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Global Optimality of Extremals: An Example

ELIEZER KREINDLER and FRANK NEUMAN

Abstract  The question of the existence and the locrtion of Darbous

peints (beyond which global optimality is lost) is crucial for minimal
sufficvient conditions for global optimality and for cvomputation of optimal
trajectories. Here, we numerically investigate the Darboux points and their
relationship with conjugate peints for a probiem of minimum fuel, constant
velocity, horlzontal aircraft turng to capture a line. This simple socond-

order optimal control problem shows that ignoring the puossible existence ot

Darboux peints mav plav havoc with the computation of optimal trajectories.
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1. Intraduction

Opt imal controls and optimal state trajectories are often Investigated by
computat fon ot oxtremals, {.e., state trajectories satisfying the necessary
conditions of the minimum principle.  Thus, rather than solve a two-point-
boundarv-value problem, ovne integrates, for example, the state and costate
differential equations from a given end state, with the end conditions on the
costates as paramaters. When the equations are integrated over a sufficiently
long interval, local and global optimality of the extremals may unwittingly
he lost, i.e., the intepration crosses conjupate and Darboux points.
{Conjugate and Darboux points are defined as time points on the time interval
of interest, but usually algo refer to the states on the extremal correspond-
fug to these times,)

A point conjugate to an end point is one beyond which an extremal is no
longer locally optimal  hence its obvious importancs: an eariv reference is
[1], and a recent one is [2].  Yet, not all the results on confugate points
in the calceulus of variations have bheen translated into the control context,
partfcularly tor bounded controls.  The books by Hestenes [3] and Young [4],
tar instance, stop short of canjugate points in thelr digcussion of optimal
control theorv, In practice, cvonjugate points ave rarely tested for (how-
ever, see {5], [o], 171 In fact, they are often simply ignored.

A Darboux point to an end point {s one beyond which the extremal 1s no
longer globally optimal {8]. A Darboux puint often precedes a conjugate
paint, a tact apparently {irst recognized by Darboux [9], [10]; hence the
name Darboux point assigned by Mover and Kellv in {51, There are no peneral
teats tor Darboux polnts, except for the case of quadratic pertorvmancye nte-
vidis with aonlinear terminal teriet, subject to Tinear divierential caguat oas

amd nonlinear end state constratots [11§,
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We encountered the vexling Davboux point phenomenon in our study of
minimum fuel landing approacher (to be published).

compute the extremals and to find the conjugate and Darboux points for a second-

OQur objective here is to

order special case to gain insight on their locations and their relationship.

IXI. The Example

We explore the question of Darboux points for a particular second-order

example which derives from the problem of horizontal minimum-fuel afircraft

turns to capture a line, such as would occur during a landing approach.

To

stay within the simplifying realm of two state variables we assume tonstant

velocity and select the state variables x; and x; to represent the heading

angle and the distance to the line, respectively; the control variable

represents the tangent of the bank angle.

able normalization the equations (see Appendix) are

»

X} = -u , xl(cf) = k2r , k=0, %1, ...,

7;{2 = gin Xy x'z’.(tf) =0 ,

jlul s 1.

The cost integral is

t
WR,_%._."..‘J’ f 1+ cuyae
0

Under certain assumptions and

u

suit~

(2.1)

(2.2)

2.3)

(2.4)

where t. is free and ¢ is a nonnegative constant (J 1s normalized with

{

respect to the cost on an interval of length w/2, with lu(t)] =1, i.,e., the

cost of a 90° turn at maximum bank angle).

We next compute families of all extremals bv backward integration frem

the origiu, x(tf) = (0, ), plot curves of constant cast, and obtain loci of

Darboux and conjugate points to the origin.

the fact that states differing in the x) component by multiples of

1

.

T

The situation is compl.cated by

are



equivalent states. Thus, on an extremal to the origin, there may be points
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beyond which the extremal is no longer globally optimal hecause nounneighboring

extremals to (k2x, 0) yleld lower cost; we denote these points by Dk'n’

tl,... . According to the definition in [8], there can be only one Darhoux

point on an extremal: the first of the points D in the backward direc~

k2w
tion. We will call the other points pseudo-Darboux points. The concept of

pseudo-Darboux point is applicable to other situations with a complicated set
of end states.

Insight may be gained by referring to the aircraft turning problem (see
Appendix). The aircraft trajectories in the horizontal plane are easy to draw
becausv they are comprised of circular arcs when ju| ” 1 and nearly straight
lines when lu] + 0 (as in Fig. 7). It should be noted, however, that the
coordinates of the horizontal plane is not the state for this example; our

analysis is in the x; - x; state plane for the problem stated in (2.1)-(2.4).

ITI. Computation of Extremals
The extremals are computed by application of the minimum principle [3].

The Hamiltonian H and costates Ay, A}, and \; are given by

H o= Ag(l + cu’) = Vju + Xy sin x; , (3.1)
‘g 20, Ag > const , (1.2)
A = =1; cos x; , (3.3)
A>» = const . (3.4)

We consider extremals with Yo # 0%; then, 1y can be set at Yy = 1,

*In the abnormal case, g = 0, we have u = sgn Y3, u ¥ 0, and
\1(tf) = (), This vields only two extremals, which are identical to the

extremals for lp =1 and i =t




Minimization of H with respect to 1 yields, for ¢ -~ 0O,

1) ’\122&‘,
u v { LWWlre l\‘l < 2, (3.5)
-1 \y 2 ~2¢

Since te is unsgpecified, we have the condition

Satistvine (3.9 and (3.6} vields

1 » ‘) RN & ) 1 »
Ju(t )} = ) (3.7
f Wise , ez,
and
(1 + e)sgn u(tf) sy U<pesl,
(3.8

\l(t \) = .
. 2 sgn i(tp) , ezl

It is evident from Eqs. (2.1), (2.2), (3.3), (3.5), and (3.8) that the
extremals depend on two parameters: the sign of u(cf) é ug and the vdlue

of the constant V. Thus, for a given ¢, we can group the extremals into

four ftamilies:

iul SRR L U il% 0, o2t t\% R RS W (] S {uf NV I W

Of these, it {s casvy to see that the third and fourth families are svmmetrical
about the origin to the first and second, respectively. The second family can
also be vbtained trom the first (3s comparison of Figs. 2 and 3 will reveal),
Figore 1 shows the first family of extremals together with curves of
constant cost, J = const. The extremal for > = ~-1.0 asymptotically tends
to the line w3 = »/2.  The extremals tor §x;1 > 1 are drawn onlv up to and

slightiv bevond the conjugate peint, i.e., the cvontact with the envelope to

o e ——————




the family.? Since the remaining three families with their associated curvas
of constant cost can easily be obtained from the first, Fig. 1 can be trans-
ferred onto a transparent sheet to seek intersections of curves of constant
cost of the first family with those of equal value of the other families [alsc
of families of extremals to (2kw, O; k = *1), no need to consideir larger k's].

In this example, these intersections determine the D points.

k2a
Figure 2 shows the first family of extremals and the Dk?n - loci,

k = 0, *1. The solid heavy curves sve loci of Darboux points, the broken
curve 1s the locus of pseudo~Darboux points, and the dash-dot curve is the
locus of conjugate points, A few alternative equicost extremals from points

on the DkZﬂ ~ loeci are shown. Consider, for instance, the extremal corre~
sponding to XA » -1.1, starting backwards from the origin. Beyond the point
Dgp there exist lower cost extremals to the origin, of the fourth family; thus,
Dg 1is a Darboux point., Breyond the point D—zn there are lower cost extremals
to (-2n, 0), of the third family, but of higher cost than extremals of the
fourth family to the origin. Thus, D-Zn is a pseudo-Darboux point; the alter-

native equicost extremal from D_ to (~2w, 0) is shown. The contact point

a1

C with the envelope is a conjugate point to the origin beyond which the
extremal In question is no longer locally optimal. Indeed, the cost from the
point P, which is bevond the envelope contact for the A, = -1.1 extremal,
is Jp(—l.l) = 4,61, while for the neighboring 1> = -1.04 extremal it is
Jp(-l.O&) = 4.57. We note that from the state (-=, 0), the intersection of

the Dy - locus and the D_‘“ - locus, there are four globally optimal

a

o it e

"We assume that the envelope theorem cof the calculus of variations (e.g., [4])
holds here; then the envelope contact points are conjugate points. At any
rate, the subsequent discussion shows numerically that local optimality is

Lost past the contact paints,




extremsls; two to the origin and two to (~2%, 0)., We also note that the Darboux

and conjugate points coincide only on the abnormal extremal, A + « (sea foot~—
note on p. 4). (For interpretation of Darboux points in terms of the aircraft
trajectories in the horizontal plane, see Fig, 7 where the xs - axis is the
line to be captured.)

Figure 3 shows the second family of extremals with details as in Fig, 2.
Note that all the extremals coincide on the arc from (w, ~2) to the origin
(representing a final 180° turn at maximum bank angle). For A, > 1.04, the
Darboux points are on the Dgy - locus, (the segment {x:x; = =, -2 < x, < 0}),
while for Ay < 1.04 the Darboux points are on the DZ“ ~ locus, The
extremals of this family are globally optimal only for initial states
restricted to the shaded area shown in the figure.

Having obtained the locl of the Darboux points, we can determine a
strip of width 2r in the state plane with all globally optimal trajactories
to the origin, as shown in Fig. 4. The strip is symmetrical about the origin.
Initial states outside this strip have globally optimal trajectories to
(k2w, 0), k = 1,...; however, they can be shifted by a multiple of 27 to
an equivalent initial state inside the strip. The globally optimal trajecto-
ries are unique, except those from initial states on the segments

{x:x) = 7w, -2 < x5 < 0}, and {x:x; = -w, O

ia

Xp < 2}. All optimal trajecto-
ries starting at initial states with x5 < 0 end with ue = 1, except those
in the vertically shaded area which end with ug = -1. The optimal control
is mostly |u(t)]| © 1, except in the horizontally shaded areas where
fu(e)| < 1.

Results are shown only for ¢ = 0.1 (which corresponds to the fuel flow

characteristics of a jet transpert at sea level); the cases ¢ = 1 and

> = 10 were examined and seen to be qualitatively similar. We also examined

e




the case ¢ = 0, the time optimal case, previously treated from a different
perspective by Erzberger and Lee [12]. The resulting families of ‘xtremals
and Dk2w - loel are quite similar to those for ¢ > 0, but with cor-ever md
straight lines (caused by u switching between the values %1, 0).

IV. Conclusions

It is the crucial importance of Darboux points {in computing globally
optimal trajectories and the scarcity of results that motivated us to report
in detail on a particular problem., We find that on some extremals the Dirboux
point is a Dg point (e.g., on the extremal iy = -1.3 in Fig. 2) while on
others the Darboux point is a D-zw point (e.g., A = -=1.0001 in Fig. 2) or
a DZn point (e.g., A2 = =0.999 in Fig. 2). We observe in Figs. 2 and 3
that only the Darboux points on the extremals for |A2] > 1, where u does
vhanpe sign, are followed by conjugate points. Therefore, it does not appear
profitable in this example to search for the Darboux points by testaing for
conjugate pouints. Also, on most extremals the conjugate point {s far behind
the Darboux point. For example, for the extremal for 11> = 1.3 in Fig. 3,
backwards from the origin, the conjugate point C occurs about 80% later than
in the Darboux point Dg.

As 1llustrated here, the question of the existence of Darboux points can-
not be lightly dismissed nor easily answered. We hope to have stimulated an

awareness of the problem and of the need for further research.




Appendix: Derivation of Fqs. (2.1)-(2.4)
The airplane is flying at ccnstant velocity v in the horizontal x - v

plane, with the headiag angle ¢ as shown in Fig. 5. Figure % ehew  *" e lift

force L, the weight W and the bank angle ¢ which is constrained by

ol < op,,

(AL)

Neglecting the vertical component of the thrust T, we have the constraint

L cos ¢ =W,

Agsuming constant mass m, we have

dy wWBingé
mv T L sin ¢ o5 mg tan ¢ .

The equations of motion are therefore

f‘&-.--&
dt v tan ¢ »

4y .
at v seiny ,

dx
T v cos ¢ .

We use the nondimensional time
Tt = tv/R ,

where R is the (smallest) radius of turn for [¢]| = ¢ ,

Then (A3) becones

x> = sin %1 ,

»
w
M

= COS X] ,

where

x3 =%, xp=y/R, x3=x/R, uw=tao ¢/tan¢___,

(A2)

(A3)

(AG)

(AS5)

(46)

(A7)

e i g




and the dot represents d/dr. Hence Eqs. (2.1)-(2.3), where we denote the
nondimensional time by t.
We assume that the fuel flow depends on the thrust according to

Fuel Flow = co + T . (A8)

Assuming zero sideslip, constant velocity requires that thrust equal drag.

The drag is assumed to be given by

D~ k;v? + nla ,

where k; and n are constants and o 1is the angle of attack. Assuming
further that ¢

L = kvia ,
where k 18 a coastant, we have, using (A2),

wz k

- kv + — e kv 2 2
D = kyvE + = o ’ kyvé + v2 (1 + tan® ¢) .

The fuel consumption is therefore given by

t
Fuel Consumption = j £ {(co + c1k1v2 + clkzlvz) + (clkzlvz)tan2 ¢lde ,

0
where the terms in parentheses are constants. Hence the performance integral
for minimum fuel is of the form given in Eq. (2.4).

In the optimal control problem of capturing the line y = 0 with
w(tf) = 0, the state variable x3 = x/R 1in (A6) can be ignored; it is
required, of course, for the flight trajectories in the horizontal plane.
The plot of such trajectories is useful for the irterpretation of Darboux
points as shown in Fig. 7 which illustrates D-zn and Dy Darboux points.

In the backward direction, the heavv-line trajectoriles are globally optimal

up ¢o and including the points D—*n and Dy. From the points D—zn and Dy

&

there exist squicost alternative {rajectories, while beyond these points

there exist lower cust tvajectories, e.g., those shown in dashed curves from

i0

o e e
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the points A. On the other hand, the conjugate points are not usefullv

interpreted by horizontal flight trajectories.

1l




- T T T e e 7 &

(1]

(2]

(3]

[4]

(5]

{6}

[71

(8l

(9]

[10]

(11]

(12]

References
J. V. Breakwell and Y. C. Ho, "On the conjugate point condition for the

control problem," Int. J. Eng. Sci., vol. 2, pp. 565-570, 1965.

P. M. Mereau ai*W. F. Powers, "Conjugate point properties for linear

quadratic problems," J. Math. Anal. Appl., vol. 55, pp. 418-433, 1976.

M. R. Hestenes, Calculus of Variations and Optimal Control Theory,

New York: John Wiley & Sons, Inc., 1966.

L. C. Young, Lectures on the Calculus of Variations and Optimal Control

Theory, Philadelphia, PA: Saunders, 1969.

H. G. Moyer and H. J. Kelley, ''Conjugate Points on Extremal Rocket
Paths," Proc. of the 19th Int. Astronauticcl Congress, New York, 1968,
vol. 2, pp. 163-172. Pergamon Press, London, 1970.

H. G. Moyer, "A computer survey of impulsive ellipse-ellipse transfer,"
AIAA J., vol. 9, no. 2, pp. 321-323, 1971.

H. G. Moyer, "Optimal control problems that test for envelope contacts,"
JOTA, vol. 6, no. 4, pp. 287-298, 1970.

P. M. Mereau and W. F. Powers, "The Darboux point," JOTA, vol. 17,

nos. 5/6, pp. 545-559, 1975.

0. Bolza, Vorlesungen iiber Variationsrechnung, p. 438, Teubner, Leipzig,

1909, reprinted by Chalsea Publ. Co., New York, 1963.

G. Darboux, Sur la Theorie des Surfaces, vol. 1II, p. 89, Gauthiers-

Villars, Paris, 1894.

P. M. Mereau and W. F. Powers, ''Characterization of the Darboux point
for particular classes of problems,'" JOTA, vol. 22, no. 4, pp. 537-562,
1977.

H. Erzberger and H. Q. Lee, "Optimum horizontal guidance techniques for

airerafr," J. Aireraft, vol. 8, no. 2, pp. 95-101, 1971.

i2




Figure Captions

Fig. 1. Extremals and curves of constanct cost for the ta.ily

{uf =1, 22 <0}, c=0.1.

Fig. 2. Family {uf =1, Ay <0}, c=0.1, loci of D-point:, and

alternative equicost extremals.

Fig. 3. Family {uf =1, X >0}, c=0.1, loci of D-points, and

an alternative equicost extremal.
Fig. 4. Strip of width 27 with globally optimal trajectories to origin.
Fig. 5, Top view of aircraft in x - y plane.

Fig. 6. Rear view of aircraft.

Fig. 7. Illustration of Darboux points in the horizontal plane

(a) A D—%n Darboux point. (b) A Dy Darboux point,
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