NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
CYCLIC AMP SYSTEM IN MUSCLE TISSUE DURING PROLONGED HYPOKINESIA

(NASA-TM-76186) CYCLIC AMP SYSTEM IN MUSCLE TISSUE DURING PROLONGED HYPOKINESIA (National Aeronautics and Space Administration) 7 p HC A02/MF A01 CSCL 06S Unclas G3/52 29460

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546 JUNE 1980
Abstract

Components of the cyclic AMP system in the muscle tissue of white rats were studied during 70-75 days of hypokinesia, created by placing the animals in small booths which restricted their movements, and during the readaptation period. In the initial period, cyclic AMP levels and the activities of phosphodiesterase and adenylate cyclase in muscle tissue were increased. The values for these indices were roughly equal for controls and experimental animals during the adaptation period, but on the 70th day of the experiment AMP levels dropped, phosphodiesterase activity increased, and the stimulative effect of epinephrine on the activity of adenylate cyclase decreased. The indices under study normalized during the readaptation period.

(tAMP = Adenosine-cyclic-3′-5′-monophosphate)

Key Words

Soviet work is reproduced and sold by NTIS under license from VAAP, the Soviet copyright agency. No further copying is permitted without permission from VAAP.
Components of the cyclic AMP system in the muscle tissue of white rats were studied during protracted hypokinesia (70-75 days) and during the readaptation period. It was ascertained that the level of cyclic AMP and activities of adenyl cyclase and phosphodiesterase in muscle tissue were elevated during the initial period of motion restriction (particularly on the 5th day). Cyclic AMP content and the activities of both enzymes during the so-called adaptation period (24th to 37th days) did not materially differ from the controls. On the 70th day of the experiment, a sharp drop in cyclic AMP level, increase in phosphodiesterase activity, and decrease in the stimulative effect of epinephrine on the activity of adenyl cyclase were noted. Appreciable normalization of the indices under study occurred in the readaptation period.

The harmful effects of hypokinesia (restricted motion) on the human and animal body have been familiar to clinicians and biologists for quite some time. Protracted motor activity limitation causes decreased body mass, which, obviously, is associated to a large extent with decreased overall skeletal muscle mass. Dystrophy of parts of muscle fibers occurs, enzyme activities and the fractional makeup of muscle proteins are altered, and shifts in carbohydrate metabolism are noted [1, 2, 5]. Hence, a protracted hypokinetic state is accompanied by serious disturbances in muscle tissue metabolic processes. It has been distinctly shown in recent years that components of the cyclic AMP system play an important role in the regulation of cell metabolism [6]. There are, however, virtually no data in the literature dealing with cyclic AMP content and the activities of adenyl cyclase and phosphodiesterase in muscle tissue during hypokinesia. In this connection, we set out to study the status of the cyclic AMP system in the skeletal musculature of white rats during various periods of hypokinesia and during the readaptation period. *Numbers in the margin indicate pagination in the foreign text.
Methodology

The experiments were conducted using non-purebred white rats. Hypokinesia was created by placing the animals in special booths which restricted their movements. Muscle tissue (m. gastrocnemius) was studied during the various periods of hypokinesia (2, 5, 24, 37, and 70 days) and on the 7th day of readaptation. White rats kept under normal vivarium conditions served as the controls. Content of cAMP was determined immunoradiologically using a prepared reagent kit from the "Amersham" company (England), and the activities of adenyl cyclase and phosphodiesterase were studied using 3H-ATP and 3H-cAMP isotopes, respectively, as substrates [4, 7].

Results and Discussion

Determinations of cAMP system components in the muscle tissue of white rats during protracted hypokinesia and in the readaptation period are presented in the table.

As can be seen in the table, on the 2nd to 5th days of hypokinesia the activity of adenyl cyclase increased an average of 2.3 times and that of phosphodiesterase an average of 1.2 times, while the cAMP level was elevated an average of 1.9 times relative to the controls. The content of all components under study gradually decreased up to the 24th to 37th day of hypokinesia, reaching practically normal values. On the 70th day of hypokinesia the cAMP levels decreased significantly and the activity of phosphodiesterase -- an enzyme that breaks down cAMP -- increased to a statistically significant extent, while the activity of adenyl cyclase remained virtually unchanged. During the readaptation period (data on the 7th day are shown in the table) cAMP levels and the activities of adenyl cyclase and phosphodiesterase were practically normalized.

On analyzing the data obtained, it is quite easy to see that, in the initial period of hypokinesia (particularly on the 5th day), activation of the cAMP system occurs, and then the "adaptation" period (24th to 37th days) begins and cAMP system component contents in muscle tissue
are within normal limits. On the 70th day of hypokinesia, a period of cAMP system depletion is found (cAMP levels are only 39% of normal). It should be noted that the sharp decrease in muscle tissue cAMP content on the 70th day of hypokinesia was seen upon a background of normal values for the activity of adenyl cyclase -- an enzyme participating in cAMP synthesis.

This fact compelled us to make a study of the so-called stimulated activity of adenyl cyclase during the protracted hypokinesia period. We are familiar with the fact that adenyl cyclase activity normally increases sharply when epinephrine is added to a tissue homogenate [3]. Studies we performed (see figure) showed that addition of epinephrine in concentrations of 3×10^{-6} M to homogenates of muscle tissue from the control rats led to a 2.9-fold increase in adenyl cyclase activity ($P < 0.01$), while the activity of this enzyme in homogenates of muscles from experimental rats increased only 1.4 times ($P < 0.05$) in the presence of epinephrine (70th day of hypokinesia). Consequently, qualitative shifts in the adenyl cyclase complex occur during protracted hypokinesia. There is some basis for assuming that further studies on this subject will make it possible to discover the true mechanisms of
muscle tissue metabolic disruptions during protracted hypokinesia and find ways to correct them.

Fig. 1. The effects of epinephrine on the activity of adenyl cyclase in muscle tissue homogenates, normal conditions and during protracted hypokinesia.

1 -- without addition of epinephrine.
2 -- in the presence of epinephrine (3×10^{-4} M).
A -- control; B -- hypokinesia (70 days).
REFERENCES

Copyright: Voprosy Meditsinskoy Khimii, 1978