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Global Optimality of Extremals: An Example

EI.IEZER KREINUI.ER and FRANK NEUMAN

Abstract	 The question of than existence and the luce • tion of Darhott%

points (beyond which global optimality is lost) is crucial for minimal

sufficient conditions for global optimality and for camputaition of optimal

trajectories. Here, we numerically investigate the Darhnux prints and their

relationship with conjugate pointA for a problem of minimum fuel, constant

velocity, horizontal aircraft turns to capture a line. This simple aveond-

order optimal control problom show„ that ignoring the lo4sihle existonov of

Darbuux pt • ints may plav havoc with the computation of optimal trajectorios.
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I. Ialtroduct inn

Optimaal controls and optimal state trajectoriestrajectorites aare oftcn invelstigaated by

computation tat oxtrem:als, i.e., rttate traa)ectories sntisfyinp, the necexasnry

ra ►adit ions tit the minimta.m principle. Thus, rather than solve it two-print-

boundary-value problem, tine Integrates,  for example, tilt% state and t•014taty

differential equations from a given end state, with the end conditions till the

costxtes as palraawtters. When the a uattloiis are integrated over ra suf 1 iolent ly

long interval, local aalld global optimality of the extremaals may unwitt inKlr

he lost, i.e., the integration crosses conjugate and Dnrboux points.

(Conjugate and Aaarboux paints are defined as time points on the time interval

of Interest, but usuail lv allso refer to the states on the extromaal correspond-

roil to these times.)

A print conjugaite to an end point is one beyond whi,:h an extremal is no

longer locally optimal	 hence its obvious important%; an earl- reference Is

[1], and a recent one is [-]. Yet, not all the results on eoniugaate prints

in the calculur; of vrartations hnve horn translated Into the control context,

particularly for bounded controls. °rho honks b: Hestenes [3] and Young 14],

for instanee, stop short of oonjugaate points in their discussion of optimal

control theorv. In pratitice, conjugate points are ralrvIN , tested for (how-

over, see [S], [(], 171); tit fact, they are often simply ignored.

A Varhrux paint to alit Intl point is rite heyond which the cxtremal is no

linker &1 !?halyly opt imdl [8]. A Aaarboux point often precedes as con,jugaato

print, al tact apparently first recognized liv Uarboux [4], [101; hence the

name llarhrllx print ,is-sigiwa by Mover anti Koily in [ s ] . rhore art, no gonor.11

teats loo D.11.11"u\ priiltS. o\colit for ille east, tit qua. ► 1'.Itic pertornunt`e itltt

t;1'.li` i with awlllitlt`.11. t"I'min.al tt'I'l:,:t. skittlect to 111it`.11 '161 `iolit ial ooaiali.'ll..;

.111.1 11.111illear end	 0011"tI`.Iiitts [M.



We encountered the vexing Darboux point phenomenon in our study of

minimum fuel landing approaches (.to be published). Our objective here is to

compute the extremals and to find the conjugate and Darboux points for a c;econd-

order special case to gain insight on their locations and their relationship.

11. The Example

We explore the question of Darboux points for a particular second-order

example which derives from the problem of horizontal minimum-fuel aircraft

turns to capture a line, such as would occur during a landing approach, To

stay within the simplifying realm of two state variables we assume constant

velocity and select the state variables x 1 and x2 to represent the heading

angle and the distance to the line, respectively; the control variable u

represents the tangent of the bank angle. Under certain assumptions and suit-

able normalization the equations (see Appendix) are

^1 = -u , x1 (t f ) Y k27t , k . 0 , ±1	 1)

^2 ^ sin x1 , x2 ( t f ) = 0 ,	 (^.2)

loll :^ 1 .	 (2. 3)

The cost integral is

 ff (1 + cuz )dt	 (2.4)
0

whore t 	 is frt-e and c is a nonnegative constant (J is normalized with

respect to tho cost on an interval of Length w/2, with {u(t)l - 1, i.e., the

cost of a 90 * turn at maximum bank angle).

We next compute families of all extremals b y backward integration from

thc. origil" x(t t ) _ (0, 0), Mot curves of constant cost, and obtain lok , i Of

mirboux and conjugate paints to the origin. The situation is compl,cated by

the fart that states differing; in the x1 vomponent by multiples cif 23, iru

I
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eguivalent Ystates. Thum, on an extremal to the origin, there may he points;

beyond which the extremal is no longer globally optimal hecause nonneighboring

extremals to (k2A, 0) yield lower cost; we denote these points by Dk.,ff , k - 0,

*1,...	 According to the definition in [t;], there can he only one Darboux

point on an extremal: the first of the points D k2w in the backward direc-

tion. We will call the other points sp eudo-Darboux points. The concept of

pseudo-Darboux point is applicable to other situations with a complicated set

of end states.

Insight may be gained by referring to the aircraft turning problem (see

Appendix). The aircraft trajectories in the horizontal plane are easy to draw

because they are comprised of circular arcs when Jul " 1 and nearly ocraight

lines when Jul * 0 (as in Fig. 7). It should be noted, however, that the

coordinates of the horizontal plane is not the state for this example; our

analysis is in the xl - x, state plane for the problem stated in (2.1)-(.?.4).

III. Computation of gxtremals

The extremals are computed by application of the minimum principle [3].

The Hamiltonian H and costates ko , A 1 , and \,, are given by

11 - aa(l + cu') -- X l u + a;a sin x l ,	 (3.1)

A 0	 0 , A 0 =, const ,

^1 - -X2 COS xl ,

, - const .

We consider extremals with \ 0 J 0*; then, \ p can be set at No - 1.

*In the abnormal case, to - 0, we have u - sgn \ 1 , u J 0, and

N J (L- 0. This yields only two extrc,:ials, which are identical to tho

ext remals for N o - 1 and	 - t­ .

(3.2)

(3.3)

(3.4)



Hinimixation of H with respect: to .i yields, (tar e , 0,
1	 al ? 2e

-2C .

Sinn t f is unspecified, we have the condition

li lt - 1 + eu
i•	

(t f)- xi(t f )u(t f )	 0	 (3.t,)

S.tt i.:taing ( i.'I) .111d ( i.(i) vEvIds

1	 t) ^ t° ^ 1 ,
}u(t f }i 	(i.r)

.111.1

	

(1 + C)s,gtt .u (t f ) ,	 () < e w 1 ,
(3.8)

	

lAe; sgn ;(t f ) , C	 1 .

It is evident from Fqs. (2.1), (2.2), (3.3), (3.5), and (3.8) that the

t e xt remals depend on two parameters: the s ign of tt(t f ) : of and the val ues

Of tilt , Constant k.. Ilius, for a given c, we can group the extremals into

it>ttr i.unilie*:::

tt t 	tt	 k .	 0 1u t 	 0^.	 0R	 ttt	 0, k . , O i	
{11i	 11 , ^,	 t1

(tl' thost . , it Is oas°e to set, that the third and fourth families are sym etrival

about tilt, origin to tilt, first and second, respectively. They second famil y can

also be ohtainod from than first (as comparison of Figs. 2 and 3 will reveal).

Figure- 1 shows they first family of rxtromals together with curves tai

eonstant t'ost, J = %'oast. 'file extromal for a; _ -1.0 asymptot Leal ly tends

to tilt, tine	 = °` p :. The oxtromals for ^ k, }	 1 are drawn onl y ttp to and

sli t:hti% bo%Ottd tilt, t• oujtt;;at y point., I.e., the vontact with the envelope to

r)

w

1
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the family. t Since the remainir,g three families with their associated curves

of constant cost can easily ba obtained from the first, Fig. 1 can be trans-

ferred onto a transparent sheet to seek intersections of curves of constant

cost of the first family with those of equal value of the other families [also

of families of extremals to (2kw, 0; k - tl), no need to consider larger k's].

In this example, these intersections determine the 
Dk21r 

points.

Figure 2 shows the first family of extremals and the D kin - foci,

k - 0., 41. The solid heavy curves are loci of Darboux points, the broken

curve its the locus of pseudo-Darboux points, and the dash-dot curve is the

locus of conjugate points. A few alternative equicost extremals from points

on they Dk4n - loci are shown. Consider, for instance, the extremal corre-

sponding to X2 " -1.1, starting backwards from the origin. Beyond the point

Do there exist lower cost extremals to the origin, of the fourth family; thus,

Do is a Darboux point. Boyon.d the point D_ 2n, there are lower cost extremals

to (-2w, 0), of the third family, but of higher cost than extremals of the

fourth family to the origin. Thus, D_
iW
 is a pseudo-Darboux point; the alter-

native equicost extremal from D_, 	 to	 0) is shown. The contact point
. n

C with the envelope is a conjugate point to the origin beyond which the

extremal in question is no longer locally optimal.. Indeed, the cost from the

paint 1 1 , which is beyond the envelope contact for the ,\ I, - -1.1 extremal,

is ,tp (-1..1) - 4.61, while for the neighboring k, - -1.04 extremal it is

.t (-1.04) - 4.47. We note that from the state (-n, 0), the intersection of
p

the D,1 - locus and the D_.'rr - locus, there are four globally optimal

*We assume that the envelope theorem of the calculus of variations (e.g., [41)

holds here; then the envelope contact points are conjugate points. At any

rate, the %ubsequent discussion shows numerically that local optimalit y is

last pa:;t tho oonta4 t points.

t'



extremals; two to the origin and two to (--2w, 0). We also note that the Darboux

and conjugate points coincide only on the abnormal extremal, Az -> t (sea foot-

note on p. 4). (For interpretation of Darboux points in terms of the aircraft

trajectories in the horizontal plane, see Fig. 7 where the x 3 - axis is the

line to be captured.)

Figure 3 shows the second family of extremals with details as in Fig. 2.

Note that all the extremals coincide on the arc from (n, -2) to the origin

(representing a final 180° turn at maximum bank angle). For A 2 9 1.04, the

Darboux points are on the DQ - locus, (the segment {x:xl 	 n, -2 < x2 < 0}),

while for A2 < 1.04 the Darboux points are on the D 2 - locus. The

extremals of this family are globally optimal only for initial states

restricted to the shaded area shown in the figure.

Having obtained the loci of the Darboux points, we can determine a

strip of width 27r in the state plane with all globally optimal traJactories

to the origin, as shown in Fig. 4. The strip is symmetrical about the origin.

Initial states outside this strip have globally optimal trajectories to

(k2n, 0), k - ±1,...; however, they can be shifted by a multiple of 2n to

an equivalent initial state inside the strip. The globally optimal trajecto-

ries are unique, except those from initial states on the segments

{x:xl - n, -2 < x2 j 01, and {x:xl - -n, 0 < x 2 < 21. All optimal trajecto-

ries starting at initial states with x 2 -< 0 end with o f - 1, except those

in the vertically shaded area which end with o f - -1. The optimal control

is mostly Ju(t)l ._- 1, except in the horizontally shaded areas where

lu(t); , 1.

Results are shown only for c = 0..1 (which .corresponds to the fuel flaw

characteristics of a Jet transport at sea level); the cases c - 1 and

s 10 were examined :ind seen t c- ^e qualitativel y similar. We al.s"O examined



the case c - 0, the time optimal case, previously treated from a different

perspective by Erzberger and Lee [12j. The resulting families of ^xtremalz

and 
Dk2w 

a- loci aro quite similar to those for c * 0, but with cot-wre ind

straight lines (caused by it switching between the values ±1, 01.

IV. Conclusions

It is the crucial importance of Darboux points in computing globally

optimal tra,jte—.)ries and the scarcity of results that motivated us to report

in detail on a particular problem. We find that on some extremals the Darboux

point is a Do point (e.g., on the extremal X, _ --1.3 in Fig. 2) while on

others the Darboux point is a D-2A point (e.g., A 2 - -1.0001 in Fig. 2) or

a D2n point ( e -9— A2 - --0.999 in Fig. 2). We observe in Figs. 2 and 3

that only the Darboux points on the extremals for IX21 a 1, where u does

t:,uip;e sign, are followed by conjugate points. Therefore, it does not appear

profitable in this example to search for the Darboux points by testing; for

conjugate points. Also, on most extremals the conjugate paint is far behind

the Darboux point. For example, for the extremal for X 2 - 1.3 in Fig. 3,

backwards from the origin, the conjugate point C occurs about 80% later than

in thc Darboux paint Do.

As illustrated here, the question of the existence of Darboux points can-

not be lightly dismissed nor easily answered. We hope to have stimulated an

awareness of the problem and of the need for further research.
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Appendix: Derivation or i?qs. (2.1)-(2.4)

The airplane is flying at constant velocity v in the horir.untal x - v

plane, with the heading angle a as shown in Fig. 5. Figure 6	 I" c lift

force L, the weight W and the bank angle	 which is constrained by

	

I+ 1 s +max .	 (Al)

Neglecting the vertical component of the thrust T, we have the constraint

L cos $ = W .	 (A2)

Assuming cunst.int mass m, we have

mydt=-Lsin^=A—sn$ _-mg tan#

The equations of motion are therefore

dt = -1 tan

	

d - v sin ►y	 (A3)

dx „ v cos
dt

We use the nondimensional time

	

Y = tv/R ,	 (A4)

where R I ,; the (smallest) radius of turn for 	 $
rnax

R = ^^vw = 'l¢^x	 (AS)
max

I 	 $ tan

Then 03) becomes

xi = -u ,

x2 	sin x i .	 (A6)

C
X 3 = cos x i ,

where

xl	 , x- - y/R , x3 = x/R , u = tan ^/Can `max	
(A7)

9



and the dot represents d/dT. Hence Eqs. (2.1)-(2.3). where we denote the 

nondt.ensional ti.e by t. 

We assuae that the fuel flow depends on the thrust according to 

Fuel Flow • Co + cIT. (A8) 

Assum1~g zero sideslip, constant velocity requires that thrust equal drag. 

The drag is assumed to be given by 

where kl and n are constants and a is the angle of attack. Assuming 

further that 

where k is a cOilstant. we have. using (A2). 

o • kl v2 + nW2 • k v2 + k2 (1 + taa2 ,) • 
kv2 cos2 • 1 v2 

The fuel consumption is therefore given by 

Fuel Consumption - .rtf (co + ClklV2 + Clk2/v2) + (Clk2/v2)tan2 ,]dt • 
o 

where the terms in parentheses are constants. Hence the performance integral 

for minimum fuel is of the form given in Eq. (2.4). 

In the optimal control problem of capturing the line y. 0 with 

w(t
f

) R 0, the state variable x3 - x/R in (A6) can be ignored; it is 

required, of course, for the flight trajectories in the horizontal plane. 

The plot of such trajectories is useful for the i~terpretation of Darboux 

points as shown in Fig. 7 which illustrates D_2~ and DO Darboux points. 

In the backward direction, the heavy-line trajectories are globally optimal 

up to and including the points D_~w and Do. From the points D and Do 
-2~ 

there exist equicost alternative trajectories, while beyond these po1ntR 

10 
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the pointx A. On the other hand, the conjugate points are not usefully

interpreted by horizontal flight trajectories.
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Figure Captions

Fig. 1. Extremals and curves of constant. cost for the la-Aly

{uf 
-1, a2 <0} , c-0.1.

Fig. 2. Family {u f - 1 , a2 < 0} , c - 0.1, loci of D-point:, and

alternative equicost extremals.

Fig. 3. Family {u f - 1 , a? > 0} , c - 0.1, loci of D-points, and

an alternative equicost extremal.

Fib;. G. Strip of width 2n with globally optimal trajectories to origin.

Fig. 5. Top view of aircraft in x - y plane.

Fig. 6. Rear view of aircraft.

Fig. 7. Illustration of Darboux points in the horizontal plane

(a) A D_',11 	 point. (h) A Do Darboux point.
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