NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.
SOLAR HEATING, COOLING, AND DOMESTIC HOT WATER SYSTEM INSTALLED AT KAW VALLEY STATE BANK AND TRUST COMPANY, TOPEKA, KANSAS - FINAL REPORT

Prepared from documents furnished by
Kaw Valley State Bank and Trust Company
1944 North Topeka Avenue
Topeka, Kansas 66603
Under DOF Contract EG-77-A-01-4030

Monitored by
National Aeronautics and Space Administration
George C. Marshall Space Flight Center, Alabama 35812

For the U. S. Department of Energy
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>1</td>
</tr>
<tr>
<td>PROJECT DESCRIPTION</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>DESIGN PHILOSOPHY</td>
<td>2</td>
</tr>
<tr>
<td>OPERATION OF SYSTEM</td>
<td>4</td>
</tr>
<tr>
<td>1. MODE 1 - Collector Loop Operation</td>
<td>4</td>
</tr>
<tr>
<td>2. MODE 2 - Heat Projection Operation</td>
<td>4</td>
</tr>
<tr>
<td>3. MODE 3 - Collector Loop To Storage</td>
<td>4</td>
</tr>
<tr>
<td>4. MODE 4 - Solar Energy DHW Preheating</td>
<td>4</td>
</tr>
<tr>
<td>5. MODE 5 - Storage To Heating, Ventilating, and Air Conditioning (HVAC) Loads</td>
<td>4</td>
</tr>
<tr>
<td>PROBLEMS/SOLUTIONS</td>
<td>6</td>
</tr>
<tr>
<td>ACCEPTANCE TEST</td>
<td>8</td>
</tr>
<tr>
<td>APPENDIX A MANUFACTURERS LITERATURE - ARKLA ABSORPTION CHILLER</td>
<td>A-1</td>
</tr>
<tr>
<td>APPENDIX B MANUFACTURERS LITERATURE - HONEYWELL INC., CONTROLS</td>
<td>B-1</td>
</tr>
<tr>
<td>APPENDIX C MANUFACTURERS LITERATURE - MARLEY COOLING TOWER</td>
<td>C-1</td>
</tr>
<tr>
<td>APPENDIX D MANUFACTURERS LITERATURE - GENERAL ELECTRIC COLLECTORS</td>
<td>D-1</td>
</tr>
<tr>
<td>APPENDIX E MANUFACTURERS LITERATURE - BELL & GOSSETT HEAT EXCHANGER</td>
<td>E-1</td>
</tr>
<tr>
<td>APPENDIX F SYSTEM DRAWINGS</td>
<td>F-1</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
Summary

The Kaw Valley State Bank and Trust Company of Topeka, Kansas, is a recipient of a grant in the second cycle PON of the Demonstration Program to be applied to its north detached facility. This facility utilizes 72 General Electric evacuated tube, liquid collectors, creating 1068 square feet of effective collector area, which will heat an 1100 gallon thermal energy storage tank. Energy will be drawn from the tank as required to provide space heating by direct transfer to the supply air of the building environment. If cooling is required, the hot water from the storage tank will be used to fire four (4) staged, three (3) ton ARKLA absorption chillers, which in turn cools the supply air. The auxiliary energy source is a conventional natural gas fired boiler. The solar system at a cost of approximately $94,000 is expected to provide 74 percent of the annual cooling load, 47 percent of the heating load, as well as 95 percent of the domestic hot water.

This project is the result of a dedicated joint effort of a team consisting of: The Kaw Valley State Bank and Trust Company, Mr. Glenn Swogger, President, is the owner of the facility; Robert S. Slemmons and Associates, Architects and Project Managers; Burgess Engineering, Inc., Solar Systems Engineering; General Electric, Procurement and Solar Collector Design; Ed Young Company, Solar System Contractor.
Project Description
Solar Heating, Cooling and Domestic Hot Water System
Kaw Valley State Bank and Trust Company
Topeka, Kansas

Abstract
Application - heating, cooling and domestic hot water
Collector Type - evacuated tube, hydronic collectors
Collector Manufacture - General Electric Corporation
Collector Area - 1068 square feet - 72 panels
Storage Capacity - 1100 gallon
Cooling Capacity - 12 ton (total) absorption chiller
Building Owner - Glenn Swogger, President, Kaw Valley State
Bank and Trust Company
Architects - Robert S. Slemons and Associates
Engineer - Burgess Engineering Incorporated

Introduction
The Kaw Valley State Bank and Trust Company site is a commercial
building in Topeka, Kansas. The building has approximately 5,600
square feet of conditioned space. Solar energy is used for space
heating, space cooling, and preheating domestic hot water (DHW).
The solar energy system has an array of evacuated tube-type col-
lectors with an area of 1068 square feet. The array faces 5 degrees
east of south at an angle of 45 degrees to the horizontal. A 50/50
solution of ethylene glycol and water is the transfer medium that
delivers solar energy to a tube-in-shell heat exchanger that in
turn delivers solar-heated water to a 1100-gallon pressurized hot
water storage tank. This heat-exchanger-to-storage loop is plumbed
in parallel to a second tube-in-shell heat exchanger that provides
preheated DHW to a gas-fired hot water heater. When solar energy
is insufficient to satisfy the space heating and/or cooling demand,
a natural gas-fired boiler provides auxiliary energy to the fan
coil loops and/or the absorption chillers. Since the DHW load is
very low, the DHW system is not instrumented. The solar energy and
heating, ventilating and air conditioning systems are fully auto-
mated, requiring only a manual seasonal changeover.

Design Philosophy
The underlying philosophy of this project was the concept to
truly achieve maximum energy conservation. Energy conscious design
was employed throughout all phases of this integrated project.
ASHRAE Standard 90-75 was used as a guideline in the selection of
materials and systems of construction in the design of the structure.
In general, all components exceed the standard. Design of the struc-
ture features such concepts as maximum massing for thermal storage
and improved insulation systems. Special consideration has been
given to the orientation and detailed assembly of glazed opening. Windows have been held to a minimum and utilizes solar-bronze reflective insulating glass. Entrance and windows have been provided with seasonal control of solar gain. Even landscaped planting has been planned as an integral part of the seasonal control on the west facade. Fifty percent of the usable floor space is constructed subgrade to reduce heat loss or gain. Two directions of approach have been employed to insure maximum energy conservation of the mechanical system. The first being the design of a system utilizing energy efficient components integrated into a high efficiency heating, cooling, hot water system. The second approach is one of guidelines for efficient and proper operation of said system. A complex network of controls evolved from the need for maximum automation to insure proper system operation. The control system was designed to respond to the requirements of the mechanical system, the needs of the building environment and the ambient climatic conditions. An example of this feature is that the hot water operating temperature of the system during the heating cycle is governed by the ambient air temperature to minimize the enthalpy requirements. This will minimize the heat loss as well as extend the operative range of the building. The operating temperature of the circulating hot water during the cooling cycle is designed to maintain 195°F to insure maximum efficiency of the absorption chillers. The chillers are staged to insure minimum energy drawn from the storage tank. A two zone, variable volume forced air distribution system is utilized to provide individual room temperature control so as to eliminate energy waste through over heating or cooling. Thus the room automatically maintains the desired building temperatures of 70°F in the winter and 75°F in the summer. Fresh air ventilation is designed to be controlled by an economizer which governs the volume of fresh air with respect to the outdoor ambient air temperature. The economizer will also free cooling during near passive situations. Electronic air filters will assist in odor control thus decreasing the need for outdoor fresh air.

Upon the preceding criteria, design evolved into establishing the proper operation of the system. As previously stated, the system is totally automated. The system was designed for a twelve hour operation of the cooling equipment, with an eight hour operation of ventilation. There would be a ten-degree setback from 10:00 p.m., to 6:00 a.m., of the heat equipment; this would save an anticipated 12 percent of the energy requirement. In the heating season, humidification will be discontinued after working hours and on weekends. All time controls are supplied with manual overrides to allow weekend shutdown of one or both zones. A rigid schedule of maintenance, such as filter cleansing, control checking, operating temperature monitoring, etc., shall be mandatory.

The 1068 square feet of collectors was selected as a trade off between percent of load solar subsidized and available building area. Evacuated tube type collectors allow for a maximum system operating temperature of 250°F, thus extending energy storage capacity of the storage tank which is critical for the chiller equipment. The 1100 gallon storage tank also reflects this desire to maximize the higher operating range. It was decided to maximize
the subsidizing of the cooling load due to the considerable higher cost of electric cooling as opposed to gas heating. However, the auxiliary gas boiler offers the facility the potential to convert to a great variety of backup energy sources (i.e., electricity, oil, coal, wood, or combustible waste) when the need arises in the future. This offers a great deal of security to the bank in addition to the energy savings.

Operation of the System - The system, as shown schematically in Figure 1, has five modes of operation:

1. **Mode 1 - Collector Loop Operation** - This mode activates when there is a minimum insolation intensity of 35 Btu per square foot per hour. When this occurs, the collector pump turns on. This mode terminates when insolation intensity drops below 35 Btu per square foot per hour. A bypass valve prevents flow through the collector-to-storage heat exchanger until the loop temperature exceeds 75°F. If a pump or a power failure occurs during operation, collector system operation may be prohibited for up to 24 hours until the array has cooled down.

2. **Mode 2 - Heat Rejection Operation** - This mode activates whenever the collector outlet temperature exceeds the recommended ethylene glycol maximum temperature of 280°F. A three-way valve in the collector loop redirects collector flow through the heat rejector which rejects collected energy until the collector outlet temperature drops to a safe predetermined valve.

3. **Mode 3 - Collector Loop to Storage** - Mode 3 activates when Mode 1 operation results in the collector outlet temperature exceeding the storage tank temperature by at least 18°F, turning on pump P2. Mode 3 terminates whenever Mode 1 is terminated or when the measured temperature differential falls below a set minimum temperature (nomially 3°F).

4. **Mode 4 - Solar Energy DHW Preheating** - This mode activates only when Mode 3 has been entered and DHW consumption permits preheating of the cold water supply. This occurs when the cold water passes through a liquid-to-liquid heat exchanger in parallel with the collector-to-storage loop.

5. **Mode 5 - Storage to Heating, Ventilating, and Air Conditioning (HVAC) Loads** - This mode activates when the normally closed valve V15 is opened, and valve V2 is repositioned by the control system to permit flow through the hot water storage tank, using the stored solar energy for HVAC loads. Valve V15 is opened whenever a HVAC load requires hot water flow and storage tank temperatures exceed HVAC return flow (heating or cooling) temperature by 20°F.
Figure 1. KAW VALLEY STATE BANK SOLAR ENERGY SYSTEM SCHEMATIC
Problems/Solutions

The contractor found the design of the evacuated tube collectors very sound in solar thermal theory. However, the contractor was confronted by several problems in the mechanics of the collector system.

There are several inherent problems associated with available General Electric Corporations evacuated tube collectors. The most obvious of which is the fragile nature of the tubes. At the high stagnation temperature which might be encountered, thermal shock of the tubes becomes a serious threat. To prevent damage, it becomes necessary to provide a means to dump excess heat in times when the storage tank has reached its upper limit. This implies a considerable cost of exchangers and controls. It also expands energy to operate the over temperature dump system without offering any added solar benefit to the building. It was also considered desirable to cover tubes with lexan for protection from hail and vandalism, which will jeopardize a portion of the solar gain.

Another major concern is the inability to completely drain the collectors. Problems could possibly arise when some collectors are empty while others are full and the system is allowed to stagnate, such could be the case in a maintenance or service situation. What might occur is that the empty tubes would approach 700°F, while the filled tubes would be boiling off and problems of thermal shock would result as 220°F water vapor met 700°F tubes.

Another problem encountered was the integration didn't sense the collector temperature but only the available energy. In this failure, the collectors were turned on when covered with ice and snow and the subfreezing glycol solution pumped through a heat exchanger interfacing with water. The HEX froze and ruptured, subsequently allowing the glycol solution in the collectors to be diluted with enough water to freeze and rupture the collector tubes. The system was modified and the modification consisted of installing a 2 inch diverting valve that is temperature controlled as to normally pass flow from "A" to "B" allowing the collector fluid to be circulated through the heat exchanger. When the temperature drops to 65°F, the valve will return to the "A" to "C" position. A final safety feature is controller S-2, which will cut off the collector pump if it sees a temperature of 40°F or less. The system will then remain off until manually reset. This combination of safety features should prevent any chance of freeze up from occurring.

The secondary heating/cooling system creates no major problems since it is basic to many conventional systems developed, engineered, and proven over many years.
The architect, through time and deliberation, integrated the solar system into the design in such a manner as to create a very marketable building of extremely pleasing aesthetics. This is lending greatly to the rapidly growing public enthusiasm in the project.
Solar Acceptance Test

An Acceptance Test was conducted on July 30, 1980, with Mr. William A. Hagen, P.E., Government Project Manager; Bob Slemmons, Architect; Lyle Dreher, Maintenance Contractor; Glenn Swogger, President Kaw Valley State Bank and Trust Company; and Mr. Ron Toelle, Government Project Engineer.

The following five pages are extracts from site files relating to the Acceptance Test and suggested system improvements as a result of the Acceptance Test.
September 26, 1980

Mr. Bill Hagen
Government Project Manager
NASA
George C. Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Code FA33
Re: EG-77-A-01-4080

Dear Sir:

Under separate cover I am sending two sets of Maintenance and Operating Manuals for the Solar Energy System for Kaw Valley State Bank - North, Topeka. These include as-built drawings with all modifications to date.

Enclosed is a letter to you from Mr. Swogger, President of the Bank, relative to the understanding the system is operational and functioning as intended.

We are proceeding with requests for proposals from the Contractor to construct additional modifications recommended by Ron Toelle with concurrence of W. E. Burgess, P.E., our consulting engineer. These changes should improve the function and reliability of the chillers as well as the S.D.A.S. No changes have been made since your visit (relative to high fossil-fuel consumption) pending some determination of cost for the modifications. You'll be advised when added work is authorized.

Sincerely,

Robert S. Slemmons, AIA

Encl.

cc: Mr. Glenn Swogger
Dahlstrom & Ferrell

RSS/pk
Mr. William A. Hagen, P.E.
Solar Heating & Cooling Program, FA 34
Marshall Space Flight Center, AL 35812

Dear Bill:

Your visit of July 30, 1980 allowed our Architect, Bob Slemmons, our maintenance contractor, Lyle Dreher and others associated with this solar project to meet with you and Mr. Toelle. My discussion with you at noon confirmed that you found all things in order.

Based upon the tests which have been conducted and the counsel of my Architect, Bob Slemmons, I declare the Solar System operational.

We will be supplying you with "as built" drawings, plus operation and maintenance manuals as part of our final report. We recognize that this solar demonstration was a pioneering activity. The cost benefits may not be immediate but energy conservation is necessary action which all of us must take.

Sincerely,

Glenn Swogger
President

GS/j1
September 26, 1980

Dahlstrom & Ferrell Construction Company, Inc.
P. O. Box 4561
Topeka, Kansas 66604

Re: Kaw Valley State Bank - North Solar

Gentlemen:

Please submit your proposal to provide additional work recommended by the Government Project Engineer, Mr. Ron Toelle, with concurrence of our engineering consultant, Mr. W. E. Burgess, P.E. and described as follows:

1. Provide new openings with louvers, grilles, filters, etc. conforming to Drawing SR-1, attached, to ventilate the ATM Room and Mechanical Equipment Room 200. Install a hinged type of soffit louver where indicated, with filter rack and permanent washable removable filters.

2. Install air vent on cooling tower piping in close proximity to strainer as described in notes from Ron Toelle's visit (attached).

3. Install aquastat to inhibit boiler operation when solar heated water is available, in accordance with notes from Ron Toelle's visit (attached).

Yours truly,

Robert S. Slemmons, AIA

Encl.

cc: Young's Inc.
Mr. Glenn Swogger
Mr. Bill Hagen

RSS/pk
Ron Toelle's notes on visitation to KAW VALLEY STATE BANK - NORTH

Suggested System Improvements as discussed July 30, 1980.

1. Venting at a high point. An air vent should be added to the cooling tower piping in close proximity to the strainer. An existing pressure gauge port for P5 located next to the cleanout strainer would serve very well. Upon cleaning the strainer, air could be immediately vented, thus averting a potential air lock in the chillers.

2. An adjustable aquastat with a strap on bulb should be used in a control modification which would inhibit the boiler when solar water is available to the chillers at X° (say 190°F). The exact set point can be adjusted for minimum fuel consumption while maintaining comfort.

3. Modulating the input water temperature to the chiller for load balancing should be validated again by ARKLA. Excessive fuel usage would be expected if this is done with the boiler. Reducing the firing temperature to the ARKLA greatly reduces the COP of the unit.

4. Assure that the boiler is never used to heat the solar storage tank. This reduces the efficiency of the solar collectors while creating excessive fuel bills.
CONT. 16 GA. GALV. SHEET-METAL DAM W/ SOLDERED CORNERS, SET IN BED OF MASTIC (CONT.)
ANCHOR TO SLAB W/ POWER ACTUATED FASTENERS (MIN. 2 PER SIDE)

ROOM 200

4"X12" SLOTTED HOLES @ 2'-0" O.C.
(MIN. 5)

ROOM 102

CARNES MODEL 600H OR EQUAL
4 REQ'D (CENTER BETWEEN ROOF BEAMS (12" W X 8" H))

LouverS EQUAL TO CONSTRUCTION SPECIALTIES, INC. MODEL 0251
(12"X24") 3 REQ'D. CENTER BETWEEN EX6. LIGHTS: ANCHOR TO SOFFIT W/ TOGGLE BOLTS AS PER MFR'S REQUIREMENTS. DURANCODIC FINISH, SEALANT AROUND FRAME & PLASTER (CONT.)

SECTION LOOKING WEST

SCALE 1/2"=1'-0"

KAW VALLEY STATE BANK & TRUST CO. NORTH FACILITY

SLEMMONS ASSOCIATES ARCHITECTS, P.A.

DATE: 9-26-80

REVISION SHEET:

SR-1
APPENDIX A

Manufacturers Literature

ARKLA Absorption Chiller
solaire®
36
3 ton Absorption Chiller for Solar Air Conditioning

Model No. WS-36
Installation and Start-Up Data

ARKLA solaire®
SUN POWERED AIR CONDITIONING
A product of Arkla Industries Inc.
General Description

Arkla’s Solaire 36 water chiller is designed primarily for solar-operated comfort air conditioning applications, but can also be used in small industrial process cooling applications. The unit is nominally rated at 3 tons, but design flexibility allows for operation over a wide range of cooling capacities. With firing water temperature between 170°F and 205°F, and with 85°F entering condensing water, the chiller can produce from 6 tons to 3.5 tons of cooling.

Features

- The special lithium bromide/water solution is installed at the factory. The low concentration of this special solution virtually eliminates the possibility of crystallization.
- Each unit is given a complete capacity test at the factory to assure performance according to specifications.
- A small, hermetically sealed stainless steel centrifugal pump transfers solution from the low pressure side to the high pressure side of the absorption cycle.
- The combination of the solution pump and an abundance of heat transfer surface permits this unit to produce practical cooling capacity from relatively low firing water temperatures.
- The generator tubes are of type 304 stainless steel, which is also used in other vital areas to insure years of trouble free service.
- Noise and vibration have been reduced to insignificant levels.

Operating Controls

- Solution By-Pass Valve and Thermostatic Switch—The switch senses refrigerant temperature in the evaporator. On a drop in temperature to approximately 36°F the switch opens the by-pass valve, allowing most of the absorbent liquid to by-pass the absorber coil, which helps to prevent shut-down by the evaporator low temperature switch.
- Solution Pump Relay—This relay controls the operation of the lithium bromide-water solution pump.
- Chilled Water Pump Relay—This relay has two sets of contacts, one set of contacts will control chilled water pump operation through an external relay.

Safety Controls

- Evaporator Low Temperature Limit Switch—if the refrigerant temperature falls below minimums, this safety switch will shut down the hot water pump, the solution pump, and the condensing water pump.
- Condenser High Temperature Limit Switch—if the condenser temperature rises above acceptable limits, this safety switch will shut down the hot water pump, the solution pump, and the chilled water pump.

*External relays not furnished by Arkla.
DESIGN DELIVERED CAPACITY, Btu/h 36,000
DESIGN DELIVERED CAPACITY, Tons I.M.E. 3.0

ENERGY REQUIREMENTS
Design Hot Water Input, Btu/h 50,000
Design Hot Water Inlet Temperature, °F 195
Design Hot Water Outlet Temperature, °F 185.9
Permissible Range of Inlet Temp. 170 to 205
Design Hot Water Flow, gpm 11.0
Pressure Drop, Feet of Water, at 11 gpm 9.8
Permissible Range of Flow, gpm 5 to 22
Pressure Drop, Feet of Water, at 22 gpm 29.9
Maximum Working Pressure, psig 100
Unit Water Volume, Gallons, Approx. 3.0
Electrical Voltage, 60 Hz, 1 Phase 115
Maximum Wattage Draw 250

CHILLED WATER DATA
Design Inlet Temperature, °F 55
Design Outlet Temperature, °F 45
Design Flow, gpm 7.2
Pressure Drop, Feet of Water, at 7.2 gpm 4.6
Permissible Range of Flow, gpm 4 to 13
Pressure Drop, Feet of Water, at 13 gpm 12.5
Maximum Working Pressure, psig 100
Unit Water Volume, Gallons, Approx. 1.5

CONDENSING WATER DATA
Design Heat Rejection, Btu/h 86,000
Design Inlet Temperature, °F 85
Design Outlet Temperature, °F 99.3
Permissible Range of Inlet Temp. 75 to 90
Design Flow, gpm 12.0
Pressure Drop, Feet of Water, at 12 gpm 9.8
Permissible Range of Flow, gpm 9 to 25
Pressure Drop, Feet of Water, at 25 gpm 33.9
Maximum Working Pressure, psig 100
Unit Water Volume, Gallons, Approx. 3.0

FOR COOLING TOWER SELECTION
Maximum Heat Rejection, Btu/h 106,000
Range, °F 14 to 17
Minimum Permissible Sump Temperature, °F 75

SERVICE CONNECTIONS
Hot Water Inlet and Outlet 1" FPT
Chilled Water Inlet and Outlet 1" FPT
Condensing Water Inlet and Outlet 1" FPT

PHYSICAL DATA, APPROXIMATES
Operating Weight, Pounds 675
Shipping Weight, Pounds 680
Crated Size, Inches 36W, 34D, 75H

NOTES:
1. Capacity at design conditions. For capacities at other conditions, see Page 4.
2. Units equipped for operation on 230V-50Hz-1Ph available on special order.
3. Thermostatic switch to control tower fan MUST be used. Set to "cut out" at 75°F.
4. Includes circulating water weights.
5. Units as shipped contain Lithium Bromide charge.

DIMENSIONAL VIEWS
MODEL WF 36

Hot Water Flow
- 11.0 GPM

Condensing Water Flow
- 12.0 GPM

Chilled Water Flow
- 7.2 GPM

Chilled Water Leaving Temperature
- 45°F

Pressure Drops vs Water Flows
For Pump Sizing

<table>
<thead>
<tr>
<th>FLOW, GPM</th>
<th>CHILLED WATER</th>
<th>HOT WATER</th>
<th>CONDENSING WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.7 Min.</td>
<td>2.8 Min.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.5</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.4</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4.4</td>
<td>4.7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.5</td>
<td>5.9</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6.8</td>
<td>7.1</td>
<td>5.8 Min.</td>
</tr>
<tr>
<td>10</td>
<td>8.1</td>
<td>8.4</td>
<td>7.0</td>
</tr>
<tr>
<td>11</td>
<td>9.4</td>
<td>9.8</td>
<td>8.3</td>
</tr>
<tr>
<td>12</td>
<td>10.9</td>
<td>11.3</td>
<td>9.6</td>
</tr>
<tr>
<td>13</td>
<td>12.5 Max.</td>
<td>12.8</td>
<td>11.0</td>
</tr>
<tr>
<td>14</td>
<td>14.4</td>
<td>14.4</td>
<td>12.5</td>
</tr>
<tr>
<td>15</td>
<td>16.1</td>
<td>16.1</td>
<td>14.2</td>
</tr>
<tr>
<td>16</td>
<td>17.8</td>
<td>17.8</td>
<td>15.6</td>
</tr>
<tr>
<td>22</td>
<td>29.9 Max.</td>
<td>29.9 Max.</td>
<td>27.4</td>
</tr>
<tr>
<td>25</td>
<td>33.9 Max.</td>
<td>33.9 Max.</td>
<td></td>
</tr>
</tbody>
</table>

*Unit operation unstable in these areas **Lighter area represents conditions for rated capacity.

MODEL WF 36

- Arkla Industries Inc
- P.O. Box 534
- Evansville, IN 47704

Arkla Industries Inc reserves the right to change the specifications and weight of its products without notice and without incurring obligation.

PRINTED IN USA

FORM NO SP A+5 1 NOV 1976
CONDENSING WATER PIPING - AT UNIT

Both inlet and outlet condensing water connections are located on the right side near the rear. The inlet connection is the bottom pipe and is a 1" FPT fitting. The outlet connection is the top pipe and is a 1" FPT fitting.

Any vertical piping to these connections should be far enough away from the panel to permit easy removal of this panel if necessary.

Certain fittings should be installed in the condensing water piping as shown in Figure below, for the reasons mentioned below.

a. A 1/4" pet cock should be installed in the inlet and outlet connection next to the unit. These are needed to take pressures when adjusting the water flow.

b. A union and an isolating valve (Gate valve) should be installed in each line so the piping can be disconnected from the unit without making it necessary to drain the water from the rest of the system.

c. A flow regulating valve (plug cock) should be located in the water line leaving the unit and down stream of the isolating valve for the purpose of balancing and regulating condensing water flow.

d. "Blow down" valves should be installed at end of dirt legs to make it convenient for draining off sediment or draining the unit, if necessary.

One of the six thermometer well fittings shipped (in a carton behind the front panel) with each unit is to be installed in each the inlet and outlet condensing water lines. For the most accurate temperature readings, these should be located as close to the unit as possible. They must be installed in horizontal lines with the well part of the fittings in the vertical up position.
HOT WATER PIPING

The WF-36 requires a hot water supply of 11 G.P.M. at 170°F to 195°F. The unit produces 36,000 BTU's of cooling at 195°F hot water and 85°F condensing water.

Only clean, hot water, free from oil and other foreign materials should be used. If any other hot liquid or mixture is going to be used, check with Arkla Industries Inc. P.O. Box 534, Evansville, Indiana 47704, for particulars. All hot water piping, including return piping should be installed in accordance with good hot water piping practice (See III-20-1).

See Figure on III-52-4(B), for the proper hot water piping connections to the unit.

Any vertical piping to these connections should be far enough away from the panel to permit easy removal of this panel if necessary.

Certain fittings should be installed in the hot water piping as shown in Figure on III-52-4(B) for the reasons mentioned below.

a. A 1/4" pet cock should be installed in the inlet and outlet connection next to the unit. These are needed to take pressures when adjusting the water flow.

b. A union and an isolating valve (Gate valve) should be installed in each line so the piping can be disconnected from the unit without making it necessary to drain the water from the rest of the system.

c. A flow regulating valve (plug cock) should be located in the water line leaving the unit and down stream of the isolating valve for the purpose of balancing and regulating hot water flow.

d. "Blow down" valves should be installed at end of dirt legs to make it convenient for draining off sediment or draining the unit, if necessary.

One of the six thermometer well fittings shipped (in a carton behind the front panel) with each unit is to be installed in each the inlet and outlet hot water lines. For the most accurate temperature readings, these should be located as close to the unit as possible. They must be installed in horizontal lines with the well part of the fittings in the vertical up position.

The hot water supply and return lines should be insulated at least up to the point of connection on the unit to reduce heat loss and to avoid injury to personnel.

Low water flow will reduce effective cooling and waste energy. It is recommended that a flow switch be a part of the control system to cut off the unit at a minimum flow rate of 5 G.P.M.
It is recommended that some type of minimum and maximum input control system be installed. This must be field fabricated and installed. Minimum input is 170°F hot water. Maximum input is 205°F hot water. Water temperatures below 170°F produce no effective cooling and wastes energy. At water temperatures above 205°F the unit again wastes energy.
ARKLA INDUSTRIES INC.

P. O. Box 534

Evansville, Indiana 47704

DATE: Nov., 1976

MODELS

WF-36

Part No: D14004-484

Revision: C

Air Cond. 115V

CAUTION

Notes:
1. Heavy lines indicate connections to be made at time of installation. Main switch and tube to be supplied locally.
2. Position of all switches shown with power off.
3. If original wire supplied is replaced, use UL approved type wire for 105°C.

Schematic Diagram

Arkla Industries Inc.

Evansville, Indiana 47704

Original page is of poor quality

A-9
ELECTRICAL CONNECTIONS - TO UNIT

The Arkla Solaire unit is wired for operation on 115 volts, 1 phase, 60 cycle current.

The unit control box contains a 115/24 volt, 50 VA transformer to supply low voltage current to the control system.

The main switches, disconnect switches, fuse holders and fuses are not furnished by Arkla. The fused disconnect should be installed within sight of and not more than 50 feet from the unit.

The recommended line voltage wiring to the unit can be found on 111-60-2.

GROUNDING

If type UF underground cable is used, the unit should be grounded by running wiring from an approved electrical ground to a convenient point on the unit's frame. Grounding wire should be attached to the frame in a manner approved by national and/or local Electrical Codes. If conduit is used, it will serve as an adequate ground, providing that the conduit is connected to the building's electrical grounding system.

[Diagram of electrical connections]
ELECTRICAL WIRING - LOW VOLTAGE TO CONTROL SYSTEM

The Arkla Solaire unit is wired such as to provide 24 VAC to external relays to control the various pumps and air handler(s) in the heating and air conditioning system. The relays selected should not exceed .4 amp. draw maximum. Wiring from the unit to the relays should be a minimum of 18 gauge.

WF-36 CONTROL BOX

- TO THERMOSTAT
- 24 VAC
- .4 AMPS MAX.
- TO HEATING CONTROLS
- 24 VAC
- .4 AMPS MAX.
- TO BLOWER RELAY
- 24 VAC
- .4 AMPS MAX.
- TO COOLING TOWER CONTROLS
- 24 VAC
- .4 AMPS MAX.
- TO CHILLED WATER PUMP CONTROLS
- 24 VAC
- .4 AMPS MAX.
- TO A.C. HEAT SOURCE CONTROLS
ELECTRICAL WIRING - UNIT TO THERMOSTAT

The wiring from the unit to the thermostat carries 24 volt current. The wires should be a minimum of 18 gauge. Color coded cables carrying the necessary number of wires should be used.
APPENDIX B

Manufacturers Literature

Honeywell Inc., Controls
ENGINEERING DATA FOR

Job Name: Kaw Valley State Bank & Trust
Architect: Robert S. Slemons
Engineer: Burgess Engineering
Contractor: Young's Inc.

SUBMITTED BY HONEYWELL INC.

8401 E. 50 Highway
Kansas City, Missouri 64133

For information regarding this job contact:
Clay Sisk

Refer to job number:
931-77060

Honeywell
The Automation Company
Honeywell

Refrigeration Dryer for Compressed Air

MODEL NUMBER HKN8010B & HKN8010C

General

The HKN8010B and HKN8010C Compressed Air Driers are used to condition air supply systems for pneumatic controls. The HKN8010B and HKN8010C cool the control air and condense and remove oil, water vapor and other contaminants from the control air system.

The condensed oil and water vapor are separated from the air stream and ejected through a drain. The discharged air is filtered, then regulated to a pressure suitable for control devices. The HKN8010B with the PP902A is designed for use in a single pressure system while the HKN8010C uses the PP902B and is designed for use in a two-pressure system requiring two independent, regulated air pressure settings.

Both HKN8010B and HKN8010C include a bypass valve for easy servicing and signal lights which advise of operating status.

Features

• Bypass valve for easy servicing.
• Power-on status light.
• High temperature alarm light.
• Automatic drain.
• Integral adjustable pressure regulator.
• Submicron finial filter in clear plastic housing with replacement element.
• Inlet and outlet pressure gauges for pressure regulator.
• Separately adjustable safety pressure relief valve.
• Simple single anchor mounting.

The HKN8010B and HKN8010C Refrigeration Type Air Driers contain a hermetically sealed, noncycling unit. They have a hot gas bypass control for maintaining continuous operation and constant dew-point control. The heat exchanger is copper “tube-in-tube” coiled and potted in insulating foam.

Specifications

<table>
<thead>
<tr>
<th>AIR CAPACITY</th>
<th>AMBIENT TEMPERATURE</th>
<th>VOLTAGE RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 scfm with 100 F (38 C) saturated air inlet (limited by filter capacity).</td>
<td>35 to 110 F (2 to 43 C).</td>
<td>115v, 60 Hz, single phase.</td>
</tr>
<tr>
<td>OUTLET DEWPOINT</td>
<td>MAXIMUM WORKING PRESSURE</td>
<td>SHIPPING WEIGHT</td>
</tr>
<tr>
<td>+13 F (-12 C) at 18 psi (124 kPa) main pressure (based on 70 to 90 psi (483 to 621 kPa) compressor range).</td>
<td>150 psi (1035 kPa).</td>
<td>65 lbs (29 kg).</td>
</tr>
<tr>
<td>REFRIGERATION COMPRESSOR</td>
<td>MOUNTING</td>
<td></td>
</tr>
<tr>
<td>1/6 hp.</td>
<td>Wall mounted or floor mounted.</td>
<td></td>
</tr>
</tbody>
</table>
Typical Operation

Air is cooled in heat exchanger. Separator traps moisture, oil and larger contamination particles and ejects them through an automatic drain. Submicron filter combines oil and micron size particles. The air then passes through a pressure regulator. Discharged air is dried, cleaned and regulated to control device requirements.
INTRODUCTION

These instructions cover general maintenance, disassembly and repair for the L480B and L480G Temperature Controllers. A complete parts list and exploded view drawings are included to facilitate repair. The parts and assemblies are identified completely by part number and description. For ordering information, see the note following Fig. 3.

NOTE: Prices may be obtained from our local branch office. Prices and availability are subject to change without notice.

No special tools are required to maintain this device.

MAINTENANCE

INSPECTION AND CLEANING

The cover of the temperature controller must be in place at all times to protect internal components from dust, dirt and physical damage. After initial installation, the only maintenance necessary is occasional inspection and cleaning.

CAUTION: Be sure to disconnect the power source before removing the controller cover to work on the internal components.

1. Remove the cover of the controller and inspect for any internal or external damage.
2. Remove accumulated dirt or dust by using a soft brush or air hose.
3. If internal inspection reveals any damaged parts, remove the controller and disassemble.

CAUTION: Use special care when using solvents. Avoid prolonged inhalation and/or contact with the skin. Careless handling can result in permanent damage to the respiratory system and skin tissue.

4. Clean disassembled parts in the solvent listed in Table 1. Order replacement parts from the exploded view drawings and parts list in this form.
5. Reassemble the controller, coating all pivot points and screw threads with the lubricant listed in Table 1.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibited 1,1,1-Trichloroethane such as Chlorothene or Vynlene</td>
<td>Obtain locally—use to soften grease and dirt which cannot be easily removed.</td>
</tr>
<tr>
<td>Lubricant—Multi-Purpose Grease (Honeywell part number 802771-4 oz. tube)</td>
<td>Obtain from Honeywell branch office—lubricate screw threads to prevent rust and corrosion.</td>
</tr>
</tbody>
</table>

OPERATIONAL CHECK

After routine maintenance, return the system to normal operation. Place an accurate thermometer next to the sensing element, or provide other necessary means to measure the temperature of the controlled medium. When a stable temperature is reached, check the controller operation as follows:

For L480B, L480B1098 and L480B1106 Controllers.

These controllers are designed for freeze-up protection and are calibrated to the break of R-W switch contacts at the lowest temperature sensed by any one foot portion of the 20 foot temperature sensing element.

Turn the adjustment knob to the lowest setting. Slowly turn the adjustment knob toward the high scale setting. This will simulate a temperature fall at the sensing element. The R-W switch contacts will break at the indicated thermometer temperature and the cooling equipment will stop. The scale reading should correspond to the measured temperature, unless airflow stratification causes some portion of the element to respond to a lower temperature (See Fig. 1).

For other L480B Controllers.

Turn the adjustment knob to the lowest setting. Slowly turn the adjustment knob toward the high scale setting. This will simulate a temperature fall (call for heat) at the sensing element. The R-B contacts will make and the heating equipment will start. Note the scale setting at this point. It should correspond to the thermometer reading at the sensing element.

Reset the controller to a normal setpoint and allow the system to settle out. Then turn the adjustment knob to the highest setting. Slowly turn the adjustment knob toward the lowest setting. This will simulate a temperature rise (call for cooling) at the sensing element. The R-B contacts will break. Note the scale setting at this point. It should correspond to the thermometer's reading plus the set differential of the controller (See Fig. 1).
NOTE: The L480G is a manual unit controller and must be reset each time the equipment stops.

Fig. 1 — Typical Operation.

PARTS LIST

3293C COVER ASSEMBLY — See Fig. 2

802198 COVER INSERT
(For L480B)

96-568 COVER INSERT
(For L480G)

119003A MONOGRAM — (For L480B)

32494 SCREW

32874 INSULATOR (2)

A5611B SWITCH — (For L480B models)

A5611C SWITCH — (For L480G models)

32891E BRACKET, Mounting

34447 BLADE — (For all L480B models except B1098 and B1106)

32900 SPACER (2)

32866 CASE

32905 HUB, Dial

40087 NAMEPLATE

32921 PLUG

5055 RIVET (2)

32907 WASHER, Friction

32911 WASHER

132884C BLADE ASSEMBLY — (For L480G models only)

32864 BLADE

7055 RIVET (2)

31800 BLADE

132991B BLADE ASSEMBLY

32901 BLADE

103307 NUT, Adjusting

100643 BALL

132884D BLADE ASSEMBLY — (For L480B1098 and B1106 models only)

32864 BLADE

7055 RIVET (2)

31800 BLADE

132991B BLADE ASSEMBLY

32901 BLADE

103307 NUT, Adjusting

100643 BALL

132998A BLADE ASSEMBLY — (For all other L480B models)

32902 BLADE

7055 RIVET (2)

32978 BLADE

80686 SCREW

32990 SPRING

31800 BLADE

60100 WASHER

132991B BLADE ASSEMBLY

32991 BLADE

103307 NUT, Adjusting

100643 BALL

32807 CAM

32802 WASHER

180256AG SCREW — #4-40x1-1/16"—fil hd (2)

180493B SCREW — #5-40x1-1/2"—rd hd

34633 PLATE

21008 RIVET (2)

158655 ENVELOPE ASSEMBLY —
(For L480B1130 and B1148)

158655 ENVELOPE

23876 TUBE, Clip (2)

4734 SCREW, Sheet Metal, #10x3/4"—rd hd (2)

160893BA SCREW — #5-40x1-1/2"—rd hd

160893BA SCREW — #5-40x1-1/2"—rd hd

ACCESSORIES

158655 ENVELOPE ASSEMBLY —
(For L480B1130 and B1148)

158655 ENVELOPE

23876 TUBE, Clip (2)

4734 SCREW, Sheet Metal, #10x3/4"—rd hd (2)

Fig. 2 — L480B and L480G Temperature Controllers.
Parts List for Fig. 2

<table>
<thead>
<tr>
<th>KEY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>MODELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32889B</td>
<td>DIAL—(50°F to -10°F)</td>
<td>L480B 1007, L480G 1015</td>
</tr>
<tr>
<td>1</td>
<td>32889C</td>
<td>DIAL—(-10°F to -20°F)</td>
<td>L480B 1023, L480G 1031</td>
</tr>
<tr>
<td>1</td>
<td>32889E</td>
<td>DIAL—(-30°F to -70°F)</td>
<td>L480B 1114, L480G 1114</td>
</tr>
<tr>
<td>1</td>
<td>32889F</td>
<td>DIAL—(-65°F to +95°F)</td>
<td>L480B 1171, L480G 1189, 1197</td>
</tr>
<tr>
<td>1</td>
<td>32889G</td>
<td>DIAL—(0°F to +50°F)</td>
<td>L480B 1049, L480G 1056, 1064, 1205</td>
</tr>
<tr>
<td>1</td>
<td>32889L</td>
<td>DIAL—(-30°F to -60°F)</td>
<td>L480B 1098, L480G 1002</td>
</tr>
<tr>
<td>1</td>
<td>32889J</td>
<td>DIAL—(-15°C to 0°C)</td>
<td>L480B 1072, L480G 1080</td>
</tr>
<tr>
<td>1</td>
<td>32889K</td>
<td>DIAL—(0°C to +20°C)</td>
<td>L480B 1155, L480G 1163</td>
</tr>
<tr>
<td>1</td>
<td>32889M</td>
<td>DIAL—(0°C to +15°C)</td>
<td>L480B 1106, L480G 1107</td>
</tr>
<tr>
<td>2</td>
<td>32199ACKA</td>
<td>ELEMENT ASSEMBLY—(-50°F to -10°F) 5' long, Remote Bulb Type 1007</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCKA</td>
<td>ELEMENT ASSEMBLY—(-50°F to -10°F) 20' long, Remote Bulb Type 1015</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199ACPB</td>
<td>ELEMENT ASSEMBLY—(-20°F to -20°F) 5' long, Remote Bulb Type 1023</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCPB</td>
<td>ELEMENT ASSEMBLY—(-20°F to -20°F) 20' long, Remote Bulb Type 1031</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199ACMF</td>
<td>ELEMENT ASSEMBLY—(0°F to 50°F) 5' long, Remote Bulb Type 1049</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCMF</td>
<td>ELEMENT ASSEMBLY—(0°F to 50°F) 20' long, Remote Bulb Type 1056</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199FCMF</td>
<td>ELEMENT ASSEMBLY—(0°F to 50°F) 30' long, Remote Bulb Type 1064</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199NCSD</td>
<td>ELEMENT ASSEMBLY—(-30°F to -70°F) 5' long, Remote Bulb Type 1130</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199SCSD</td>
<td>ELEMENT ASSEMBLY—(-30°F to -70°F) 20' long, Remote Bulb Type 1148</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199ACBE</td>
<td>ELEMENT ASSEMBLY—(-65°F to +95°F) 5' long, Remote Bulb Type 1171</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCBE</td>
<td>ELEMENT ASSEMBLY—(-65°F to +95°F) 20' long, Remote Bulb Type 1189</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199FCBE</td>
<td>ELEMENT ASSEMBLY—(-65°F to +95°F) 5' long, Remote Bulb Type 1197</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199ACSD</td>
<td>ELEMENT ASSEMBLY—(-30°F to -70°F) 5' long, Remote Bulb Type 1114</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCSD</td>
<td>ELEMENT ASSEMBLY—(-30°F to -70°F) 20' long, Remote Bulb Type 1115</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>32199DCSD</td>
<td>ELEMENT ASSEMBLY—(-30°F to -60°F) 20' 1/8" OD Capillary Type 1098</td>
<td></td>
</tr>
</tbody>
</table>

74-3609
Because the component parts of this assembly require special assembly processes, it is recommended that a complete replacement assembly be ordered.

Fig. 3—32937C Cover Assembly.

Fig. 4—4074FF and 4074BKH Envelope Assembly.

NOTE: Please order by Part No. and Description. Also, give the complete Order Specification number of the Temperature Controller. The number is stamped inside the cover. In some cases it may be necessary to return the entire device to our factory for complete repair and reconditioning. Order from Honeywell, Golden Valley Plant, 1885 Douglas Drive North, Minneapolis, Minnesota 55422 (In Canada: Honeywell Controls Limited, Vanderhoof Avenue, Leaside, Toronto 17, Ontario). Prices may be obtained from our local branch.

Mechanical devices must be serviced periodically if they are expected to give continued satisfactory performance, and controls are not an exception. How accurate and how troublefree your control system will be in the years to come depends largely on the maintenance given it. For best results, all devices in your system should be serviced at one time.

Time and trouble can be saved by arranging with Honeywell for a maintenance agreement which will guarantee expert, economical care, and insure maximum life and efficiency from your system.
Honeywell

AQUASTAT CONTROLLERS ARE IMMERSION TYPE DEVICES FOR LIMITING OR REGULATING THE TEMPERATURE OF LIQUIDS IN BOILERS, STORAGE TANKS, AND OTHER APPLICATIONS WHERE TEMPERATURE CONTROL OF LIQUIDS IS REQUIRED. AS THE TEMPERATURE OF THE CONTROLLED MEDIUM RISES TO THE SET POINT, EXPANSION OF THE FLUID IN THE SENSING ELEMENT OPERATES THE INTERNAL SWITCH OR SWITCHES.

☐ The L4006, 7, and 8 provide spst switching for high or low limit control of a burner.

☐ The L4006G model has two spst switches that make and break in sequence to provide boiler sequencing.

☐ The L6006 and 8 provide spdt switching for low limit and circulator control.

☐ Models which break contact on a temperature rise to the set point are calibrated for high limit use. They are also suitable for low limit control if a separate high limit control is used.

☐ Ambient compensated models are available to prevent control-point shift caused by temperature fluctuation at the case.

☐ Visible control point scale and external adjustment screw permit easy setting.

☐ Models are available for either horizontal or vertical insertion of the sensing element. The sensing element may be directly immersed or placed in an immersion well.

☐ Remote bulb models are available if the controller must be mounted at a location away from the sensing element.

☐ Remote bulb models may also be used to sense air temperature in ducts and in outside air sensing applications.

☐ Totally enclosed Micro Switch snap-acting switches are used in all models.

S.K.
7-75
SPECIFICATIONS

SPST MODELS:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>APPLICATION</th>
<th>RANGE (F)</th>
<th>MIDSCALE DIFFERENTIAL (F)</th>
<th>INSERTION</th>
<th>SWITCHING ON TEMP. RISE</th>
<th>AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4006A</td>
<td>high or low limit</td>
<td>40 to 180</td>
<td>2 or 5 fixed or 5 to 30 adj.</td>
<td>horizontal</td>
<td>breaks</td>
<td>Tradeline models which include well and tube of heat conductive compound. Plastic shield for covering well in water heater applications, 3/4 in. NPT brass spud. Centigrade scale markings. Factory set stops at 160 F, 185 F, 190 F, 200 F, or 220 F. Dial marked WARM, NORMAL, HOT. Insulation depths of 1-1/2, 3, or 5 inches.</td>
</tr>
<tr>
<td>L4006B</td>
<td>circulator</td>
<td>40 to 180</td>
<td>5 fixed or 5 to 30 adj.</td>
<td>horizontal</td>
<td>breaks</td>
<td>3 inch insulation depth. 5/4 inch NPT brass spud.</td>
</tr>
<tr>
<td>L4006C</td>
<td>high or low limit</td>
<td>100 to 240</td>
<td>2 or 5 fixed</td>
<td>horizontal</td>
<td>breaks</td>
<td>10 in. element. Factory set stop at 205 F.</td>
</tr>
<tr>
<td>L4006D</td>
<td>high limit</td>
<td>110 to 250</td>
<td>manual reset</td>
<td>horizontal</td>
<td>breaks</td>
<td>3/4 in. NPT brass spud. 3 in. insulation depth.</td>
</tr>
<tr>
<td>L4006E</td>
<td>sequencing</td>
<td>100 to 240</td>
<td>5 fixed or 3-10 F adj.</td>
<td>horizontal</td>
<td>breaks</td>
<td>2 switches</td>
</tr>
<tr>
<td>L4007A</td>
<td>high or low limit</td>
<td>100 to 240</td>
<td>2 or 5 fixed, 5 to 30 adj.</td>
<td>vertical</td>
<td>breaks</td>
<td>Centigrade scale markings.</td>
</tr>
<tr>
<td>L4007B</td>
<td>circulator</td>
<td>100 to 240</td>
<td>5 fixed or 5 to 30 adj.</td>
<td>vertical</td>
<td>makes</td>
<td></td>
</tr>
<tr>
<td>L4008A</td>
<td>high or low limit</td>
<td>40 to 180</td>
<td>2 or 5 fixed, 5 to 30 adj.</td>
<td>remote</td>
<td>breaks</td>
<td>5 ft.6 in., 8 ft.6 in. or 10 ft. remote capillary. Factory set scale stop at 120 or 200 F. External adjusting knob. Centigrade scale markings.</td>
</tr>
<tr>
<td>L4008B</td>
<td>circulator</td>
<td>100 to 240</td>
<td>5 fixed or 5 to 30 adj.</td>
<td>remote</td>
<td>makes</td>
<td>8 ft.6 in. capillary.</td>
</tr>
<tr>
<td>L4008C</td>
<td>ambient compensated high limit</td>
<td>0 to 70 or 40 to 180</td>
<td>2 or 5 fixed</td>
<td>remote</td>
<td>breaks</td>
<td>7 ft.6 in., 20 ft. capillary or fast response element. External adj. knob. 150 va rating at 120, 240v ac. High limit stamped on case scale lock.</td>
</tr>
</tbody>
</table>

L4006 models continued on page 3

a Copper well or fitting is supplied with all models except remote bulb type. When ordering, specify boiler tapping size (1/2 or 3/4 inch) and insulation depth.
bManual reset (trip-free) — Switch breaks circuit and locks out when controlled medium reaches set point. Controlled temperature must drop 20 degrees below set point before contacts can be manually reset.

ORDERING INFORMATION

When ordering refer to the Tradeline catalog or price sheet for complete ordering specifications.

Specify:
1. MODEL NUMBER.
2. OPERATING RANGE.
3. DIFFERENTIAL: ADJUSTABLE, NONADJUSTABLE, OR MANUAL RESET.
4. CAPILLARY LENGTH.
5. BOILER TAPPING AND INSULATION DEPTH.
6. ACCESSORIES.

Order from:
1. Your usual source, or
2. Honeywell
 1895 Douglas Drive, North
 Minneapolis, Minnesota 55422
 (In Canada — Honeywell Controls Limited
 740 Ellesemere Road
 Scarborough, Ontario)

B-10
SPST MODELS CONTINUED:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>APPLICATION</th>
<th>RANGE (F)</th>
<th>MIDSCALE DIFFERENTIAL (F)</th>
<th>INSERTION</th>
<th>SWITCHING ON TEMP. RISE</th>
<th>AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L4008D^a</td>
<td>ambient compensated circulator</td>
<td>0 to 70 or 40 to 180</td>
<td>2 or 5 fixed</td>
<td>remote bulb</td>
<td>makes</td>
<td>Tradeline model available. Centigrade scale markings. Hot tinned 8 ft. capillary. Electrical rating: 2.3 amp at 120-240 V ac, full load. Fast response, 10 ft. armored capillary with 3 ft. bulb, External adjustment knob. Factory set scale stops at 120, 220, or 250 F. Plastic shield for covering well in water heater applications.</td>
</tr>
<tr>
<td>L4008Eb</td>
<td>high limit</td>
<td>40 to 80 or 110 to 290</td>
<td>manual reset</td>
<td>remote bulb</td>
<td>breaks</td>
<td>Factory set scale stop at 250 F. 8 ft. 6 in. capillary.</td>
</tr>
<tr>
<td>L4008ja</td>
<td>high limit</td>
<td>100 to 240</td>
<td>5 fixed</td>
<td>remote bulb</td>
<td>breaks</td>
<td>All models less case and cover. 18 in. capillary and 1/2 in. well adapter. Factory set scale stop at 220 F.</td>
</tr>
<tr>
<td>L4008ka</td>
<td>circulator</td>
<td>40 to 180</td>
<td>5 fixed</td>
<td>remote bulb</td>
<td>makes</td>
<td>All models less cover.</td>
</tr>
</tbody>
</table>

SPDT MODELS:

<table>
<thead>
<tr>
<th>MODEL</th>
<th>APPLICATION</th>
<th>RANGE (F)</th>
<th>MIDSCALE DIFFERENTIAL (F)</th>
<th>INSERTION</th>
<th>AVAILABLE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L6006Aa</td>
<td>circulator and low limit or high limit</td>
<td>100 to 240 or 110 to 290</td>
<td>5 fixed or 5 to 30 adj.</td>
<td>horizontal</td>
<td>Tradeline model which includes well adapter and tube of heat conductive compound. 3/4 in. NPT brass spud, 3 in. insulation depth. Horizontal or vertical mount available on same models.</td>
</tr>
<tr>
<td>L6006B</td>
<td>circulator and low limit or high limit</td>
<td>100 to 240 or 110 to 290</td>
<td>5 fixed or 5 to 30 adj.</td>
<td>horizontal</td>
<td>3/4 in. brass bulb compression fitting.</td>
</tr>
<tr>
<td>L6008Aa</td>
<td>circulator and low limit cooling</td>
<td>100 to 240 or -30 to 70</td>
<td>5 fixed or 5 or 30 adj.</td>
<td>remote bulb</td>
<td>Tradeline model with 5 ft. capillary. Range of -30 to 70 F. Centigrade scale markings. Without cover.</td>
</tr>
<tr>
<td>L6008Ca</td>
<td>dual fuel changeover</td>
<td>0 to 70 or 40 to 180</td>
<td>2 or 5 fixed</td>
<td>remote bulb</td>
<td>Tradeline model. 150 va switch setting. Centigrade scale markings. 7 ft. 6 in. armored capillary. External adjustment knob. Lock type cover, 20 ft. element. Averaging type.</td>
</tr>
<tr>
<td>L6008Da</td>
<td>ambient compensated</td>
<td>40 to 180</td>
<td>5 fixed</td>
<td>remote bulb</td>
<td>All models less enclosure. Front mounted.</td>
</tr>
</tbody>
</table>

^aCopper well or fitting is supplied with all models except remote bulb type. When ordering, specify boiler tapping size (1/2 cr 3/4 inch) and insulation depth.

^bManual reset (trip-free) — Switch breaks circuit and locks out when controlled medium reaches set point. Controlled temperature must drop 20 degrees below set point before contacts can be manually reset.

NOTE: The following specifications are standard. Variances, available as options, are noted in the preceding table.

ELECTRICAL RATING (AMPS):

<table>
<thead>
<tr>
<th>Models with 2 F fixed differential</th>
<th>120 V ac</th>
<th>240 V ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL LOAD</td>
<td>2.6</td>
<td>1.3</td>
</tr>
<tr>
<td>LOCKED ROTOR</td>
<td>15.6</td>
<td>7.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Models with 5 F differential —</th>
<th>120 V ac</th>
<th>240 V ac</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL LOAD</td>
<td>8</td>
<td>5.1</td>
</tr>
<tr>
<td>LOCKED ROTOR</td>
<td>48</td>
<td>30.6</td>
</tr>
<tr>
<td>INDUCTIVE CURRENT</td>
<td>1.25 at 1/4 to 12 V dc</td>
<td></td>
</tr>
</tbody>
</table>

B-11
PRESSURE RATING:
Capillary bulb (direct immersion)—200 psi.
Immersion well—255 psi.

SENSING BULB MATERIAL: Copper.

SENSING BULB FULL: Liquid. Toluene or Silicone.

CAPILLARY LENGTH (including bulb): Remote bulb models—60 inches.
SENSING BULB DIMENSIONS (inches): 2-7/8 long, 3/8 diameter.

INSERTION DEPTH: 3-3/8 inches.
INSULATION: Brass. 1-1/2 or 3 inches. Specify when ordering.

PROVISION FOR WIRING: Screw terminals.

MOUNTING: Horizontal and vertical models mount directly to an immersion well installed in a boiler fitting. Remote bulb models have 3 mounting holes rear of case for screw mounting to a vertical surface.

FINISH: Gray.

INSTALLATION DIMENSIONS: See Figs. 1 and 2.
IMMERSION WELL DIMENSIONS: See Fig. 3.
BOILER FITTING AND BULB DIMENSIONS: See Fig. 4.

ACCESSORIES:
Weatherproof enclosure—Q615.

Immersion wells—
Copper, 1/2 NPT, 1-1/2 inch insulation—Part No. 121371A.
Copper, 1/2 NPT, 3 inch insulation—Part No. 121371L.
Copper, 3/4 NPT, 1-1/2 inch insulation—Part No. 121371B.
Copper, 3/4 NPT, 3 inch insulation—Part No. 121371M.
Copper, 3/4 NPT, 1-1/2 inch insulation, plastic sleeve—Part No. 121371K.
Copper, 3/4 NPT, 3 inch insulation, plastic sleeve—Part No. 121371N.
Stainless steel, 1/2 NPT, 1-1/2 inch insulation—Part No. 121371E.
Stainless steel, 3/4 NPT, 1-1/2 inch insulation—Part No. 121371F.

Bulb Compression Fittings (see Fig. 6)—
Brass, 1/2 NPT plug, 1-1/2 inch insulation—Part No. 104486B.
Brass, 3/4 NPT plug, 1-1/2 inch insulation—Part No. 104486C.

Capillary Compression Fittings (see Fig. 7)—
Copper, 1/2 NPT plug, 1-1/2 inch insulation—Part No. 104484C.
Copper, 3/4 NPT plug, 1-1/2 inch insulation—Part No. 104484B.
The manufacturer usually provides a tapping for insertion of the controller's sensing element. This tapping is located at a point where typical water temperature can be measured. Depending on model, the element is inserted in an immersion well, through a boiler fitting, or directly immersed.

Installation should be made by a qualified serviceman. Follow the instructions furnished by the system manufacturer, if available. Otherwise, refer to appropriate procedure listed below.

--- IMPORTANT ---
Controller may be used with or without immersion well. Well, if used, must fit sensing bulb snugly for good thermal response. Insert bulb until it rests against bottom of well, then hold it there while tightening the tubing clamp.

MOUNTING REMOTE BULB MODELS
The remote temperature-sensing bulb can either be installed in an immersion well (Fig. 5) that extends into the boiler or tank, or it can be directly immersed in the liquid. For installations not using a well, secure the remote bulb with a bulb compression fitting (Fig. 6), or capillary compression fitting (Fig. 7).

Well, bulb compression fitting or capillary compression fitting must be ordered separately. Sizes available: 1/2 in., 3/4 in. NPT spud. Well, if used, must fit sensing bulb snugly for good thermal response. Insert bulb until it rests against bottom of well, then hold it there while tightening the tubing clamp. (See Fig. 5.)

The boiler manufacturer generally provides a tapping for the insertion of the Aquastat controller's sensing element. This tapping should be located at a point where typical water temperature can be measured. The bulb or protecting immersion well must never be located close to a hot or cold water inlet or a steam coil.

If the system is filled, drain system to a point below the boiler tapping, or wherever the sensing bulb is to be installed.

The bulb can also be installed in the supply line of an indirect water heater, in the direct water heater itself, or in the feed riser, about 6 in. above the boiler. If the riser is valved, the bulb can be installed between the boiler and the valve.

NOTE: Avoid making sharp bends or kinks in the capillary. Bends should be no sharper than 1 inch radius.

After installing, carefully coil excess capillary at the bottom of the controller case.

IMMERSION WELL MOUNTING
1. Screw the well into the boiler, tank, or pipe tapping.
2. Insert bulb in well, pushing tubing until bulb bottoms in well.

3. Attach retainer clamp to end of well spud. Loosen draw nut and spread jaws of clamp with screwdriver if necessary.
4. With retainer clamp attached to well spud (be sure jaws of clamp hook over ridge at end of spud, as shown at points "A"), adjust tubing to fit through retainer clamp groove, as shown at point "B."
5. Tighten draw nut so that retainer clamp is firmly attached to well spud and tubing is held securely in place.

--- CAUTION ---
Do not secure draw nut so tightly that retainer clamp could collapse tubing.

--- FIG. 5 --- IMMERSION WELL FITTING

--- MOUNTING WITH BULB COMPRESSION FITTING ---

--- FIG. 6 --- BULB COMPRESSION FITTING. USE WITH MODEL L4008A, B, E, J, OR L6008A.

1. Screw the fitting into boiler or pipe tapping.
2. Slide sealing washer onto bulb.
3. Insert bulb into boiler fitting until bulb bottoms.
4. Slide split sleeve into fitting.
5. Place clamps A and B on assembly so that sleeve is drawn into fitting when screws are tightened. Note: make sure that hub on clamp A engages space between sleeve and clamp.
6. Tighten clamp screws evenly.
MOUNTING WITH CAPILLARY COMPRESSION FITTING

![Diagram of capillary compression fitting]

FIG. 7—CAPILLARY COMPRESSION FITTING USE WITH MODEL L4008C.D.K. OR L6008C.E.

1. Screw fitting into boiler or pipe tapping.
2. Place packing nut on tubing.
3. Slide bulb completely through fitting.
4. Place composition disc and 4 slotted brass washers on tubing in the order shown in Fig. 7. Turn brass washers so that slots are 180 degrees apart.
5. Slide seal assembly into fitting and tighten packing nut.

DUCT MOUNTING

![Diagram of duct mounting]

FIG. 8—BULB SUPPORT.

1. Drill a 3/4 inch hole in the duct wall large enough to admit the sensing bulb into the holder.
2. Using the holder as a template, mark and drill holes for bulb holder mounting screws.
3. Break holder to desired length (Fig. 9).

NOTE: Holder must be long enough to hold sensing bulb in freely circulating air away from duct wall. Neatly coil excess capillary at controller case or at bulb holder.

![Diagram of removing excess bulb support]

FIG. 9—REMOVING EXCESS BULB SUPPORT.

4. Place capillary in bulb holder channel. Pinch top edges of holder together at each segment (Fig. 10).

![Diagram of securing capillary in bulb holder]

FIG. 10—SECURING CAPILLARY IN BULB HOLDER.

5. Insert bulb holder into controlled area through hole prepared in step 1 above.
6. Fasten bulb holder to duct wall with screws furnished.

MOUNTING DIRECT IMMERSION MODELS

FOR MODELS USING AN IMMERSION WELL

The well of the Aquastat controller must always be exposed to circulation of the medium under control, but must never be located close to a hot or cold inlet or steam coil. Where the tapping is on the side of the boiler, use an Aquastat controller with horizontal well. Where the tapping is on top of the boiler, use a model with a vertical well.

INSTALLING THE IMMERSION WELL

On existing installations, shut off the power and remove the old control. If the old immersion well appears suitable, and if the adapter clamp on the Aquastat controller fits the old well spud, the well need not be replaced.

1. If the system is filled, drain system to a point below the boiler tapping.
2. Remove plug (or old well) from boiler tapping.
3. Install the No. 121371 Immersion Well included with the controller. If boiler tapping is greater than 1/2 inch a reduction fitting must be used to adapt the boiler opening to the 1/2 inch threads that are standard with the well or fitting. Fittings with 3/4 inch threads are also available.
4. Fill the system. Make sure that the well is screwed in tightly enough to prevent leakage. Do NOT tighten or apply force to case after controller is secured to well.
INSTALLATION OF SENSING RULR IN IMMERSION WELL

a. Loosen screw (at top case, above scale-setting), and remove cover. Loosen two screws that secure adapter clamp. See Fig. 11.

b. Insert the sensing element into the immersion well.

c. Fasten the case of the Aquastat controller to the well with the adapter clamp. Make certain that the clamp is properly positioned over the groove of the well spud. Also be sure the flange at the opening of the well fits snugly into the opening of the case. The sensing element bulb must bottom in the well.

FIG. 11—INTERNAL VIEW OF L6006A.

MODELS DESIGNED FOR DIRECT IMMERSION (WITHOUT WELL)

Some models, which provide direct immersion of the sensing element into the boiler, include a No. 104486 bulb compression fitting assembly instead of an immersion well. Install fitting in boiler tapping. Be sure sealing washer is in place as shown in Fig. 12. Make sure that spud of bulb compression fitting is screwed in tightly enough to prevent leakage. Insert immersion bulb (sensing element) through bulb compression fitting. Adjust the adapter clamp so that it fits over the groove at the opening of the bulb compression fitting. Tighten adapter clamp screws so that Aquastat controller is firmly attached to bulb compression fitting.

MOUNTING DUAL FUEL CHANGEOVER MODELS

These models have a five foot capillary. This capillary establishes the maximum distance between the case and the outdoor mounting.

FIG. 12—DIRECT IMMERSION MODEL WITH BULB COMPRESSION FITTING PARTIALLY REMOVED.

The bulb should be installed on the outside of the building in the shield provided (see Fig. 13) where it will be exposed to representative air temperature, but not to direct sunlight. It should be mounted high enough so that accumulated snow, leaves, or other debris cannot obstruct circulation of air around it, and where children cannot reach it. Avoid vents from the building.

Install the case at the indoor location selected, fastening with screws through holes in back of the case. Bring the bulb and tubing out through a 3/4 inch hole in the outside wall. In uncoiling the tubing, carefully avoid sharp bends or kinks. Excess tubing should be left coiled near the case. Do not make sharp bends near the case or bulb.

Slip the bulb through the supports in the shield. Pinch the split supporting clip until it holds the bulb firmly in position. If the seal-off tube protrudes from under the shield, it may be bent under as shown in Fig. 13.

Hold the shield over the mounting position and form a small-radius bend in the tubing. Place the split plug around the tubing and move the shield into mounting location as a unit. Push the split plug into the hole until it is wedged securely in place. Fasten the shield in place on the wall with the screws provided.

NOTE: If the tubing is properly shaped and the split plug installed as directed, the shield will cover the split plug, and the hole in the wall will be hidden from sight.

FIG. 13—MOUNTING BULB IN SHIELD OUTSIDE BUILDING.
MOUNTING THE L6008A REMOTE BULB COOLING THERMOSTAT

MOUNTING WITH GUARD BRACKET
Mount the bulb in the guard bracket as shown in Fig. 14. Locate the bulb and bracket combination in freely circulating air in the controlled area. With screws provided, fasten the bracket in place.

MOUNTING ON SUCTION LINE
1. In cooling units with more than one suction line, sensing bulb should be placed on the common line.
2. Make certain the bulb is at least 2 feet from the point at which the suction line leaves the cooler. This will prevent the outside temperature from being transmitted to the remote bulb through the copper tubing of the suction line.
3. Place the remote sensing bulb on the side of the horizontal suction line between the coil and trap (not on the trap).
4. Attach the sensing bulb to the suction line with clips or straps.
5. Coil the excess length of capillary tubing near the L6008A case.

WIRING
All wiring must comply with local codes and ordinances regarding wire size, type of insulation, enclosure, etc. Figures 16 through 23 show typical hook-up diagrams.

FIG. 14—SECURING REMOTE BULB IN CLIP.

FIG. 15—ATTACHING REMOTE BULB TO HORIZONTAL SUCTION LINE.

FIG. 16—TYPICAL GAS-FIRED SYSTEM WITH DOMESTIC HOT WATER.

FIG. 17—TYPICAL OIL-FIRED GRAVITY SYSTEM.

FIG. 18—TYPICAL OIL-FIRED HYDRONIC SYSTEM WITH DOMESTIC HOT WATER.
FIG. 19—OIL-FIRED SUMMER-WINTER HYDRONIC SYSTEM WITH DOMESTIC HOT WATER.

FIG. 20—TYPICAL WIRING DIAGRAM FOR L6008C1040 USED TO SWITCH FROM GAS TO OIL ON TEMPERATURE DROP.

FIG. 21—TYPICAL WIRING DIAGRAM FOR L6008C1040 USED TO SWITCH STREET GAS TO LPG ON TEMPERATURE DROP.

FIG. 22—L6008A USED TO CONTROL COOLING EQUIPMENT AND INDICATING LIGHT.

FIG. 23—TYPICAL HOOKUP FOR L4006G BOILER SEQUENCING AQUISTAT.

OPERATION

For proper selection of settings, follow the boiler manufacturer's recommendations.

HIGH LIMIT CONTROLLER

Stops off burner if water temperature exceeds high limit setting. Burner restarts when temperature drops to high limit setting, less differential.

NOTE: On manual reset models, the reset button on the front of the case must be pushed in to allow the burner to operate after a high limit shutdown.

LOW LIMIT CONTROLLER

Maintains minimum boiler temperature for domestic hot water. Turns on boiler at temperature setting, minus differential.

CIRCULATOR CONTROLLER

Prevents circulation of water that is below the desired heating temperature. Breaks circulator circuit on temperature drop below setting minus differential, remakes on rise to setting.
ADJUSTING

Set the differential to correspond with the boiler manufacturer's recommendations. To adjust models with adjustable differential, rotate the wheel on the back of the snap switch until the desired reading is aligned with the "V" notch in the frame. The wheel provides an adjustment from 5 to 30 F. Replace the cover on the Aquastat controller.

Adjust the control point to correspond with the boiler manufacturer's recommendations. To adjust, insert a screwdriver in the slotted screw-type head located beneath the window in the cover. Turn the scale to the desired control point.

L6008A LOCATION DIFFERENTIAL CALIBRATION

The L6008A1093 is calibrated for applications with both the bulb and case located in the room in which the temperature is being controlled. A correction will be necessary if the temperature of the case is different from the desired dial setting.

1. If the case is at a higher temperature than the desired dial setting, raise the desired dial setting by the correction determined from the table at right.

2. If the case is at a lower temperature than the desired dial setting, lower the desired dial setting by the correction determined from the table below.

<table>
<thead>
<tr>
<th>Temperature difference between desired room temperature and case temperature (F)</th>
<th>Correction (Degrees F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3/4</td>
</tr>
<tr>
<td>10</td>
<td>1-1/2</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>2-3/4</td>
</tr>
<tr>
<td>25</td>
<td>3-1/2</td>
</tr>
<tr>
<td>30</td>
<td>4-1/4</td>
</tr>
<tr>
<td>35</td>
<td>5</td>
</tr>
<tr>
<td>40</td>
<td>5-3/4</td>
</tr>
<tr>
<td>45</td>
<td>6-1/2</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
</tr>
<tr>
<td>55</td>
<td>8</td>
</tr>
<tr>
<td>60</td>
<td>8-1/2</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td>80</td>
<td>11-1/2</td>
</tr>
</tbody>
</table>

CHECKOUT

Check to make certain that the Aquastat controller has been installed and adjusted properly. Put the system into operation and observe the action of the device through several cycles to make certain that it provides proper control of the system as described under OPERATION. Further adjustments then can be made to meet more exact comfort requirements.
INTRODUCTION

These instructions cover general maintenance, repair and parts replacement for the LP914A and LP915A Pneumatic Temperature Sensor. Exploded view drawings and parts lists are included to facilitate repair. The parts are listed by part number and description. Standard tools may be used to maintain this device. For ordering information, see the note following the drawings.

MAINTENANCE

INSPECTION AND CLEANING

Visually inspect the LP914 and LP915 sensor for any physical damage. Remove accumulated dust, dirt or grease with a soft brush using inhibited 1,1,1-trichloroethane available locally as Chlorothene or Vynlene.

CAUTION: Special care should be exercised in the use of solvents. Avoid prolonged inhalation and/or contact with the skin. Careless handling of solvents can result in permanent damage to the respiratory system and skin tissue.

Change filters and screens if necessary.

Because of the need for highly specialized precision calibration equipment, further periodic maintenance, repair, or adjustment in the field, is not recommended.

OPERATIONAL CHECK

A quick operational check may be performed by raising the temperature at the sensing element. The output pressure should increase. Lower the temperature and the output pressure should decrease.

PARTS LIST

Fig. 1—LP914A Pneumatic Temperature Sensor.
Fig. 4 — LP914A (Wall-mounted with inert section).

Fig. 2 — LP914A (Duct-mounted).

Fig. 3 — LP914A (Well-mounted).
Fig. 5—LP915A (Duct-mounted).

Fig. 6—314439 Capillary Clip (For mounting LP915 tubing in duct).

ORDERING INFORMATION: (In United States.)

—Repair Parts or Assemblies.
Repair parts or assemblies only should be ordered from Honeywell Inc., 1885 Douglas Drive, Minneapolis, Minnesota 55422. Please order by Part No. and Description. Also, give complete Order Specification Number of the sensor. The number is stamped on the sensor body. It may be necessary to return the entire device to our factory for complete repair and reconditioning.

—Return of Complete Device.
When a complete device is returned for repairs, it should be mailed with a repair order to Honeywell Inc., 8330 North Austin Avenue, Morton Grove, Illinois 60053.

—Inquiries on Orders.
Direct all inquiries on orders to Honeywell Inc., 1885 Douglas Drive, Minneapolis, Minnesota 55422.

(In Canada, direct all orders and inquiries to Honeywell Controls Limited, Vanderhoof Avenue, Leaside, Toronto 17, Ontario.)

For prices or further information, contact your nearest Honeywell Branch Office.

Mechanical devices must be serviced periodically if they are expected to give continued satisfactory performance, and controls are not an exception. How accurate and how trouble-free your control system will be in the years to come depends largely on the maintenance given it. For best results, all devices in your system should be serviced at one time.

Time and trouble can be saved by arranging with Honeywell for a maintenance agreement which will guarantee expert, economical care, and insure maximum life and efficiency from your system.
GENERAL

The following instructions cover general service and replacement procedures for the LP916 Pneumatic Remote Bulb Thermostats. These unit-mounted pneumatic temperature controllers proportionally control induction units, fan coil units, and unit ventilators. Wide throttling range models are available for duct mounting in HVAC systems, providing proportional control of valve and damper operators.

Direct acting LP916A Thermostats, used with normally open heating valves, will lower the branch line pressure as the temperature at the sensing element falls. This causes the valve to modulate open, maintaining the return air setpoint temperature.

The LP916B Thermostats include an automatic switchover mechanism. A main line pressure of 13 psi (90 kPa) provides a reverse action (cooling) while a main line pressure of 18 psi (124 kPa) provides direct action (heating).

The LP916C Thermostat is factory set and adjusted for reverse action only. When applied with a normally open valve for cooling control, the branch line pressure drops with a rise in return air temperature. This causes the valve to modulate open, maintaining the return air setpoint temperature.

SPECIFICATIONS

MODELS:
LP916A - Direct acting, single temperature.
LP916B - Direct acting at 18 psi, reverse acting at 9 or 13 psi.
LP916C - Reverse acting, single temperature.

MAXIMUM SAFE AIR PRESSURE: 25 psi (173 kPa).

MAXIMUM SAFE TEMPERATURE:
Duct mounted models - 190 F (88 C).
Other models - 135 F (57 C).

AIR CONNECTIONS: Two 1/4-inch (6 mm) OD connections on PCV pigtails (main is red, branch is black).
MAINTENANCE

Remove the cover and clean all surfaces, using a cleaning solvent if necessary. Chlorethene or vinylene solvent (containing trichloroethane, inhibited 1,1,1) is recommended. This solvent can be obtained at any office supply store.

CAUTION: Careless handling of solvents can result in permanent damage to the respiratory system or skin. Avoid prolonged inhalation of vapors or contact with the skin.

CALIBRATION AND ADJUSTMENTS

To check operation and calibration, first insert a 0 to 30 psi (0 to 207 kPa) gauge into the gauge plug on the front of the device, using gauge adaptor 315161A. Turn the setpoint knob above and below ambient temperature at the bulb. If the branch line pressure can be varied from 0 psi to full main line pressure within the rated throttling range of the thermostat (either 3.5 or 7 degrees), the thermostat is operating properly. If this operation occurs at ambient bulb temperature, it is calibrated properly. If not, recalibrate according to the following procedure.

LP916A AND LP916C

1. Apply 18 psi (124 kPa) main line pressure.
2. Measure the temperature at the bulb location.
3. Remove the setpoint knob.
4. Rotate the setpoint shaft to achieve 8 psi (55 kPa) branch line pressure. Allow enough time for pressure to build up.
5. Replace the knob and position the pointer at the appropriate division for the temperature sensed by the remote bulb.

LP916B

1. For direct action, follow steps 1 through 5 listed above.
2. For reverse action, apply 13 psi (90 kPa) main line pressure, except when using the LP916B1058. For this model, use 9 psi (62 kPa) main line pressure.
3. Adjust the switchover lever stop (see Fig. 1) to achieve 8 psi branch line pressure. For the B1058 model, branch line pressure should be 6 psi (41 kPa).
4. Clean the element and capillary tubing also, making certain neither is damaged or kinked. Do not bend the capillary tubing to an extreme angle.
REPAIR

If the thermostat operation is sluggish or erratic, replace the filters and the restriction plate according to the steps listed below. A repair kit is available which contains the necessary parts. For part identification, refer to the parts list.

1. Remove the three No. 8-32 x 7/16 pan head screws from the plate and tube assembly.

2. Lift off the plate and tube assembly, restriction gasket, restriction plate, body gasket, and two filters.

3. Insert the two new filters into the air passages. Place the new body gasket on the body and align the screw holes.

4. Add the new restriction plate and restriction gasket, aligning the screw holes.

5. Place the plate and tube assembly in position on the gasket, install the three screws, then tighten.

NOTE: .005 inch restriction plate (14003059-001) has a notched corner. .007 inch restriction plate (314820) does not. These plates are interchangeable, but .007 inch plate is recommended for replacement. Recalibration is required if the restriction plate is replaced.

If air pressure will not decrease in reverse acting models, replacing the thermostat is recommended. If air pressure will not build up in the branch line of direct acting models, disconnect the branch line at the nearest connection to the thermostat. Plug the line to isolate possible leaks to the valve or damper operator and try again. If the pressure still will not build up, replace the thermostat.

PARTS LIST

ACCESSORIES

1. Mounting bracket (313982)
2. Mounting bracket (315889)
3. Mounting bracket (316073)
4. Bulb hangers - two required (316297)
5. Flulnite head screw wrench (316744)
6. Gauge adaptor (315161A)

For part identification, refer to Figures 2 and 3.

75-5559
Fig. 2. Exploded View of the LP916A and LP916C.
NOTE: PARTS NOT IDENTIFIED ARE THE SAME AS THOSE USED ON LP916ABB, SHOWN ON PAGE 4.

TABLE 1: LEVER AND ELEMENT ASSEMBLIES

<table>
<thead>
<tr>
<th>Assembly Part No.</th>
<th>Used On These LP916's</th>
<th>Bulb Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>31632A</td>
<td>A1001, A1027, A1006, A1128</td>
<td>2.0 x 2.9 mm</td>
</tr>
<tr>
<td></td>
<td>B1011, B1069, B1074, B1082</td>
<td>2.9 x 2.9 mm</td>
</tr>
<tr>
<td></td>
<td>B1060, B1090, C1057, C1023</td>
<td>2.9 x 2.9 mm</td>
</tr>
<tr>
<td>31632B</td>
<td>A1019, B1077, A1046, C1066</td>
<td>2.9 x 2.9 mm</td>
</tr>
<tr>
<td>31632C</td>
<td>A1108, A1076, A1118, A1142</td>
<td>2.9 x 2.9 mm</td>
</tr>
<tr>
<td></td>
<td>A1175, C1096, C1114</td>
<td>2.9 x 2.9 mm</td>
</tr>
</tbody>
</table>

TABLE 2: SCALE PLATE RANGES

<table>
<thead>
<tr>
<th>Scale Range</th>
<th>Scale Plate No.</th>
<th>Available on Model No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 99 F (24.6 C)</td>
<td>317043</td>
<td>A1006, A1076, B1041</td>
</tr>
<tr>
<td>100 to 199 F (24.6 C)</td>
<td>4001040101</td>
<td>A1118, A1142</td>
</tr>
<tr>
<td>200 to 399 F (24.6 C)</td>
<td>4001040202</td>
<td></td>
</tr>
<tr>
<td>400 to 599 F (24.6 C)</td>
<td>4001040303</td>
<td>A1118, C1080</td>
</tr>
</tbody>
</table>

*Furnished in Repair Kit 14003413-001 which contains 314820 (.007") Restriction Plate.

Note: All standardized hardware parts such as screws and washers should be obtained locally.

![Exploded View of the LP916B](image-url)
GENERAL

The following information covers service and repair of the MP909A-C Pneumatic Piston Operators.

Suggested repair parts are shown by Honeywell Part Number in the Repair Parts List section. Standard hardware items such as screws, washers, etc. should be obtained locally. Should other parts be damaged or worn-out, the entire motor should be replaced.

Internal damper motor mounting Kit No. 14000716-001 and reversing damper motor linkage Kit No. 14000693-003 are shown in detail in form 95-5553.

Figures 5 and 6 show standard shaft end assemblies. Figure 7 shows standard damper linkage accessories.

APPLICATION

TYPICAL APPLICATION

These motors provide proportional control of standard dampers, air valves and shutters in high velocity mixing boxes.

OPERATION

For standard damper application, the MP909 is controlled directly from branch line pressure from the room thermostat, producing proportional control of the damper.

TROUBLE SHOOTING

1. Check the physical condition of air lines, motor linkages, and performance of operator.

CAUTION: If the motor is manually operated, or if the shaft is rotated, the diaphragm may collapse or wrinkle, resulting in erratic operation.

2. Vary the branch line pressure to the operator and observe its action. As the branch line pressure is increased, the operator should stroke. Operation should be smooth and even.

3. If the motor fails to stroke or operates erratically, disassemble the motor and check the diaphragm and base assembly for damage or wear. Follow the following procedure:
DIAPHRAGM ASSEMBLY REPLACEMENT

Refer to Figures 2 and 3.

The diaphragm may be replaced without removing the fittings or the operator from the mounting bracket.

NOTE: If operator is removed from bracket to replace diaphragm, LEAVE NUT (12) ON SHAFT.

1. To remove end cap assembly: press in on cap (4) to free lugs from lock slot and rotate counterclockwise.

2. When replacing the diaphragm (6) on cup (5), bead on inside of diaphragm MUST fit over lip on cup (5).

3. To install piston (7) in new diaphragm, blow into end connection of cup, to fully extend the diaphragm.

4. Place thumb over end connection, to trap air inside extended diaphragm.

5. Place piston (7) against end of diaphragm (6) and push. Allow just enough air to escape from beneath thumb, to prevent diaphragm from collapsing. Continue to push, until diaphragm smoothly envelops the piston.

6. Assemble the spring clip as shown in Fig. 3.

Fig. 2—MP909 Cross-Section Detail.

NOTE: Refer to Repair Parts List for part numbers of replacement parts.

DAMPER LINKAGE ACCESSORIES

Fig. 3—Spring Clip Installation.

NOTE: Refer to Repair Parts List for part numbers of replacement parts.

Fig. 4—Standard Damper Linkage Accessories.
Fig. 5 – MP909A, B, C Housing Assy.
SHAFT END ASSEMBLIES

DETAIL "A"

Nut, Hex (3/8-16 UNC x 9/16 in.)
1 or 2 as specified
304219 Nut, Hex (2 for A1512)

Nut, Adjustment
316149 (for B1365, B1363)
140009/73-001 (for B1496, B1504)
Nut, Hex (5) 1/4-28 JAM

DETAIL "B"

Nut, Hex (3/8-16 UNC x 9/16 in.)
315439-062 Clevis

Nut, Hex (1/4-28 JAM)
314709A Clevis (consists of
314709 Clevis & 304851 Pin)

DETAL "C"

Nut, Hex (3/8-16 UNC x 9/16 in.)
314442-062 Stud (for B1122)
14001013-002 Clevis (for B1569)
Nut, Hex (3/8-16 UNC x 9/16 in.)

Fig. 6 – MP909 Shaft End Assemblies.

DETAIL "D"

315398 Spacer
Nut, Hex (2) (3/8-16 UNC x 9/16 in.)
315439-062 Clevis

DETAIL "E"

Nut, Hex (1/4-28 JAM)
314709A Clevis (consists of
314709 Clevis & 304851 Pin)

DETAL "F"

Nut, Hex (1/4-28 JAM) (1) for
314417-67 Stud (1/4 x 20 in.)
314417-67 Stud
Nut, Hex (1/4-20 x 3/16 in.)

Nut, Hex (3/8-16 UNC x 9/16 in.)
314441-767 Stud

Nut, Hex (3/8-16 UNC x 9/16 in.)
314441-767 Stud
Nut, Hex (1/4-20 x 3/16 in.)

Ball Joint (315781-605 - Standard)
(315587-605 - for A1306, A1314)
Clevis 14001013-002 (for A1520)
Nut, Hex (3/8-16 UNC x 9/16 in.)
(1).
(2) for B1650, B1668, C1294, C1302.
Nut, Hex (1/4-28 JAM) (1) for
A1306, A1314.

Fig. 7 – MP909 Shaft End Assemblies.
GENERAL

The MP953A-D pneumatic valve actuators operate the V5011 and V5013 valve assemblies and with adapters, control older steam and water valves.

The MP953A, available in three sizes and three stem travel lengths, has a positive positioning relay with an adjustable spring range start point of 3 to 10 psi (21 to 69 kPa).

The MP953B, also with a positive positioning relay and adjustable spring range start point, is 7-1/8 in. (181 mm) in diameter and has stem travel lengths of 1/2 in. (13 mm) and 3/4 in. (19 mm).

The MP953C with no positioning relay is available in three nonadjustable spring ranges, three sizes and three stem travel lengths.

The D model with no positioner is available with two nonadjustable spring ranges, is 7-1/3 in. (181 mm) in diameter, and has 1/2 in. (13 mm) and 3/4 in. (19 mm) stem travel lengths.

For further identification, refer to Table 1.

SPECIFICATIONS

MODELS:

- MP953A - Direct-Acting, with Positioner
- MP953B - Reverse-Acting, with Positioner
- MP953C - Direct-Acting, without Positioner
- MP953D - Reverse-Acting, without Positioner

Rev. 8-78
J.P.S.

Form Number: 75-5500
Commercial Div
<table>
<thead>
<tr>
<th>Device</th>
<th>Active</th>
<th>Inactive (1978)</th>
<th>Size - Inches (mm)</th>
<th>Travel - Inches (mm)</th>
<th>Max. Temp.</th>
<th>Spring Range - psi (kPa)</th>
<th>Corrosion Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP/MO</td>
<td>1210</td>
<td>1087, 1004</td>
<td>A1</td>
<td>1/2 (13)</td>
<td>160 F (71 C)</td>
<td>2 to 7 (14 to 48)</td>
<td>No</td>
</tr>
<tr>
<td>953A</td>
<td>1228</td>
<td>1095, 1012</td>
<td>A2</td>
<td></td>
<td>250 F (121 C)</td>
<td>4 to 11 (28 to 76)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>1079</td>
<td>A3</td>
<td></td>
<td></td>
<td>8 to 12 (55 to 83)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1244</td>
<td>1145, 1020</td>
<td>A4</td>
<td></td>
<td></td>
<td>8 to 13 (55 to 90)</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1152</td>
<td>1038, 1053</td>
<td>A5</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1269</td>
<td>1202, 1186</td>
<td>A6</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MP/MO</td>
<td>1049</td>
<td>1002, 1036</td>
<td>B6</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>953B</td>
<td>1044</td>
<td>1010, 1044</td>
<td>B7</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1028</td>
<td>1051</td>
<td>B8</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>MP/MO</td>
<td>1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>953C</td>
<td>1018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1034</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1042</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1059</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1083</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1091</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1117</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1141</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1158</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1166</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1174</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1182</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1190</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1216</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1224</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1471</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1489</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1107</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>953D</td>
<td>1008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1115</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1123</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1073</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1099</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1072</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1214</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>1222</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

*Diaphragm color varies with maximum temperature: Black (Neoprene) = 160 F, White (Silicone) = 250 F, Black with White Dot (Ethylene Propylene) = 250 F.

? Maximum Safe Air Pressure (all models): 25 psi (172 kPa).
Page 1, "General" section, fifth paragraph:

The MP953D device diameter is 7-1/8"; not 7-1/3".

Page 10, Figure 8:

The part numbers for the high temperature diaphragm and sleeve are reversed. The correct part numbers are:

Diaphragm, 250°F 14002040-001
Sleeve, 250°F 14002039-001

Page 13, Figure 10:

The part numbers for the high temperature diaphragm and sleeve are reversed. The correct part numbers are:

Diaphragm, 250°F 14002040-001
Sleeve, 250°F 14002039-001
APPLICATION

These pneumatically powered actuators operate V5011, V5013, or certain older coil or line valve assemblies which proportionally control steam or hot or cold liquids in HVAC systems.

OPERATION

MP953A & B (With Grad-U-Trol*)

The force balance of the valve unit lever pivot and ball check arrangements establishes a true proportional relationship between the diaphragm cup position and the pilot air pressure which is independent of the shaft load. The operating (control air) pressure range is directly proportional to the feedback spring rate and the cup travel. (Decreasing pilot diaphragm area increases the operating range.) The climbing forces are available at all positions of the diaphragm cup, equal to the main supply air pressure force acting on the operator diaphragm cup less the operating spring load at the corresponding cup position.

MP953C & D (Without Grad-U-Trol)

The actuator has a rolling diaphragm operated piston-like cup to build thrust as the actuator inlet pressure increases. The spring-loaded cup returns as the actuator inlet pressure decreases.

MAINTENANCE

Periodically make a visual check for leaks, loose fittings, etc. Clean the actuator with a commercial cleaning solvent or degreaser. Keep solvent away from the diaphragm as it causes deterioration.

CAUTION

Careless handling of solvents can result in permanent damage to the respiratory system or to the skin. Avoid prolonged inhalation or contact with the skin.

OPERATIONAL CHECK

Vary the branch line pressure through the operational range of the actuator in both directions. The valve should open and close smoothly.

ADJUSTMENTS

NOTE: Adjustments are necessary only for the Grad-U-Trol relay used with the MP953A and B actuators (see Fig. 1).

TO SET OPERATING RANGE

Select the proper range and adjust as follows:

1. Using wrench (Part No. 301572A), loosen the cover locking screw.

2. Unscrew the start point adjustment knob and remove cover.

 a. For three psi (21 kPa) range, back all screws off to friction stop.
 b. For five psi (34 kPa) range, back only the black screws to stop and tighten the outer plated screws.
 c. For ten psi (69 kPa) range, tighten all the screws.

Fig. 1. Adjustment Points of Gradutrol Relay.

TO SET START POINT

1. Tighten the cover by turning it until it bottoms on the relay body.

2. Back off (one turn maximum) until the start point of the correct scale range lines up with the start point indicator near "B" marking.

3. Tighten the cover locking screw until it engages the relay body. Do not overtighten.

*Trademark
ADJUSTMENT CHECK

1. Install gages in the main and pilot air lines.

2. Verify main air pressure. It must be at least 13 psi (90 kPa) if top of sequencing range exceeds 13 psi (90 kPa).

3. Slowly apply pilot pressure and note the pressure at which the valve stem travel starts. This pressure should be within ±3/4 psi (5 kPa) of the start point setting.

4. Slowly increase the pilot pressure until the valve stem travel is complete. This pressure should be the start point pressure plus the range setting.

5. If necessary, make fine adjustments with the start point adjustment knob.

CAUTION
Loosen the cover locking screw before turning the start point adjustment knob.

TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Remedy</th>
</tr>
</thead>
<tbody>
<tr>
<td>MP953A closes too slowly or MP955B opens too slowly.</td>
<td>Replace the filters in positioner relay ports.</td>
</tr>
<tr>
<td></td>
<td>Replace restrictor if one exists.</td>
</tr>
<tr>
<td></td>
<td>Add booster relay if controller is too low for the application.</td>
</tr>
<tr>
<td></td>
<td>Add booster relay if controller is too low for the application.</td>
</tr>
<tr>
<td>MP953A or C Valve won’t open or MP953B or D Valve won’t close.</td>
<td>Check that actuator is mounted securely and latched to valve stem.</td>
</tr>
<tr>
<td></td>
<td>Check controller action. Assure proper bleed off occurs.</td>
</tr>
<tr>
<td></td>
<td>Check for internal valve problems, foreign objects under seat, defective disc or seat, plug unscrewed, etc.</td>
</tr>
</tbody>
</table>

Fig. 2. Troubleshooting Flowchart for MP953.
REPAIR

Special tools required:

Pliobond Glue or equivalent to replace MP953A diaphragm.

DIRECT ACTING (MP953A & C)

DIAPHRAGM REPLACEMENT

Before attempting replacement, determine type and material of existing diaphragm. Both neoprene and ethylene propylene (EPR) are black but EPR has a white spot. Neoprene and EPR diaphragms are interchangeable but should be applied to suit maximum temperature requirements (EPR used for 250 F [121 C]). Old style flat diaphragms and newer beaded roll types are not interchangeable. Silicone (white) diaphragms are used in 250 F (121 C) applications on MP953A and C models. EPR is used on B and D models only.

1. Disconnect air line(s).
2. Loosen two base setscrews to partially relieve spring preload.
3. Remove cover screws, cover and diaphragm.
4. Install new diaphragm (for positioner models, cement positioner spring cup, 315178, to center of diaphragm).
5. Reassemble positioner spring, cover and screws. (Use cap type allen head setscrews to replace socket head setscrews used on older actuators.)
6. Tighten base setscrews.

FILTER REPLACEMENT

1. Remove tubing.
2. Remove Connectors.
3. Remove filters with pointed tool such as an awl.
4. Install foam filters, taking care not to fold or bunch together.
5. Reinstall Connectors and tubing.

MAIN SPRING REPLACEMENT

Springs with different ranges are interchangeable on the same size actuators. Select spring by operating range and stem travel. (See Table 2 for MP953C and parts list for MP953A.)

5 IN. AND 8 IN.

1. Remove actuator from valve.
2. Remove two base setscrews.
3. Replace spring.
4. Reinstall two base setscrews.
5. Reinstall actuator and latch of valve stem.

13 IN.

1. Remove actuator from valve.
2. Loosen two base setscrews.
3. Remove cover, diaphragm, cup and stem retainer.
4. Replace spring.
5. Reinstall stem retainer, cup, diaphragm, cover and screws.
6. Tighten two base setscrews.
7. Reinstall actuator and latch to valve stem.
POSITIONER REPLACEMENT (See Fig. 3)

1. Disconnect air lines.

2. Unscrew positioner from actuator cover, taking care not to lose feedback spring.

3. Screw new positioner in place, being sure new “O” ring is properly seated in positioner groove. (Reuse old feedback spring as this is not included in 313695J assembly.)

4. Tighten only enough to seat “O” ring.

5. Adjust positioner for range and start point.

REVERSE ACTING (MP953C & D)

DIAPHRAGM REPLACEMENT

NOTE: Replace both diaphragm and sleeve (inner seal) when replacement of either is indicated. Use SERVICE LINE Kit 14003124-001 for 160 F (71 C) device. Select replacement diaphragms by maximum temperature requirements (160 F [71 C]) Standard Applications—neoprene; 250 F [121 C] high temperature applications—EPR).

MP953B

1. Disconnect air lines.

2. Remove cover screws, cover, feedback spring, nut 312205, lockwasher 304733, cup and diaphragm.

3. Replace diaphragm.

4. Reinstall cup, lockwasher and nut.

5. Tighten nut only enough to seal diaphragm.

6. Reinstall feedback spring, cover and screws.

7. Reconnect air lines.

MP953D

1. Disconnect air lines.

2. Remove cover screws, cover and diaphragm.

3. Replace diaphragm.

4. Replace cover and screws.

5. Reconnect air lines.

SLEEVE (Inner Seal) REPLACEMENT

1. Remove diaphragm (follow steps 1 and 2 above).

2. Remove cup 302201, three screws, ring 312180 and sleeve (inner seal).

3. Replace sleeve (inner seal).

4. Reinstall ring, screws, cup and diaphragm.

5. Follow steps 4 and 5 for D model (4 through 7 for B models) above to complete repair.

MAIN SPRING REPLACEMENT

Select spring by operating range and valve stem travel. Springs are interchangeable if operating range and valve stem travel are the same. For MP953D, see Table 3 and for MP953B, see parts list.

Fig. 4. MP953B Bias Spring Position.

1. Remove diaphragm and sleeve (inner seal) (see above).

2. Remove two base screws and base.

3. Replace main spring.

4. Reinstall base, two screws, sleeve and diaphragm.

5. Follow steps 4 through 7 for B models and 4 and 5 for D models in DIAPHRAGM REPLACEMENT.

POSITIONER REPLACEMENT (See Fig. 3 and 4)

1. Remove air lines and two screws from positioner assembly.

2. Replace positioner assembly being sure bias and feedback springs are properly seated.

3. Adjust positioner for proper range and start point.

Figure 7 illustrates parts used in the old MO953 A4 and A8 Series 3 through 7. These parts are not available. If repair is necessary, convert the actuator to a new style device by installing the new parts listed in Figure 7.
Fig. 5. Exploded View.
Fig. 6. Relay Assemblies—Exploded View.
TO CONVERT A4 DEVICE
RELAY ASSY - 313695 J
FEEDBACK SPRING - 313696
CUP - 315178
DIAPHRAGM - 311750
CUP - 311749 OR 314153

8"

SCREW
WASHER
PLATE

TO CONVERT A8 DEVICE
RELAY ASSY - 313695 J
FEEDBACK SPRING - 313814
CUP - 315178
DIAPHRAGM - 312505
CUP - 315020

13"

DIAPHRAGM
CUP
PIN

Fig. 7. Old MO953 Conversion.
Fig. 8. Exploded View.
Fig. 9. Exploded View.
Table 2. MP953C Springs.

<table>
<thead>
<tr>
<th>Actuator Diameter (Inches)</th>
<th>Stroke Diameter (Inches)</th>
<th>Color</th>
<th>Pressure Range (psi kPa)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1/2 (13)</td>
<td>Brown</td>
<td>2 to 7 (14 to 48)</td>
<td>312788-033</td>
</tr>
<tr>
<td>5</td>
<td>1/2 (13)</td>
<td>Gray</td>
<td>8 to 12 (55 to 83)</td>
<td>312790-034</td>
</tr>
<tr>
<td>5</td>
<td>1/2 (13)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>312791-0123</td>
</tr>
<tr>
<td>5</td>
<td>3/4 (19)</td>
<td>Brown</td>
<td>2 to 7 (14 to 48)</td>
<td>311616-033</td>
</tr>
<tr>
<td>5</td>
<td>3/4 (19)</td>
<td>Gray</td>
<td>8 to 12 (55 to 83)</td>
<td>311618-034</td>
</tr>
<tr>
<td>5</td>
<td>3/4 (19)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>311393-0123</td>
</tr>
<tr>
<td>8</td>
<td>3/4 (19)</td>
<td>Brown</td>
<td>2 to 7 (14 to 48)</td>
<td>311852-033</td>
</tr>
<tr>
<td>8</td>
<td>3/4 (19)</td>
<td>Gray</td>
<td>8 to 12 (55 to 83)</td>
<td>311855-034</td>
</tr>
<tr>
<td>8</td>
<td>3/4 (19)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>311854-0123</td>
</tr>
<tr>
<td>8</td>
<td>1 1/2 (38)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>313477-0123</td>
</tr>
<tr>
<td>8</td>
<td>1 1/2 (38)</td>
<td>Green</td>
<td>3 to 15 (21 to 103)</td>
<td>14002934-001</td>
</tr>
<tr>
<td>13</td>
<td>1 1/2 (38)</td>
<td>Brown</td>
<td>2 to 7 (14 to 48)</td>
<td>312469-033</td>
</tr>
<tr>
<td>13</td>
<td>1 1/2 (38)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>312471-0123</td>
</tr>
</tbody>
</table>

Table 3. MP953D Springs.

<table>
<thead>
<tr>
<th>Stroke Diameter (Inches)</th>
<th>Stroke Diameter (mm)</th>
<th>Color</th>
<th>Pressure Range (psi kPa)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 (13)</td>
<td>1/2 (13)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>314314-0123</td>
</tr>
<tr>
<td>1/2 (13)</td>
<td>Black</td>
<td>8 to 13 (55 to 90)</td>
<td>312792-017</td>
<td></td>
</tr>
<tr>
<td>3/4 (19)</td>
<td>White</td>
<td>4 to 11 (28 to 76)</td>
<td>314313-0123</td>
<td></td>
</tr>
<tr>
<td>3/4 (19)</td>
<td>Black</td>
<td>8 to 13 (55 to 90)</td>
<td>312203-017</td>
<td></td>
</tr>
<tr>
<td>3/4 (19)</td>
<td>Silver</td>
<td>3 to 7 (21 to 48)</td>
<td>314963-605</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 10. Exploded View.
Fig. 11. MP953 Accessories.
INTRODUCTION

These instructions cover maintenance, disassembly, and repair of the P638A and P643A Pressuretrol, and the P654A Pneumatic-Electric Relay. Complete parts lists and exploded views are included. All parts and assemblies are designated by part number and description. For ordering information, see the note following the exploded view drawings.

MAINTENANCE

SOLVENTS AND LUBRICANTS

CHLOROTHENE or VYTHENE - For removal of dirt and grease. Available at most office supply houses.

LUBRIPLATE

#630AA, 3 oz tube
#310879

To be applied to pivot points and adjustment screw threads.

CAUTION: Special care should be exercised in the use of solvents. Have proper ventilation. Avoid prolonged inhalation and/or contact with skin; careless handling of solvents can result in permanent damage to the respiratory system and skin tissue.

Perform maintenance as required. In general, the only maintenance required is the removal of accumulated dust or dirt. Use a soft brush or blow out dirt. Use solvent to clean any grease or caked dirt. Lightly coat pivots and adjustment screw threads.

OPERATIONAL CHECK

A check of the units should be made with the complete system in operation. Vary the air pressure to the unit and observe that correct control action is produced.

PARTS LIST

Mechanical devices must be serviced periodically if they are expected to give continued satisfactory performance, and controls are not an exception. How accurate and how troublefree your control system will be in the years to come depends largely on the maintenance given it. For best results, all devices in your system should be serviced at one time.

Time and trouble can be saved by arranging with Honeywell for a maintenance agreement which will guarantee expert, economical care, and insure maximum life and efficiency from your system.

*Trademark
5-66
L.C.

Form Number 77-9607
File 77-9600 Commercial Div.

B-46
Fig. 1—P638A Pressuretrol.

Fig. 2—Bracket Assembly (120101A).

Fig. 3—Bracket Assembly (120107A).

†Standard parts (screws, washers, electrical components, etc.) should be obtained locally when possible. Component values are subject to change without notice. Always use exact replacement parts when making repairs.

††Because the component parts of this assembly are staked or require a special assembly process, it is recommended that a complete replacement assembly be ordered.
Fig. 4—P643A Pressuretrol Assembly.

Fig. 5—Pressuretrol Assembly (800689A).

†Standard parts (screws, washers, electrical components, etc.) should be obtained locally when possible. Component values are subject to change without notice. Always use exact replacement parts when making repairs. ††Because the component parts of this assembly are stacked or require a special assembly process, it is recommended that a complete replacement assembly be ordered.
†Standard parts (screws, washers, electrical components, etc.) should be obtained locally when possible. Component values are subject to change without notice. Always use exact replacement parts when making repairs. ††Because the component parts of this assembly are staked or require a special assembly process, it is recommended that a complete replacement assembly be ordered.

Fig. 6—P654A Pneumatic-Electric Relay.

ORDERING INFORMATION:
Please order by Part No. and Description. Also, give complete Order Specification number of the device. The number is stamped on case. It may be necessary to return the entire device to our factory for complete repair and reconditioning. In the U.S., orders should be mailed to Honeywell Inc., 1885 Douglas Drive, Minneapolis, Minnesota 55422. Direct all inquiries on orders to this same address. (In Canada, direct all orders and inquiries to Honeywell Controls Limited, Vanderhoof Avenue, Leaside, Toronto 17, Ontario.)
GENERAL

The following includes the information required to service and/or repair the P658 Pneumatic-Electric Switch. A repair Parts List is included to assist in ordering selected parts for field repair. Only those items which include an identifying part number are stocked for ordering purposes.

No special tools are required to service or repair these devices.

Operating ambient temperature is +40 to 140°F (4.5 to 60°C).

The switch in the P658A and B models is rated as follows:

- 25 amps at 125, 250 or 480v A.C.
- 1 Hp at 125v A.C.
- 2 Hp at 250v A.C.
- Pilot duty—750VA at 125, 250, or 277v A.C.

The switch used in the P658C model is for special service and is rated at 5 ma @ 5 volts.

APPLICATION

The P658 converts a pneumatic signal from a controller or other pneumatic device to a two-position electric switch action. This switching action is used to provide on/off control of fans, pumps, electric heaters, etc. found in mechanical systems.

The SPDT switch action can also be used to energize alarm systems, provide interlock functions or other pneumatic to electric interface operations.

OPERATION (See Fig. 1)

On a drop in input pressure below setpoint, the SPDT switch transfers from R-W to R-B.

Reverse switching (break R-B and make R-W) occurs on a pressure rise above the setpoint plus differential (2 psi [13.8 kPa]).
TROUBLE SHOOTING

Inspect the P658 to determine that the setpoint (factory set and marked on coverplate) is correct for the application.

Increasing or decreasing the branch line pressure above or below the setpoint of the P658 should cause the switch to cycle the load. See General section for switch rating. Determine that the load connected to the switch is within the limits of the switch. Overloading will destroy or shorten the life of the switch. If the switch is found to be defective, refer to the Repair section for replacement.

To adjust the setpoint, if required, turn the adjustment wheel (Fig. 1) clockwise (as viewed from the top looking down) to increase the setpoint; to decrease setpoint, rotate counterclockwise. One full turn of the wheel will change the setpoint 9 psig (62 kPa).

REPAIR

PARTS LIST
Mechanical devices must be serviced periodically if they are expected to give continued satisfactory performance, and controls are not an exception. How accurate and how trouble-free your control system will be in the years to come depends largely on the maintenance given it. For best results, all devices in your system should be serviced at one time.

Time and trouble can be saved by arranging with Honeywell for a maintenance agreement which will guarantee expert, economical care, and insure maximum life and efficiency from your system.

ORDERING INFORMATION FOR HONEYWELL PARTS AND ASSEMBLIES

Contact your local Honeywell branch office for handling of repairs, pricing information and assistance. When ordering repair parts, please furnish the Part Number and Description of parts required. Also, provide the complete Order Specification Number of the device in which the parts are to be used.

SALES and SERVICE from Coast to Coast...

ALABAMA - Birmingham, Huntsville, Mobile
ALASKA - Anchorage, Fairbanks
ARIZONA - Phoenix, Tucson
ARKANSAS - Little Rock
CALIFORNIA - Los Angeles, San Francisco, Sacramento, San Diego
COLORADO - Denver, Colorado Springs, Grand Junction
CONNECTICUT - Hartford, New London
DELAWARE - Wilmington
DIST. OF COLUMBIA - Washington, Alexandria, McLean, Virginia
FLORIDA - Jacksonville, Orlando, Tampa, Miami
GEORGIA - Atlanta, Macon, Savannah
HAWAII - Honolulu
IDAHO - Boise
ILLINOIS - Chicago, Peoria, Rockford, Elgin, Kankakee, Springfield
INDIANA - Indianapolis, Fort Wayne, Lafayette
IOWA - Des Moines, Cedar Rapids, Council Bluffs
KANSAS - Topeka, Kansas City, Wichita
KENTUCKY - Louisville, Lexington
LOUISIANA - Baton Rouge, New Orleans, Shreveport
MAINE - Portland
MARYLAND - Baltimore, Annapolis
MASSACHUSETTS - Boston
MICHIGAN - Detroit, Grand Rapids, Lansing, Ann Arbor
MINNESOTA - Minneapolis, St. Paul
MISSISSIPPI - Jackson
MISSOURI - Kansas City, St. Louis
MONTANA - Billings
NEBRASKA - Omaha
NEVADA - Las Vegas, Reno
NEVADA - Carson City
NEW HAMPSHIRE - Manchester
NEW JERSEY - Newark, Trenton, Atlantic City
NEW MEXICO - Albuquerque
NEW YORK - New York City, Rochester, Buffalo
NORTH CAROLINA - Charlotte, Raleigh, Asheville
NORTH DAKOTA - Bismarck, Fargo
OHIO - Columbus, Cleveland
OKLAHOMA - Oklahoma City, Tulsa, Muskogee
OREGON - Portland, Eugene
PENNSYLVANIA - Philadelphia, Pittsburgh, Allentown
PUERTO RICO - San Juan
RHODE ISLAND - Providence, Pawtucket
SOUTH CAROLINA - Charleston, Columbia
SOUTH DAKOTA - Sioux Falls, Rapid City
TENNESSEE - Nashville, Memphis, Knoxville
TEXAS - Dallas, Fort Worth, Houston, San Antonio, El Paso
UTAH - Salt Lake City
VERMONT - Burlington
WASHINGTON - Seattle, Spokane, Yakima
WEST VIRGINIA - Charleston
WISCONSIN - Milwaukee, Sheboygan
WYOMING - Cheyenne

...and across Canada: HONEYWELL CONTROLS LIMITED

Head Office & Factory: 740 Ellesmer Road, Scarborough, Ontario

...and around the World: HONEYWELL INTERNATIONAL

General Offices: Minneapolis, Minn. 55408

ALGERIA
ARGENTINA
AUSTRALIA
AUSTRALIA
BELGIUM
BOLIVIA
BRAZIL
CHILE
COLOMBIA
DENMARK
EGYPT
EL SALVADOR
EL SALVADOR
FINLAND
FRANCE
GERMANY
GREAT BRITAIN
GREECE
GUAM
HONG KONG
ICELAND
INDIA
INDONESIA
IRAN
ITALY
JAPAN
KOREA
KUWAIT
LEBANON
MICRONESIA
MALAYSIA
MEXICO
MOROCCO
NETHERLANDS
NEW ZEALAND
NORWAY
PAKISTAN
PANAMA
PERU
PHILIPPINE ISLANDS
PORTUGAL
SINGAPORE
SOUTH AFRICA
SPAIN
SWEDEN
SWITZERLAND
TAIWAN
THAILAND
TUNISIA
TRINIDAD B.W.I.
TURKEY
VENEZUELA
VIETNAM
YUGOSLAVIA
Honeywell

Differential Thermostat

MODEL NUMBER PP903A

General

The PP903A is a pressure-operated, bleed-type, one-pipe controller for providing proportional control of pneumatic motors and valves. It varies the air pressure piped to it in relation to the difference in pressure existing between water pressures.

Features

- Direct or reverse-acting. Change-over link provides quick and easy change-over from direct to reverse-acting.
- Easily accessible adjustment means for throttling range and pressure range.
- Mounting lugs for quick and easy mounting.

Specifications

MODEL
PP903A

<table>
<thead>
<tr>
<th>Pressure Difference Setpoint Range*</th>
<th>Operating Pressure Limits of Bellows Assemblies</th>
<th>Approximate Throttling Range of Controller at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Min</td>
<td>Max.</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>Max.</td>
</tr>
<tr>
<td>0-22 psi (0-152 kPa)</td>
<td>22 Hg vac</td>
<td>85 psi (586 kPa)</td>
</tr>
<tr>
<td>3-50 psi (21-344 kPa)</td>
<td>2 psi (14 kPa)</td>
<td>85 psi (586 kPa)</td>
</tr>
<tr>
<td>5-65 psi (35-448 kPa)</td>
<td>0 psi</td>
<td>300 psi (2068 kPa)</td>
</tr>
</tbody>
</table>

*A blank scale is provided to permit the controller to be calibrated to individual installations in the field.
MAXIMUM SAFE AIR PRESSURE
18 psi (124 kPa)

ADJUSTMENT MEANS
External slotted screws for throttling range and pressure range.

TYPE OF ELEMENT
Bellows

AIR CONNECTIONS
1/2 NPT

PRESSURE CONNECTION TO BELLOWS
1/4 NPT

MOUNTING
Lugs for three-point surface mounting.

DIMENSIONS
See Figure 1.

FINISH
Gray

ACCESSORIES
0.007 Restriction.

WHEN ORDERING, SPECIFY
Pressure difference range.
Accessories.

Typical Operation

Either an increase in supply pressure or a decrease in return pressure will increase the differential pressure across the system. On an increase in differential pressure, the PP903, when set direct-acting, will increase the branch pressure closing a normally-open valve just enough to return the system differential to its setpoint value.

FIG. 1. PP903A APPROXIMATE DIMENSIONS IN INCHES (MILLIMETERS)

FIG. 2. PP903A TYPICAL OPERATION
Honeywell

THESE RELAYS PROVIDE INTERMEDIATE OR HEAVY DUTY SERVICE IN A WIDE VARIETY OF SWITCHING CONFIGURATIONS.

- Relays with 24V control coils: R182A-C; R882A-C,F; R847A,B; RA19A; RA89A; RA832A; R845A.

- Relays with line voltage control coils: R447A; R482A-E.

- Relays with internal 24V transformer: R182A-C; RA19A; RA89A; RA832A; R845A; R847A.

- Relays for use with an external 24V supply: R847B; R882A-C,F.

- Heavy duty relays: R447A; R847A,B.

- R447A and R847A,B have flexible internal leads to provide either spst or spdt switching.

- RA832A has contacts for low voltage and millivoltage (Powerpile) use.

- R882F is suitable for use as an emergency heat relay with a heat pump panel.

- R482E switches electronic bridge circuit elements.
THE SPECIFICATIONS GIVEN IN THIS PUBLICATION DO NOT INCLUDE NORMAL MANUFACTURING TOLERANCES. THEREFORE, THIS UNIT MAY NOT MATCH THE LISTED SPECIFICATIONS EXACTLY. ALSO, THIS PRODUCT IS TESTED AND CALIBRATED UNDER CLOSELY CONTROLLED CONDITIONS, AND SOME MINOR DIFFERENCES IN PERFORMANCE CAN BE EXPECTED IF THOSE CONDITIONS ARE CHANGED.

TRADELINE MODELS

TRADELINE models are selected and packaged to provide ease of stocking, ease of handling, and maximum replacement value. TRADELINE model specifications are the same as those of standard models except as noted below.

TRADELINE MODEL AVAILABLE:
R182C—120 and 240V models.
R482C—120 and 240V models.
RA89A—24V controller.

ADDITIONAL FEATURES:
TRADELINE pack with cross reference label and special instruction sheet.

STANDARD MODELS

MODELS: Refer to Tables I-V.

ORDERING INFORMATION

WHEN PURCHASING REPLACEMENT AND MODERNIZATION PRODUCTS FROM YOUR TRADELINE WHOLESALER OR YOUR DISTRIBUTOR, REFER TO THE TRADELINE CATALOG OR PRICE SHEETS FOR COMPLETE ORDERING NUMBER, OR SPECIFY—

1. Order number.
2. Voltage and frequency.
3. Optional specifications desired.

IF YOU HAVE ADDITIONAL QUESTIONS, NEED FURTHER INFORMATION, OR WOULD LIKE TO COMMENT ON OUR PRODUCTS OR SERVICES, PLEASE WRITE OR PHONE:

1. YOUR LOCAL HONEYWELL RESIDENTIAL DIVISION SALES OFFICE (CHECK WHITE PAGES OF PHONE DIRECTORY).
2. RESIDENTIAL DIVISION CUSTOMER SERVICE
 HONEYWELL INC., 1885 DOUGLAS DRIVE NORTH
 MINNEAPOLIS, MINNESOTA 55422 (612) 542-7500
 (IN CANADA—HONEYWELL CONTROLS LIMITED, 740 ELLESMERE ROAD, SCARBOROUGH, ONTARIO M1P 2V9)
 INTERNATIONAL SALES AND SERVICE OFFICES IN ALL PRINCIPAL CITIES OF THE WORLD.
TABLE I - ELECTRICAL CONTACT RATINGS (AMPERES)

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FULL LOAD</th>
<th>LOCKED ROTOR</th>
<th>RESISTIVE</th>
<th>FULL LOAD</th>
<th>LOCKED ROTOR</th>
<th>RESISTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R182A</td>
<td>10.2</td>
<td>61.2</td>
<td>—</td>
<td>5.1</td>
<td>30.6</td>
<td>—</td>
</tr>
<tr>
<td>R182B,C</td>
<td>7.4</td>
<td>44.4</td>
<td>—</td>
<td>3.7</td>
<td>22.2</td>
<td>—</td>
</tr>
<tr>
<td>R882B,C</td>
<td>7.4</td>
<td>44.4</td>
<td>10</td>
<td>4.5</td>
<td>27.0</td>
<td>6</td>
</tr>
<tr>
<td>R482A</td>
<td>7.4</td>
<td>44.4</td>
<td>10</td>
<td>4.5</td>
<td>27.0</td>
<td>6</td>
</tr>
<tr>
<td>R482B,C</td>
<td>7.2</td>
<td>43.2</td>
<td>10</td>
<td>3.6</td>
<td>21.6</td>
<td>5</td>
</tr>
<tr>
<td>R482D</td>
<td>4.4</td>
<td>26.4</td>
<td>5</td>
<td>2.2</td>
<td>13.3</td>
<td>3</td>
</tr>
<tr>
<td>R482E a</td>
<td>0.2</td>
<td>0.4</td>
<td>—</td>
<td>0.1</td>
<td>0.2</td>
<td>—</td>
</tr>
<tr>
<td>RA19A</td>
<td>10.0</td>
<td>60.0</td>
<td>10</td>
<td>6.5</td>
<td>39.0</td>
<td>6</td>
</tr>
<tr>
<td>RA89A</td>
<td>7.4</td>
<td>44.4</td>
<td>72/100 c</td>
<td>4.5</td>
<td>27.0</td>
<td>6</td>
</tr>
<tr>
<td>RA832A d f</td>
<td>7.4</td>
<td>44.4</td>
<td>72/100 c</td>
<td>4.5</td>
<td>27.0</td>
<td>6</td>
</tr>
<tr>
<td>R447A</td>
<td>16/22 c</td>
<td>72/100 c</td>
<td>—</td>
<td>16/22 c</td>
<td>72/100 c</td>
<td>—</td>
</tr>
</tbody>
</table>

R882F 125 VA pilot duty at 120V and 240V; 3 amp full load at 24V ac.

a 24V rating of 1 amp full load and 2 amp locked rotor.
b R847B rated at 208V.
c Rating if poles are paralleled.
d Includes contact for switching additional low or millivoltage (Powerpile) load.
Millivoltage Rating: 300 ma minimum at 750 mV dc.
Low Voltage Rating:
Pilot duty—50 VA at 24V.
Direct current rating—1 amp at 12V.
Second set of contacts rated for line or low voltage load.
120V—3 amp full load, 18 amp locked rotor.
240V—2 amp full load, 12 amp locked rotor.
50 VA at 24V.
f Maximum Connected Load: 2000 VA.

TABLE II - COIL DATA

<table>
<thead>
<tr>
<th>MODEL</th>
<th>COIL VOLTAGE 50/60 Hz</th>
<th>COIL CURRENT (AMPS)</th>
<th>SEALED VA</th>
<th>INRUSH VA</th>
<th>MAX-PULL IN VOLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA19A a</td>
<td>24</td>
<td>0.40</td>
<td>8.9</td>
<td>17.4</td>
<td>19.8</td>
</tr>
<tr>
<td>RA89 a</td>
<td>24</td>
<td>0.40</td>
<td>8.9</td>
<td>17.4</td>
<td>19.8</td>
</tr>
<tr>
<td>R182A,B a</td>
<td>24</td>
<td>0.40</td>
<td>8.9</td>
<td>17.4</td>
<td>19.8</td>
</tr>
<tr>
<td>R832A a</td>
<td>24</td>
<td>0.40</td>
<td>8.9</td>
<td>17.4</td>
<td>19.8</td>
</tr>
<tr>
<td>R845A a</td>
<td>24</td>
<td>0.40</td>
<td>8.9</td>
<td>17.4</td>
<td>19.8</td>
</tr>
<tr>
<td>R847A a</td>
<td>24</td>
<td>0.35</td>
<td>8.4</td>
<td>21.4</td>
<td>20.0</td>
</tr>
<tr>
<td>R847B b</td>
<td>24</td>
<td>0.42</td>
<td>5.2</td>
<td>9.4</td>
<td>20.0</td>
</tr>
</tbody>
</table>

a Built-in low voltage (24V) transformer.
b Requires external 24V transformer.
TABLE III - TRANSFORMER RATINGS
Ratings of built-in transformers are as follows: All transformers are rated at 120/240V, 50/60 Hz.

<table>
<thead>
<tr>
<th>Transformer</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>R847A</td>
<td>7.0</td>
</tr>
<tr>
<td>RA19A, RA89A</td>
<td>5.0</td>
</tr>
<tr>
<td>RA832A</td>
<td></td>
</tr>
<tr>
<td>R845A</td>
<td>6.5</td>
</tr>
<tr>
<td>R182A-C</td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV - SWITCHING ACTION

<table>
<thead>
<tr>
<th>SWITCHING</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spst</td>
<td>RA19A, RA89A, R182A, R482A, R882A, R482B, R845A</td>
</tr>
<tr>
<td>Spdpt</td>
<td>R182B, R482C, R882B</td>
</tr>
<tr>
<td>Dpst</td>
<td>R447A, R847A-B, R832A, R845A</td>
</tr>
<tr>
<td>Dpdt</td>
<td>R182C, R482C-E, R842DB, R882C</td>
</tr>
</tbody>
</table>

OPTIONAL SPECIFICATIONS:
R845A—available without electrical barrier between terminals 2 and 4, and 5 and 6. For switching two equal line voltage loads.
R482A—available with fungus proofing, 60 Hz only.
R482B—available with 24V coil.

INSTALLATION

WHEN INSTALLING THIS PRODUCT...
1. Read these instructions carefully. Failure to follow them could damage the product or cause a hazardous condition.
2. Check the ratings given in the instructions and on the product to make sure the product is suitable for your application.
3. Installer must be a trained, experienced service technician.
4. After installation is complete, check out product operation as provided in these instructions.

CAUTION
Disconnect the power supply before beginning wiring to prevent electrical shock and equipment damage.
MOUNTING

For replacement, mount relay in same location as old cont. If a new installation, locate the relay vertically on a solid wall or partition as near as possible the device to be controlled. Select a location that is easily accessible for installation and service.

NOTE: To reduce possible transformer hum and relay noise that is sometimes amplified by mounting surfaces of sheetmetal, plasterboard, and similar materials, place rubber or felt washers between case and the mounting surface.

1. Position relay and mark mounting holes.
2. Start a screw for the keyhole type mounting hole in upper right-hand corner. Screw it down within about 1/8 inch [3.2 mm] of the surface.
3. Hang the relay on the screw, position the case, and start the bottom screw; tighten both screws.

WIRING

—IMPORTANT—

The terminals on these switching relays are approved for use with copper wires only.

All wiring must comply with all applicable electrical codes, ordinances, and regulations. Follow any instructions furnished with the controlled equipment.

Hookup diagrams for these relays are included. If two or more devices are to be controlled in parallel, their total current must not exceed the relay load rating.

—IMPORTANT—

The transformer on the R182C may overheat when used with a series 20 thermostat if the total resistance of the thermostat circuit exceeds 2.5 ohms. If the measured resistance of the thermostat (including thermostat wire and thermostat contact resistance) exceeds 2.5 ohms, add a 100 ohm, 10 watt resistor between the W and R terminals. Table V gives maximum thermostat wire runs; if longer runs are necessary, measure the resistance or add a 100 ohm, 10 watt resistor across terminals W and R.

<table>
<thead>
<tr>
<th>AWG WIRE SIZE (NUMBER)</th>
<th>TOTAL WIRE LENGTH</th>
<th>LENGTH OF RUN TO THERMOSTAT (2 WIRES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FEET</td>
<td>FEET</td>
</tr>
<tr>
<td>22</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>300</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>14</td>
<td>800</td>
<td>400</td>
</tr>
</tbody>
</table>

TABLE V

FIG. 2—THERMOSTAT CONNECTIONS FOR R182A-C RELAYS.

FIG. 3—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR R182A. SEE FIG. 2 FOR THERMOSTAT CONNECTIONS.

FIG. 4—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR R182B. (RELAY MAY BE CONNECTED FOR SPST SWITCHING.) SEE FIG. 2 FOR THERMOSTAT CONNECTIONS.
Fig. 5—Internal Schematic and Typical Hookup for R182C. (Relay may be connected for SPST, SPDT, or DPST switching.) See Fig. 2 for Thermostat connections.

Fig. 6—Internal Schematic and Typical Hookup for R882A.

Fig. 7—Internal Schematic and Typical Hookup for R882B.

Fig. 8—Internal Schematic and Typical Hookup for R882C.
FIG. 9–R882F EMERGENCY HEAT RELAY USED WITH HEAT PUMP PANEL (WITHOUT IMPEDANCE RELAY). AUXILIARY STRIP HEATER RELAY NO. 1 IS POWERED FROM THE LOW VOLTAGE HEAT PUMP PANEL CIRCUIT. STRIP HEATER RELAYS 2 AND 3 ARE POWERED FROM A SEPARATE LINE VOLTAGE SOURCE.

FIG. 10–R882F EMERGENCY HEAT RELAY USED WITH HEAT PUMP PANEL (WITH IMPEDANCE RELAY). AUXILIARY STRIP HEATER RELAY NO. 1 IS POWERED FROM THE LOW VOLTAGE HEAT PUMP PANEL CIRCUIT.
FIG. 11—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR RA19A.

FIG. 12—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR RA89A.

FIG. 13—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR RA832A.
FIG. 14—SCHEMATIC DIAGRAM SHOWING R845A IN A MULTIZONE, FORCED HYDRONIC HEATING SYSTEM. THIS ARRANGEMENT IS SUITABLE FOR ANY NUMBER OF ADDITIONAL ZONES.

FIG. 15—R845A HOOKUP FOR CONTROLLING 2 LOADS.

FIG. 16—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR R482A.

FIG. 17—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR R482B.
FIG. 18—INTERNAL SCHEMATIC AND TYPICAL HOOKUP FOR R482C. R482D IS THE SAME WITH THE EXCEPTION OF OVERLAPPING RELAY CONTACTS AND CONTACT RATING.

FIG. 19—INTERNAL SCHEMATICS FOR R447A AND R847A, B RELAYS AS SHIPPED FROM FACTORY.

FIG. 20—R847A WIRED TO BREAK ONE SIDE OF THE CIRCUIT WITH SPST SWITCHING.

FIG. 21—R447A OR R847B WIRED TO BREAK ONE SIDE OF THE CIRCUIT WITH SPST SWITCHING.
FIG. 22—R447A OR R847B RELAY WIRED TO BREAK BOTH SIDES OF THE CIRCUIT WITH DPST SWITCHING.

FIG. 23—R447A OR R847B WIRED TO BREAK ONE SIDE OF THE CIRCUIT WITH DPST SWITCHING TO CONTROL MULTIPLE LOADS.

SERVICE AND CHECKOUT

1. Never use oil on any part of the relay coil or contacts.
2. The cover should be kept on the relay during normal operation and removed only for service and checkout.
3. Relay contacts are arranged so that they close with a wiping action and are self-cleaning. The contacts may turn black after being in service for some time. This discoloration does not prevent proper operation.
4. After installation is complete, operate the relay and equipment through at least 1 complete cycle to make sure that the relay controls the equipment as intended.
General

The RP417 and RP817 Electronic-Pneumatic Relays are electrically operated pneumatic switches used for interlock between an electrical system and a pneumatic control system. These devices can also be used as stop and bleed relays or as diverting or selector relays.

The RP417 and RP817 Relay valve bodies are constructed of molded acetal copolymer plastic. Internal valve parts are constructed of stainless steel, copper, plastic, and Buna "N" rubber. These relays are designed for either wall mounting or panel mounting, depending upon the application. They can be mounted in any position without affecting the operation of the device. An optional mounting kit (14003638-001) is available to facilitate direct mounting to MP516A Operators, VP519C Valves, or PP901B and PP902B Pressure Regulators.

Features

- Air connections made via 1/4 inch (6 mm) sharp barb type connectors for 1/4 inch OD polyethylene tubing.
- Can be wall or panel mounted in any position without affecting the operation of the relay.
- Constructed of acetal copolymer plastic and corrosion resistant metal.
- Available with either leadwires, junction box, or plug-in electrical connections.
- Can be directly mounted to MP516A Operators, VP519C Valves, or PP901B and PP902B Pressure Regulators using 14003637-001 mounting adaptor (contained in 14003638-001 Kit).

Specifications

<table>
<thead>
<tr>
<th>MODELS</th>
<th>Line Voltage</th>
<th>Low Voltage</th>
<th>Wall Mount</th>
<th>Panel Mount</th>
<th>Device Mount</th>
<th>Splice Box</th>
<th>Open Coil</th>
<th>Cord & Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP417A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP417B</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP417C</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP817A</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP817B</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Trademark
Rev. 3-77
J.L.G.

Form Number 77-9868
Commercial Div.

B-66
AIR CAPACITY
At 20 psi (138 kPa) supply; 1 psi (7 kPa) pressure drop: 0.30 SCFM

PRESSURE RATING
50 psi max. (3.4 bars) air

AIR CONNECTIONS
1/4 inch (6 mm), for 1/4-inch OD polyethylene tubing

ELECTRICAL CONNECTIONS
Six-inch (152 mm) leads, junction box, or cord and plug (18 gauge thermoplastic wire rated at 60°C)

POWER CONSUMPTION
5.7 watts maximum

AMBIENT TEMPERATURE RATING
100°F (38°C) maximum

MATERIAL
Acetal copolymer plastic and corrosion resistant metal

DIMENSIONS
See Figures 1 and 2

WHEN SPECIFYING, INDICATE
Complete model number
Accessories

APPROVAL BODIES
RP417B, RP817B, RP417C: UL recognized component, Guide Y10Z2, File 9608

AVAILABLE VOLTAGE-CYCLE

<table>
<thead>
<tr>
<th>Model</th>
<th>Complete O.S. No.</th>
<th>Voltage-Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP417A</td>
<td>1003</td>
<td>110/120v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1017</td>
<td>120v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1025</td>
<td>220/240v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1033</td>
<td>240v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1041</td>
<td>208v ac, 60 Hz</td>
</tr>
<tr>
<td></td>
<td>1058</td>
<td>208v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1066</td>
<td>277v ac, 60 Hz</td>
</tr>
<tr>
<td></td>
<td>1074</td>
<td>277v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1082</td>
<td>440/480v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1090</td>
<td>480v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1108</td>
<td>100v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1116</td>
<td>200v ac, 50 Hz</td>
</tr>
<tr>
<td>RP417B</td>
<td>1007</td>
<td>110/120v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1015</td>
<td>120v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1023</td>
<td>220/240v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1031</td>
<td>240v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1049</td>
<td>208v ac, 60 Hz</td>
</tr>
<tr>
<td></td>
<td>1056</td>
<td>208v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1064</td>
<td>440/480v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1072</td>
<td>480v ac, 50 Hz</td>
</tr>
<tr>
<td>RP417C</td>
<td>1005</td>
<td>110/120v ac, 50/60 Hz</td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td>120v ac, 50 Hz</td>
</tr>
<tr>
<td>RP817A</td>
<td>1005</td>
<td>24v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1013</td>
<td>24v ac, 60 Hz</td>
</tr>
<tr>
<td>RP817B</td>
<td>1003</td>
<td>24v ac, 50 Hz</td>
</tr>
<tr>
<td></td>
<td>1011</td>
<td>24v ac, 60 Hz</td>
</tr>
</tbody>
</table>
FIG. 1. DIMENSIONS IN INCHES (MILLIMETERS) OF THE RP417A, RP417C, AND RP817A
FIG. 2. DIMENSIONS IN INCHES (MILLIMETERS) OF THE RP417B AND RP817B
Typical Operation

When the coil is de-energized, ports 2 and 3 are connected and port 1 is blocked. When the coil is energized, ports 1 and 3 are connected and port 2 is blocked.

The valve can function as a three way normally open, a three way normally closed, or a three way directional control, depending upon the piping hookup.

If applied as shown in Fig. 3, when the fan is turned on, the coil is energized. This connects ports 1 and 3, passing supply air to the damper operator. With the fan off, the supply port is closed. Ports 2 and 3 are connected, bleeding the damper operator to atmosphere.

FIG. 3. TYPICAL PIPING HOOKUP OF THE RP417 OR RP817 RELAYS
The RP670A & B Switching Relays are two-position pneumatic relays with either single-pole (RP670A) or double-pole (RP670B), double-throw switching action. They are designed for use in pneumatic heating and cooling control systems where a valve or damper operator must be switched from one circuit to another. Switch-over pilot pressure must be two-position, not modulated.

Features

- Available with either single-pole, double-throw (SPDT) or double-pole, double-throw (DPDT) switching action.
- Second switch on DPDT (RP670B) models molded in black for identification.
- Air connections for 5/32 in. (4 mm) OD plastic tubing.
- Molded plastic construction with neoprene diaphragms, stainless steel lever, and music wire spring.
- Designed for in-line mounting but can be wall or panel mounted with a 1-1/2 in. (38 mm) diameter metal spring clip.

Specifications

MODELS

RP670A: SPDT Switching Relay; available with switch action occurring between 4 and 6 psi, 14 and 16 psi, or 19 and 21 psi (30 and 40 kPa, 95 and 110 kPa, or 130 and 145 kPa) non-adjustable.
RP670B: DPDT Switching Relay; available with switching action occurring between 4 and 6 psi or 14 and 16 psi (30 and 40 kPa or 95 and 110 kPa), non-adjustable.

NOTE: Below minimum pressure, Ports 6 and 7 are connected and Port 8 is isolated. Above maximum pressure, Ports 7 and 8 are connected with Port 6 isolated.

OPERATING AIR PRESSURES:

Pilot Pressure: 0 to 21 psi (0 to 145 kPa).
Switch Pressure: 0 to 21 psi (0 to 145 kPa).

MAXIMUM SAFE PRESSURE
30 psi (205 kPa).

AMBIENT OPERATING LIMITS
Temperature: 32 to 125°F (0 to 52°C)
Humidity: 5 to 95%

DIMENSIONS
Refer to Figs. 1 and 2.

WHEN ORDERING, SPECIFY
Model Number.
Mounting Clip (for wall mounting if desired) - Part No. 14003030401.

Typical Operation (Fig. 3)

When used in a summer-winter system, during the summer cycle pilot pressure (Port 3) is below minimum switching pressure of the RP670 and Port 6 (Normally Connected) and Port 7 (Common) are connected. Port 8 (Normally Disconnected) is isolated, thereby removing the low limit controller from the system.

During the winter cycle pilot pressure is above the switching pressure, Ports 7 and 8 are connected and the low limit controller resumes its override operation to bring on heating. Port 6 is isolated.

The second switch on the RP670B (molded in black plastic for identification) can be piped to the same kind of system as the first switch, or to a different system if desired.
GENERAL DESCRIPTION

The RP908A and B controllers are force balance pneumatic amplifiers, with adjustable proportional bands. All models are corrosion resistant for high humidity or salt service (not in direct spray); and may be set for either direct or reverse action.

The RP908A controller, in conjunction with its remote sensor, provides proportional direct control or limit control in air conditioning systems.

The RP908B dual input controller has an adjustable authority setting for the compensating sensor relative to the system effect on the primary sensor. It is applied to compensating systems by using an additional compensating signal to change the control point of the controller. Temperature, humidity, pressure or dewpoint may be controlled by using the appropriate sensors.

Both A and B controllers have an optional model that features remote control point adjustment (CPA). This feature changes the control point from a remote location by varying the pressure on the CPA port.

Table 1.

<table>
<thead>
<tr>
<th>Model</th>
<th>Single Input Limit</th>
<th>Single Input</th>
<th>Dual Input</th>
<th>With Cover</th>
<th>Without Cover</th>
<th>With CPA</th>
<th>Without CPA</th>
<th>With Calibration Knob</th>
<th>Without Calibration Knob</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP908A</td>
<td>1005</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1013</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1021</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1039</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1047</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1054</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908A</td>
<td>1062</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908B</td>
<td>1003</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908B</td>
<td>1011</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908B</td>
<td>1029</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP908B</td>
<td>1037</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rev. 11-77
J.S.
SPECIFICATIONS

Supply Air Pressure: 18 psi (124 kPa).

Maximum Safe Air Pressure: 25 psi (172 kPa).
Ambient Temperature Limits: 40 to 120 F (4 to 90°C).

TYPICAL OPERATION

RP908A (See Fig. 1)

When used in a heating system with the controller set for direct action, a drop in temperature at the sensor lowers the branch line pressure, opening the valve to increase the flow of heating medium to the coil. If the control point adjustment model (CPA—not shown) is used, an increase in air pressure on the CPA port raises the setpoint of the controller and a decrease lowers it.

RP908B (See Fig. 2)

An increase in outdoor temperature causes the compensating (outdoor) sensor to raise the branch line pressure. If changes occur at both the outdoor and discharge sensors, the resulting change in branch line pressure is dependent on the authority setting on the controller.

RP908A LIMIT CONTROLLER (See Fig. 3)

When used as an economizer controller in a mixed air system, the primary controller and the mixed air sensor act to modulate outside and return air dampers to maintain a constant mixed air temperature. When the mixed air temperature exceeds the setpoint of the primary controller, the outdoor damper opens farther and the return air damper drives toward its closed position. As the outdoor air reaches the setpoint of the primary controller, 100 percent outdoor air is taken in.

As the outdoor air temperature continues to rise and reaches the limit controller setting, its branch line pressure reduces, closing the outdoor dampers while opening the return air dampers. The dampers remain in this position as long as the outdoor air temperature exceeds the limit controller setpoint.

On all limit control applications, a model with a factory blocked restriction or a field modification to block the internal restriction is necessary. When a restriction is blocked, the port number is shown in a box on the drawing and a separate restricted source of air must be furnished to the sensor. When more than one controller is connected to a single sensor, the same technique of blocking the internal restriction and supplying air to the sensor(s) through a separate external restricted main is used. If there is variable pressure on the “M” port, the separate main assures proper calibration of the limit control and accurate indication of its sensor temperature.
RP908A LOW LIMIT CONTROLLER (See Fig. 4)

Used as a low limit controller, the RP908A reduces branch line pressure to open a heating valve to maintain the discharge temperature at its setpoint when the primary controller is partially or completely satisfied.

Fig. 4. Low Limit Controller.

MAINTENANCE

The only preventive maintenance necessary is an annual visual check for leaks, loose fittings, etc and an operational and calibration check.

Use PLASTILUBE* (311057, 2 oz. tube) for "O" rings, screw threads, etc. Use MOLYCOOTE* or similar commercial powdered lubricant for pivots and plungers in units with CPA.

OPERATIONAL CHECK

Vary the pressure slowly in ports 1 and 2. The main lever should move smoothly, and the branch line pressure should change gradually in the proper direction.

CALIBRATION CHECK

RP908A—Change the setpoint of the controller to the existing sensor temperature if the two don’t already match. The branch line pressure should be at its calibration pressure (8 ± 1 psi [55 ± 7 kPa]) unless otherwise noted. If recalibration is necessary, see Calibration Procedure.

RP908B—Determine the existing calibration temperature from the reset schedule. Measure the temperature at the port 1 sensor. These temperatures should agree within 2 percent of the sensor range span and the branch line pressure should be within the operating range of the controlled device. See Calibration Procedure for RP908B if recalibration is necessary.

*Trademark

FIELD MODIFICATIONS

CHANGE FROM DIRECT ACTING TO REVERSE ACTING

The change from direct to reverse is made by following the three steps listed in Figure 5.

Fig. 5. Set-Up for Reverse-Acting Operation.
REPLACEMENT OF RESTRICTION WITH BLANK PLATE

The internal restriction must be replaced with a blank plate when the sensor is supplied with an external source of restricted air. This occurs when the air supply to the "M" port of the controller may be varied by other controls or when a single sensor is connected to more than one controller (see Fig. 6). To replace the restriction with a blank plate, refer to Figure 10 for RP908A or Figure 12 for RP908B and proceed as follows.

1. Remove the manifold and gasket.
2. Remove the port 1 "O" ring, restriction, screen, filter, and washer and replace them with the blank plate No. 316125.
3. Reassemble the "O" ring, gasket, and manifold, carefully noting the orientation of the gasket.

When using only one port of an RP908B controller and the restriction is not blocked, do not plug the unused port but leave it open to avoid building up to main line pressure in the sensor chamber. Two models of the RP908A are provided with a factory installed blank. These models are identified by a red manifold. When field installing a blank, the manifold should be marked indicating that the restriction is blocked.

ADJUSTMENTS

PROPORTIONAL BAND ADJUSTMENTS (Refer to Fig. 7)

1. Loosen the proportional band adjustment knob and slide the indicator to the desired proportional band.

 NOTE: When a proportional band of more than 15 percent is used, fasten the proportional band bias spring to the main lever. (This spring is left unconnected if proportional band is 15 percent or under.)

2. The controller must be recalibrated whenever the proportional band is changed.

REMOTE CONTROL POINT ADJUSTMENT

A pressure change from 3 to 13 psi (20 to 90 kPa) in the remote CPA, changes the control point proportionately by 20 percent of the sensor span.

SETPOINT ADJUSTMENT (See Fig. 8)

The setpoint is raised by turning the setpoint adjustment screw counterclockwise. This increases the force from the setpoint spring on the main lever so that a greater force from the sensor chamber is required to cause an increase in branch line pressure.

The setpoint adjustment screw has a vernier for fine adjustment. The screw has 10 marked divisions; each division equals 1/2 percent of the sensor span (1 F per division for a 200 degree sensor span, or 20 turns for the whole span).

CALIBRATION

Always calibrate with 18 psi (124 kPa) main air pressure. On CPA models, set CPA to 8 psi (55 kPa). A 0 to 30 psi (0 to 207 kPa) gage must be installed in branch port line during calibration and a temperature, humidity or pressure gage should be installed in port 1 (and port 2, if RP908B is used). If the reset signal on an RP908A is produced by the output of a room thermostat or pressure control, a 30 psi (207 kPa) gage must be installed in the No. 2 port. Otherwise, the scale range on the gage should match the range of the sensor for ports 1 and 2.
Fig. 7. RP908 Controller.

Fig. 8. RP908A & B Setpoint Adjustment.
CALIBRATION USING THE ADJUSTABLE RESTRICTION

1. Install the proper sensor range scale plate on the controller if not installed already.

2. Disconnect the port 1 sensor and connect an adjustable restriction to port 1.

3. Choose a setpoint and adjust the restriction until the gage in port 1 shows this setpoint.

4. Turn the setpoint adjustment screw until the BLP reads 8 psi (55 kPa). This is standard calibration. On some applications the calibration branch line pressure may be set at a different point that relates to the spring range of the device being operated.

5. Move the sensor range scale plate to the setpoint and tighten the scale. The controller is now in calibration.

6. Disconnect the adjustable restriction and reconnect the sensor.

CALIBRATING WITH GAGES ONLY

1. Install gages in ports 1 and B (Port 1–gage must match sensor, port B–30 psi [207 kPa] gage is used).

2. Install the proper sensor range scale plate on the controller if not already done.

3. Turn the setpoint adjustment screw until BLP is 8 psi (55 kPa) or other selected calibration pressure. (See step 4 above.)

4. Move the scale until the setpoint indicator is at the reading shown on the port 1 gage and tighten the scale.

5. Adjust the setpoint to the desired control setting.

CALCULATIONS

Although this typical example is shown for a hot water reset system, the formulae also apply to other reset systems.

Four separate parameters must be known in order to properly calibrate a reset system: Reset Schedule, Throttling Range, Proportional Band, and Authority.

Reset Schedule

The reset schedule will be plotted by determining the outdoor air temperature at which designed maximum heating water temperature is needed and the outdoor air temperature at which no heating is required. Minimum water temperature of 90 F (32 C) is recommended at this point for direct radiation systems. Use 80 F (27 C) for systems with heating coils, and 75 F (24 C) for radiant floor panels.

Throttling Range (TR)

Throttling range indicates the change in water temperature at the sensor to cause the valve to move from fully open to fully closed (full heat to no heat). It is desirable to have a TR as narrow as possible for efficient valve control and yet wide enough to produce stable valve operation. A TR of 10 F (5 C) is a recommended trial setting. If the system will not stabilize after being in operation for a short period of time, the TR should be increased (this will require recalculation of the proportional band and authority). An unstable system can be recognized by frequent, repetitive changes in branch line pressure, known as hunting or cycling.

When the throttling range has been selected, it must be converted to a proportional band value that can be set on the controller.

Proportional Band (PB)

Proportional Band is similar to TR except it is expressed in terms of percent of temperature change rather than degrees. Proportional band can be determined by using the following formula:

\[
\frac{TR}{Sensor\ Span} \times 100 = PB\ %
\]

Example:

When a sensor having a 200 degree span is used and a 10 degree TR has been selected:

\[
\frac{10}{200} \times 100 = 5\%
\]
Authority

Authority indicates the amount of effect that the change in outdoor air temperature will have on the control point. Authority can be determined by the following formula:

\[
\text{Authority} = \frac{\Delta T_1 + TR}{\Delta T_2} \times 100
\]

Where:

TR = Throttling Range
\(\Delta T_1\) = Change in Hot Water Temperature
\(\Delta T_2\) = Change in Outdoor Air Temperature

Example:

Determine settings for a system where hot water should be controlled at 180 F when outdoor air temperature is -10 F, and reduced to 90 F when outdoor air is 65 F. Assume a TR of 10 F.

\[
\Delta T_2 = 65 \cdot (-10\ F) = 75\ F
\]
\[
\Delta T_1 = 180 \cdot 90 = 90\ F
\]
\[
TR = 10\ F\ (assumed)
\]
\[
P_B = \frac{10}{200} \times 100 = 5\%
\]
\[
\text{Authority} = \frac{90 + 10}{75} \times 100 = 133\%
\]

RP908B CALIBRATION PROCEDURE

1. Install the sensor range scale plate matching the port 1 sensor on the controller if not already done.

2. Disconnect the sensors to ports 1 and 2 and connect an adjustable restriction to each port. If an external main has been connected to the sensor line, install the adjustable restriction on the sensor side of the tee.

3. Select the low end of the sensor 1 schedule (90 F or 32 C). Adjust the No. 1 restriction until the sensor 1 gage reads that temperature.

4. Select the high end of the sensor 2 schedule (65 F or 18 C). Adjust the No. 2 restriction until the sensor 2 gage reads that temperature.

5. Set the Authority and Proportional band into the controller. Adjust the setpoint adjustment screw until the branch line gage reads 12 psi (89 kPa), or until it reads the “valve close” pressure if the valve has other than a standard 4 to 11 psi (27 to 76 kPa) spring range.

6. Move the sensor range scale plate until the desired setpoint lines up with the setpoint indicator and tighten the scale plate. The controller is now in calibration.

REPAIR

To replace internal filters, screens, restrictions, and “O” rings, use repair kit Part No. 14002696-001.

1. Remove four (4) manifold screws and save.

2. Lift the manifold from controller body.

3. Remove the gasket and discard.

4. Note location of filters and restrictions in controller body. The RP908A may have two or three filters and the RP908B may have three or four. Some controllers may have a blank plate in place of a restriction, filter, screen and washer.

5. Remove washers, filters, screens, restriction(s) and “O” rings, and discard.

6. Remove restriction blank, if installed, and save.

7. With the new parts from the kit, install the washers, filters, screens and restriction(s). See Figure 10 for RP908A and Figure 12 for the RP908B.

8. Reinstall the restriction blank.

9. Add the “O” rings and the gasket. Orient the gasket in the way that blocks no ports.

10. Place the manifold in position on the gasket and install the original four screws. Tighten securely.
NECESSARY TEST EQUIPMENT—CALIBRATED
GAGE SET (No. 816A)

If the sensor-controller is not maintaining control:

MAKE A VISUAL CHECK OF
THE CONTROLLER TO SEE THAT
SPRINGS AND PIVOTS ARE
CONNECTED PROPERLY FOR THE
APPLICATION

NO

CORRECT THE PROBLEM
RECALIBRATE AND
CHECK OPERATION

YES

MEASURE MAIN AIR SUPPLY
SHOULD BE 18 PSI (124 kPa)

NO

ADJUST PRV OR RECONNECT TO
18 PSI (124 kPa) MAIN. RECALIBRATE
AND CHECK OPERATION

YES

MEASURE THE CONTROLLED VARIABLE
(TEMPERATURE, HUMIDITY, PRESSURE,
ETC) AND COMPARE THIS READING TO
THE GAGE READING OF SENSOR NO. 1.
THE READINGS MATCH WITHIN 2% OF
SENSOR SPAN

NO

CHECK THE CONTROLLED VALVE OR
DAMPER FOR CLOSE—OFF, LEAK THRU
OR OTHER MALFUNCTION. DEVICE
OPERATES PROPERLY

YES

REPLACE RESTRICTION (INTERNAL AND/OR
EXTERNAL) AND INTERNAL FILTERS AND
SCREENS IN CONTROLLER. TAKE 2ND
MEASUREMENT AND COMPARE READINGS.
READINGS NOW MATCH

NO

REPLACE THE FILTER ON THE SENSOR.
READINGS NOW MATCH

YES

PRESSURE TEST TUBING FROM SENSOR TO
CONTROLLER FOR LEAKS

NO

REPAIR LEAK, RECONNECT TUBING AND
COMPARE READINGS. READINGS NOW
MATCH

YES

REPLACE SENSOR, CHECK
OPERATION

NO

REPLACE CONTROLLER

CONTROLLER OPERATES
SMOOTHLY

YES

BRANCH LINE PRESSURE WILL
BUILD UP TO MAIN PRESSURE
AS SET POINT IS CHANGED

NO

REPAIR LEAK

LUBRICATE THE
PIVOT POINTS
ON THE
CONTROLLER.
REPLACE THE
CONTROLLER
IF LUBRICATION
DOESN'T HELP

OPERATION IS SATISFACTORY

YES

PRESSURE TEST THE
BRANCH LINE FOR
LEAKS

NO

REPLACE THE INTERNAL RESTRICTIONS,
FILTERS, AND SCREENS IF NOT DONE IN
PREVIOUS STEP. THERE IS IMPROVEMENT

NO

REPLACE CONTROLLER
SEE FIGS. 10 THRU 13 FOR DETAILED BREAKDOWN OF THESE PARTS

ON EARLIER MODELS OF THESE CONTROLLERS THE SENSOR INPUT PORTS WERE DESIGNATED T2 AND T3. THESE HAVE BEEN CHANGED TO 1 INSTEAD OF T2, AND 2 INSTEAD OF T3.

COVER
315282 ON RP908A WITHOUT CPA
315263 ON RP906ABB WITH CPA
315255 ON RP908B WITHOUT CPA

BACKPLATE

SCREW 315293 (2)

Fig. 9. Exploded View of Controller Assembly.
RP908A

MANIFOLD (PAINTED RED ON A1047 & A1062 LIMIT CONTROLLERS)

- SCREW (4) 8-32 x 1/16 PAN HEAD

GASKET

- "O" RING ON A1047 & A1062 (2), M & B PORTS ONLY, ON A1005, A1013, A1021, A1039 & A1054 (3)

SCREEN ON A1047 & A1062 (2), M & B PORTS ONLY, ON A1005, A1013, A1021, A1039 & A1054 (3)

- FILTER ON A1047 & A1062 (2), M & B PORTS ONLY, ON A1005, A1013, A1021, A1039 & A1054 (3)

- WASHER ON A1047 & A1062 (2), M & B PORTS ONLY, ON A1005, A1013, A1021, A1039 & A1054 (3)

RESTRICTION (NOT ON LIMIT CONTROLLERS) ON SOME RP908A APPLICATIONS PORT NO. I MAY BE BLOCKED BY REPLACING THE RESTRICTION, FILTER, SCREEN, AND WASHER WITH THE 316125 BLANK PLATE. (FIELD MODIFICATION)

⚠️ INSTALL CONVEX SIDE UP (— — —)

* 14001258-001 R.A SPRING (2)

14001258-001 REPAIR KITINCLUDES (1) GASKET, (4) SCREENS, (4) O-RINGS, (4) FILTERS, (2) RESTRICTIONS, AND (4) WASHERS.

* 14001258-001 BIASE SPRING

BODY ASSY

- PIVOT SCREW (2)

LEVER ASSY

- SPRING

COVER ASSY

- NUT

LEVER ASSY

- SCREW (2)

31665A REPAIR ASSY

* SOME OLDER MODELS HAD BIASE SPRING ATTACHED TO LEVER ASSEMBLY WITH A PIN RATHER THAN A NOTCH. ORDER 31665A AND (2) 14001258-001 FOR THESE REPLACEMENTS

Fig. 10. Detail of RP908A Manifold and Body Assembly.

75-5531

B-82
Fig. 12. Detail of RP908B Manifold and Body Assembly.
Fig. 13: Detail of RP908B Bracket and Indicator Assembly.
ACCESSORIES

SCALE PLATE KITS

Four scale plate kits are available. Each kit contains a different set of stick-on decals. Specific decals are listed with proper order numbers in the table below.

<table>
<thead>
<tr>
<th>Table 2. Scale Plate Kits.</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 315993A</td>
</tr>
<tr>
<td>0 to 200 F</td>
</tr>
<tr>
<td>-40 to 160 F</td>
</tr>
<tr>
<td>-40 to 240 F</td>
</tr>
<tr>
<td>50 to 150 F</td>
</tr>
<tr>
<td>3 to 15 psig</td>
</tr>
<tr>
<td>Warmer/Cooler</td>
</tr>
</tbody>
</table>

| No. 316193 |
| 40 to 75 F Dew Point |
| -20 to 80 F |
| -40 to 60 C |
| -5 to 25 C Dew Point |

| No. 316005A |
| 0 to 6 inches |

| No. 316089A |
| 0 to 150 mm |
GAGES

The 1-1/2 inch gages are listed below. 2-1/2 and 3-1/2 inch gages are also available. They are found on Form No. 74-1269.

Table 3. Gages.

<table>
<thead>
<tr>
<th>Gages (1-1/2 in. dia back conn. 1/8 NPT)</th>
<th>Scale Range</th>
<th>For Use with Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>14000786-001'</td>
<td>25 to 125 F</td>
<td>LP914</td>
</tr>
<tr>
<td>14000786-692</td>
<td>-5 to 75 C</td>
<td>LP914</td>
</tr>
<tr>
<td>305929</td>
<td>-40 to 160 F</td>
<td>LP914</td>
</tr>
<tr>
<td>305932</td>
<td>-40 to 70 C</td>
<td>LP914</td>
</tr>
<tr>
<td>305931</td>
<td>40 to 240 F</td>
<td>LP914</td>
</tr>
<tr>
<td>305934</td>
<td>5 to 115 C</td>
<td>LP914</td>
</tr>
<tr>
<td>305986</td>
<td>-20 to 80 F</td>
<td>LP914</td>
</tr>
<tr>
<td>305987</td>
<td>-30 to 30 C</td>
<td>LP914</td>
</tr>
<tr>
<td>305930</td>
<td>0 to 200 F</td>
<td>LP915</td>
</tr>
<tr>
<td>305933</td>
<td>-18 to 93 C</td>
<td>LP915</td>
</tr>
<tr>
<td>305972</td>
<td>50 to 100 F</td>
<td>TP924, TP974 & TP925</td>
</tr>
<tr>
<td>305973</td>
<td>10 to 38 C</td>
<td>TP924, TP974 & TP925</td>
</tr>
</tbody>
</table>

Relative Humidity

<table>
<thead>
<tr>
<th>Relative Humidity</th>
<th>Scale Range</th>
<th>For Use with Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>305974</td>
<td>30 to 80%</td>
<td>HP901 & HP902</td>
</tr>
<tr>
<td>14000786-003</td>
<td>15 to 75%</td>
<td>HP971</td>
</tr>
<tr>
<td>14000786-004</td>
<td>65 to 95%</td>
<td>HP971</td>
</tr>
</tbody>
</table>

Dew Point

<table>
<thead>
<tr>
<th>Dew Point</th>
<th>Scale Range</th>
<th>For Use with Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>305988</td>
<td>40 to 75 F DP</td>
<td>TP925A1018</td>
</tr>
<tr>
<td>305989</td>
<td>5 to 25 C DP</td>
<td>TP925A1018</td>
</tr>
</tbody>
</table>

Pressure

<table>
<thead>
<tr>
<th>Pressure</th>
<th>Scale Range</th>
<th>For Use with Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>305965</td>
<td>0 to 30 psi</td>
<td>PP905</td>
</tr>
<tr>
<td>305615</td>
<td>-1 to 1 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305621</td>
<td>-25 to 25 mm of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305616</td>
<td>0 to 2 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305622</td>
<td>0 to 50 mm of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305617</td>
<td>1 to 3 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305623</td>
<td>25 to 75 mm of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305618</td>
<td>2 to 4 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305624</td>
<td>50 to 100 mm of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305619</td>
<td>3 to 5 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305625</td>
<td>75 to 125 mm of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305620</td>
<td>4 to 6 in. of WC</td>
<td>PP905</td>
</tr>
<tr>
<td>305626</td>
<td>100 to 150 mm of WC</td>
<td>PP905</td>
</tr>
</tbody>
</table>
Honeywell

Pneumatic Ratio Relay

MODEL NUMBER RP971A

General

The RP971A Ratio Relay is a four port non-bleed pneumatic relay which produces a modulating pressure output proportional to pilot pressure changes. It is used for controlling pneumatic valve or damper motors in sequence from a single thermostat.

Features

- Adjustable pilot start point pressures.
- Two pilot pressure ranges available.
- Four (4) sharp barb air connections: Main is for 1/4 in. (6 mm) OD tubing. Branch, Pilot, and Exhaust are for 5/32 in. (4 mm) OD tubing.
- Molded plastic construction with neoprene diaphragms and stainless steel valve seats.
- 100 mesh stainless steel screens in main and branch ports.
- Designed for in-line mounting but can be wall or panel mounted with standard 2 in. (51 mm) diameter cable clamp.

Specifications

MODELS

RP971A: Pilot pressure ranges of 3 or 5 psi (20 or 35 kPa), non-adjustable.

START POINT

Adjustable from 0 to 10 psi (0 to 70 kPa).

MAXIMUM SAFE AIR PRESSURE

30 psi (205 kPa)

FIG. 1—RP971A DIMENSIONS IN INCHES (MILLIMETERS)
NORMAL OPERATING PRESSURES

Main: 18 psi (120 kPa). Pilot: 3 to 15 psi (20 to 100 kPa).

AIR CONSUMPTION

0.0017 SCFM (50 SCCM)

AIR HANDLING CAPACITY (Feed and Bleed)

0.039 SCFM at 1 psi differential (1100 SCCM at 6.9 kPa differential)

AMBIENT OPERATING LIMITS

Temperature: 0 to 140°F (-18 to 60°C)
Humidity: 5 to 95%

DIMENSIONS

Refer to Figure 1

WHEN SPECIFYING, INDICATE

Model Number
Pilot Pressure Range Desired (3 or 5 psi [20 or 35 kPa])
Cable Clamp (2 in. [51 mm] dia.) for wall mounting if desired, Part Number 801629T

Typical Operation

The three RP971A relays with a 3 pound (20 kPa) range are set 3 to 6, 6 to 9, and 9 to 12 psi (20 to 40, 40 to 60, 60 to 80 kPa) respectively. The single thermostat can then proportion, in sequence, the three identical damper operators having 3 to 13 psi (20 to 90 kPa) springs through the RP971A Ratio Relays.
FIG. 3—TYPICAL APPLICATION SEQUENCING DAMPERS FROM A SINGLE THERMOSTAT
General

The RP972A Pneumatic Reversing Relay is a modulating relay suitable for all types of heating and air conditioning control systems. It is used as a reversing relay to reverse and increase the capacity of the branch line pressure to the final control element.

Features

- Reverse acting.
- In-line mounting; or can be surface or panel mounted with standard 1-1/2 in. dia. cable clamp.
- Neoprene diaphragm.
- Stainless steel valve seats.

Specifications

MODEL

RP972A — Reverse acting, proportional output (branch line pressure decreases with increase in input signal at a 1:1 ratio). Device is factory set at 16 psi (1.1 bar, Scale B) but can be field set for 13 psi (.9 bar, Scale A) or 18 psi (1.2 bar, Scale C).

DIMENSIONS

Refer to Fig. 1.

OPERATING RANGE

0 to 18 psi (0 to 1.2 bar)

MAXIMUM SAFE AIR PRESSURE

30 psi (2.1 bar).

OPERATING PRESSURES

Pilot — 3 to 15 psi (.2 to 1 bar), Main — 18 psi (1.2 bar).
AMBIENT TEMPERATURE LIMITS

0 to 140°F (-18 to 60°C).

AIR CONNECTIONS

Port 1 (Main, Supply) — Sharp barb for 1/4 in. (6 mm) O.D. tubing. Ports 2, 3, and 4 (Branch, Output; Pilot, Input; and Exhaust, respectively) — Sharp barb for 5/32 in. (4 mm) O.D. tubing.

AIR HANDLING CAPACITY (Feed and Bleed)

0.039 scfm at 1.02 psi differential (1,100 sccm at 0.07 bar differential).

AIR CONSUMPTION

0.0017 scfm (50 sccm) maximum.

FILTERS

100 mesh stainless steel, main and branch ports.

WHEN ORDERING, SPECIFY

Model Number.

Operation

When the relay is balanced the main and exhaust ports are closed and branch line pressure is equal to the algebraic sum of the spring force plus force from pilot pressure.

As pilot pressure decreases (from thermostat branch line pressure on a fall in temperature) the RP972A increases its branch line pressure, causing a pneumatic operator to open a normally-closed valve or damper.

FIG. 2—TYPICAL OPERATION.
General

The S659 Timers provide automatically timed electrical-switching functions for heating, cooling or ventilating systems. They consist of a timing motor, setting dial, adjustable trippers, hand-trip ON-OFF lever, control switches, and a terminal block.

Features

- Seven-day or twenty-four-hour programs.
- Easily adjustable.
- Spring carry-over in case of power failure.
- Skip-A-Day feature on the 24-hour models.

Specifications

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Type</th>
<th>Skip-A-Day Feature</th>
<th>10-Hour Spring Carryover</th>
<th>On-Off Operations per day</th>
<th>On-Off Operations per week</th>
<th>Minimum Interval Between Operations</th>
<th>Switch Action</th>
<th>Case and Cover</th>
<th>Timing Motor Voltage and Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>S659A</td>
<td>7-day</td>
<td>No</td>
<td></td>
<td>1a</td>
<td>7a</td>
<td>3 Hours</td>
<td>4P; 2P-NO, 2P-NC</td>
<td>With</td>
<td>120, 208, 240v; 60 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>208, 240v; 50 Hz</td>
<td></td>
</tr>
<tr>
<td>S659B</td>
<td>7-day</td>
<td>Yes</td>
<td></td>
<td>1a</td>
<td>7a</td>
<td>3 Hours</td>
<td>4P; 2P-NO, 2P-NC</td>
<td>With or Without</td>
<td>120, 208, 240v; 60 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Without</td>
<td>120, 208, 240v; 60 Hz</td>
</tr>
<tr>
<td>S659C</td>
<td>24-hour</td>
<td>No</td>
<td>No</td>
<td>1b</td>
<td>7b</td>
<td>90 Min</td>
<td>SPDT</td>
<td>With or Without</td>
<td>120, 208, 240v; 50/60 Hz</td>
</tr>
<tr>
<td>S659E</td>
<td>24-Hour</td>
<td>Yes</td>
<td>Yes</td>
<td>1b</td>
<td>7b</td>
<td>90 Min</td>
<td>SPDT</td>
<td>With</td>
<td>120, 208, 240v; 60 Hz</td>
</tr>
</tbody>
</table>

aMay be increased to four on-off operations per day, 28 per week, maximum by using extra trippers. See accessories.

bMay be increased to seven on-off operations per day maximum by using extra trippers. See accessories.
SWITCH CONTACT RATING PER POLE
(AC Only)

<table>
<thead>
<tr>
<th>Motor Load (Amperes)</th>
<th>120v</th>
<th>208v</th>
<th>240v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Load</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Locked Rotor</td>
<td>96</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

Resistive: 40 amps
Tungsten (for S659C & E only): 40 amps
Pilot Duty: 690 va

NOTE: For S659A & B with inductive loading, do not jumper switches to increase capacity beyond rating per pole as listed.

BAG ASSEMBLIES
S659A & B: Three terminal jumpers, six "A" (on) tripers and six "B" (off) tripers.

DIMENSIONS
See Figures 1 through 7.

ACCESSORIES AVAILABLE
For S659A & B: No. 800740, two tripers, one "A" (on) and one "B" (off).
For S659C & E: No. 800741, two tripers, one "ON" and one "OFF".

APPROVALS
UL Listed.
Typical Operation

The seven-day model dials are subdivided into seven days of the week, day and night, and 30-minute increments. The 24-hour model dials are subdivided into morning, afternoon, evening, and night—and 15-minute increments. On-off trippers on the edge of the dial permit automatic switching: manual switching within one hour after automatic tripping for seven-day models, or within 15 minutes after tripping for 24-hour models. This lever also permits visual checking of automatic tripping status. Optional spring carry-over maintains clock movement (proper programming) in case of electric power failure. The spring-reserve power lasts a minimum of 10
hours, and automatic rewind takes two hours on resumption of power. The Skip-A-Day feature, available on 24-hour models, eliminates operation on any preselected day or days of the week, and can be set up to a week in advance. This feature consists of an additional seven-day dial with cut-out pins to eliminate a selected day, or days. On the seven-day model, Skip-A-Day is accomplished by omitting selected trippers on the dial.

As a typical example, assume the timer is used in a system where it is desired to operate an air conditioner between 7:00 AM and midnight, and have continuous fan operation between midnight and 7:00 AM. (See Figs. 8 and 9.) At 7:00 AM the timer switches on the air conditioning equipment. At midnight the timer deenergizes the air conditioning circuit and energizes the fan circuit until 7:00 AM the next morning, at which time the air conditioning circuit is energized.

FIG. 9. 5659C & E TYPICAL OPERATION
General

The SP470A & B Pneumatic Switches are used in pneumatic control systems. They provide a means of manually diverting air between various system components such as valves, thermostats, and damper operators.

Features

The SP470A (pneumatic switch only) and the SP470B (pneumatic switch mounted on a panel) are available with two-position or three-position scaleplates. The SP470A is normally mounted on a panel which may be up to 7/16-inch (11 mm) thick. However, the device can be mounted on panels that are up to one-inch (25 mm) thick by using an optional extension.

Specifications

MODELS
SP470A - Pneumatic switch only.
SP470B - Pneumatic switch mounted on a panel.

NORMAL OPERATING PRESSURE RANGE
0 to 18 psig (0 to 125 kPa).

AIR HANDLING CAPACITY
0.175 SCFM at 1 psi drop (82.6 ml/s at 7 kPa drop)

MAXIMUM OPERATING PRESSURE
30 psig (205 kPa).

OPERATING AMBIENT LIMITS
Temperature - 0 to 140°F (-18 to 60°C).
Humidity - 5 to 95% RH.

AIR CONNECTIONS
Sharp barb type connections for 5/32 inch (1 mm) o.d. plastic tubing.

DIMENSIONS
Refer to Fig. 1 through Fig. 4.

CONSTRUCTION
Molded plastic switch body with Buna “N” seal disc.
Molded glass-reinforced nylon shaft.

ACCESSORIES (Order Separately)
Extension for mounting on panels up to one inch (25 mm) thick (315677A).
Bracket assembly for mounting the switch in a standard electrical box (316813A).

WHEN SPECIFYING, INDICATE
1. Model number.
2. Accessories desired.

Typical Operation

Switching action is accomplished by rotating the knob until a detent click is noticed (approximately 60 degrees). This causes the controller ports to align with the proper ports in the switch base, thus channeling air into the desired lines. All ports bleed to atmosphere when the switch is between positions. See Fig. 5 and Fig. 6.
FIG. 3—SP470 SHOWN MOUNTED IN AN ELECTRICAL BOX (RACO NO. 245 OR EQUAL) USING KIT NO. 316813A.

FIG. 4—SP470B (MOUNTED ON A PANEL)
THREE POSITION SWITCH

EXHAUST

7 6

SP470

D.A CONTROLLER

B M

N.O VALVE

7

POSITION 1 - PORTS 7 & 9 CONNECTED; PORTS 6 & 8 BLOCKED, VALVE OPEN.

POSITION 2 - PORTS 7 & 6 CONNECTED; PORTS 6 & 9 BLOCKED, VALVE AUTO.

POSITION 3 - PORTS 7 & 6 CONNECTED; PORTS 8 & 9 BLOCKED, VALVE CLOSED.

FIG. 5--TYPICAL CONNECTIONS

SWITCHING ACTIONS

TWO POSITION MODELS--

CIRCUIT INTERCHANGE

POSITION 1

POSITION 2

THREE POSITION MODELS--

POSITION 1

POSITION 2

POSITION 3

NOTE: DISCONNECTED PORTS BLOCKED

FIG. 6--TWO-POSITION AND THREE-POSITION SWITCHING ACTIONS

HONEYWELL*Minneapolis, Minnesota 55408*Scarborough, Ontario*Subsidiaries and Affiliates Around the World*Printed in U.S.A.

B-101
General

The SP970 Manual or Minimum Position Pressure Regulator is used in HVAC systems to regulate pressure to an output device such as a pneumatic damper operator.

Port 4 on the switch may be piped to an input device to provide external override of the manual setting.

Features

- Sharp barb connections for 5/32 in. (4 mm) OD plastic tubing.
- Molded plastic construction with neoprene diaphragm, music wire spring, and steel shaft.
- Two range spans available.
- Pilot bleed and isolated pilot models available.
- Wall or panel mounting.

Specifications

MODELS

SP970A: Three-port pneumatic manual or minimum position switch with pilot bleed and 5 or 10 lb/in² (34 or 69 kPa) spans available (convertible to 8 or 16 lb/in² [55 or 110 kPa]).

SP970B: Same as SP970A but with wall mounting bracket.

SP970C: Four-port pneumatic switch with isolated pilot chamber and 10 lb/in² (69 kPa) span, for use with capacity or bleed-type controllers.

SP970D: Same as SP970C but with wall mounting bracket.

DIMENSIONS

Refer to Fig. 1, 2 and 3.

FIG. 1. SP970A APPROXIMATE DIMENSIONS IN INCHES (MILLIMETERS) WITH SCALEPLATE AND KNOB ATTACHED
FIG. 1. SP910C APPROXIMATE DIMENSIONS IN INCHES (MILLIMETERS) WITH SCALEPLATE AND KNOB ATTACHED

FIG. 2. SP970C APPROXIMATE DIMENSIONS IN INCHES (MILLIMETERS) WITH SCALEPLATE AND KNOB ATTACHED

FIG. 3. SP970B AND D APPROXIMATE DIMENSIONS IN INCHES (MILLIMETERS) WITH SCALEPLATE AND KNOB ATTACHED

OUTPUT
The large range model spans 10 lb/in\(^2\) (69 kPa) with 188 degree knob rotation, or 16 lb/in\(^2\) (110 kPa) with 300 degree maximum knob rotation. The small range model spans 5 lb/in\(^2\) (34 kPa) with 188 degree knob rotation, or 8 lb/in\(^2\) (55 kPa) with 300 degree maximum knob rotation.

NOTE: The knob has two break-away stops that limit rotation to 188 degrees. Each stop, when broken away, adds 56 degrees of rotation (300 degree maximum).

OPERATING PRESSURES
- Main (Supply, Port 1): 18 lb/in\(^2\) (125 kPa).
- Branch (Output, Port 2): 3 to 15 lb/in\(^2\) (21 to 103 kPa).
- Pilot (Input, Port 3 on SP970C and D): 3 to 15 lb/in\(^2\) (21 to 103 kPa).

MAXIMUM SAFE AIR PRESSURE
30 lb/in\(^2\) (207 kPa).

AIR CAPACITY
- SP970A and B: 0.004 standard ft\(^3\)/min (1.7 m\(^3\)/s), below minimum position. Above minimum position, device feeding pilot determines capacity.
- SP970C and D: 0.004 standard ft\(^3\)/min (1.7 m\(^3\)/s).

AIR CONSUMPTION
0.022 standard ft\(^3\)/min (10 m\(^3\)/s).

SCALEPLATE
All models shipped with 0 to 100 F scaleplate (including knob and locknuts) unless otherwise specified (see ACCESSORIES).
ACCESSORIES

Bag Assembly, Part No. 315677A, used for panel mounting where panel is 5/16 to 1 in. (8 to 25 mm) thick.

Available Scaleplates:
- 315326 (-20 to +20 F)
- 315554 (-12 to +12 C)
- 315757 (-5 to +5 F)
- 315758 (-3 to +3 C)
- 315787 (Warmer-Cooler)
- 14003762-001 (Cooler-Warmer)

Spring Clip (Part No. 14003030-001).
Cable Clamp (Part No. 531629S).

WHEN ORDERING, SPECIFY
Model Number.
Accessories Required.

Typical Operation

When using the SP970A or B to manually position a damper between open and closed (Fig. 4), turning the knob clockwise increases branch line pressure to the operator, opening the damper. Turning the knob counterclockwise decreases branch line pressure, closing the damper.

To provide minimum positioning for a damper under automatic control, a capacity controller such as the RP908 used with the SP970A or B (Fig. 5), or a bleed type controller such as the LP916 used with the SP970C or D (Fig. 6) operates the damper between the minimum position set on the SP970 and the open position.

FIG. 4. SP970A OR B IN A MANUAL POSITION APPLICATION

FIG. 5. SP970A OR B IN A MINIMUM POSITION APPLICATION

FIG. 6. SP970C OR D IN A MINIMUM POSITION APPLICATION WITH A BLEED TYPE THERMOSTAT (LP916) INPUT
APPENDIX C

Manufacturers Literature

Marley Cooling Tower
COOLING TOWER OPERATING MANUAL

Prepared for: YOUNG PLUMBING & HEATING CO.

For: KAW VALLEY BANK

TOPEKA, KANSAS

<table>
<thead>
<tr>
<th>Tower Model No.</th>
<th>6375</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tower Serial No.</td>
<td></td>
</tr>
<tr>
<td>Customer Order No.</td>
<td>1462</td>
</tr>
<tr>
<td>Marley Order No.</td>
<td>KC-82-77</td>
</tr>
</tbody>
</table>

Please refer to Marley Order Number and Tower Serial Number in correspondence concerning this tower. We shall be happy to quote current parts prices and shipment upon request.

THE MARLEY COOLING TOWER COMPANY
5800 Foxridge Drive, Mission, Kansas 66202
AQUACOOlERS

Installation, Operation

and

Maintenance Instructions

MODELS

<table>
<thead>
<tr>
<th></th>
<th>6320</th>
<th>6340</th>
<th>6375</th>
</tr>
</thead>
<tbody>
<tr>
<td>6325</td>
<td>6345</td>
<td>6380</td>
<td></td>
</tr>
<tr>
<td>6330</td>
<td>6360</td>
<td>6390</td>
<td></td>
</tr>
</tbody>
</table>

ALWAYS REFER TO TOWER SERIAL NUMBER WHEN WRITING FOR INFORMATION OR ORDERING PARTS FOR THIS AQUACOOLER. SERIAL NUMBER IS STAMPED ON TOWER NAME PLATE LOCATED ON FAN SECTION NEAR MOTOR.
AQUACOOKER
Installation, Operation and Maintenance Instructions

TOWER PLACEMENT

TOWER LOCATION
Locate tower to obtain the least obstruction to the free flow of air to and from the unit. Allow adequate clearance on all sides of tower for maintenance.

INDOOR INSTALLATION
An indoor installation requires a discharge duct from the fan to the outside of the enclosed space. Ducts impose an additional draft loss that must be overcome by the fan. Care should be taken to insure that this external static pressure does not exceed 0.25 inches of water. Draft losses can be minimized by:

a. Using 20% oversize ducts.

b. Avoiding sharp turns, abrupt changes in duct size, and using turning vanes where necessary.

c. Keeping length of the ducts to a minimum.

d. Increasing the area of openings covered by screens, grids or louvers so the net free area is at least 20% greater than the fan discharge opening area.

Moisture from condensation inside the duct work may be a problem. The following will help control this:

a. Insulate the duct work to minimize condensation.

b. Seal duct work seams so that condensation will not drain outside.

c. Slope duct work to drain condensation back into tower.

To maintain a low-operating sound level and to prevent transmission of noise through the ducts, the ducts should be connected to the tower with a flexible connection of rubber or canvas and should not be supported by the tower.

OUTDOOR INSTALLATION
Orient tower so the prevailing wind will blow into the air inlets. The fan section should be located with the air discharge opposite to the air inlet side.

POSITIONING AND ANCHORING TOWER
Tower must be installed in a level position to operate properly. Preliminary leveling may be done on the tower casing. After piping is completed, the level should be rechecked by placing a level on the top of the honeycomb fill (inside of tower) and placing shims under the tower skids if required.

Tower should be placed on a firm foundation and suitably anchored. Locate anchor clips (to be furnished by customer) at the hoisting holes in the tower skids and attach with 1/2" bolts. Bolt clips to foundation.
TOWER ASSEMBLY AND INSTALLATION

NOTE: Hex head machine bolts are used to attach access panels and may be removed without affecting tower alignment or structural stability. DO NOT remove round head bolts unless absolutely necessary.

GENERAL — The AquaCooler is shipped in three packages. Fill and basin section, fan section and the motor. A hardware and miscellaneous parts carton is shipped in the fan section.

STEP 1 — Remove the protective crating from the fill and basin section. Unbolt and remove shipping skids from the underside of the fan section. Do not remove shipping blocks from the fan opening at this time.

STEP 2 — Place fill and basin section in position on foundation.

STEP 3 — Lift fan section and place in position on the fill and basin section. Remove fan shipping blocks. Bolt fan section to fill and basin section with hex head bolts, lock washers and nuts.

STEP 4 — Assemble motor support (see Drawing No. 2) and install motor, belt adjusting angle and belts. Check motor nameplate to be sure voltage, phase and frequency ratings are the same as the power supplied.

STEP 5 — Remove the belt slot access panel. Install the adjustable pitch sheave on the motor shaft. Sheave should be adjusted to the minimum pitch diameter by unscrewing the adjustable half of sheave until the shoulder of the adjustable half is flush with the end of the fixed half. Tighten set screw. Align motor sheave with the fan sheave located in the tower. This can be done with a straight edge across the fan sheave face. Rotate sheaves 1/4 turn and recheck alignment. Tighten set screw on motor sheave.

STEP 6 — Install V-belt and tighten motor adjusting bolts until V-belt is taut. Do not overtighten or the motor bearings may become overloaded. Recheck belt tension after tower has been in operation 8 hours.

STEP 7 — Replace belt slot access panel, install belt slot seal plate and belt guard using sheet metal screws furnished. See Drawing No. 3.

STEP 8 — Connect tower piping. Install bleed-off connection. (See bleed-off table on page 8.) It is recommended that short lengths of rubber hose be used to connect piping to tower to eliminate possibility of transmitting mechanical noise through the piping. If tower is installed outdoors, provide drain plugs in all water lines to prevent freezing during the winter months.

STEP 9 — Install the float valve through the hole in the casing end sheet and secure with the pipe locknut furnished with the float valve. Adjust float ball so valve shuts when
STEP 10 — Install drain plug in bottom of basin, or pipe overflow and drain to the sewer.

STEP 11 — Wire motor. All motor wiring switching and overcurrent protection should be in accordance with the National Electrical Code or local requirements. Motor shaft must rotate clockwise when facing the end opposite the shaft extension. Direction of rotation may be reversed by interchanging any two of the three motor leads on a 3-phase motor.

NOTE: Motors above 1 horsepower do not have overload protection. They must be protected by dual element fuses or overload relay heater.

The magnetic starter (not furnished by Marley) usually contains overload relay heaters. Check your starter to see if this protection is incorporated or if you must furnish it separately.

TOWER IS NOW READY FOR START-UP.

START-UP INSTRUCTIONS

1. Check all electrical and piping connections for tightness.
2. Check fan openings to see that all shipping blocks and hardware have been removed.
3. Rotate fan wheel by hand. Check for drag or binding.
4. Wash down the asbestos honeycomb fill and tower basin to remove any accumulated debris. Use low pressure water stream.
5. Install basin drain plug and close all pipe drains.
6. Fill the circulating water system and start the pump. Readjust float valve if necessary to maintain 5” of water in the basin when pump is operating. Check spray system to see if all nozzles are operating.
8. Check the motor voltage and current. All air inlet and exit duct work (if used) must be installed and ready for use. Always start water circulating through the tower before current readings are taken. With these values, calculate the load horsepower with the following equation:

 \[\text{Load \, Hp} = \frac{\text{Actual \, Volts \times \text{Actual \, Amps}}}{\text{Rated \, Volts \times \text{Rated \, Amps}}} \times \text{Rated \, Hp} \]

 If the load horsepower determined by the above equation is less than the name plate horsepower, it must be adjusted by increasing the pitch diameter of the motor sheave. Remove the belt guard, loosen the motor adjustment bolts and screw the movable part of the sheave in (1/4 turn at a time). Tighten set screw and motor adjustment bolts and recheck motor load. Continue in this manner until motor is loaded to name plate horsepower. Reinstall belt guard.
9. Check bleed-off to make sure water is being discharged into overflow.
10. TOWER IS NOW READY FOR OPERATION.

MECHANICAL EQUIPMENT

MOTOR, Motor warranty covering manufacturer’s material and workmanship is for one year from date of delivery. Consult the yellow pages of your telephone directory for an authorized motor repair station to make in-warranty repairs.

Motor manufacturers classify cooling tower motors as “Severe Duty Application”. Lubricate the motor according to the motor manufacturer’s instructions. In general, these instructions are as follows:

1. Grease motor while in operation unless this would create a hazard.
2. Remove grease and relief plugs.
3. Free relief hole of any hardened grease.
4. Add new grease recommended by motor manufacturer until it comes out the relief.
5. Replace fill plug and operate motor approximately 30 minutes with relief open to expel excess grease.
6. Replace relief plug.

Do not mix greases of different type or specification. Flush bearing and housing if change of grease is desired.

FAN BEARINGS. Fill oil cup after 1000 hours operation or every two months (whichever occurs first.) See Bearing Lubrication Instructions on page 9.

V-BELTS AND SHEAVES, If belts slip, adjust belt tension. If necessary, clean belts and sheaves with soapy water. Do not use belt dressing.

FLOAT VALVE. Check periodically for proper operation and maintenance of water level.

TOWER GENERAL. Cold water basin and suction screen should be cleaned as required. Spray system should be inspected frequently for proper operation. Inspection openings are provided.

Fill and eliminators should be inspected once a year and cleaned if required.

DISASSEMBLY PROCEDURE (To Be Used Only If Aqua-Cooler Must Be Moved Through A Small Opening)

IMPORTANT: DO NOT DISASSEMBLE AQUACOOLER MORE THAN IS NECESSARY.

NOTE: As each part is removed, attach the fasteners to that part. Group parts as they are removed for identification.

FAN SECTION
(Refer to Drawing No. 9)

STEP 1 - Remove all hex head machine bolts and lift off access panels.
STEP 2 - Unbolt and remove top cover sheet.
STEP 3 - Unbolt and remove fan end sheets.
STEP 4 - Unbolt and remove motor support angle.
STEP 5 - Unbolt and remove both lower side sheets.
NOTE: On the one-fan towers, further disassembly should not be required. If further disassembly is ABSOLUTELY required, proceed as listed for a two-fan tower.

STEP 6 – On two-fan towers, check to see if disassembled section can be moved into place. If not...
STEP 7 – Remove fan sheave. This is accomplished by removing the cap screws in the sheave hub and installing them in the open tapped holes in the hub. Tightening the cap screws will then force the sheave off the hub. When the sheave is free, the hub can then be pulled off the shaft.
STEP 8 – Disconnect oil lines from the bearing housings.
STEP 9 – Support fan shaft and remove the self locking nuts used to attach the bearings to their support.
STEP 10 – Loosen the set screws on the fan wheel hub furthest from the sheave end of the shaft and pull fan and housing free of the fan shaft.

CHECK AGAIN TO SEE IF SECTION CAN BE MOVED INTO POSITION. FURTHER DISASSEMBLY REQUIRES REMOVAL OF THE BEARING ASSEMBLIES WHICH SHOULD BE AVOIDED IF AT ALL POSSIBLE.

STEP 11 – Remove protective coating from the fan shaft with kerosene and apply a coat of light oil to the clean shaft.
STEP 12 – Remove the bearing assembly opposite the sheave end of the fan shaft in the following manner:
 a. With an Allen wrench, loosen the set screws in thrust collar and slide the bearing off the shaft.
 b. Put bearing in a safe, clean place where it will not be dropped or mishandled.

LEAVE SECOND BEARING IN PLACE. THERE IS NO REASON TO REMOVE THIS BEARING.

STEP 13 – Loosen set screws on the fan wheel hub and remove fan shaft.

The fan section is now disassembled into its smallest parts. If desired, the fan wheels can be removed from their housings by unbolting the cut-off in the fan discharge openings and rolling the wheel out. The support angle frames can be removed at this time.

FILL AND BASIN SECTION
(Refer to Drawing No. 7)

STEP 1 – Remove the front and back panels, air inlet screen and splash baffle by removing the hex head machine bolts.
STEP 2 – Remove the eliminator section by sliding it out. Store in a safe place to prevent damage to the blades.
STEP 3 – Remove the asbestos honeycomb fill a layer at a time.
STEP 4 – Unbolt and remove the turning vanes located under the fill support.
STEP 5 – Unbolt and remove the top stiffener frame at the top of the tower.
STEP 6 – Unbolt and remove the welded fill support frame.

AT THIS POINT THE TOWER STRUCTURE IS UNSTABBLE. USE CARE TO PREVENT DAMAGE TO THE Casing END PANELS.

STEP 7 – On models 6340 thru 6390 towers, remove the U-bolt support located in the middle of the large header pipe.
STEP 8 – Unbolt and remove the spray system assembly. Wire the rubber gaskets to the spray system or the end panels to prevent their becoming lost.
STEP 9 – Unbolt and remove casing panels.
STEP 10 – On models 6340 thru 6390, unbolt the center uprightness from the basin gussets only and remove. Do not disassemble the upright. No disassembly of the water basin is required.

TOWER IS NOW DISASSEMBLED INTO ITS SMALLEST PARTS AND MAY BE MOVED TO THE REQUIRED LOCATION.

REASSEMBLY PROCEDURE

FILL AND BASIN SECTION
(refer to Drawing No. 4)

STEP 1 – Set cold water basin in position.
STEP 2 – Set the casing end sheets on the basin end support and fasten with round head bolts and lock washers.
STEP 3 – Position spray system. Install rubber gasket between pipe plate and casing end sheet. Bolt assembly in place with bolts and lock washers.

NOTE: Spray system must be level.
STEP 4 — Models 6340 thru 6390 only: Install the center vertical supports. Bolt through basin gusset plates with round head bolts and lock washers.

STEP 5 — Bolt fill support frame(s) to casing end sheets with round head bolts. Use a rubber backed steel sealing washer under each bolt head. On models 6340 thru 6390 only, bolt frames to center vertical supports.

STEP 6 — Bolt top stiffener frame in position with round head bolts and lock washers. On models 6340 thru 6390 only, bolt frames to center vertical support.

STEP 7 — On models 6340 thru 6390 only install U-bolt around the header pipe and fasten to the center vertical supports.

STEP 8 — Install turning vanes as shown on Drawing No. 5, using round head bolts and lock washers.

CAUTION: The bottom edge of curved blades MUST point towards the air inlet.

STEP 9 — Install fill panels one layer at a time. Do not force or compress panels. Install so length of panels is perpendicular to direction of inlet header.

STEP 10 — Install eliminator section(s).

IMPORTANT: Eliminators must be installed correctly. Slide eliminator section into position on the support rails above the spray system. When correctly installed the blade tabs will be visible as shown on Drawing No. 7. If blade tabs are not visible, rotate section 90°.

STEP 11 — Inspect the sponge rubber gaskets. Reglue or replace any loose or damaged gaskets.

STEP 12 — Check to see that the "S" strip is on the cold water basin edge. Open groove in strip is inside of basin.

STEP 13 — Install air inlet splash baffles by setting bottom edge of support in the "S" strip groove and swinging assembly into place. Do not bolt in place at this time.

STEP 14 — Line up air inlet screen with holes in splash baffle assembly and bolt both parts to the tower with hex head bolt and rubber backed seal washer.

STEP 15 — Set front and back casing panels in place and fasten with hex head bolts and rubber backed seal washer.

FILL AND BASIN REASSEMBLY IS NOW COMPLETE.

FAN SECTION
(Refer to Drawing No. 9)

NOTE: Fan section may be assembled on or off the fill and basin section.

STEP 1 — Bolt angle frames to fan housing with round head bolt, cut washer and lock washer. Roll fan wheel into housing and install fan cut-off sheet.

STEP 2 — Set the lower side sheets in position and bolt to fan housing frames with round head bolts and lock washers.

STEP 3 — Install motor support angle and motor support brace bolt to the fan housing frame as shown on Drawing No. 9 using serial number plate as location reference.

STEP 4 — Bolt top cover sheet to fan housing frames with round head bolts, cut washers and lock washers.

STEP 5 — Fan shaft with attached bearing is to be installed on the serial number plate end of the fan section.

On models 6320, 6325 and 6330: Slide the fan shaft through fan wheel hub until the attached bearing assembly is in line with the holes in the bearing support bar. (Do not tighten fan hub set screws at this time.)

On first models 6340, 6350 and 6360: Slide the fan shaft through fan wheel hub until the attached bearing assembly is in line with the holes in the bearing support bar. Do not assemble to second fan or tighten fan hub set screws at this time.

STEP 6 — Install second bearing on shaft. Leave set screws loose.

Use extreme care — do not force or hammer on bearing. Keep all parts clean and free from dirt. A light coat of oil on fan shaft will help installation.

STEP 7 — On models 6340, 6350 and 6360: Push fan shaft through second fan wheel hub until end of shaft is flush with end of hub. Do not tighten fan hub set screws.

STEP 8 — Align fan shaft and fasten bearings to the support bar with bolts and self locking nuts.

STEP 9 — Tighten bearing thrust collar set screws.

STEP 10 — Adjust fan wheel(s) until there is equal clearance.
STEP 11 — Connect oil lines to the bearing housings. Fill oil cups and oil lines with recommended lubricant. See page 9.

STEP 12 — Install fan sheave as follows:

a. Place sheave without bushing on the fan shaft and push sheave back against the bearing.

b. Install bushing on the shaft small end first and push until end of the shaft is flush with flanged end of the bushing.

(continued top page 8)
WATER PROBLEMS AND TREATMENT

BLEED-OFF
Bleed-off is the continuous removal of a small portion of the water from the circulating system. The purpose of bleed-off is to prevent dissolved solids from concentrating to the point where they will form scale. As a guide, many waters can be allowed to concentrate two to three times without causing scale problems. The amount of bleed-off to hold concentrations to two or three depends upon the cooling range (hot water temperature minus cold water temperature). The following table shows amount of bleed-off required at three different cooling ranges.

<table>
<thead>
<tr>
<th>Cooling Range °F</th>
<th>% of Circulating Rate to Bleed-Off*</th>
<th>% of Circulating Rate to Bleed-Off**</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>.18</td>
<td>.38</td>
</tr>
<tr>
<td>10</td>
<td>.38</td>
<td>.78</td>
</tr>
<tr>
<td>15</td>
<td>.58</td>
<td>1.18</td>
</tr>
</tbody>
</table>

*Maintain 3 concentrations; **Maintain 2 concentrations

EXAMPLE: 80 gpm circulating rate, cooling range 10°F. To maintain 3 concentrations, the required bleed-off = 80 x .0038 = .30 gpm.

CHEMICAL TREATMENT
The quality of many municipal waters is such that chemical treatment for scale prevention or removal will normally be required if adequate bleed-off is maintained. In areas where bleed-off alone is not sufficient to prevent objectionable scale or corrosion, use a simplified phosphate treatment as directed by the local supplier of water treating materials.

Algae and slime may occur and can be controlled by careful application of proper chemicals. Improper application of concentrated water treating chemicals may damage parts of the system. If scale or algae and slime accumulate, obtain the services of a competent water treating consultant.

FOAMING
Foaming occasionally becomes a problem when certain water conditions when a new tower is put into operation. The condition is not normally persistent for an extended period and foaming can be lessened by increasing bleed-off until the condition is improved. If increased bleed-off does not lessen foaming sufficiently, a foam depressant chemical should be used. These are generally available through local chemical supply companies and some water treating companies.

WATER DISCOLORATION
Discoloration, like foaming, is a condition that develops when a new tower is put into operation. It will not harm the normal components in an open recirculating cooling system. However, if discoloration is objectionable, it can be reduced by increasing bleed-off or the system may be emptied and refilled once or twice after the initial start-up of the tower. Commercial bleaching agents may be used but must be used with care as they may damage the system.
SEASONAL SHUTDOWN: INSTRUCTIONS

BASIN AND FRAME
Drain the tower basin and all exposed piping. Leave the basin drain open. Water may be left in basin if tower is located in a non-freezing area.

During shutdown, clean the tower and make any necessary repairs. Apply protective coating as required to all metal parts. Particular attention should be given to bearing supports.

MECHANICAL EQUIPMENT

V-BELTS
At shutdown, inspect V-belts and if worn excessively, replace before start-up.

SLEEVE BEARINGS, Oil Lubricated Type
Check oil level once each month and add oil if necessary. See next section for lubricating oil information. Rotate shaft by hand to assure all parts are coated with oil.

ELECTRIC MOTORS
Do not start motor without determining that there will be no interference with free rotation of the fan drive.

Motors are equipped with grease or oil lubricated bearings. Refer to motor manufacturer’s recommendations for lubrication and maintenance instructions.

If shutdown period is longer than seasonal, contact the Marley sales office or representative in your area for additional information.

BEARING LUBRICATION

Fan bearings are lubricated at the factory. Original lubrication is adequate for approximately 1000 hours or two months of normal operation. It is not necessary to add at more frequent intervals.

Fan bearings are constructed with an oil reservoir between the spherical outer shell and the bronze sleeve. The reservoir is packed with wool felt which absorbs oil and distributes it through feed plugs in the oil grooves. (See illustration.) Graphite filled grooves redistribute oil to the bearing surface.

Rate of oil flow through the bearings is controlled by density of wool and graphite packing. Variance in packing density results in differences in the length of time required for oil cups to empty; time required may vary from a few days to several weeks or months.

If oil flow rate permits the oil cup to empty in one to two days:
1. Check oil line for leakage.
2. If oil line shows no leakage continue recommended lubrication schedule. It is not necessary that oil be visible in cup between fillings.

RECOMMENDED LUBRICANTS
Recommended lubricants are industrial type mineral oils or automotive crankcase oils except those designated “Detergent,” “Heavy Duty,” or “Compounded.” For given operating conditions use the following oils:

- Summer or Indoor Operation
 (40°F to 110°F) – SAE 50
- Winter, Outdoor Operation
 (0°F to 40°F) – SAE 10

When the tower is located outdoors and is operated during summer and winter seasons, it is recommended that the change from SAE 50 to SAE 10 oil be made during a period of temperature transition to insure the lighter oil has adequate time to flow from the oil cup to the bearing reservoir. If oil change is made in cold weather, remove and drain oil line before adding SAE 10 oil.
Models 6320, 6325 and 6330

Dimensions in Inches

MODEL NO.	TOWER OVERALL INSTALLED	W	L	H	A	B	C	D	E	F	G	J	K	M	N	CFM	NO. PANE	HP	INLET	SUCTION	DRAIN	OVERFLOW	FLOAT VALVE	WEIGHTS
6320	55 1/2 51 1/2 98	25	14	21 1/2 24 1/2 21	58 1/2	66 1/2	80 1/4	8 1/4	18	17 1/2	5875	1	1 1/2	3m	4m	1/4	m	2m	1/4	m	1278	1880		
6325	55 1/2 51 1/2 104	25	14	21 1/2 24 1/2 21	64 1/2	72 1/2	86 1/4	8 1/4	18	17 1/2	6380	1	2	3m	4m	1/4	m	2m	1/4	m	1358	2030		
6330	57 1/8 51 1/2 109	23 1/2	12 1/2	36 1/2 28 1/4 24 1/4	64 1/2	72 1/2	86 1/4	8 1/4	18	17 1/2	8110	1	3	3m	4m	1/4	m	2m	1/4	m	1424	2175		
6340	55 1/2 98 1/2 98	25	14	31 1/2 24 1/2 21	58 1/2	66 1/2	80 1/4	8 1/4	18	17 1/2	11750	2	3	4m	4m	1/4	m	2m	1/4	m	2278	3515		
6350	55 1/2 98 1/2 104	24 1/2	12 1/2	36 1/2 28 1/4 24 1/4	64 1/2	72 1/2	86 1/4	8 1/4	18	17 1/2	13870	2	5	4m	4m	1/4	m	2m	1/4	m	2382	3710		
6360	57 1/8 98 1/2 109	24 1/2	12 1/2	36 1/2 28 1/4 24 1/4	88	10 1/4	17 1/4	20 1/4	16220	2	5	4m	4m	1/4	m	2m	1/4	m	2541	3980				

1: Wet operating weights are based on 6 inches of water in tower basin.
2: Protected motors are furnished on these models.

Pumping head is 18.0 feet for Models 6320 and 6340 and 18.5 feet for all other models in the table above. Pump head is measured from base of tower when circulating 3 gpm per ton at 65-85°F. For other conditions obtain pump head data from your Marley sales engineer.
MODELS 6375, 6380, 6390

1. Wet operating weights are based on 6 inches of water in tower basin.

2. Protected motors are furnished on these models.

Pumping head is 18.5 feet for all models in table above. Pump head is measured from base of tower when circulating 3 gpm per ton at 95–85–78. For other conditions obtain pump head data from your Marley sales engineer.
AQUACOOLER PARTS LIST for Models 6305, 6308, 6310, 6315, 6320, 6325, 6330, 6340, 6350, 6360, 6375, 6380 and 6390

(SEE ITEMIZED PARTS LIST ON REVERSE SIDE)

IMPORTANT -- The SERIAL and MODEL NUMBERS of tower MUST be provided when ordering parts.
AQUACOOLER PARTS LIST

<table>
<thead>
<tr>
<th>REF. NO.</th>
<th>DESCRIPTION OF PARTS</th>
<th>MODELS - Quantities Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOTOR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/4 HP, 1725 RPM TE</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5 HP, 1725 RPM TEFC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 3/4 HP, 1750 RPM Protected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 HP, 1750 RPM Protected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 HP, 1750 RPM Protected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 HP, 1750 RPM Protected</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 1/4 HP, 1750 RPM Protected, Double Extended Shaft</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10 HP, 1750 RPM Protected, Double Extended Shaft</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>MOTOR SPROCKETS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 46, 5/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 50, 5/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 44, 5/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 48, 5/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 56, 7/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 62, 7/8" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 60A, 1 1/2" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 70A, 1 1/2" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning VTF 80A, 1 1/2" Bore</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>FAN SPROCKETS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning AK 60H, 1" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning AK 70H, 1" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning AB 80, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning AB 90, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning BB 14, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning BB 15, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning BB 16, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning BB 17, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning BB 18, 1 1/16" Bore</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>V-BELTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Browning A 48</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning A 51</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning B 55</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning B 71</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning B 71</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 2A 75 (Set of 2 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 2B 71 (Set of 2 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 2B 76 (Set of 2 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 2B 85 (Set of 2 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 4B 81 (Set of 4 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Browning 4B 60 (Set of 4 matched belts)</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>BEARINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Randall No. PB NB - G100C-108 HE (1" Bore)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Randall No. PC NG - G1111-400 HE (1 1/16" Bore)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Randall No. P1 1/1 - G200H-500 HE (2" Bore)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Randall No. Q0 MH - G1111-408 HE (1 1/16" Bore)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>FANS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clarke Type 7/8 Centrifugal, 1" Bore</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 Centrifugal, 1" Bore</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 7/8 Centrifugal, 1 1/16" Bore</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 Centrifugal, 1 1/16" Bore</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 1/2 Centrifugal, 1 1/16" Bore</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 3/4 Centrifugal, 1 1/16" Bore</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 1/2 Centrifugal, 2" Bore</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Clarke Type 1 3/4 Centrifugal, 2" Bore</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>FAN SHAFTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1/2 Dia. CRS 8084/2011107</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 1/16 Dia. CRS 8085/00091761</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1 1/16 Dia. CRS 8085/0011180</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2 Dia. CRS 8086/0001343</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1 1/16 Dia. CRS 8086/0001713</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>FLOAT VALVES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3/8" Flipper</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1/2" Flipper</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>3/4" Flipper</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX D

Manufacturers Literature

General Electric Collectors
PHYSICAL
WEIGHTS

<table>
<thead>
<tr>
<th></th>
<th>British</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Only</td>
<td>35 lbs.</td>
<td>16 kg</td>
</tr>
<tr>
<td>Glass Installed</td>
<td>57 lbs.</td>
<td>26 kg</td>
</tr>
<tr>
<td>Dry</td>
<td>59 lbs.</td>
<td>27 kg</td>
</tr>
</tbody>
</table>

OPERATIONAL

<table>
<thead>
<tr>
<th></th>
<th>British</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insolation</td>
<td>0 to 400 BTU/ft²/hr</td>
<td>0 to 108 langleys</td>
</tr>
<tr>
<td>Fluid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>100 to 300°F</td>
<td>38 to 149°C</td>
</tr>
<tr>
<td>Composition</td>
<td>"Good" water with 35/50%</td>
<td>Prestone</td>
</tr>
</tbody>
</table>

COMPOSITION

<table>
<thead>
<tr>
<th>Frame</th>
<th>18 Ga aluminized steel (51.6 mil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflector</td>
<td>Alglas</td>
</tr>
<tr>
<td>Insulation</td>
<td>Fiberglass</td>
</tr>
<tr>
<td>Fluid Lines</td>
<td>1/4" type L copper</td>
</tr>
<tr>
<td>Glass Tubes</td>
<td>008 soda lime</td>
</tr>
</tbody>
</table>

CONNECTIONS

| Hydraulic | Brass 1/4" 45° Flare Nut |
| Structural Attachments| Stainless Steel or aluminum |

EQUIPMENT SIZING GUIDELINES

<table>
<thead>
<tr>
<th>Heat exchanger area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating</td>
<td>17 ft²/module 0.16 m²/module</td>
</tr>
<tr>
<td>Cooling & Heating</td>
<td>35 ft²/module 0.33 m²/module</td>
</tr>
<tr>
<td>Storage Volume</td>
<td>15 gallons/module</td>
</tr>
<tr>
<td>Heating Only</td>
<td>56.8 liters/module</td>
</tr>
<tr>
<td>Cooling & Heating</td>
<td>22 gallons/module</td>
</tr>
<tr>
<td></td>
<td>83.3 liters/module</td>
</tr>
</tbody>
</table>

MODULE DESIGN CONDITIONS

<table>
<thead>
<tr>
<th>Pressure Drop-Design</th>
<th>7.0 psi 48.2 kPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum</td>
<td>5.0 psi 34.5 kPa</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>0.22 gpm 0.83 l/m</td>
</tr>
<tr>
<td>Wind Velocity (Max)</td>
<td>100 mph 161 km/hr</td>
</tr>
<tr>
<td>Ice Load (Max)</td>
<td>13 psf 63.5 kg/m²</td>
</tr>
<tr>
<td>Snow Load (Max)</td>
<td>20 psf 97.6 kg/m²</td>
</tr>
<tr>
<td>Combined Load (Max)</td>
<td>33 psf 161.1 kg/m²</td>
</tr>
<tr>
<td>Minimum Array Pressure</td>
<td>45 psig 310 kPa</td>
</tr>
</tbody>
</table>

MODULE AREA

| Gross (Frame) | 17.4 ft² 1.62/m² |
| Net (Active) | 14.8 ft² 1.38/m² |

"Good" Quality Water:

Chlorides	< 100 ppm
Sulfates	< 100 ppm
Bicarbonates	< 100 ppm
Total Hardness	< 250 ppm
PRELIMINARY SOLAR ARRAY SIZING

Module Pressure Drop (at 180°F)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>ΔP (PSI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% water</td>
<td>5.3</td>
</tr>
<tr>
<td>35% glycol/water</td>
<td>6.2</td>
</tr>
<tr>
<td>50% glycol/water</td>
<td>7.0</td>
</tr>
</tbody>
</table>

HEADER

<table>
<thead>
<tr>
<th>Tube Size</th>
<th>Type Copper</th>
<th>Maximum Number of Panels/Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4"</td>
<td>L</td>
<td>18</td>
</tr>
<tr>
<td>1"</td>
<td>L</td>
<td>36</td>
</tr>
</tbody>
</table>

Optional Accessory Hardware

For Further Information Contact:
Manager, Solar Heating and Cooling Marketing
General Electric Company,
P.O. Box 13601,
Philadelphia, PA. 19101
Phone — (215) 962-2112/2113

For Further Information Contact:
Manager, Solar Heating and Cooling Marketing
General Electric Company,
P.O. Box 13601,
Philadelphia, PA. 19101
Phone — (215) 962-2112/2113

D-3
SPECIFICATION

EVACUATED TUBE HYDRONIC SOLAR COLLECTOR

GENERAL

The solar collector shall be an evacuated tube liquid type designed for efficient operation at fluid temperatures ranging from 100 to 300°F (66 to 149°C). The collector module shall be furnished with all the necessary components, excluding support attachments, ready for field attachment to support and piping systems. Specifications and requirements stated herein shall not supersede applicable Federal, State, or Local Codes and Regulations.

SOLAR COLLECTOR MODULE

General Construction

The solar collector shall be composed of standard manufactured modules which are designed for simple attachment to the support structure and piping system. The modular unit shall have a gross dimensions of approximately 4 feet by 4 feet (1.2 by 1.2 meters) with an active-to-gross area ratio greater than 0.85. The active (effective) area, as defined by the manufacturer, is the planar area onto which incident energy is directed to the absorber surface (s). The gross operating weight of the solar collector shall not exceed 40 pounds per square foot (19.5 kg/m²) of gross area. The collector assembly shall be capable of withstanding wind velocities of up to 100 mph (161 km/hr) with an ice and snow load of 20 lb/ft² (97 kg/m²) without structural damage.

Glass Tubes

The module shall consist of evacuated glass tubes which are composed of two concentric glass tubes separated by a vacuum of less than 10⁻⁴ Torr. The glass construction shall contain the vacuum without the usage of mechanical seals. The vacuum shall be maintained for the life of the tube at temperatures up to 650°F (343°C) with an active getter.

The outer radial surface of the inner glass tube shall have a coating with an average hemispherical emittance less than 0.05 at 212°F (100°C) and an absorptivity greater than 0.85. The solar absorptance of the glass shall be greater than 87 percent of the visible light spectrum.

Long-term degradation of coating and glass properties shall have a combined effect of less than 10 percent of the total absorbed energy.

Fluid Passages

The collector unit shall be suitable for use with water or a mixture of water and anti-freeze solution (up to 50 percent by volume) as the heat transfer fluid.

Fluid passages shall not be restricted, when the specified fluid quality is maintained, to the point that collection efficiency (as a function of fluid flow) is decreased by more than 5 percent over the design life of the collector.

Fluid passages shall be designed to withstand, without degradation, the effects of no fluid flow and high insolation conditions. Fluid passages shall be designed for operational pressures up to 80 psi (551 kPa) and fluid temperatures up to 300°F (149°C).

Insulation

There shall be at least 1.5 inches (3.80 cm) of 3 lb/ft³ fiberglass (48 kg/m³) or equivalent insulation surrounding all fluid-carrying components which are not thermally protected by the vacuum from the ambient environment. The insulation will be properly protected from the ambient environment to preclude significant insulation performance degradation resulting from ambient conditions. Fluid temperatures up to 650°F (343°C) shall not affect the performance or integrity of the insulation.

PERFORMANCE

Collector performance shall be defined by its instantaneous efficiency based on active collector area in graphical (Figure 1) and equation form as

$$\eta = A - B\psi$$

where

- \(\eta\) = instantaneous collection efficiency (active area)
- \(\psi\) = \((T_{col} - T_{amb}) / Q_i\) \(\text{OF/hr-ft}^2/\text{BTU}\)
- \(T_{col}\) = average collector temperature, \(\text{OF}\)
- \(T_{amb}\) = ambient temperature, \(\text{OF}\)
- \(Q_i\) = insolation on the plane of the collector \(\text{BTU/hr-ft}^2\)

![Figure 1. Instantaneous Collector Efficiency](image-url)
The constants A and B are obtained by placing a least squared straight line through the data points located between \(\psi = 0.0 \) and \(\psi = 1.0 \). Certified test data from a recognized independent testing agency, along with manufacturer’s test data, shall be identified on Figure 1 and utilized to define the constants A and B. Collector efficiency shall be determined in accordance with ASHRAE 93-77 test procedures.

The solar collector shall have an efficiency plot which is greater than the minimum performance line of Figure 1. The constant A shall be greater than 0.58 and B shall be less than 0.37 BTU/hr·ft\(^2\)oF.

QUALITY ASSURANCE

Manufacturer

The manufacturer of the solar energy collector shall be a recognized producer of said equipment and shall submit documentation demonstrating a high capability in design engineering, testing, fabrication, installation and maintenance of equipment the same as or similar to that called for on the drawings and in the specification(s).

All Other

All materials, assemblies, coatings, thermal bond connection, fluid connections, vacuum seals, structural members and housing configurations shall be of the highest quality and shall fully meet those standards called for and required in the “Interim Performance Criteria for Solar Heating and Cooling Systems in Commercial Buildings” (NBSIR 76-1187-1976). Any change and/or deviation from these criteria must be fully clarified. Standards and work of a higher quality than in the above cited, called for in these specifications and/or on the drawings, shall be met by the manufacturer.

OPERATIONAL DOCUMENTS

The manufacturer shall provide, within one (1) week of collector delivery, installation documentation for the collector. These manuals shall describe preventive maintenance, general maintenance, fluid quality control and replacement requirements and material replacement and control instructions.

WARRANTY

The manufacturer shall warrant that at time of delivery, the solar collector will be free from defects in material and manufacture and will be of good quality and workmanship. This warranty shall provide for the replacement or repair, at the manufacturer’s election, of the collector or parts thereof, provided that written notice of the defect shall be given to the manufacturer within one (1) year after collector delivery.
SOLARTRON® TC-100
VACUUM TUBE SOLAR COLLECTOR

COMMERCIAL AND INDUSTRIAL INSTALLATION MANUAL
The various configurations included in this brochure are included for illustration of several typical solar collector system applications and are not intended as constructional information. Although reasonable care has been taken in their preparation to insure their technical correctness, no responsibility is assumed by the General Electric Company for any consequences of their use.

The solar products and arrangements disclosed herein may be covered by patents of General Electric Company or others. Neither the disclosure of any information herein nor the sale of solar products by General Electric Company conveys any license under patent claims covering combinations of solar products with other products or components. In the absence of an express written agreement to the contrary General Electric Company assumes no liability for patent infringement arising out of any use of the solar products with other products or components by any purchaser of solar products or others.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>2</td>
<td>GENERAL DESCRIPTION</td>
</tr>
<tr>
<td>2.1</td>
<td>Physical Characteristics</td>
</tr>
<tr>
<td>2.2</td>
<td>Collector Components</td>
</tr>
<tr>
<td>2.3</td>
<td>Collector Fluid</td>
</tr>
<tr>
<td>2.4</td>
<td>Optional Collector Accessories</td>
</tr>
<tr>
<td>3</td>
<td>COLLECTOR INSTALLATION</td>
</tr>
<tr>
<td>3.1</td>
<td>Installation Summary</td>
</tr>
<tr>
<td>3.2</td>
<td>Mounting Techniques</td>
</tr>
<tr>
<td>3.3</td>
<td>Layout and Spacing</td>
</tr>
<tr>
<td>3.4</td>
<td>Installation Procedures</td>
</tr>
<tr>
<td>4</td>
<td>COLLECTOR PLUMBING AND CHECKOUT</td>
</tr>
<tr>
<td>4.1</td>
<td>Header Description/Plumbing</td>
</tr>
<tr>
<td>4.2</td>
<td>Header Installation Procedures</td>
</tr>
<tr>
<td>4.3</td>
<td>Leak Test Procedures</td>
</tr>
<tr>
<td>5</td>
<td>FINAL ASSEMBLY AND CHECKOUT</td>
</tr>
<tr>
<td>5.1</td>
<td>Vacuum Tube Installation</td>
</tr>
<tr>
<td>5.2</td>
<td>Operational Checkout</td>
</tr>
<tr>
<td>5.3</td>
<td>Insulation and Cover Installation</td>
</tr>
<tr>
<td>6</td>
<td>COLLECTOR LOOP OPERATION AND MAINTENANCE</td>
</tr>
<tr>
<td>6.1</td>
<td>Collector Loop Operation</td>
</tr>
<tr>
<td>6.2</td>
<td>Periodic Maintenance</td>
</tr>
<tr>
<td>6.3</td>
<td>Periodic Inspection</td>
</tr>
<tr>
<td>6.4</td>
<td>Glass Tube Replacement</td>
</tr>
<tr>
<td>6.5</td>
<td>Safety Considerations</td>
</tr>
<tr>
<td>7</td>
<td>SPECIFICATION DATA SHEET</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

This document has been prepared to provide ARCHITECTS, CONSULTANTS, INSTALLING CONTRACTORS and ENGINEERS the basic data required to integrate a TC-100 vacuum tube solar array into a building design and to provide the mechanical contractor with the detail to install and check out the subsystem. Instructions for approximate sizing of a TC-100 array, component sizing and estimating system performance have been described in General Electric Document No. 78SDS42158 - Solartron Vacuum Tube Solar Collector "Commercial and Industrial Application Guide."

Should you have questions regarding this material, or should you require additional information, contact:

Manager, Solar Heating and Cooling Marketing
General Electric Company
P.O. Box 13601
Philadelphia, PA 19101

Phone: (215) 962-2112/3

2. GENERAL DESCRIPTION

2.1 PHYSICAL CHARACTERISTICS

The General Electric Solartron TC-100 solar collector module (Figure 2-1) consists of eight glass vacuum tubes nested in a cusp-like reflector. The collector is designed to be mounted with the vacuum tube axis oriented up and down, with provisions for simple four-corner mounting. Two flare fittings connect each collector to the supply and return headers.

A collector module has an installed weight of approximately 57 pounds, or about 3.3 pounds per square foot. The collectors are installed without the glass vacuum tubes, and each module without the tubes weighs about 35 pounds, providing ease in handling. The TC-100 module collector is designed for an environmental loading (combined wind, ice, and snow) of 33 pounds per square foot when installed.

2.2 COLLECTOR COMPONENTS

The collector module consists of:

1. An aluminized steel frame
2. An Alglas cusp-like reflector
3. Copper finned-tube loops to transport the working fluid
4. Glass vacuum tubes with propylene grommets and stainless steel spring clips.

The copper tubing between vacuum tubes is pre-insulated. The collector modules are completely assembled except for the glass vacuum tubes which are shipped separately. The modules are shipped with protective plastic covers over the copper finned tubes. These plastic covers remain in place until the system is checked out at which time, the plastic covers are replaced with the glass vacuum tubes.

The glass vacuum tube and the finned-tube are shown in cross section in Figure 2-2. The glass vacuum tube consists of two glass cylinders joined to form a large "THERMOS bottle". The outer cylinder serves as the window, and the inner cylinder, which is selectively coated on the outer surface, acts as the absorber. The space between the two glass cylinders is evacuated. The energy is transferred through the inner glass tube and into a conforming cylindrical copper fin. The thermal energy is then conducted along the fin and into the fluid passing through the U-tube. This design eliminates glass-to-metal seals, eliminates impact of potential glass breakage on operational continuity, reduces thermal inertia, and eliminates thermal expansion differentials between metal and glass components. The 1/4 inch copper tubing which contains the working fluid terminates with 45-degree flare nuts for mechanical attachment to headers.

2.3 COLLECTOR FLUID

The recommended non-freezing working fluid is a mixture of 35 to 50 percent (by volume) Prestone II ethylene glycol.
with distilled, deionized, or demineralized water,¹ which offers freeze protection to -4°F and -34°F, respectively. Operating temperatures should be limited to 300°F in order to prevent decomposition of the ethylene glycol.

¹Note: Water containing no more than the following is satisfactory:
- chlorides: 100 ppm
- sulfates: 100 ppm
- bicarbonates: 100 ppm
- total hardness: 250 ppm

2.4 OPTIONAL COLLECTOR ACCESSORIES

In addition to TC-100 vacuum tube solar collectors, General Electric offers several optional solar system accessory kits that have been engineered to facilitate collector installation and to contribute to the operational efficiency and reliability of the system.

Mounting Bracket Kits (Figures 3.3, 3.4 and 3.5) for either sloping surface, flat roof or space frame applications are available. Direct mounting bracket kits (Figure 3.3) include T-brackets which lock the collector to commercially available UNISTRUT® channels which are attached to the roof or other substructure. “Internal” brackets utilize pins while “external” brackets are bolted. The strut mounting option (Figure 3.4) offers a standard top and bottom bracket design for use with contractor supplied transition struts. Space frame bracket kits (Figure 3.5) provide a standard L-bracket with a 3/8 inch threaded U-clamp for 3” diameter tubes. All three kit options include the required nuts, bolts and washers.

Header Kits (Figures 5.4 and 5.9) are available for both single and dual collector configurations. Header kits include prefabricated header pipes with the appropriate hydraulic fittings, alignment/anchor brackets and clamps, fibreglass insulation, aluminumized steel covers, joint and fastening hardware.

Collector Window Kits (Figure 2.3) are recommended ONLY for areas of extreme vandalism or for regions having incidences of large hail. The simply mounted collector window kit is offered either in UV stabilized Lexan® or acrylic. Appropriate attachment hardware is included.

Solar Controller Kit (Figure 2.4) contains electronic logic and a silicon photo sensor that digitally integrates solar energy levels for system control. The controller operates from a 24 VAC 60 Hz source and outputs a 24 VAC signal which is used for control of loop pumps and valves. The controller also includes an overtemperature sensor used to inhibit operation of the collector loop pump(s) during abnormal temperature conditions. Figure 2.5 presents a simplified wiring diagram for the solar controller. Installation and application instructions are provided in General Electric Document No. 295054231. The controller kit includes all mounting hardware and is mounted directly to a collector.
3. COLLECTOR INSTALLATION

3.1 INSTALLATION SUMMARY
A summary of the installation procedure follows. The discussion herein includes GE optional accessories, but similar steps are recommended for field-procured accessories. Roof, ground, or space-frame mounting are all potential methods of installation, depending upon structural considerations, aesthetics and cost. The collectors may be arranged in individual rows (Figure 3-1) or in a dual row (Figure 3-2) utilizing common headers.

![Figure 3-1. Single-Mounted Collector](image1)

Upon completion of the collector supporting structure, the collectors are mounted without the vacuum tubes (Section 3.4). The header tubes are then attached to the collectors and brazed together (Section 4.2). A leak check follows (Section 4.3). Operation of the balance of the solar system, including the controls is verified. The vacuum tubes are then installed (Section 5.1), followed by high-temperature cycling and checkout (Section 5.2). The piping is insulated and covered (Section 5.3), and the system is operational.

3.2 MOUNTING TECHNIQUES
There are many acceptable techniques for mounting solar collectors. The method selected must consider structural, architectural, cost and schedule constraints. As a guide for collector mountings, two general techniques of many suitable for simple four-corner mounting are presented:

1. Direct mounting (Figure 3-3).
2. Strut mounting (Figure 3-4).

Specific requirements may warrant variations or a combination of the three.

A collector mounting technique that utilizes a UNISTRUT channel attachment (Figure 3-3) provides a simple, quick installation and will also allow flexibility in the lateral positioning of the mounting brackets. By avoiding hard-mounting of individual collector support brackets, installation time can be reduced significantly in the alignment and attachment of brackets and collectors. Installation time can be further reduced by using the internal mounting brackets offered in the General Electric mounting kits which use pins rather than nuts and bolts for slide-on interconnection of adjacent collector panels.

In a strut-mounted installation (Figure 3-4), hard mounting of individual collector support brackets is required to provide rigid support. Strut mounting will be somewhat more time consuming than a direct mounting in terms of both alignment and attachment. Cross-bracing may be required for lateral support.

3.3 LAYOUT AND SPACING
The initial step in collector installation is a layout of the array pattern. Since the collector attachment points are fixed at the four corners, spacing between UNISTRUTS must be closely controlled. This will facilitate installation, assure dimensional integrity of the array and preclude extraneous stresses on the collectors. Spacing between rows is less critical.

![Figure 3-2. Dual-Mounted Collectors](image2)

Typical spacing for UNISTRUT installations is shown in Figure 3-5 for single-mounted collectors and Figure 3-6 for dual-mounted collectors. The distance between adjacent rows is a nominal value to allow access. For a more compact collector array, the separation may be reduced, but provisions for a sliding ladder or working platform should be implemented to facilitate installation and potential maintenance. Lateral spacing between collectors is nominally 1/4 inch to accommodate a 3/16-inch thick T-bracket and a 1/16 inch header tube support bracket. In a dual row configuration, mounting of tube support brackets are alternated between the top and bottom collectors to maintain array symmetry and proper fitting of the collector tubing to the headers.

Typical spacing of bottom brackets for a strut-mounted installation is shown in Figure 3-7. The separation between the front and back brackets is flexible, but 494/" divided by the cosine of the collector tilt angle is most appealing.
Figure 3-3. Direct Mounting Kits

Figure 3-4. Strut Mounting Kit
Figure 3-5. UNISTRUT Spacing (Single Mounted Collector) For Direct Mounting

Figure 3-6. UNISTRUT Spacing (Dual-Mounted Collector) For Direct Mounting
3.4 INSTALLATION PROCEDURES

Note:
If the GE solar controller (Figure 2-4) is used, install an adapter bracket during the installation of the collectors preferably at the end of the row for convenience of accessibility in installation, wiring and maintenance. Mount controller in a position where it will not be shaded at any time.

Direct Mounting Collectors
Install UNISTRUTS with spacing shown in Figure 3-5 or 3-6 and attach to the roof, (Figure 3-8), or substructure. For roof mounting, include 1/4" neoprene-type spacer under the UNISTRUT at each attachment point. For dual mounted collectors, use P5500 series UNISTRUT or P1000 series with 1/4" spacers at the attachment points. Single and dual mounted collector installation instructions are described in the following sections. Use the instructions that apply to your configuration.
Internal Collectors are Fastened by Pinned T-Brackets

![Pinned T-Bracket](image)

![Tube Support Bracket](image)

Figure 3-11. Internal Collectors are Fastened by Pinned T-Brackets

Note:

UNISTRUT channels (or equivalent) and retainer plate assemblies (plates, bolts, washers and spring-type nuts), (Figure 3-10), used at the ends of each row should be obtained from the mounting structure manufacturer, or obtained locally by the installing contractor.

Direct, Single-mounted Collectors:

1. Before positioning the first collector on the UNISTRUT, remove the six sheet metal screws holding the transition cover at the base of the collector. Remove the transition cover and attach an end-of-row T-bracket (without pins) to the side of the collector that will face out, (Figure 3-9), using two bolts for each bracket. Removal of the transition cover is only required for end-of-row collectors.

2. Re-attach the transition cover with the six screws. Use two bolts to attach the other end-of-row T-bracket to the same side of the collector.

3. Slide the collector into place so that the T brackets grip the UNISTRUTS. Finger tighten the retainer plates to the UNISTRUTS. (Figure 3-10).

4. Place one internal T-bracket (pinned) into each UNISTRUT and a pipe support bracket at the header end and continue installing internal collectors.

5. Verify the correct location and squareness of the first collector and secure the two retainer plates to the Unistruts.

6. To mount the adjacent collector, place tube support brackets over the pins of the T-brackets, (Figure 3-11), at the header end of the collector and slide the next collector laterally until the pins are fully inserted and the collectors are snug one to the other.

7. For subsequent collectors, insert a pinned T-bracket into each UNISTRUT and a tube support bracket at the header end and continue installing internal collectors.

8. At the end of each row, install the last collector as described in Steps 1-3. Insure that each collector is snug against the next and then secure the two retainer plates. The next step is installation of headers (Section 4).

Direct, Dual-mounted Collectors:

1. Before positioning the first collector on the UNISTRUTS, remove the six sheet metal screws holding the transition cover at the base of the collector. Remove the transition cover and attach the two end-of-row T-brackets (without pins) to the side of the collector that will face out, (Figure 3-9), using two bolts for each bracket. Removal of the transition cover is only required for end-of-row collectors.

2. Temporarily re-install the transition cover with one screw.

3. Slide the collector into place so that the T brackets grip the UNISTRUT. Place one internal T-bracket (pinned), (Figure 3-9), into each UNISTRUT and insert into the corresponding holes in the collector frame. Assure the position and squareness of the collector and tighten the retainer plates (Figure 3-10) to the UNISTRUT.

4. To install subsequent internal collectors in the first row of the dual configuration, place one internal T-bracket (pinned), (Figure 3-11), into each UNISTRUT and insert into the corresponding holes in the collector frame. At the collector header end, a tube support bracket, (Figure 3-11), is inserted over the pins of the T-bracket at every other collector. Remove five of the six transition cover screws at the base of the collector and place the collectors on the UNISTRUT. With the brackets in place, slide the collector laterally until the pins are fully inserted and the collectors are snug one to the other.

5. At the completion of the row, the last collector is installed as indicated in Steps 1 and 2. Be sure all collectors in the row are snug one against the other before tightening down the two retainer plates.

6. The second row of the dual configuration is now mounted. Repeat Step No. 1.

7. Attach the end closure and cover to the header channel, (Figure 3-12). Re-install the collector transition cover and attach the bottom header channel to the collector (Figure 3-13) using the six screws previously removed. The outside edge of the channel should be 1/8" beyond the end of the collector to prevent overrun of the channel assemblies.

8. Remove the remaining transition cover screw from each collector on the bottom of the first row.

9. Place the collector and channel assembly on the UNISTRUT below the first collector row installed (Figure 3-14) with the T-brackets in position. Attach the header channel to the top collector using two of the screws...
removed in Step 1.

10. Place an internal T-bracket (pinned) into each UNISTRUT and insert into the corresponding holes in the collector. Verify the correct location and squareness of the first collector, and secure the retainer plates, (Figure 3-14), to the UNISTRUT.

At the collector header end, a tube support bracket will be inserted over the pins of the T-bracket every other collector, alternately to those placed on the opposing row.

11. Continue to attach bottom channels to collectors and complete installation of internal collectors. At the end of the row, the last collector is installed as indicated in Steps 1, 7 and 9. Be sure all collectors in the row are snug one against the other before tightening down the two retainer plates. The next step is installation of headers (Section 4).

Strut-mounted Collectors
With bottom brackets completely installed and spacing verified, (Figure 3-7), the collectors are mounted as follows:

1. Install all transition struts (Figure 3-4) and top brackets to the bottom brackets.

2. Remove the six sheet metal screws and the transition cover at the bottom of the collectors.

3. Beginning at the end of a row, place collectors of the row between the bracket assemblies on the mounting surface with the flare nuts on the lower edge.

4. Lift the header end of the first collector and align the outside mounting bracket hole with a hole in the collector. Temporarily insert one bolt (finger tight) through the assembly. Before inserting a bolt in the mounting bracket on the opposite side of the collector, align the adjacent collector, position a tube support bracket (similar to Figure 3-11, between the two collectors, and temporarily insert a bolt. This procedure is repeated in sequence until the header end of all the collectors in the row is attached.

5. Lift the other end of each collector and attach to the transition strut/bracket in a similar manner to step 4. Use two bolts for each attachment bracket until the row is complete. Tube support brackets are not required at row ends.

6. Complete the assembly at the header end of each collector by adding one more bolt for each bracket attachment. Before completing attachment, check collector alignment.

7. Re-install the collector transition section covers using the six sheet metal screws removed in Step 2. The next step is installation of headers (Section 4).

Note:

Cross bracing of the collector support structure may be required.
4. COLLECTOR PLUMBING AND CHECKOUT

4.1 HEADER DESCRIPTION/PLUMBING
The TC-100 collector utilizes two 1/4-inch, 45-degree brass flare nuts for mechanical attachment to supply and return headers. These fittings protrude from the insulated transition section of the collector as shown in Figure 2-1. The design allows lateral flexibility in these connections, primarily to accommodate up to 3/4-inch lateral thermal expansion in the headers. These nuts are nominally 40 inches apart. Pipe headers may be used to supply one collector row (Figure 4-1) or two collector rows (Figure 4-2). Alternative designs may be utilized, provided all plumbing requirements are satisfied.

TC-100 collectors are designed for parallel flow circuit hookup and for uniform flow in each collector. Optimum performance is achieved at flow rates of 0.22 gpm/collector. Uniform flow distribution throughout the array is accomplished by providing comparable pressures to each header. Good distribution through the collectors connected to each header is achieved by sizing the headers for a pressure drop equal to or less than one-tenth that of the collector. Using this criteria, header sizes of 3/4 inch and 1-inch type L copper tubing will provide uniform flow distribution for up to 18 and 36 collectors, respectively.

Type L copper tubing and wrought copper fittings are recommended throughout the collector loop to minimize galvanic reactions and eliminate the need for dielectric fittings. All non-mechanical connections should be soldered with 95-5 (tin-antimony) AWS (American Welding Society) class alloy. Headers require 1/4-inch 45-degree male fittings at specified locations to connect with the collectors. The installation of the header assembly should normally include thermal expansion devices, anchor clamps, and alignment clamps. Air removal from the collector loop is accomplished by an air separator, combined with an expansion tank. Air vents at the high points are not required.

The collector is designed with a hydraulic interface that can accommodate up to 3/4 inch of thermal expansion in the header piping. The piping design must preclude excessive loading on the collector tubing or header piping. To avoid excessive flare deformation and resultant leakage, torque fluid connections to the collector approximately 12-15 inch pounds.

Recommended manifold configurations showing optional General Electric header accessory kits are shown in Figures 5-4 and 5-9 for single and dual arrangements, respectively. The kits provide prefabricated header piping in 4- and 8-foot lengths with correctly-spaced tee fittings and male connectors, prefab insulation, covers, pipe clamps, header support brackets, and all the necessary fasteners. Dimensional specifications for 8-foot on-site assemblies are shown in Figure 4-3.

4.2 HEADER INSTALLATION PROCEDURES
It is recommended that the joining operation of lengths of headers be performed in place on the roof. In a “compact” array configuration for direct roof mounting, it is suggested...
that dual headering be employed and the plumbing installation be performed following installation of the collector frames and bottom channels. Thermal expansion compensators and clamps may be required.

Installation procedures for header tubing:

1. Before starting header assembly, thoroughly flush each header section with tap water. The supply and return lines to the headers will be flushed separately to prevent potential debris and water from entering the collectors.

2. The plumbing installation should begin at the supply end of each header row. Attach a supply header pipe as the bottom pipe, (Figure 4-4,) to the collectors. Position the pipe by connecting (finger tight) the appropriate collector fittings and be sure that the pigtails coming out of the collectors are centered in the slot. Brace adjacent headers and end plug(s). When brazing next to a collector connection Tee, remove the adapter from the Tee in order to avoid damage during brazing.

3. Attach the return header above the supply header, (Figure 4-4), just installed. Position the pipe by connecting the appropriate collector flare nut fittings (finger tight) and attach the header support clamps (Figure 4-5). Brace adjacent headers and end plug(s). When brazing next to a collector connection Tee, remove the adapter from the Tee in order to avoid damage during brazing.

4. With completion of header brazing in each row, adapters should be installed using lock-tite high-temperature pipe sealant (with Teflon) or equivalent (do not use tape).

Before connecting headers to supply and return, completely flush the supply and return pipes. For single-row collectors, insert the end covers onto the headers (Figure 4-6) prior to attachment of feeder connections.

Caution must be exercised to prevent freezing of pipes during flushing. Flush the supply and return lines. When all header connections have been completed and the collector loop installation verified, the system is ready for a total collector system leak check.

4.3 LEAK TEST PROCEDURES

It is recommended that the collector loop be leak checked using compressed air by charging the system to 60 psig. Presence of leaks is indicated by loss of pressure within 4 hours. If leaks are indicated, all fittings and connections should be bubble tested (soap solution) and defective connections repaired.

Note:

Collectors are leak checked at the factory and do not require internal leak checking.

With the leak test completed, the collector loop can be filled to the prescribed level with working fluid (ethylene glycol/water as specified). Open the pressure relief valve to allow air to escape. When filled, the primary pump may be activated.
and fluid circulated through the collector loop. A strainer in the collector loop, upstream of the pump, is mandatory during the initial operation to collect any residual installation particles. This strainer should have a bronze body and stainless steel 20-mesh screen.

Circulate the fluid for a minimum of two (2) hours. Re-inspect the entire loop for leaks and remove, inspect, clean and replace the strainer. Repeat this procedure until the strainer is clear of residual particles.

5. FINAL ASSEMBLY AND CHECKOUT

Once leak tests have been completed, the control system and sequences verified, and the overall system is operation ready, installation of the glass vacuum tubes may proceed. After vacuum tube installation, a functional checkout at elevated temperatures is recommended with repeated cycling to verify plumbing integrity. With completion of high-temperature checkout, insulation, header covers and protective windows (if used) should be installed.

5.1 VACUUM TUBE INSTALLATION

Vacuum tubes are shipped in separate, protective containers with 10 tubes per container. The containers should be inspected for external damage upon receipt. The tubes are individually wrapped in black plastic bags. These bags should be kept sealed until installation. Although glass tubes can be installed by one person, two installers are recommended for ease of installation.

Caution:

The glass tubes (similar to fluorescent bulbs and vacuum bottles) could implode if improperly handled. Personnel handling the tubes must wear suitable eye and hand protection. (See Section 6.5).

The following procedures are recommended for installation of the glass vacuum tubes:

1. Inspect the reflector troughs in each collector and carefully remove any debris.

2. Activate collector and storage loop pumps to minimize temperature buildup in the headers.

If the system can not be operated, retain the black plastic bags on the tubes or cover the collector modules until the system is activated.

3. Glass installation begins by removing the wooden retainer bar. Raise the outer end of the fin-tube assembly 1-2 inches from the edge of the collector as shown in Figure 5-1. Excessive deflection will damage the collector. Slide the plastic shroud off and discard.

4. Inspect and remove grit or foreign matter from the copper fin with a cloth or soft bristle brush.
5. The second installer should lightly support the fin tube to insure that it does not come in contact with the reflector trough and should continue to support the fin tube as the glass tube is installed.

6. Unseal the end of the protective black plastic bag at the open end of the glass tube and slide the glass tube over the fin tube assembly being careful not to bend or distort the cylindrical shape of the soft copper fin. Use the following procedure:

a. Lightly compress first fin segment leading edge between the thumb and first finger just enough to insert into the glass tube.

b. Center the open end of the glass tube over fin assembly and slowly slide on, (Figure 5-1).

c. Continue by slightly compressing the leading edge of each fin segment as the glass tube is installed until the tube has slid past the last fin segment.

7. Seat the glass tube and grommet into the hole in the collector panel, (Figure 5-2). Insure that the grommet is completely seated (snapped in place) for weather protection, (Figure 5-1).

8. Slide off the black plastic bag. The bags should remain on the glass tubes if the system is not ready for operation.

9. Install the metal spring clip retainer over the elastomeric bumper strip on the glass tube and into the two retaining holes in the reflector, (Figure 5-3).

10. Repeat procedure until the ten tubes are installed in each collector.

5.2 OPERATIONAL CHECKOUT
It is recommended that a total system operational checkout be performed with repeated cycling to elevated temperatures for several sunny days. After removing the black plastic bags from the glass tubes and assuming that checkout of the control system has been completed, operational checkout can begin. On a bright day, the collector loop fluid will begin to get hot within 1/2 hour to 1 hour. Continue running in an energy collection mode without the storage pump, (P2, Fig. 6-1), running until the collector fluid temperature can be maintained between 200°F and 150°F for high-temperature tests. These tests will provide a comprehensive leak check for the collector loop as well as an operational checkout of the system. With regard to the collector loop, the following procedures are recommended:

1. After the first four hours of operation at elevated temperatures, perform a complete visual inspection of the collector loop and manifolds for leaks. If no leaks are found, proceed to Step 5.

2. If leaks are found, wait till low sunshine (or cover the collectors) and let the system cool down. Correct leaks.

3. Refill system and repeat high-temperature test procedure from start.

4. Repeat Step 1. If no leaks are found proceed to Step 5. If an additional leak is found, return to Step 2.

5. After a minimum of 2 sunny days of operation (2 high temperature cycles), check the strainer for residual particles and take a sample of the working fluid for analysis, (Section 6.2). Clean and replace the strainer. Perform a final visual inspection for leaks.

With the integrity of the loop piping under high temperature verified, the insulation may be installed and the final assembly of header covers and protective windows (if any) may proceed.

5.3 INSULATION AND COVER INSTALLATION
Pre-fabricated insulation is provided as an integral part of the General Electric header accessory kits. If General Electric header accessory kits are not used, 2 inches or more of fiberglass insulation is recommended with an appropriate moisture barrier on all outdoor headers. It is also recommended that 1-1/2 inches or more of fiberglass insulation be used on all indoor piping. The following procedures are established for use with the General Electric header accessory kits.
Note:

Select a low-sunshine day or keep the storage tank cool and pumps, (P1, P2 Fig. 6-1), running. This procedure is recommended to eliminate the hazard of hot header piping.

For **single row header assemblies** (Figure 5-4):

1. Remove the six sheet metal screws from the collector transition section for all collectors and without removing the covers, install the bottom channels using the same holes and screws, (Figure 5-5). The insulation is attached to this section.

2. Slide insulation away from joints to be sealed. Apply flashing (aluminized, water-proof tape) as needed inside the header channel over the gaps between collectors as a moisture barrier, (Figure 5-6). Re-position the insulation.

3. Install the covers by hooking the lips over the top of the collector transition section cover (Figure 5-7) and attach the covers to the bottom channel flanges with six (6) sheet metal screws.

4. Attach the end covers (Figure 5-8) which were installed with the piping, by positioning inside of the header cover and attaching with sheet metal screws.

Note:

End covers for the single header arrangement, if feeder connections are at the end of the row, must be installed on the header pipes during the plumbing sequence, (Figure 4-6), or must be cut to allow installation during final assembly.

5. Apply a silicone-based sealant around the gap before installing the joint covers. Install joint covers over the gaps between adjacent header covers with sheet metal screws as shown in Figure 5-4 and complete by crimping lips over the adjacent collector frames.

6. If **optional protective windows** (Figure 2-3) are used with the collectors, apply window standoffs to the Vee-troughs as specified. Install frames and clips as shown.

For **dual row header assemblies** (Figure 5-9), the bottom channel should be installed before plumbing. See Section 3.4, installation procedure for dual-mounted collectors.

1. Apply flashing (aluminized, water-proof tape) inside the header channel over the gaps between channels as a moisture barrier. Slide the bottom layer of insulation under the pipes. Slit the side insulation to fit around the collector connections and insert on both sides of the pipe, (Figure 5-10).

2. Install the cover, (Figure 5-11), by hooking the lip over the top of the upper collector transition section cover and push on the center of the cover to snap the bottom lip in place over the bottom transition cover. Screw onto the end covers.

3. Install joint covers over the gaps between adjacent header covers with sheet metal screws as shown in Figure 5-9 and complete by crimping lips on slotted end over the adjacent collector frames. Also, it is recommended that a silicon-based sealant be applied at the gap interface before installing the joint covers. Apply flashing to the end closures for weather proofing.

4. If **optional protective windows**, (Figure 2-3), are used with the collectors, apply window standoffs to the Vee-troughs as specified. Install frames and clips as shown.

Figure 5-4. Assembly of Single Row Header Kit (8 Feet Long)
Figure 5-5. Install Bottom Channels

Figure 5-6. Apply Flashing

Figure 5-7. Install Cover

Figure 5-8. Single Row Header End Cap

Figure 5-9. Assembly of Dual Row Header Kit (8 Feet Long)
6. COLLECTOR LOOP OPERATION AND MAINTENANCE

6.1 COLLECTOR LOOP OPERATION

A recommended typical collector loop configuration for commercial installation is shown in Figure 6-1.

The collector loop is initially charged through the manual fill valve with the purge valve open and the shut off valve V101 closed. After the applicable fluid circulates through the collector loop and flows fully from the purge valve, open valve V101 and close the purge valve, then add an additional quantity of loop fluid, equivalent to approximately 10% of expansion tank volume, before closing the fill valve.

The optional solar controller, Figures 7-5 and 7-6, is used for normal daily start-up and shut-down. Although the factory set point for the controller is 35 Btu/h/ft², the photo-sensor may be biased, as shown in Figure 7-6, to enable a higher value. Refer to General Electric Document 79SDS4231, for specific set point instructions.

At the required insolation level, the controller activates both the primary loop pump, P1, and the storage loop pump, P2. If the collector loop fluid temperature is less than 100°F, the diverter valve, V4, remains in the normal or "B" position, bypassing the primary heat exchanger. When the collector loop fluid temperature is greater than 100°F, diverter valve, V4, is driven to the "A" position, allowing collected energy to be transferred to the thermal energy storage tank.

In the event that the storage tank becomes fully charged (i.e., 280°F) and the collector loop temperature exceeds 320°F, pumps P1 and P2 are de-energized. As the fluid remaining in the collectors increases in temperature, it expands through back pressure valve V1, which is set at 45 psig, into the expansion tank, TKX1. The limited amount of fluid in the collectors (max 0.12 gallon/module) will gradually vaporize, leaving the collectors dry until restart.

The sensor CT1, which is mechanically attached to a copper U-tube located inside a glass tube, inhibits restart at temperatures above 320°F.

6.2 PERIODIC MAINTENANCE

Collector loop fluid requires periodic inspection and/or maintenance to assure proper chemical balance and fluid level. An analysis is recommended for both water-glycol and all-water loops for the initial fill, quarterly samples for the first year, and yearly thereafter. Most commercial manufacturers of corrosion inhibitor additives offer a test kit for this purpose. Collector loop fluid composition is described in Section 2.3. Normal maintenance procedures should be used for other system components.
6.3 PERIODIC INSPECTION
The overall collector array should be periodically inspected for broken tubes and debris buildup in the reflector troughs. The frequency of this maintenance is a function of the location of a particular solar system and its environment.

6.4 GLASS TUBE REPLACEMENT
Remove the spring clip, (Figure 5-3), holding the shroud (vacuum tube) in place. The clip is flexed into two holes provided in the collector vee-trough reflector. Deflect the tube to be replaced upward no more than 1 to 2 inches from the edge of the collector and away from the vee-trough, (Figure 5-1). The tube will now slide off the collector fin-tube in the direction away from the header assembly. The boot on the tub tube at the header end of the collector should be removed with the tube being replaced as the new tube will contain a new boot. If the old tube is broken, be sure to clean the reflector completely and wipe down the fin assembly. After wiping down the fin-tube to eliminate all grit, the new tube is simply slid over the fin-tube, seating the boot into the bulkhead hole. Re-install the spring clip.

6.5 SAFETY CONSIDERATIONS
Handling of the vacuum tubes is comparable to handling fluorescent bulbs. Caution must be exercised to avoid breakage and hot pipes. Protective gloves, clothing and safety goggles must be worn when inspecting or working on a system.

1. Glass vacuum tubes are evacuated and may implode if improperly handled.

2. In an operating system loop, fluid temperatures can reach 280°F. Hot pipes can be a safety hazard to personnel working around the pipes during final assembly and checkout. Personnel must be advised of loop temperatures and of appropriate provisions to cool down the system. Hand and eye protection is recommended when working around hot pipes.

3. Collector fluids composed of ethylene glycol are generally considered as showing a low order of toxicity except for oral ingestion. They do not vaporize at normal temperatures and, therefore, do not ordinarily constitute a hazard from inhalation. However, precautions should be taken against the vaporized fluid. Handling of waste fluid and its disposal should be in accordance with local ordinances.
7. SPECIFICATION DATA SHEET

PHYSICAL

WEIGHTS

<table>
<thead>
<tr>
<th></th>
<th>British</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Only</td>
<td>35 lbs.</td>
<td>16 kg</td>
</tr>
<tr>
<td>Glass Installed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry</td>
<td>57 lbs.</td>
<td>26 kg</td>
</tr>
<tr>
<td>Wet</td>
<td>59 lbs.</td>
<td>27 kg</td>
</tr>
</tbody>
</table>

COMPOSITION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame</td>
<td>18 Ga aluminized steel (51.6 mil)</td>
</tr>
<tr>
<td>Reflector</td>
<td>Alglas</td>
</tr>
<tr>
<td>Insulation</td>
<td>Fiberglass</td>
</tr>
<tr>
<td>Fluid Lines</td>
<td>1/4" type L copper</td>
</tr>
<tr>
<td>Glass Tubes</td>
<td>0.08 soda lime</td>
</tr>
</tbody>
</table>

CONNECTIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic</td>
<td>Brass 1/4" 45° Flare Nut</td>
</tr>
<tr>
<td>Structural Attachments</td>
<td>Stainless Steel or aluminum</td>
</tr>
</tbody>
</table>

EQUIPMENT SIZING GUIDELINES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat exchanger area</td>
<td></td>
</tr>
<tr>
<td>Heating</td>
<td>.17 ft²/module</td>
</tr>
<tr>
<td>Cooling & Heating</td>
<td>.35 ft²/module</td>
</tr>
<tr>
<td>Storage Volume</td>
<td></td>
</tr>
<tr>
<td>Heating Only</td>
<td>15 gallons/ module</td>
</tr>
<tr>
<td>Cooling & Heating</td>
<td>22 gallons/ module</td>
</tr>
</tbody>
</table>

OPERATIONAL

<table>
<thead>
<tr>
<th></th>
<th>British</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insolation</td>
<td>0 to 400 BTU/ft²/hr</td>
<td>0 to 108 langleys</td>
</tr>
<tr>
<td>Fluid</td>
<td>Operating Temperature</td>
<td>100 to 300°F</td>
</tr>
<tr>
<td>Composition</td>
<td>△</td>
<td>"Good" Quality Water with 35/50% Prestone I</td>
</tr>
</tbody>
</table>

MODULE DESIGN CONDITIONS

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Drop Design</td>
<td>7.0 psi @ 180°F</td>
</tr>
<tr>
<td></td>
<td>48.2 kPa @ 82°C</td>
</tr>
<tr>
<td>Minimum</td>
<td>5.0 psi @ 180°F</td>
</tr>
<tr>
<td></td>
<td>34.5 kPa @ 82°C</td>
</tr>
<tr>
<td>Flow Rate</td>
<td>0.22 gpm @ 180°F</td>
</tr>
<tr>
<td></td>
<td>0.83 l/m @ 82°C</td>
</tr>
<tr>
<td>Wind Velocity (Max)</td>
<td>100 mph</td>
</tr>
<tr>
<td></td>
<td>161 km/hr</td>
</tr>
<tr>
<td>Ice Load (Max)</td>
<td>13 psf</td>
</tr>
<tr>
<td></td>
<td>63.5 kg/m²</td>
</tr>
<tr>
<td>Snow Load (Max)</td>
<td>20 psf</td>
</tr>
<tr>
<td></td>
<td>97.6 kg/m²</td>
</tr>
<tr>
<td>Combined Load (Max)</td>
<td>33 psf</td>
</tr>
<tr>
<td></td>
<td>161.1 kg/m²</td>
</tr>
<tr>
<td>Minimum Array Pressure</td>
<td>45 psi</td>
</tr>
<tr>
<td></td>
<td>310 kPa</td>
</tr>
</tbody>
</table>

MODULE AREA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross (Frame)</td>
<td>17.4 ft²</td>
</tr>
<tr>
<td>Net (Active)</td>
<td>14.8 ft²</td>
</tr>
</tbody>
</table>

△ "Good" Quality Water:

- Chlorides < 100 ppm
- Sulfates < 100 ppm
- Bicarbonates < 100 ppm
- Total Hardness < 250 ppm

ORIGINAL PAGE IS OF POOR QUALITY
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Refers to valve position</td>
</tr>
<tr>
<td>B</td>
<td>Refers to valve position</td>
</tr>
<tr>
<td>BTUH</td>
<td>BTU per hour</td>
</tr>
<tr>
<td>DHW</td>
<td>Domestic hot water</td>
</tr>
<tr>
<td>EMM</td>
<td>Energy Management Module</td>
</tr>
<tr>
<td>HVAC</td>
<td>Heating, ventilation and air conditioning</td>
</tr>
<tr>
<td>HX</td>
<td>Heat exchanger</td>
</tr>
<tr>
<td>Insolation</td>
<td>Solar radiation rate (Sunshine intensity)</td>
</tr>
<tr>
<td>M</td>
<td>Motor or electrically actuated</td>
</tr>
<tr>
<td>MMBTU</td>
<td>10^6 BTU</td>
</tr>
<tr>
<td>MO</td>
<td>Month</td>
</tr>
<tr>
<td>PRV</td>
<td>Pressure relief valve</td>
</tr>
<tr>
<td>T</td>
<td>Used with a number, denotes a temperature sensor</td>
</tr>
<tr>
<td>TC-100</td>
<td>General Electric Vacuum Tube Solar Collector</td>
</tr>
<tr>
<td>TES</td>
<td>Thermal energy storage tank</td>
</tr>
<tr>
<td>TKX</td>
<td>Expansion tank</td>
</tr>
<tr>
<td>V</td>
<td>Used with a number, denotes a valve</td>
</tr>
<tr>
<td>VT</td>
<td>Used with a number, denotes a temperature limiting valve</td>
</tr>
<tr>
<td>x or *</td>
<td>Symbol for multiplication</td>
</tr>
<tr>
<td>RT</td>
<td>Tilt Correction Factor</td>
</tr>
<tr>
<td>KT</td>
<td>Clearness Index</td>
</tr>
<tr>
<td>UA</td>
<td>Building Heat Loss Factor</td>
</tr>
</tbody>
</table>

SI Conversion Units

<table>
<thead>
<tr>
<th>Category</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td></td>
</tr>
<tr>
<td>1 in</td>
<td>0.0254 meter (exactly)</td>
</tr>
<tr>
<td>1 ft</td>
<td>0.3048 meter (exactly)</td>
</tr>
<tr>
<td>Area</td>
<td></td>
</tr>
<tr>
<td>1 in2</td>
<td>6.45×10^{-4} meter2</td>
</tr>
<tr>
<td>1 ft2</td>
<td>0.09290 meter2</td>
</tr>
<tr>
<td>Volume</td>
<td></td>
</tr>
<tr>
<td>1 in3</td>
<td>1.639×10^{-5} meter3</td>
</tr>
<tr>
<td>1 gal (U.S. liquid)</td>
<td>3.785×10^{-3} meter3</td>
</tr>
<tr>
<td>Mass</td>
<td></td>
</tr>
<tr>
<td>1 ounce-mass</td>
<td>0.002834 kilogram</td>
</tr>
<tr>
<td>1 pound-mass</td>
<td>0.4536 kilogram</td>
</tr>
<tr>
<td>Pressure or Stress (Force/Area)</td>
<td></td>
</tr>
<tr>
<td>1 inch of mercury (60°F)</td>
<td>3.377×10^3 pascal</td>
</tr>
<tr>
<td>1 pound-force/inch2 (psi)</td>
<td>6.895×10^4 pascal</td>
</tr>
<tr>
<td>Energy</td>
<td></td>
</tr>
<tr>
<td>1 foot-pound-force (ft-lbf)</td>
<td>1.356 joule</td>
</tr>
<tr>
<td>1 Btu (International Table)</td>
<td>1.055 x 103 joule</td>
</tr>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>1 watt</td>
<td>1×10^7 erg/second</td>
</tr>
<tr>
<td>1 Btu/h</td>
<td>0.2929 watt</td>
</tr>
<tr>
<td>Temperature</td>
<td></td>
</tr>
<tr>
<td>t_C</td>
<td>$5/9 (t_F - 32)$</td>
</tr>
<tr>
<td>Heat</td>
<td></td>
</tr>
<tr>
<td>$1 \text{ (Btu\text{\textquoteright}in)/(h\cdot ft}^2\cdot\text{F}) \cdot 1.442 \times 10^{-1} = \text{W/(m}\cdot\text{K})$</td>
<td>(thermal conductivity)</td>
</tr>
<tr>
<td>$1 \text{ (Btu)/(lbm}\cdot\text{F}) \cdot 4.184 \times 10^3 = \text{J/(kg}\cdot\text{K})$ (specific heat)</td>
<td></td>
</tr>
<tr>
<td>Solar terms</td>
<td></td>
</tr>
<tr>
<td>1 Btu/ft2</td>
<td>0.271 langley</td>
</tr>
<tr>
<td>1 cal/cm2</td>
<td>1.136 joule/cm2</td>
</tr>
</tbody>
</table>
APPENDIX E

Manufacturers Literature

Bell & Gossett Heat Exchanger
Fixed Tube Sheet Heat Exchanger

Liquid to Liquid
Liquid to Gas
Cooling and Heating
Material Specifications

<table>
<thead>
<tr>
<th></th>
<th>Heads</th>
<th>Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cast Iron</td>
<td>Copper</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Pass Head

- **1 Pass Head (Front & Rear)**
- **4 Pass Head**

Design Details

<table>
<thead>
<tr>
<th></th>
<th>Tubeside</th>
<th>Shellsode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Press.</td>
<td>150 PSI</td>
<td>225 PSI</td>
</tr>
<tr>
<td>Test Press.</td>
<td>200 PSI</td>
<td>300 PSI</td>
</tr>
<tr>
<td>Design Temp.</td>
<td>300°F</td>
<td>300°F</td>
</tr>
</tbody>
</table>

Table of Specifications

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STH-310-1</td>
<td>4.2</td>
<td>17%</td>
<td>17%</td>
<td>17%</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>STH-315-1</td>
<td>5.9</td>
<td>23%</td>
<td>23%</td>
<td>23%</td>
<td>19</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>STH-320-1</td>
<td>7.6</td>
<td>29%</td>
<td>29%</td>
<td>29%</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>STH-410-1</td>
<td>7.2</td>
<td>17%</td>
<td>17%</td>
<td>17%</td>
<td>12%</td>
<td></td>
</tr>
<tr>
<td>STH-415-1</td>
<td>10.0</td>
<td>23%</td>
<td>23%</td>
<td>23%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>STH-420-1</td>
<td>12.9</td>
<td>29%</td>
<td>29%</td>
<td>29%</td>
<td>24%</td>
<td></td>
</tr>
<tr>
<td>STH-515-1</td>
<td>13.0</td>
<td>24%</td>
<td>24%</td>
<td>24%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>STH-520-1</td>
<td>16.7</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
<td>5%</td>
<td>2%</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>STH-530-1</td>
<td>24.0</td>
<td>42%</td>
<td>42%</td>
<td>42%</td>
<td>36%</td>
<td></td>
</tr>
<tr>
<td>STH-620-1</td>
<td>28.2</td>
<td>31%</td>
<td>30%</td>
<td>30%</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>STH-630-1</td>
<td>40.8</td>
<td>43%</td>
<td>42%</td>
<td>42%</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>STH-640-1</td>
<td>53.4</td>
<td>55%</td>
<td>54%</td>
<td>54%</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>STH-650-1</td>
<td>66.0</td>
<td>67%</td>
<td>66%</td>
<td>66%</td>
<td>60</td>
<td></td>
</tr>
</tbody>
</table>

No. of passes, either 1, 2 or 4.

Dimension for this arrangement only

Note: Dimensions subject to change without notice
APPENDIX F

System Drawings