameter

‘retrieval function G, so that:
8,(t) = G {Ty (& p, v, t), T(E)} (42)

In this expression, 60 might be the average moisture in a given depth or the
moisture gradient for example. The function G would operate on thg brightness
temperatures and surface temperature (if available), and can be derived using
the constraint of equation 41, If other environmental conditions can be
determined a priori, e.g., soil type if location is known, then these can be
included in the function G. The data sets obﬁained during the 1978 and 1979
expefiments, together with results from the current 1980 experiments, will

enable initial steps to be taken in the general approach outlined above.
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Figure 41. Schematic Diagram of Moisture Flow in a Very Dry Soil
Medium. Liquid Bridge Connects Two Adjacent Soil
Particles. Arrows Indicate Direction of Vapor Flux.

112



Appendix I.
Net Radiative and Turbulent Heat Flux Model
Most of the details regarding the parameterization of the net radiative
heat flux (Ry) are given in Kahle (1977). A synopsis is given here.
The solar radiation incident on a surface with arbitrary slope and

orientation is:

Ry(solar) = Ry;¢¢ + SR(cosZ’/cosZ)
where - Ryjfg = 0.05 S + 0.10(1-cos2)S
Z = zenith angle of the sun

Z° = angle between the surface anormal and the - sun

0.651(1-a )
[o}

S = (l-a )S cosZ|0.349(1-A) +
g 8- (1-a a)
0 g
Sg = solar radiation incident at the top of the atmosphere
A = 0.271(U* secZ)0'303, Manabe and Mgeller (1961) modification of
Mugge—M;eller absorption function
U* = effective water vapor content of the atmosphere; total precipitable
MJ%water in a unit column of air for cloud-free conditions measured in
gm/cm2
ag = ground albedo
‘ag = average ground albedo
a, = 0.085-0.247 In[(P,/1000)cosZ]; atmospheric albedo for Rayleigh
scattering
P, = surface pressure in mb
SR = 5 - Ryjfs
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The longwave radiation from the earth’s surface, assumed a perfect black

body, is:

where To

where T

RN(terrestrial) = OTZ

is the ground temperature and o the Stefan-Boltzmana constant.

The long wave radiation from the atmosphere to the earth’s surface is

sky

_ 4
RN(Sky) = OTsky’

is an effective sky temperature, (Kondratyev, 1969):

T = 263° + (10° cos t)

sky

and t is time measured from 1400 local time.

The sensible (Qg) and lateat (Qp) heat fluxes are calculated by either of

two methods:

1.

The heat fluxes are obtained by the use of bulk transfer coefficients:

QS =
Qg

where

N
1

pacpCDW(Ta—To)

paCDWL(qo_qa)’

Py, = air density;

specific heat of dry air at constant pressure;

0.002 + 0.006(Z/5000), a drag coefficient;

modified wind speed, adjusted to incorporate gusty winds (equals
actual wind speed plus 2 m/s);

station elevation in méters;

air temperature above ground (usually obtained at 1-2 m);

AI-2
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"T_ = air temperature at the surface

o
L = 1latent heat of condensation;

q, = specific humidiey of air above ground;
q, = specific humidity of air at ground.

This formulation is used only when meteorological data is available at
one height above the surface. Further details are given in Kahle (1977).

2. The heat fluxes are obtained from the profile method:

QS = panU*T*

Qg

paLU*Q* ¢

The parameters U,, Ty, Qi are obtained by integrating the equations below,
which give the height variation of wind speed (U), temperature (T), and

specific humidity (q),

U

oU *

% - x W®
T

oT *

72 - % (9

Q
Sal
|
x| £

¢q(c)

where k is von Karmon’s constant (=0.35). This method requires meteorological
data (U, T, q) at two or more levels above the ground. The functions $nr Mo

¢q are diabatic functions of Z which have been empirically obtained (Businger

et al., 1971), and which account for the stability of the air near the

ground. This is indicated by ¢, a parameter proportional to the bulk
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Richardson number
day, ¢ is usually
conditions).
Finally, U,
data, measured at

above equations.

of the height interval (e.g., see Yaglom, 1977). During the

<0 (unstable conditions); at night, f is usually >0 (stable

Tws Qi are calculated by a least-squares fit of the U, T, q
several different levels, to the integrated form of the

In this study, U, T, q are obtained from 16 minute averages

measured at 7 levels (1/8, 1/4, 1/2, 1, 2, 4, and 8 m) on the portable JPL

micrometeorological tower (Kahle et al,, 1977).
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Appendix 1I.

Physical Properties of Soils and Soil Components

Table II-1 is a compilation of median values of physiéal properties of a
number of different soils. The list is nominally arranged according to
particle size. The parameters have been abstracted from a variety of sources
(Baver, 1933; Gustafson, 1941; Ingersoll et al., 1954; de Vries, 1963; Glinka,

1963; Clark, 1966, Davis and De Wiest, 1966; Gary, McAfee, and Wolf, 1972).

‘Table II-1.

Physical Properties of Soils

Bulk Specific

Type ' Grain Size Porosity Density Heat
clay <0.02 0.550-0.620 2.65 0.180
silt .0625-.002 0.480-0.550 2.70 0.180
fine sand .0625-0.25 0.480 - 2.75 - 0.190
med. sand 0.25-0.50 0.430 2.70 0.190
coarse sand 0.5-2.0 0.380 2.65 0.190
gravel 2.0-75.0 0.320-0.380 2.70 0.195

Grain size pertains to the particle diameter measured in millimeters.

Porosity is the volume of pore space per total volume of soil material

measured in cm3/cm3. Bulk density pertains to the dry weight of material

3

measured in gm/cm”. - Isobaric specific heat values are given for temperatures

near 20°C and are in units of eal/gm°C.
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Table II-2 gives densities and thermal properties- of air, water, and soil
materials., Values are taken from de Vries (1963), the Smithsonian

Meteorological Tables (1951), and Iribarne and Godson (1973).

Table II-2.

Density and Thermal Properties of Air, Water, Soil Materials

Specific Thermal Thermal
Type Density Heat Conductivity Diffusivity
Dry air (20°C) 0.00120 0.240 0.0614 0.213
Water, liquid (20°c) 0.998 0.999 1.43 0.0014
Moist air (20°C,
saturated) 0.00119 0.243 0.241 0.835
Clay minerals 2765 0.181 7.0 0.0146
Quartz 2.66 0.180 21.0 0.0044
Organic matter ©1.30 0.46 0.6 0.0010

The units for the parameters listed above are: density (gm/cm3), specific
heat at coastant pressure (cal/cm3 9C), thermal conductivity (mcal/cm sec °C),

and thermal diffusivity (cm%/sec).
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Appendix III

Water Vapor Transport in Nearly Dry Soils

In a relatively dry medium, water vapor transport due to temperature
differences occurs in the vapor-liquid continuum as a series-parallel

the liquid phase does

process. Below a certain "critical" water content, Oc,

not exist as a continuous fluid but rather consists of a network of distinct
"islands" connected by vapor filled pores. These liquid islands bridge
adjacent soil particles (figure 41). The vapor flux in the air—filléd pores
adjusts itself to moisture flux through the liquid islands. The total vapor
flux density in the medium then becomes proportipnal to (a + 0)(V;T)a (Philip
and de Vries, 1957).

The parameter N (equation 25) is significant when © falls below the
critical water content (8,) to account for the series-parallel moisture flow
and its effect on the rate of vapor tramsfer,

a+ f(a)o (VZT)a

n = . (A1)
aa (-vz,r)

Here f(a) = 1,>a>aé, a/a,, a<a_ where a, is defined as the value of a when

0= GC. The total temperature gradient in the medium is the weighted sum of

all the temperature gradients in each soil component,

<
=3

= a(_'Vz'r)a + O(VZT)O + s(—va)s (A2)

where s =1 - a - O,
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Then Z is defined as the ratio

7 = (VZT)a/(VzT). (A3)
Specifically,
1. .
k, = —— : (A4)
v, 1),

where i = soil particles, water, or air and 0 refers to the medium, either air
or water. The k; are calculated by the method of de Vries (1963) described
previously. Then G is derived as follows.

When water is the continuous medium, Z is obtained from A2, A3, and A4,

K,
;g = (A5)
ak2 + 0 + sk1
where k; =(va)s/(VzT)O and kz = (VzT)a/(va)O'

When air is the continuous medium, { becomes

(A6)>

where kg = (V.T)o/(V 1) and k, = (V,T) _/(V,T) .

Table III-1 gives an example of the variation of n and § with © for a

sandy clay loam.
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Table ITII-1.

Variation of Soil Parameters for Vapor Traasport

(0] a s 4 n
0.000 0.503 0.497 1.924 2.884
0.100 0.403 0.497 1.657 3.066
0.200 0.303 0.497 1.760 3.874
0.300 0.203 - 0.497 1.877 4.790

'0.400 0.103 0.497 2.011 5.836
0.500 0.003 0.497 2.165 7.042

The ¢ for most soils ranges from about 1.5 to 3.0.
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