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FREE-STREAM DISTURBANCES, CONTINUOUS EIGENFUNCTIONS,
BOUNDARY-LAYER INSTABILITY AND TRANSITION

SUMMARY

The research conducted under this project has been directed toward the

double objectives of providing (1) a rational foundation for the application

of the linear stability theory of parallel shear flows to transition
prediction and (2) an explicit method for performing the necessary

calculations.

The fundamental discovery upon which our subsequent work is based
was that the solutions of the 11nearzzed three-dimensional, 1ncompres-
sible Navier-Stokes equations u,p and the adjoint solutions u,p
satisfy a "continuity" equation

ao . ' ,
R J =0 (1)

N . + +>
where p is a pseudo-energy density (the dot product of u* and u) and
J isa pseudo-currept. This result is derived and discussed in detail
in Appendix A.

We next considered (see Appendix B) the expansion of an arbitrary,
two-dimensional solution of the linearized stream function equation in
terms of the discrete and continuum eigenfunctions of the Orr-Sommerfeld

equation in the half-space, y € [0,=): that is, we considered boundary-layer,

wake, jet or free-shear layer flows. We used equation (1) to derive a
biorthogonality relation between the solutions of the linearized stream
function equation and the solutions of the adjoint problem. This is the
biorthogonality relation for the mixed initial-boundary value problem.
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For the case of temporal stability, we used equation (1) to derive
the formal solution of the initial value problem as a sum over the discrete
modes plus an integral over the continuum functions and showed that this |
expansion is complete. We found that the vorticity distribution at the
initial time is sufficient information to determine the expansion coef-
ficients and gave explicit formulas to calculate these coefficients.

For the spatial stability problem, we showed that the continuum has
four branches. We used equation (1) to derive the spatial biorthogonality
relation and the formal solution to the boundary value problem. We have
(see Appendix C) also derived the Fourier (in t), Laplace (in x) transform
solution of the spatial stability problem and used it to show that our
spatial expansion 15 complete.

" The boundary conditions for the spatial problem are the Fourier
transforms, in time, of the stream function and its first three partial
derivatives with respect to X, evaluated at x = 0. As it stands, this
formal solution will not give a physically acceptable solution because,

given an arbitrary variation with y and t at x = 0 of the stream function

and its first three partial derivatives with respect to x, disturbances

which lie on all four branches of the continuum will be excited. Therefore,

as we show in Appendix B, the spatial wave packet will contain, in addition
to waves propagating toward x = =, waves propagating upstream from x =
and standing waves whose amplitude increases towards x = =,

A condition must be imposed that, for x > 0, all propagating dis-
turbances are traveling in the positive x-direction and all standing waves
have amplitudes which decay in the positive x-direction. It appears that
this should be done by requiring that the stream function and its first
three partial derivatives with respect to X, evaluated at x = 0, be
orthogonal, using the spatial inner product, to all eigenfunctions on
branches 2 and 4 of the continuous spectrum.

It is easy to see that these two orthogonality conditions reduce the
number of boundary conditions at x = 0 from four to two. This means that,
for the spatial stability problem, the proper boundary Conditions at x = 0
are the specification of the temporal Fourier transforms of the velocity
components u and v, for all y. Although these boundary conditions
were derived from consideration of the continuum eigenfunctions, they
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apply as well to the discrete, Tollmien-Schlicting modes., We have not
yet carried out a detailed investigation of the implications of imposing
this orthogonality requirement on the boundary conditions; however, the
immediate result that the boundary conditions at x = 0 are the specifi-

cation of the temporal Fourier transforms of u and v for all y appears,

on physical grounds, to be correct.

We have presented preliminary numerical results of the application of
this expansion method at the Fifteenth International Conference on
Theoretical and Applied Mechanics (Appendix D). We considered the temporal
stability problem and a simple initial disturbance. We assumed that at
t = 0 the vorticity & was given by

iuox

g=g e §(y = ¥,) )

a periodic layer of vorticity at a distance Yo from the boundary.

The stream function is then given by equation (55) of Appendix B,
and it is easily seen that the expansion coefficients are [from equations
(56a, b) of Appendix B]:

A (@) = g dny,) 8(a - a) (3a)
M) = 5 R (y.) 6(a - a)) (3b)

The solution of this simple problem, which is in effect the Greens function
in y of the initial value problem, shows that the amplitudes of discrete,
Tollmien~-Schlicting modes and the continuum functions are the products of
the magnitudes of the corresponding adjoint functions, evaluated at Yo?
the height of the initial disturbance from the boundary and the vortex

strengths.

We applied this result to two different flows. The first is a slip
flow past a bounding plane at y = 0. Although the base flow velocity
does not vanish at the boundary, we required that the disturbance velocity
vanish at y = 0. We found (Appendix B) that, because of the simple form
of the base flow, all the calculations could be carried out analytically
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and the stream function could be expressed as a finite sum of exponentials
and error functions. We found that the disturbance retains its identity
as a periodic array of vortices for all time, but as time increases it
diffuses, the vortex strength decays, and the centers of the vortices
drift away from the boundary.

The second flow we considered is the Blasius boundary layer. The
velocity scale was taken to be the free-stream speed Uo and the length
scale was va/uo. We chose a = 0.179 and R = 580,0. At this o« and R,
there are seven discrete Tollmien-Schlicting modes, one of which is
unstable. We'numerically calculated the seven eigenfunctions and adjoint
eigenfunctions and normalized them so that

<, = @)

Plots of the amplitude and phase of the normalized eigenfunction and
adjoint eigenfunction of the seven modes as a function of y, the dimen-
sionless distance from the boundary, are given in Appendix D. These
modes are numbered in order of increasing stability with mode 1 the
unstable mode and mode 7 the most damped mode.

The amplitude of a mode, say ¢n’ excitgd by the vortex sheet at
Y = Yo is proportional to the amplitude of ¢ evaluated at Yo It is
clear from an examination of these figures that when the vortex layer at
t = 0 is in the inner portion of the boundary layer, say y ¢ 2.0 (the top
of the boundary layer is at y = 5,02), there will be a relatively strong
excitation of the discrete Tollmien-Schlicting waves. Modes 1, 2, and
3 will have the largest amplitudes, and the higher modes will have sub-
stantially smaller amplitudes. Tt is also quite clear that, when the
initial disturbance is more than about four boundary-layer thicknesses
from the wall at t = 0, the discrete Tollmien-Schlicting modes excited
by the disturbance will have extremely small amplitudes. We believe that
this result is a theoretical explanation of the experimental observation
of Kachanov, Kozlov, and Levchenko (1978) that vorticity disturbances
passing above a boundary layer are very inefficient generators of Tollmien-
Schiicting waves in the boundary layer,
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k CONCLUSIONS

1
, We believe that we have created a rational foundation for the appli-
cation of the linear stability theory of parallel shear flows to transition |
" prediction and given an explicit method to carry out the necessary cal- 1
| culations. We have shown that these expansions are complete. We have
t also carried out some sample calculations which show that a typical |
boundary layer is very sensitive to vorticity disturbances in the inner i
boundary layer, near the critical lsyer; vorticity disturbances three or
four boundary-layer thicknesses above the boundary are nearly uncoupled
from the boundary layer in that the amplitudes of the discrete Tollmien-
Schlicting waves are an extremely small fraction of the amplitude of l

the disturbance. g

After the completion of this grant we intend to continue these
calculations., We will continue the calculations of temporal disturbances
in typical boundary layers and begin calculation of spatial disturbances.
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Expansions in Spatial or Temporal Eigenmodes of the
Linearized Navier-Stokes Equation

by Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Technology, Hoboken, N. J. 07030

The expansion of an arbitrary flow field in terms of the temporal or
spatial eigenmodes of the linearized Navier-Stokes (LNS) equations for an
incompressible fluid is developed from a unified perspective. It is Shown that,
for (V,p) a solution of the LNS equations for a given base flow and {U,d) a
solutior; of the corresponding adjoint equations, a scalar "density",
f:CG,V), and a vecgor "flux", ¥ (U,4,V,p), may be defined such that € and T
are bilinear in (U*,4*) and (V-P) and satisfy the "continuity" equation,
3&/at + VT = 0. This equation is then used to derive biorthogonality relations
between the eigenfunctions and adjoint eigenfunctions of the LNS equations for
a general translationally-invariant problem. In the temporal case, the inner
product is ///£dt = /17U V dr which is the natural extension of Schensted's
inner product for two-dimensional disturbances and satisfies the requirements
for an inner product in a Hilbert space. In the spatial case, the "inner
product" is ///f Ty dydzdt which is not positive definite. The formal solution
of the LNS equations is derived, in terms of the eigenfunctions and the initial
or boundary conditions, for the temporal and spatial cases. It takes the form
of the evolution of a three- or six-dimensional vector "‘(Vx’ Vyr vz) in the
temporal case or (Vx' Yy Vg avy/ax. avz/ax, p) in the spatial case.
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1. Introduction

A few years ago, Grosch and I, after showing that the Orr-Sommerfeld
equation for unbounded flows such as the Blasius bqundary layer possesses both
temporal and spatial continuous spectra (Grosch and Salwen, 1975, 1978), set
out to find the form of the wave-packet expansion for the temporal or spatial
evolution of the stream function of an arbitrary two-dimensional "infinitesimal"

disturbance in terms of the corresponding temporal or spatial eigenfunctions.

We sought to prove a biorthogonality relation between the eigenfunctions
of the Orr-Sommerfeld equation and of its adjoint and, thereby, to solve for
the coefficients of the expansion in terms of the inner products of the adjoint
eigenfunctions with the stream function at the initial time or position.

This worked out easily in the temporal case, with an inner product equivalent
to Schensted's (1960) and only minor complications due to the infinite domain
and continuous spectrum. In the spatial case, on the other hand, we found that
we didn't know the appropriate inner product and we couldn't find any papers
dealing with the problem. I therefore undertook the spatial expansion problem
and, eventually, was rewarded with the result repo;ted here==a unified treat-
ment of the spatial and temporal expansion problems for solutions of the

linearized Navier-Stokes (LNS) equations for an imcompressible fluid.

Section 2 is devoted to the derivation of a “continuity" equation which
is used, in Section 3, in the definition of the inner products and the derivation
of the biorthogonality relations. These, in turn, are used 1in Sections 4 and 5
to derive the formal solutions of the (temporal) initial value problem and
the (spatial) boundary value problem, respectively. The application of these
results to two-dimensional disturbances of a boundary layer has been presentad

in a separate paper (Salwen and Grosch, 1980).
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In order for the formal solutions derivaed 1in Sections 4 and 5 to be

actual solutions of initial and boundary vslue problems, the eigenfunctions

used in the expansions must, form complete sets. Not all the eigenfunction
sets one might want to use have been proven to be complete but there are,

by now, proofs of completeness for large classes of temporal eigenfunctions
for bounded flows (Yudovich, 1965 and DiPrima and Habetler, 1969) and temporal
(Salwen and Grosch, 1980) and spatial (Salwen, Kelly, and Grosch, 1980) ?

eigenfunctions for unbounded flows. i

2. "Continuity" equation

I start with the LNS equations for an incompressible fluid with a base

flow U,

TV =0 (1a)
v .
i .-b op‘—b
0 [ = * 0.7 PRADAF J
=y poy, - 2B =
and the corresponding adjoint equations*,
N
vi=0 (2a)

SR RRE O

G Vz?t'i + %‘1 , 1=1,2,3. (Zb)

1 The complex conjugate, U*, is used here in order to obtain the correct formal

expressions. In most applications, U will be real, so U* = U.

T = R
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Y
For any solutions (V,p) of (1) and (U,4) of (2), define*

J I 1 % -
E(U‘V)"{?u*‘v- (3)
Then 3
v,  Au*
2 I i
3t '2"’?—_; [“1*3 t3 "i]
3
3 e [T Ty ey T
R A 1Y %
el Lz 8 Gevy
'i - v axi 1
oy 1YW oy, oy nzﬁ'ﬂ-’i_‘;*éﬂ_.;éﬁiv}. (8)
B AR B Y B A B PP TP § I /
so, with
3 o N . n
T (U,9,Vep) = (zo0*V) U+ 54 ; [(3 ui*) v
N 1 % Ny
ol Thd Vi] ty [u*p + q* v] ) (5)
we get
n N
LEA@) + 3F (@) = 0, (6)
* The constant factor, %p » is included in order to emphasize the

relation between E and the energy density, %p vz.
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which has the form of a continuity equation relating the time derivative of
the "density", iE , to the divergence of the "flux", T . For any fixed

volume V bounded by a surface S , the "continuity” equation (6) may be put
into integral form,

N ~ n )
U,v) dr + /7 neF (0,4,V,p) dS = 0 . (7)

d
Irf
a’fvﬁi !

3, Application to a steady, translationally-invariant base flow.

Biorthogonality relatiuns

In this section, Equation (7) will be applied to the case in which the
base flowv and boundary conditions are independent of x and t . For all x
and t, the base flow U(y,z) , disturbance velocity and pressure (V,p) and
T adjoint velocity and pressure (%,q) are assumed to be defined in a closed,
g bounded area, A , of the y,z plane and to satisfy the boundary conditions
V(x,y,2,t) = 0, %(x.y.z.t) =0 for (y,z)eC , (8a,b)
on the boundary, C, of A. In this case, the temporal and spatial eigenfunctions
. discussed below will form discrete sets. (The extension to an unbounded area
is not too difficult (see, e.g., Salwen and Grosch, 1980) but it requires the

relaxation of the boundary condition (8} and the consideratiocn of continuum as

; well as discrete modes.)

Because of the choice of base flow and boundary conditions, (1) and (2)
are now invariant with respect to translations in x and t and, therefore,

possass solutions of the form

| Vixyszst) = T ly,z)el (0% = vt (9a)

11

B
©i e S——— e = i S T o P e . TR ek g,
b . 4 .
-

T R v &2 T B S s e LT . B B -0 b i SRl




p(x,¥,2,t) = po(y,z)ei(““ - ut), (9b)
Txy,2,t) = %o(y.z)ei,(a" - ve), (10a)
d(xoy,2,t) = ?io(y.z)ei(s" - vt), (10b)

Because of (8), Py =r, =0onS. Then evaluation of (7) over a thin slab

perpendicular to the x-axis for functions of the form (9) and (10) gives

(v - ) u E.(:t\t;,'\?) dydz = ‘2‘? I/J; E(%,'\?) dydz

] &m-r
= -5 ] Ty (u,q,v,p) dydz
Y o
= j(g* - a) II r, (u,q,v,.p) dydz , (11)

which will be used here to prove biorthogonality relations for the spatial

and temporal eigenmodes.

The temporal eigenfunctions are the solutions of (1) and (8a) having the

form (9) with a real. These may be denoted by (Van. p
i(ax - wn(a)t)_

an)’ corresponding to

the x,t variation e For each such solution, there is an adjoint

N
eigenfunction (ﬁan Ean) which is a solution of (2) and (8b) having the variation

el (ox = vplalt) Ly vola) = w*(a). Application of (11) to these functions
gives

N

(ig(a) = o)) [[ € Gy + V) vz = 0, (12)
A

so that the integral vanishes when W (a) # wn(a) and, with appropriate

normalization,




I
[L (Ugme Vo) dvdz = smnlz“ ' (13)

(The expression is a function of x and t but is constant because the exponentials
in the two factors cancel.) This biorthogonality relation for fixed a leads to

the result for the full set of temporal eigenfunctions,

[ =8 ¥

< v, > 2 T ii(m V,.) dydz d
am, “gn’ * J Uam, Vpn/ 9ydz X
® 4

dydz
- A a x=0
F oy
= 2n8(a=-8) I[ Ei(”am,van)| dydz
A x=0
= §{a=-B) Sgn  forall t. (14)

The spatial eigenfunctions and adjoint eigenfunctions are the solutions of

(1), (2), and (8) having the forms (9) and (10) with w and v real. These may

- wt)

be denoted by ¢ , = (v with the variation ei(““(“)x , and
0N

wh, pmn) ’

¥ o= (U o,y With the variation et (Bmlv)x = vt) - a ih the temporal case,

*um wm,
the eigenfunctions and adjoint eigenfunctions may be paired, with Bn{w) = an*(m)

in this case. The analogous results to (12) and (13) are

T V)
B S _
(o) = @ () fi Ty (ym, Gon,Vun,Pun) dvez =0 (15)
and
“ N
. P (Oym,9un,Van Pun) dvdz = & /2m, (16)
! 13
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which Tead to the biorthogonality relation for the full set of spatial

eigenfunctions

o

. e LS
{gﬂ)m, 5\,,‘ N I J‘I Px ‘umm' qwllhv\m )p\’n) d'ydz dt
-y A

»
wht, mm,vvn,pvn)l dydz

. f el lu=vityy ” O
' A X t*-‘O

"
- N e
= 28 (w-v) IL Ty (uwm,qmm.vmn.pw ) £0

dydz

= §lu-v) § for all x . (17)

]

We thus see that, with appropriate “inner products" <,» and [ , -B ,
the temporal and spatial eigenfunctions satisfy biorthogonality relations with
the related adjoint functions. The temporal inner product <,> satisfies all
the conditions ordinarily required of an inner product. The spatial inner
product ﬂl_ ,I[ , on the other hand, is not positive definite. This is related

to the fact that disturbances can propagate in both the downstream (+x) and

upstream (-x) directions.

4., Temporal expansion of ax arbitrary solution of the LNS equations

The temporal inner product introduted in (14),

<, ’\7>8[ ” U (X,¥,2) * V (X,y,2) dydz dx , | (18)
- A

14
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is defined for any pair of ordinary vector functions of position. In
particular, when applied to a solution (V, p) of (1), it invalves the
velocity, V, but not the pressure, p. It is natural then, in seeking an
expansion solution in terms of the temporal eigenfunctions, to expand Vv

alone in terms of the velocity part (V_ } of the eigenfunctions.

Let (V,p) be a soluticn of (1), satisfying the boundary conditions (8a).

Assume that V can be expanded in the form

m

Viuyhzot) = 2 [ e (8) T (xoy,2,t) da . (19)

n=l -

Then, by (14), the coefficients are

N

Can(t) = <3;"’ o, (20)

so that (using (7) )

A (21)
T [ j[ V1 (Ea n, man v» p) dydz dx = 0
A
and
anl®) = G0 = by | (22)
t=40

15




The result is

o = "
V(x.y.z.t) = 2 ] I <—acm‘ %!tw Van(x,y,z.t) da (23)
n=l -w

On the assumption that the expansion can be differentiated term-by-term,
31 oy, - [kt O Ry + VT, ]
axg M TP LR i i

1 3 - 2
-Z [ <umn,V>l tu Van,
®

1

v '
alng
i x = -
'p[. 3t +U'Wan‘-+van°vuil)’d"

oy N ‘\) . ap
; -S> [@®] 2w, (24)
| n=] e t=o0
so that, except for an additive function of t only,
r N ,
| p(X,y,2,t) = <u.V>l Pun{Xs¥s2st) du . (25)
n=1 - t=0

Equations (23) and (25) are the formal solutions for V and p in

terms of the initial velocity, V(X,Y,z,0).

-

5. Spatial expansion of an arbitrary solution

r The spatial inner product.[m ,]I , introduced in (16), cannot be eval-
uated in terms of the values of U, §, vV, and p at a fixed x because

a Iy involves x-derivatives associated with the second derivatives in (1b) and
(2b). To get around this problem, one can regard the flow field at a given x

as a 6-vector and make use of the fact that the velocities under consideration

16
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have vanishing divergence ({la) and (2a)).

Let £ and n be 6-vectors with components

G " Ve B2tV B3t Ve BT Yy

Ny = Uye Np ™ Uys Mg = Uy Ny = u,'

m

"

and let ¢ - 3=9 .V =0, Then, in terms of these components,

- -
. } w w *
P (Ua, V) = 35 plugv, +utvy + U, v,) Uy

+
(vyuy

+35 (u*p + qt,)

so that

1 - VY [ |
* uy*vy ) + (vzuz ¥ -, i]

En. E]l = T ” Ty (4,q.V,.p) dydz dt
| A

may be evaluated in terms of the components of ¢ and n at fixed x .

3Vz
N gep, ()
auz
= X’ ne = q (27)
(28)
(29)

This choice of coordinates also eliminates second derivatives from (1),

which becomes

BVX L avl i BVZ
X 3y 32
v

X = v '

X y

(30a)

(30b) 17
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5—,‘—2-- v, ' (30¢)
Wt U ay ay ay. ol
Y .0y [9_ Y y v . Oy
x ) x " (5% Yy tUss b5y Vy)
3%y, 32y al
. —t B_Y ., 48 vy L3R
(572" * 532 )] Yrw e to Wy tuay (30d)
TR 3u 3U "oy av v, U
Z_ 082 ez £ (i — Z b4
% pax tygy Vy*[p(at+uy0y+uzaz*az v,)
a2y 32y
- (= 2 -3 ] )
=+ a‘z'z'“)] WVt (30e)
3p azvx 32vx v, v, v, AUy
X [“('ay“’ o) me GtV ey U 5Tt Vx)]
v aU v U av. ' oov,!
L X —Z X - oy 2 3
to Uy gyt -gy vyl te Wy -a7 V) =w Gy—t 57« (30F)

It is now straightforward to carry out the formal solution for the

spatial expansion. The expansion is

w o

fvizit) = 22 [ o) smzt) b, (a1)

n=l -x

with coefficients

cuntx) = ﬂ_ Nan. ;_H (32)
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Then J

N
2
[ [ TR (3mn'3mn'7.p) dydz dt
A

o
[}
ge—— 8

3 2o
” [Wry (U, 9un,VoP)
A

4] hY
+ 9 . 3 -
T (umn.qwn’v,p) * 3T (umn,v)l dydz dt

=0 (33)
50

N
¢ (x) = ¢ (o) = ﬂnwn, '“ o (34)

The solution is then

_ N
E(X..Y’Z.t) = Z f Enmn’ gn‘ N (X,y,Z,t) do . (35)
nzl - X=0 “un
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ABSTRACT

The expansion of an arbitrary two-dimensional solution of the
1inearized stream function equation in terms of the discrete and continuum
eigenfunctions of the Orr-Sommerfeld equation is discussed for flows in
the half-space, y ¢ [ 0, =), A recent result of Salwen is used to derive
a biorthogonality relation between the solution of the linearized equation
for the stream function and the solutions of the adjoint problem,

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted for bounded flows. This relation-
ship is used to carry out the formal solution of the initial value problem
for temporal stability. It is found that the vorticity of the disturbance at
t = 0 is the proper initial condition for the temporal stability problem.
Finally, it is shown that the set consisting of the discrete eigenmodes
and continuum eigenfunctions is complete.

For the spatial stability problem, it is shown that the continuous
spectrum of the Orr-Sommerfeld equation contains four branches. The biorthogon-
ality relation is used to derive the formal solution to the boundary value
problem of spatial stability. It is shown that the boundary value problem
of spatial stability requires the stream function and its first three partial
derivatives with respect to x be specified at x = 0 for all t. To be appli-
cable to practical problems, this soluticn will require modification to
eliménate disturbances originating at x = = and travelling upstream to
x=0,

For the special case of a constant base flow, the method is used to
calculate the evolution in time of a particular initial disturbance.
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3. _Zatroducticn

Recent caloulations of the dizcrete eigenzodes of the Orr-Sommerfeld
equation (Jordinscn, 1971; Mack, 1976; Houston, Cornor, and Ross, 1976;
Murdoch and Stevartson, 1977) have indicated that, for a ;iv;; Reyuolds
number azd wave nuzbter {Zrequency), the Orr-Sczmerfeld equation for 3lasius
flov 2as only a Zinite number of discrete temporal {spatial) aigenfuncéions.
Since a finite set of functiocns cannct be complete, these calculations
raised the question of how to expand the stream functicn of an arbitrary
disturbance in terms of the normal zodes. These suthors suggested that
in additicn %o the finite discrete spectrum, which they Zound, there is
a continucus spectrum,

In Part 1 (Grosch and Salven, 1978a), we dealt with the existence of
the continuous spectrum and the form of the related eigenfunctions for
both the temporal and spatial problems. ' We shoved that the Orr-Scmmerfeld
squation,for sny mean shear flow approaching s constant velocity im the
far fieldrpossesses a continucus spectrum; we Zave Jormulae for the
location of the temporsl and spatial continua in the complex wave-speed
plane; and we calculated $iie temporal comtizuum eigenfunctions ‘or some
paxrticuler cases. 1In this paper, we twm our atitentiocn %o the use of the
discrate and comtinuum sigenfuncticns of the Orr-Scmmerfeld squation %o
calculate the temporal or spatial evolution of an arvitrary solution of

the linear disturbance equations.
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Iz a recent oritique of the application of stabilisy theory to the
prediction of <ransiticn, Zerger and Arcessy (1977) point out chat, oz
the basis of the linmited experizental evidence that is availabie, the
coupling of free streaz disturhances %o disturbances iz the “oundary
layer aprears %0 be extraordinarily weak and extrezely selective in
frequency and vavenumber, Mack (1977) zakes the same point in a different
way. He points out thet "if there were no disturbances [inside the
boundary layerl), thers would be no transition and the bcundary layer would
rezain laminar. Coénsequently, it is futile %o %alk about transition

without in scme way bringing in the disturbances whick cause it ... ".

Mack sdds, "... the precise =echanism by which, say, ‘ree strean tusbulence,

scund, and diffrent tyTes of roughness cause transition remains to be

discovered.”

Tre zost detailed discussion of this problem appears to be that of
Obremski, Morkovin, and Landahl (1565). They consider various possible ,
mechanisms by which sound or vorticity waves in the free stream aight , !
iateract with the bcundary layer and cause transitizn. On the basis of | §
the available experizental evidence, they conclude that only a small g
Forticon of the exterzal disturbance field excites Tollmien-Schlichting
(7-8) waves in the boundaéy laysr and 2 signifizant portion appears %o
travel within the boundary layer with lizsle or 20 interaction. Tue
(unstated) conclusion seems to be that the zechanism which souples Zree
strean disturbances o a boundary layer and, thereby, initiates transition

{3 unknown.
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The cencral problem here is the soluzion of the general initial
and boundary value problexzs for discurbances to boundary layer f{low— how,
given the form of the disturbance at a time t = 0, to find its variacion
with time and how, given tha form of the disturbance ar all times on a
plane, x = O, perpendicular to the boundary layer, to find out how it
propagatas downstraam. In this paper, we approach thaese problems, in the
approximation obtained by assuming parallel flow and linearizing with
respect to the disturbances, by expressing the solution as a sum over the
discrete normal modes plus an intagral over the continuum eigenfunctions
of the Orz-Sommerfeld aequation. If the (discrete plus continuum)
sigenfunccions Iorma a complecs sat, cthis approach will yield a valid
solution of the problem.

Starting with Haupc (1912), a number of autchors ﬁave dealt with the
completeness of the set of temporal eigenfunctions in a bounded domain.
Haupt showed that the eigenfunctions for two-dimensional discurbances to
plane Couette flow form a complete set and Schensted (1960) proved
completeness for the eigenfunctions for two-dimensional disturbances to
plane Poiseuilla flow and for axi-symmetric .listurbances to Poiseuille

£low in a circular pipe. Yudovich (1965) and DiPrima and Habetler (1969)

have proven completeness of the eigenmodes for a large class of bounded
flows. We are unaware of any work on the completeness of the spatial
eigenfunctions or, previous to this paper, on the completeness of the

temporal eigenfunctions in an unbounded domain.
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In Section 2 we formulate the stability problem for two-dimensional
disturbances to a parallel shear flow, U(y), 0 <y < =, in terms of the
linearized equation for the stream rfunction and boundary conditions.

We next formulate the adjoint problem, A new result of Salwen (1979) is
then used to derive a pseudocontinuity relation involving solutions of
the linearized equation for theé stream functisn and the adjoint solutions.
This relation is then used to find the geiieral biorthogonality condition
for wave-1ike disturbances to the flow. The biorthogonality relation is

specialized to the cases of temporal and spatial stability. The orthogonality
relation for the temporal stability problem is that deri{ved by Schensted (1960)
and discussed by Reid (1965).

E The temporal stability problem is considered in detail! in Section 3. %
k |
t The solution is Fourier analyted with respect to x. Then the formal solution ' ?
E of the initial value problem for the temporal stability of a two-dimensional
disturbance to a parallel shear flow is expressed as an expansion in temms
) of the eigenfunctions. The expansion c¢oefficients are determined by inner
‘ products between the initial disturbance and the eigenfunctions of the adjoint
equation. We show that the disturbance vorticity at t = 0 is the proper initial

condition for the temporal stability problem.

In Section ¢ we examine the question of the completeness of the set of
] axpansion functions for the temporal stability problem. Very recently,
Gustavsson (1979) has treated the temporal initial value problem by using
Fourier-Laplace transforms. He finds poles in the transform plane which

correspond to the discrete T-S modes and a branch cut which corresponds to




the continuous spectrum. We show in this section that the Fourier-Laplace
transform sclution of Gustavsson 1s identical to our Fourier transform,
eigenfunction expansion solution for the initial value problem of temporal

stability. We therefore conclude that our expansion set is complete.

The spatial stability problem is considered in detail in Sectjon 5.
The solution is Fourier analyzed in t. The formulae for the four branches
of the continuous spectrum of the spatial stability problem are derived and
discussed. The formal solution of the boundary value problem for the spatial
stability of a two-dimensional disturbance to a parallel shear flow is
expressed as an expansion in terms of the spatial eigenfunctions. The
expansion coefficients are determined by inner products between the boundary
conditions at x = 0 and the eigenfunctions of the adjoint eguation. The
boundary conditions at x = 0 are discussed. We have not yet been able to
prove completeness for the set of expansion functions of the spatial stability

problem.

In Section 6, we apply the results of Section 3 to the simple case of a
constant base flow. I[n this case, we find the eigenfunctions and calculate

and discuss the temporal evolution of a particular initial disturbance,
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2. The linearized, two dimensional Navier-Stokes aquations: the

biorthogonality relation.

2.1 Formulacion of the problem

The basic flow under consideration is a parallel shear flow, U(y), ia
the semi-infinite region, y > 0. We are concerned wicth the temporal
or spatial developument of an "infinitesimal", two-dimensional discur-
bance to this flow, (ulx, v, &), v(x, v, £), 0)., In this case, u and

v can be expressed in terms of a stream functionm, P(x. ¥, t), by

“"g'ygv (1)
]
v--é-‘f (2)

and the linearizad Navier-Stokes equalions reduce to a single partial

difZerential equation,

2
3 udy e (U 1 g _ep
(a_:.g.uax)vf-d,z <" R Al 4 L4 0 &)
y
whare
2 2
3x° 3y
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In addition, ? must satisfy two boundary conditicns at y = 0,

g% 0. » -y(x, 0, t) = 0 (S)
and
:g% 0.t = u(x, 0, ¢) = 0, (6)
ad a "finiceness'" condition
rtl | ]dy-[:CIulzd- lvlzldy<°'- )

As a consequencs of eq. (7), ¥ must satisfy boundary conditions ac

infinicy,

_f a8y -+ (8

QX ar

?«’I“-é

For fixed x and ¢, P(x, ¥, t) belongs to a mzuifold, M,of functions,

" o(y), satisfying

2, 3, b
o, S 48 470 49 1) defined on 70, @), (9

dy’ dyz’ dy ki dya

et B o b i venami L L
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2 3
¢, g%. 9—%. -d—%. continuous on [0, =), (10)
dy  dy
4(0) = 0 and $'(0) = 0 (11)
and
[: |¢(Y)|2dy and J; Iﬁglzdy both exise. (12)

The continuum eigeniunccions which will be discussed in Sections 3 and §
do not satisfy eq. (12). Instead they belong to a manifold M' > M of

functions satisfying eqs. (9) « (11l) and a weakened condition,

dé

é(y) and r bounded in [0, =), (13)
We define an innar product,
(£, 8) = E f*(y) g(y)dy, (14)

in M. The star denotes the complex conjugate. This inner product is
defined for the full Hilber: space of functions sacisfying eq. (12) and,

in that space, has the usual properties of inner products.
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2,2 The adjoinc problem

For functions £, g € M we define the adjoinc.z+. of & in the

usual way by
[” (c(x.y,:‘)}.‘Z+3(x.y,:)}dxdyd:

- ‘(” > t(x,y.:)}.f;(x.y.:)}d:dyd: + Boundary Terms. (15)

The definition of the adjcint used here yields an adjoint operator which
is identical to the formal adjoint (Friedman, 1969, pp. 2,3).
An adjoint stream functionm, @(x. ¥y, t), is a solucion of the

*
adjoint equacion (with U = U),

’ -3
+& o 3.yl dU¥ 1 4P
I v v TP 2 T E et TP ., (16)
with the boundary conditions at y = 0,
@ .2 ., (an
x,0,t “1%,0,¢

and the finiteness conditien




S

4
i
3
*
7

[l e e
- r (al? + |92y <=
0

As sbove, equation (19) implies that s? must satisfy boundary conditions

é%g , %g?- 0 as y - @, (19)

“hen, as Yelow, we look for solutions to the linecarized stream
function equation (3) which have a wavelike behavior in x and ¢,
equation (3) reduces to the Orr-Sommerfeld équn:ion and equation (16)
veduces to the adjoint Orr-Sommerfeld equation. OJur adjoiat Orr-
Sozmarfeld aquation is the complex conjugate of the adjoint equation
derived by Schensted (1960) and quoted by Reid (1965). The reason for
this difference is that we define the inner product in the usual way,

(14) while Schensted's definition of the inner product (£, g3) involves

¢ instead of f*,

(2]
(2]
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2.3 Biorthogonality

Salwen (1979) has shown that the solutions of the linearized,
three dizensional Navier-Stokes equations, '\:. p and the adjoint

solutions ﬁ, T sacisfy a "continuity" equation

30 -
VIO (20)
where
A Tk =
. p.u *u (21)
Te(@ T+ 3c<va“>u'-"* (Va,)]
CRPRSR e T T e U
+ P +TE, (22)

and, as before, the star denotes a complex conjugate.
For the two dimensional discturbances considered here we will
incroduce two new inner products. La:g be any solucion of the original

problem and ¥ be any soluticn of the adjoinc problem, then define

<% > = r o dy = r(a—?-g-g+5'—rif)dy , (23)

0 3x ax 3y 3y
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and

t@.91 !r"x dy , (24)
0

b
with Jx' the x component of J, Using (22) and expressing U, p and 5.

% in terms of ¥ and & , it can be shown that

- 3 Ak a2 :ﬁ? g .%;h
T¥.23 .F{L;Q*L?- 3 ¥ ¥
0 R 3x3 X ax 5:23; ax g
2P » n 2
3%P* 3@ ¥°o .
’ +2333y ‘;'2'3"3;:5::‘
2 2
w AP 3@*
- 3cix T 3tax g
-uc?*ﬁ-ﬁ*g+ﬁw
ax? 9% & 527 7
- z:;%?-é-@‘p 1}dy. (28)
dy

The form of these inner products has been determined by the equations
for the stream function and the adjoint sctream function. However, we
can use aquations (23) and (25) to calculate inner products <f, g> and

T £, gl , evaluated at fixed x and t, of any functions £(x, y, t) and

glx, v, t).
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It is scraightforward to show that <f, g> is defined for the full
Hilber: space of functions which satisfy squation (7) and, in that space,
has the usual properties of inner products. Om the other hand, I ¢, gl
{s not positive definite. This is due to the fact thact it is possible to
have wavelike solutions to aquation (3) which propagate in aither the upstrean
(=x) or downstresm (+x) directiom.

With these definitions it is easy to show that
<32 +179 .81 .0, (26)

for any solutions of the original and adjoint problems.

1f? and Q are wave disturbancas of the form

' '
Gty = bty @ T e 21

@w - gw (y)‘i(ax - wt) , (28)
equation (26) reduces o

P IE N JONERRCURE I & J00S-JONE PRNC>

This equaction may be used to derive biothogonality relations for the

eigenfunctions of both the temporal and spatial stabilicy problens.
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For the temporal stability problem, a is real and given and a'
equals a. The orthogonality relation for the temporal stability problea

is then

W -u <P, Pormo, (30)

so the solutions of the temporal stability preblam and the adjoinc
solutions are orthogonal unlass w' = w®, The orthogonality condition,
equaction (30), can be recognizad as being essentially equivalent to

that derived by Schensted (1960; pg, 27, eq. (2.2.3)), and discussad

by Reid (1963). The only diiferenca is that Schensted's adjoint solution
{s the complex conjugata of ours.

In the case of spacial scability, w is real and given and w' =W and

the orthogonality relation is

@ oo T @, @00 (31)

Thus, unless a'= a*

the spacial eigenfunctions and adjoint eigen=~
functions are orthogonal with the inner product defined by equation

(25).
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3. The Temporal Scability Probles
3.1 The Eigenvalues and Eigenfunctions
For the temporal stability problem we modify the finiceness condition,
equation (7), to
[ [ a1y < - ") ;
- 4 y
This ensures that the Fourier incagral expansion of ‘P ,
?(xn b A t) = r LPQ(Y’ :)Ciax da , (32)
-l
exists. If we assume that (Pa is of the form
Y, (7, &) = 9 (N (33)
then éa is a solution of the Orr-Sommerfeld aguaction
" dzv N
{13 = 1aR{(U - o)Ly = ==l}e, = 0, (34) ..
dy y
with
c = w/a, (35) i
and
a2 2
La g -3 - e, (386)
dy 3

PR P R
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Similarly we assume that the adioint solutien, ‘Z’ i also satisfies

equation (7') thus ensuring that the Fourier incegral expansion of

¢(39 Y t) 'r %(yp !).1u da

il
exists. It is assumed that ¢L is of the form

- - -iu*e
Falrs &) = 2 (n)e '

t

with ¢  the solution of the adjoint Orr-Sommerfeld equation

2 o Wk U dny 3
(Lh + 1aR[(U - eM)L  + 2 dy dyJ} %y "0,

with
e* = wV/a.

Both ¢a. and 3a satisfiy the boundary conditions

9,(0) = $.(0) =3,(0) = 3,(0) = 0,

and either

(37)

(38)

(39)

(40)

(41)
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U >8> 8y * T3>0 a2 yoee (42)

it ¢a and 3; are in M, or the weaker condition

t -~ L d}

Oy by By 9, Dounded a5y +a, (43)

it ¢a and ;a are in M'. Those eigenfunctions which belong to M will be

called discrets eigenfunctions. Thoss which belong to ¥ but not M will
be called coutinuum eigzenfunctions.

It has been found (Mack, 1976, Grosch and Salwen, 1975, 1978a) thac,
in general, there is a finite number of discrete eigenfunctions, {¢am(Y)}
with eigenvalues (wan} and a set, (¢ak}’ of continuum eigenfunccions
with eigeavalues (wak} which depend continucusly on a real parameter, k,
in the range (0, ®»). (Note that the k of this paper is equal to ¢k of
Part 1.)

The aumber of discrete modes, which we shall denote by N(a), depends
not only on & but also on R and on the form of U(y) and can, in some cases,
be zeco. The adjoint eigenfunctions also include a finite set, {$;m},.of
discrete eigenfunctions and a continuum, {$;k}, with eigenvalues {w;m} and

{w* }, respectively (see discussion following (30)). For a4 given k, %
ak ak

and 5&& vary like a linear combination of .2iky as y+ ®, We thersfore
find that
fk‘f‘s . ke ' ”
¢, (7)dk and f Pt (¥)Ak € M 44
Kk=€ ak k=g ak
40
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; and thac, for any square-integrable £,

" - dé 43
| (£, 000 (6 )0 (4 =25, (f, =2 all extae. (49)

Iinner products between concinuum functions, such as <$ak‘ ¢le> do

not exist in the ordinary sense but are definable in terms of the Dirac

l

i d=function (Lighthill, 1960, pp. 10-21).

; The discreta eigenvalues must be searchad for (Mack, 1976),.but she
|

continuum eigenvalues follow from the asymptotic form (¢ak’ $;k ~» linear

combination of .ziky) of the sigenfunctions as y = = and U = Ul s (o)

i |
! a2
: (=k° - u‘)z - (13801 - iR )(-k2 - az) -0, (46a) 4
| ak
| |
: ;
"
(=% - aB)? + (1arU. - tR* ) (k% - a®) w0, (46b) |
i 1l ok !
‘ }
}
so that both equations yield i
|
| -1 02, 2 L
? Yoy " Gir)(k +a” + 1uRUl). an : \§
F . We also find that no continuum eigenvalue is also a discrete aigenvalue.
t
Then .
L
B 1
A
41 P
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‘

’
‘3“. $on'> = 0 for Wan ¢ Yo' (48a)
‘san' ak'> ® ‘5011:' Sgpt> = 0 (48b)
and
k,
- - '
Pak’ L gyt Sk'> =0 unless ky <k <k (48¢)
1
With proper labelling and normalizacion, it is then possible to choose
the eigenfuncticns in such a way that
<$Qn' mq> - Gm‘n (49a)
<$Qn’ ?akl) - ‘3“’ L’Qn'> -« 0, (49b)
and
Bt Pape> = Sk = kN, (49¢)
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3.2 Expansion of an arbitrary disturbance.

If the aigenfunctions form a complete set, then, for any time, ¢,

ve may axpand V&(y, t) as a linear combinationm,

N(a)
WG(Y. t)= L

£ ‘a(“' :)¢an(y> + fo a (a, t)%k(y)dk (50)

of those sigenfunctions. To find the coefficients (an} and {‘k} we may

make use of eq. (49) co take imner products

- N{a)
<¢Gn’ SPQ(Y- t)> = nF-]_ ln.(ﬁy :)va - ‘n(a’ t)o (51a)

Dyr Hylyy €> - f; 3 (@ ©)8(k =~ k')dk' = a(a, t).  (51b)

We then find that

3a_(a, ¢) . 39Q= 5
at an’ at

- -tw <$an' Wiy, €)> = -tu  a (a, t). (52a)

And, similarly,

Bt e e e R ART
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at ® By TIe o " iy 3. 1),
so that

s (a, t) = An(a)o-ima‘t
5,(a, ©) = & (@7 leRE

where

An(u) nn(a. 0) = <3;n, Se;(y, 0)>

A, (@)

Then, raferring co equations (32) and (50), we find

N(a)
Fix, v, 0) = j° (2 & (@, (e "

-0 nal

=-inakt iax
+ [: Ak<°)¢uk(Y)‘ dkle  da,

wheras

N TSP U oA S - S o

3@, 0) =<3, Wiy, 0> .

(52%)

(S53a)

(53b)

(S4a)

(54b)

(55)
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Ag@) = <G, W (y, 00>

- -;-# j: 3;‘(y) L r P(x, v, 0)¢” ¥ 4xdy

(56a)
-3 f' T o [ PP, e
r |, Ton A t=0 A
and, similarly,
@ =32 | PRPF I, «Faxdy. (s6b)
A g taet |, te0

If the discrete and continuum eigenfunctions form a complete set,
then equation (55) constitutes an expansion of the scream function of an

arbitrary disturbance in terms of the discrete (Tollmien-Schiichting)

and continuum wave solutions,

(y)et@*tant) 4 Q&(y)ci(“"%"t).

¢Gn

of the disturbance equation, (3}, with coefficients determined by the
initial form of the disturbance 9?(x. ¥y, 9). In the next section we will

show that the discrete and continuum eigenfunctions are a complete set.
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One interesting and significant resulc of this calculation is that the

inicdal discribusion of vorticity,

9
I0<3v y) & T(xv v, 0) 2 :'g':' - '%3'] . -7" 9 (%, ¥y 0), (37)
. ' 7 ox,¥,0

is sufficiant information to determine the coefficiencs An(a) and Ak(a)

and, therefore, zhe subsequent development of the disturbancae,

R RN A P S . sl o o e e
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4. Completeness of the Temporal Expansion Functions

Gustavsson (1979) has carried out a formal solution of the initial value
problem of temporal stability for three dimensional disturbances. He uses

the same coordinate system as we do with the additicn of the z coordinate

P S

in the cross stream direction. The formal solutionis obtained by taking
Fourier transforms in both x and z and a Laplace transform int, formally !

solving the Orr-Sommerfeld equation in the transform space, and formally

inverting the transforms. [f we eliminate the z-variation of Gustavsson's

solution and his Fourier transform in z (replacing his k by |a|) the two
solutions should be identical. Both Gustavsson and we express the solution
in physical space as an inverse Fourier transform over a, the transform j
variable in the x direction. In order to show that these two methods yield %
identical results it is therefore necessary to show that his formal solution 3 |
in Fourier space, v as given in (613)*, is equal to the factor in curly %

brackets in our equation (55).

In order to do this we must first translate Gustavsson's notation into §
our notation. Setting s = Q, after (G3) it is easily seen that we have the ' j

following correspondence, i

* In order to simplify reference to the equations in Gustavsson's paper

we will hereafter use the prefix G. Page references are also to Gustavsson's

paper. ;
3
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in (G3) and thereafter.

Gustavsson gives the formal solution in Fourier space in equation (G18).
It consists of a sum of the residue values at the poles plus a contour
integral along a branch cut. Using the definitionsof W as the Nronskian,
aad the Dj)given after (GGZJand the $4s equation (G7), it is quite straight-

forward to show that the residue, Rv. at a pole Sy is

R, = (e5E/M) Jm ((s=s,) Caj(s)ey(y,s) + ay(s)e,(y,s)Il. (58)

v
Therefore the residue consists of a linear combination of ®y and ¥y
the solutions of the Orr-Sommerfeld equation that approach zero as y + =,
; i.e. they satisfy (G4) and (42), At s = S, » ¢7 and ¢, satisfy the usual
eigenvalue condition at y = 0 for the discrete modes of the Orr-Sommerfeld
equation, condition (Gb) (at the bottom of page 1503). This linear combination
thus satisfies (41). Therefore the residue at S, is proportional to our discrete

eigenfunction ¢av(y) with eigenvalue w,,» and

esvt s e-iua\)t .

48




r
]
|
q
]
d
3

N

It is well known (Coddington and Levinson, 1955, p. 101, problem 19)
that [DJ/NJ*. the complex conjugates of the functions used in (G6), are
solutions of the adjoint equation (39). It can be seen from the form of
(G11) and the definition of our inner product (23) that

3 m D e w3, (9)

"s0 that the coefficientof q)w (y) in the residue is the inner product of

some solution of the adjoint equation with ¢(y,0). Finally, some straight-
forward, but tedious, algebra shows that the particular linear combination
of the DJ* involved satisfies the boundary conditions (41) and (42) and

therefore is a multiple of our gav . We thus find that the residue at 5, is

-fw ¢
Ru s da\) Av(n) b0 @ v, , (60)

with dav independent of y aid Av(°) given by (54a). Before determining d,,,

we turn to the contributfon of the branch cut.

Using the fact that our w = is, it is clear from (G14) that the branch
cut in the complex s plane is our continuous spectrum in the complex
w (or ¢) plane and that the branch point, u = 0, corresponds to the limit
point of our continuous spectrum at ¢ = U1 -1 az/R. with U] = 1. The function
Fla,k; y) in (G18) is, by (G17)and (G19) a linear combination of the sotutions
of the Orr-Sommerfeld equation which are, as y + =, asymptotic to e'“y.

e'iky, and e+iky. It can be shown, using (G19), (G20), (G21), and (G22), that

défy .o, (61)

F(a,k;O) = (Wy 0
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and so F{a,k; y) is some multiple of our continuum eigenfunction ouk(y).
Further, it is obvious that, in (55),

2,,2
e.imakt - e-'laU]t e-(u +k°)t/R (62)

in (G18) with U] =],

Just as for the discrete modes, the iai) , v =2,3,4in (G21) are the
inner product of some solutions of the adjoint equation with g Using the
definition of the E in (G22) and the definitions of the P as given
in the next to last paragraph on page IGOf)some algebra shows that the
particular 1inear combination satisfies the boundary sonditions at y = 0
and so the inner product in (G20) is a multiple of the inner product of our H
continuum adjoint, é;k(y>. with the initial condition. Therefore, the integral

term in (G18) is

I s J dyy Acla) o (y) e togt gk | (63)
[+}

with Ak(a) given by (54b) and d,, independent of y. Gustavsson's result (G18)

thus takes the form (in our notation)

N(a) .
by (o) = T gy Ayla) 0, (0) e Pugy®
+ j d e Ale) o ly) e Muek® dk (64)
! ,

Both Gustavsson and we may c¢hoose our initial condition arbitrarily,
provided that the various integrals of this function with the adjoint functions

exist. If we choose the initial condition that wa(y.o) is one of
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' the discrete eigenfunctions, say ¢ _(y), then in (55) ; 4
Apla) = &p (65a) i

‘ Ala) = 0. (65b) |
In Gustavsson's formulation (63) we have ‘ i

; 4., Ala) =6 (66a) & }
| | Afa) 20, (66b) i
F f We thus see that i
ay F 1. (67) 1

2

e Lo

[f we then choose the initial condition ‘f?
i

k+e |

\’la(.YpO) = J %kn(.Y) dk' , (68) ;

keg T

’ ' a similar argument shows that |
' d .k £ 1. (69)

[ Substitution of d = d , = 1, (67) and (69), makes eq. (64), derived from

’ Gustavsson's solution, identical to the curly bracket in our expansion
solution (55). We have thus shown that the formal solution obtained by
Gustavsson frcm the Fourier-Laplace transform is identical, term by term, to

our formal expansion solution.
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Since any square-integrable solution possesses a Fourier-Laplace
expansion, we have shown that our expansion (55) is complete whenever it
is valid to separate the Fourier-lLaplace transform solution into a sum over
the poles plus an integral over the branch cut == that is, whenever the sum
over the poles (discrete eigenvalues) converges. This is, of course, ilso

the condition for the validity of Gustavsson's solution,

For the Blasius boundary layer, the numerical evidence (Mack 197€)
indicates that, at a given R and a , the number of discrete modes is finite,
so that the sum over the poles is a finite sum. If this is so, then the

above condition 1s certainly satisfied and our expansion functions form a

complete set.

We have shown that the Fourier-Laplace transform result and the eigen-
function expansion result are different forms of the same solution of the
initial value problem to be chosen according to convenience in a particular
case. The efgenfunction expansion formulation gives explicit formulae
(54 a,b) to calculate the expansion coefficients. This allows one to calculate
the amplitudes of the discrete modes (TS modes) and the continuum functions,

given the initial distribution of vorticity.
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5. The spatial scabilicy problem

£,1 The eigenvalues and eigenfunctions

The finiceness condition,equation (7), is modified for the spatial

stability problem to
32, 3¢
— < =,
’ ‘o (laxl 332,! }dedy < »

This ensuras cthat the Fourier integral expansion of ? ,

Pix, v, ¢) = Jl’ Y, (x, y)a 8y,

-l

exists. If ve assume that Y/ 1is of the form

W Gz, 9) = 8 (el

then ¢w is the solution of the Orr-Sommerfeld equation

2 47Uy,
(La - 1R{(aU - W)L, - 3 , 2].% -0,
Y
with La given by (36).
) " i e

BRIV Sy 5 P SR g =

(7"

(70)

(71)

e o RN i e B i o i, i 5% i
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Sizilarly, we assude that the adjoint solutiom, 9? ,» also satisfies

equation (7") thus ensuring thac

':;’(x. Y, &) = r

‘;N (xo Y) ‘-imtdu

exists. We assume that
7 ~ 1a®x
Y, % ¥) =8 (v)e .

Then 5@ is the solution of the adjoint Orr-Sommerfeld equation

2 * #dUdys |
{Lgwt 1R0(™0 = WLye + 20* 2 dyl}¢m 0,

The boundary conditions are
' ~ ~y
$,(0) = ¢.(0) = $,(0) =9 (0) =0,
and
¢w*¢(:)‘5w*34:)‘0 as y+®

if ¢m and 3@ are ia M, or

(73)

(74)

(75)

(76)

(77)

L e b N & e
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o, 3, 9, 9,  bounded as y+w, (78)

ig ¢m and $m are in ', As above, the eigenfunctions which belong to
M are the discrete eigenfunctions and those that belong to ¥' but not M
are the continuum eigenfunctions.

Jordinson (1971), Corner, Houscon, and Ross (1976), and Murdock and
Stewartson (1977) have shown thac there is only a finite sat of discreta
eigenfunctions, (@mn(y)}, with eigenvalues (awn}° The set of discrete
adjcint eigenfunctions, ($mn}' with eigenvalues (u;n} is also finice.
The number of discrats modes, N(w) depends on R as well as W and can ba zero.

In part 1 we showed that, in an unbounded domain, the spatial
stability problam always has a contiauous spectrum. Since then we have
discovered (Grosch and Salwen, 1978b), thac the spatial continuum of
Part 1 is only one branch of a four branched spatial continuum, It is
quite easy to show the exiyrenca of the four branches of the spatial
continuum. We look for solutions to squations (72) and (79), ¢mk(y) and

Lky as y = = (che k used

smk(y)' for a given raal k, which vary like ot
in discussing the spatial continuum in Part 1 is 2/R times the k used here).
Noting that, as ¥y + o, U =+ Ul' a constant, and U', u" - 0, we have

(-cs2 - kz) (-a2 - k% - {oRU, + iwR) = 0 , (79a)

1

and

(=x*%= k%) (=a*e k2 + 1o *RU{= LuwR) = 0. (79b)

(Notea that aquations (7% and b) are complex conjugatas.)
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It is obvious that there are four roots, (aj}, =1, ..., 4 with !

al and az the roots of

2
af + 1RUja, + k2 - LR = 0 (80)

and

B D

03 - 1k » a6 ® «ik (B‘Q.b)

The aigenvalue a the root of aquation (80) with positive real part,

is the continuum eigenvalue discussed in Part l. As was éiscﬁised in

Part 1, the eigenfunctions of this branch of the spatial continuum
are waves propagating in the downscream (+x) direction and decaying in
awplitude as they travel. In the same way it can be shown that “2 is
the eigenvalue of a continuum eigenfunction which is a wave traveling in
the upstream (-x) direction and decaying as it travels.

The free stream spedd, Ul’ can be taken to be unity for a boundary
laver, wake, or free shear flow. In most cases of interest w/R < < 1,

It is easy to see that, with Ul = 1, and W/R < < 1,

%

\ 3
2 ® 2w = G TN F @R+ o (82)

B R ...’ﬁ- I.'.m"m

with
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yw (1l + akzlgz)xlz .

Define, as usual, the phase speed ¢y by

Then as k = 0,

a S we 1R£(w2 + kg)lkzl.

- ) a A
=w = 1R(1 + (u° + 7)/R"],

2
2
’

1= 40 + kD) /221 i),

‘e

T -/R)? + L/RCL + (P + k2)/R%D

'}
3
t

While as k = =,

(WR/2k) + ik ,

2
re

2
[

=-Q

e

WR/KC - twlk ,

0
it

. S

e

(83)

(89

(85a)

(85b)

(86a)

(86v)

(87a)

(g7b)

(88a)

(88b)
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The damping rate, for the spatial aigenfunctions, is Im(a) and the

phase speed is Ra(c). The aquations given above show that the aigenfunctions

on branch two of the spatial continuum, for boundary layers, wakes, and
free shear fiows, always hava both a very large damping rate and a very
small thase speed. This is in marked contrasc to those of branch one,
which, as was shown in Part 1, or can be saun from the above rasults,

contains lightly Jdamped eigenfunctions some of which have a very slow

phase speed and some of which have a phase speed nearly equal to the tree

strean speed.

The spatial continuum eigenfuncticns of branches 3 and 4 are standing

waves in x because they vary like

Jloax o= RIS +lex

As in the temporal case, the inner produccs between the spatial

(89a,b)

continuum eigenfunctions do not exist in the ordinary sense but can be

defined as § functions. Then,with proper labeling and normalization,
it is possible to choose the aigenfunctions such that (with the super-

script 1 or i indicating the branch of the continuum)

E‘@m' ¢®n‘ﬂ - ém' ’

To D = TEL 003 = 0

T3, o1 = sk hs,

(90a)

(90b)

(90¢)
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where

- e Qwu),- 2
T3, 4T zﬁt———n—-——.uum.

do*  de

r AN T s Pwn Fan'y
2 2\ah
+ Ut(amn' * %' %un * “mn)¢mn gmn'

- 2%
+oﬁ“.‘.‘.d_¢i“_‘l:.+d°“‘“ b 41}
* dy dy dy “un'* Yo

and there are analogous exprassions for the inner products in (90b)

and (90¢).

(91)

g L
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5.2 Expansion of an Arbitrary Disturbance.

If the spatial eigenfunctions form a complete set, then, for any

X, We may expand tPm(x;. y) as

N(w)
Wolen 1) = T a0 3,000 + :E& ; 1M @, Dol ek,

In order to find the coeff.icicn:s(a (@, x)} and (a.ki) (W, X)} ve use
equation (90) to take the inner products
N(w)

w (". Y)n - ,z 3n' (w, x)énn' - .n(mv x),

"m n =i

wk‘

Then
da_(w, x) i ~
n ~ Wn .
Ix -C Pun’ '5.?1] mumm %\n’ L4 mn
- f@m ‘n(mv X),
and .

el S e a2 e Kt S b wimn e, AT

3, ¢ x, N1 -r B, 06k - kN6 dk' = 2P, 0.
0 & 43 k

(92)

(93a)

(93b)

(94a)
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0 W, x) 3 '
- a ..._ﬁ - (i) “~
5w — "z wk' 3% ek Egmk’ ¥,3
(1) (1)
= daL &% W, %), (94b)
s0 that
an(w. X) = An(w)oiawnx ’ (95a)
(1)
oo, 5 » alt) () olokx (95b)
where
AW Ta (w0 =T3,, Y0, nI, (96a)
AW 2P, 0 =15, ¥, nI. (96b)

From equations (73), (92), and (95), we have the formal solution to
the spatial sctability problem for the two dimensional, linearized

Navier-Stokes equations

N (w)
Pax,y, )= [T (L An(w)d:m(y)em“’ﬂx

— =1

-

(1) -
!: A woel (y)ei%‘i‘ “ade w . (g7)
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Define

¥4 = Yo, » -—f‘P(o y, e,

ACIRANS 2 ¥ t) tue
U e B - [, &

x=0

2

2 2
wiz)(y) (3 %(x. Y)) --zl;?r (L&._zl'_:_)_) .iwt de,

ax - -» 9% =0

3 3
Wi () (3 W Y)) _%r @ Pix, ; D)y Gty

x=Q - - ¥x x=0

Then
An((ﬂ) - E@um» wm(.or Y)B
~ - (2) 2 7 (1)
v r;%t":m wif)z) * ic\un é:m "Uw = %n ¢::n Fw
da* 4,(0)
3« ()]
R TN g P Tl
1)
ot ‘l’( v w(l) i w(0) -
- - ) — v m[¢:n9’m - i ¢fﬂ' ‘Fm 4
1 (0)
\:u LPnE;Z) + e, ‘3* w( ’- amnﬂr "ym
0)
9 d—ﬁ"& dw,‘i Q*n @(0)«‘, dy,
“ 2% Tay 2

dy

t.

(98a)

(98b)

(98¢)

(98d)

(99)
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and thers is a similar expression for A‘(‘i) G

This is the formal solucion of the spatial stabilicy problem
for an arbitrarily imposed boundary condition at x = 0. The boundary
conditions which oust be specified are the Fourier cransforas in timae,
of the stream funczion and its firsc three partial derivacives with
respect to X, evaluated at x = 0,

As it stands, this formal solution will not give a physically

acceptable solution Yecause, given an arbitrary ‘.D(O. ¥y, &) and derivacives,

T

disturbances which lie on all four branches of the continuum will be
excited. Thaerefore the solucion will contain, in addition to the waves
propagating towards x = ® and the standing waves whose amplitude dacays
towards x = @, waves propagating upstream from X = ® and standing waves
whose amplitude increasas towards x = =,
A condition must be imposed thac, for x > 0, all propagating dis-
turbdnces are traveling in che positive x direction and all standing
waves have aoplitudes which decay in the positive x diraction. It appears that this
should be done by requiring that (o, ¥, t) and its first three partial
derivatives with respect to x be orthogonal to all eigenfunctions on
branches 2 and 4 of che continuous spectrum but we have not yet investigated
the implications of imposing this condition on the disturbance stream

function at x = Q.
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6. _Applicacion to the Temporal Development of a Model Flow

In this section, we apply the results of saction 3. %o the simple

base flow,
U(y) = U, = constant, 720, (100)

which is a slip flow past a bounding plane at y = 0. Though the base
flow velocity does not vanish at the boundary, we still require the
disturbance velocity to be zero at y = 0. 3Because of the simplicity of
the base flocw, the axpansion functions are elementary functions.

In 6.1, we find the expansion functions. In this case, there are no

discrete eigenmodes; all of the eigenfunctions are continuum functions.

In Subsection 6,2, we solve for the time-duvelopment of a particular
inicial disturbance by expanding in terms of these eigenfunctions, The
inicial disturbance chosen is a periodic layer of vorticity confined to a
plane ptrallei to the (y = 0) boundary. Because of the simple form of the
initial disturbance and the simplicity of the base flow, it is possible to

obtain the solution in closed form in termss of error functions.
6.1 The Eigerfunctions

Fou the base flow of Equation{100) the differential equation, (34),

for the expansion functions becomes
2 2

(L5 -e?-tr (v, - NS ~ads a0, (101)
dy” dy
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with the general solution (for % ¥ 0, ¢ § U,
¢ - A."“iy + 30i%17 4 c?? + 7?7 (102)

where

p2 = “2 + ﬂ:R(Ul - e).

(103)
(In this case of comnstanc U, 3 must satisfy the same differential equatiom).
In addition, % must satisfy Eqs. (11) and (13); {.e., 4 and &' must
vanish at y » 0 and be bounded ia [0, *). Since .[a{y is unbounded,

Be 0, To satisfy the boundary conditicn at the origin, we oust then have
¢ = ACc-luly - cosh py + l%l sinh pyl , (104)

which is unbounded as y = ® unless p is purely imaginary. The solutions

are then given by

p = ik; 0<kem, (105) :

w,, = -1(a® + «° + 10RU,)/R

2k ‘ SER (47) |
3@ = 3 = a L@ L con iy 8l sn g1, (106)
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where the nor=alization constant,

k 2
Ay == "- (107)
ak " TLUINT
is determined by the condition

B » B = Sk = k. (108)

In this case, where the 9ok and 3ak are known explicitly, one may

show directly that, for F(y) any continuous, differentiable, square-
integrable function in [0,%),

[ B ook = Fly) = elol (o) (109)
o

thus confirming that the set of (¢“k} is complete for functions in M,
with F(0) = 0.
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6.2 The Temporal Evolution of An Initial Disturbance

In order to demonstrate the application of chis expansion tschnique,

we consider the particular {nicial disturbance

'72 g(xv 7, 0) = I(xy ¥, 0) » TO .Lﬂox 3y - YO)! (1]0)

a periodic layer of vorticity at a distance Yo from the boundary.
Tollowing section 3.2, we find that the stream function at any tize will

be given by

T P P g 7V ) 4
Fixoyy0) =) Ly @0y ) o okt g o*%F ga , (1)

where

A @) =5 . Tl r Tix v, 0¢7 1% axay, (12)

It 1is easily seen, by substituting q. (110) iaco Eq. (112, that

Av‘(u) - ¢ak(Y0) 5(G - ao) [y (113)

so0 that
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Pz, v, o) = r E B (Tg)8 (@ = @Q)d, (y) «7HRKE g G18% 4

2 2
. oI00(x = Ure) _-agc/R r; 4’@‘(’0) o (y) &% R . (114)

%

After using Egs. (106) and (107), for ¢°6" we find that each term in the
integral is axpressible as sums of error functions. The results are given
in an Appendix. From these rasults, it can be shown that, for t + ® with

y fixed,

1 2
P ~"___;. 0ER L, o9fx = U,e) - (function of y) (115)

and, for y = = with t fixed,

¢ - .‘QﬂY + ¥0) cos cb(x - Ulc) » (funetion of ). (116)

Iz is clear that, even though the individual eigenfunctions used in the
expansion oscillate with constant amplitude as y - @, the wave packet behaves

like C‘:‘)y“ y +®,
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Figure 1 shows contour plots of the stream function for the disturbances,

in a Zrame of reference moving with the fres stream velocity,at six different

times., We have chosen 4 = 1.0 and Y9 " 1,0 for che example shown heres.
Contours of the disturbance stream function have also been calculated

for ocher combinations of values of A and Yo and, for these ocher values,
the evolution of the disturbance ii tine s quite similar to that shown
in figure 1.

In figure 1 the (+) and (=) indicate the position of :h§ maximum and
ainizum valuas of che stream function. These maximum and minizum values
are given in the caption to the figure. The flow is counter-clockwise
arsund a maximum (+) and clockwise around a minimum ().

It is clear from this figure that the discturbance, which is a periodic
vortex sheet a:z t = O, retaing its identity as a periodic array for all
time, buc as time increases it diffuses, the sctraength decays, and the
centers of the vortices drift away from the boundary at y = 0.

We could, of course, generalize this model problan by considering an
initial vorticty distribution in the y direction. We have not carried out
this caléilation becauss cur intent in solving this model problem was to
{lluscrate the expansion procedure aand we do not think that it warrants

further elaboration,
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Figure Caption

Figure 1:

Contours of tha disturbance stream function for the model
problem in a frame of reference moving with the free stream
velocity at six different times. In this examplc)'o = 1.0,
ao = 1,0, and Yo " 1.0, Thera are twenty contour lines on
each plot. The values of ¢' on these contours are 0.9 '.‘pmax.
0.85 ?aax, vy =0.95 ¥ max. The (+) and (=) indicate

w -
the positions where ¥ = g}':uax and ymin. Nete that

Qmin - L‘?max'

- -3 =

(a) e/R=1070 , P =o0.425
-2

(b) t/R = 107 Q{nax = 0.359
-1

() t/R=107F , @  ao0.212

max

(d) e/R=1.0 |, 0.228 x 107+

oax

3

ASTIAN

0.108 x 10~

]

(a) t/R=5.0 ,

]

v

(£) t/R = 10.0 , 0.383 x 10

max
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Appendix: Soluticn of the Model Problem

In section 6 we showed that the stream function for the model

problem is, equation (114),

: 2 2
Pixs 5, ) = Jo0(x = Ue) ~age/R f' SREe/R 5 (708

0 3 ¥

(y)dk,

*

where ., (y) is given by (106) and (107). Subscituting for ¢%§(y) and
0

¢a&(y°) in this integral it is straighcforward to show that, with

t = t/R,

Pix, v, t) = cleolx - Ult){tl(ao. 1) - 207 {z(ao. T, )

+a, a oY I3(G0' T, yo) - ¢ %0Y0 Iz(co. T, Y)

0
rrr e, T,y by FEI (e T, ¥ - ¥,
2 12 T o) t7 % T Yo
-agy
- aO IJ(aO’ T, ¥y + yo) + a, e 0 13(a0, T, Y)

12 1.2 .

(AD)
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where the functions Ig are given by

|
i
15
|
1
|
2 2 2 i
rlca.r)-%.'“rra‘”cz"zzjdk ]
0 k® +a%) 1
.
- a7ltd + o¥n erte (@t - E- 0T (A2) i
T |
2 2 2

LG, T, 2) = 2,0t r T cos kzdk 1
0 (x* +a) 41
|
1
- Tla' £q + 2321' - aZ)c-az erfc (ar;’ - c:zlzar") i
|
!
+ (1 + Zazt + GZ)eaz erfe (m‘" + azlzar&) ; l
.
oo 2 2,2,,.2 % |
_ Lot .at.-azlaa.r]' (a3) i ;
2t [P ol y ; 3
I(a, 7,2 55T [ ™ gl sin x2dk B
0 (x° +a%)* ’«i
]
|
- Lz E(Zc&zr + c'.z)emz erfe (a‘t&‘ + aZ/ch';s) 1
ba 1
" |

- (Zazt - aZ)c’az erfc (u-c;’ - az/2at)d, (A4)
f =
73 ‘
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2 2
I 7, 2) 2 :i"- Pl r kT f“"'z"‘l—i"ij cos k2dk
' 0 (k¢ +a%)
= -lg Q1= 2a21 + aZ)o'az arfe (arh - az/2ark)
4a

+ (1 - 2%t - uz)cqz arfc (atk + aZ/Zark) .

* i 2. _ 2,2,,.2
+ 4at ST 2%/6a T, (AS)
T
and, as usual
2 -g? (46)
arfc(Z) & — e ég.
VO A
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APPENDIX C
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transform solution? for the temporal evolution is equivalent to the eigen-
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EIGENFUNCTION EXPANSIONS AND BOUNDARY-LAYER RECEPTIVITY
IN THE THEORY OF HYDRODYNAMIC STABILITY*

Chester E. Grosch
Department of Oceanography and Department of Mathematics
01d Dominion University
Norfolk, V.A. 23508

and

Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Technology
Hoboken, N.J. 07030

ABSTRACT

In this paper we give the solution of the boundary-layer receptivity problem:
that of determining the amplitudes of the Tollmien-Schlichting modes and
continuum eigenfunctions of a boundary layer given the form of the velocity
profile and the disturbance, within the context of incompressible, linear
stability theory for a parallel shear flow, We give the formal sclution

to the initial value problem for temporal stability and give the proper
initial condition for this problem. The formal solution of the spatial
stability problem is also given and the proper boundary conditions at x = 0
and radiation conditions at x = = are discussed. We give examples of the
application of this method to the calculation of the temporal evolution of
a particular disturbance in two flows, a constant base flow and the Blasius
boundary layer.

*This work was supported, in part, by the National Aeronautics and Space
Administration under Grants NSG 1618 and 1619.
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EIGENFUNCTION EXPANSIONS AND BOUNDARY-LAYER RECEPTIVITY
IN THE THEORY OF HYDRODYNAMIC STABILITY

Chister E. Grosch
Department of Oceanography and Department of Mathematics
O0ld Dominion University
Norfolk, Va. 23508

and

Harold Salwen
Department of Physics and Engineering Physics
Stevens Institute of Technology
Hoboken, N.J. 07030

SUMMARY

The last ten years has seen an increasing use of the theory of hydro-
dynamic stability to predict transition in boundary layers. Mack (1977)
gives an excellent, up to date review of various transition prediction
methods. All of these methods include at least one unknown parameter
AO, the initial amplitude of the disturbance in the boundary layer.

There are numerous discussions of the boundary-layer receptivity problem,
that is, the problem of determining Ag given the velocity profile of the
boundary layer and the disturbance (Obremski. Morkovin, and Landahl, 1969;
Mack, 1977; Berger and Aroesty, 1977). All of these authors conclude

that the mechanism by which free-stream vorticity and sound disturbances
generate Tollmien-Schlichting waves in a boundary layer is unknown.

In this paper we give the solution of the boundary-layer recep-
tivity problem within the context of incompressible, linear stability
theory for a parallel shear flow. The expansion of an arbitrary two-
dimensional solution of the linearized stream function equation in terms
of the discrete and continuum eigenfunctions of the Orr-Sommerfeld
equation is discussed for flows in the half-space, y €[0, =). A recent
result of Salwen is used to derive a biorthogonality relation between the
solution of the linearized equation for the stream function and the
solution of the adjoint problem.

For the case of temporal stability, the orthogonality relation
obtained is equivalent to that of Schensted (1960) for bounded flows.
This relationship is used to carry out the formal solution of the
initial value problem for temporal stability. It is shown that the
vorticity of the disturbance at t = 0 is the proper initial condition
for the temporal stability problem.

For the spatial stability problem it is shown that the continuous
spectrum of the Orr-Sommerfeld equation contains four branches. The
modes on these brances are (1) waves propagating downstream, (2) waves
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82

N

e

o

EAE - P

B P



e o

propagating upstream, (3) standing waves whose amplitudes decrease down-
stream, and (4) standing waves whose amplitudes decrease in the upstream
direction. The biorthogonality relation is used to derive the formal
solution to the boundary value problem of spatial stability, We show
that the boundary value problem of spatial stsbility requires the stream
function and its first three partial derivatives with respect to x be
specified at x = 0 for all time. The imposition of a radiation condition
downstream, i.e. at x = », eliminates disturbances which originate at

x = » and travel upstream to x = 0, The imposition of this radiation
condition reduces the number of independent boundary conditions at x = 0
from four to two.

We give two examples of the application of this method to calculate
the temporal receptivity of boundary layers to a disturbance. We specify
the disturbance at t = 0 to be a vortex sheet parallel to the boundary and
sinusoidal in the streamwise direction. We then calcu:iate the evolution
in time of this disturbance in (1) a constant base flow, for which the
calculation can be carried out analytically and (2) in the Blasius boundary
layer for which we calculate the amplitudes of the discrete Tollmien-
Schlichting waves and of the continuum eigenfunctions numerically.

Berger, S.A and Aroesty, J., 1977. "e3": Stability Theory and Boundary
Layer Transition. R-1898-ARRA. Rand Corporation.

Mack, L.M, Transition Prediction and Linear Stability Theory, AGARD
Conference Proceedings No. 224, Laminar-Turbulent Transition, Paper
No. 1.

Obremski, H.J., Morkovin, M.J. and Landahl, M., 1969. A Portfolio of
Stability Characteristics of Incompressible Boundary Layers, AGARD
No. 134.

Schensted, I.V., 1960. Contributions to the Theory of Hydrodynamic
Stability, Ph.D. dissertation, University of Michigan.
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