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ABSTRACT

This report summarizes the work performed during the first six
months of a NASA-Lewis sponsored research program (Contract Number
NAG 3-67). This research program is concerned with the calculation of the
far field radiation patterns surrounding various practical jet engine inlet
configurations under different excitation conditions. This initial phase of the
research program is primarily concerned with the upgrading of existing
computer codes. These computer codeé are based on a special integral
representation of the external solutions of the Helmhoitz equation and they
are capable of calculating the sound field radiated from general
axisymmetric bodies ~with complex boundai"'j conditions up to non-
dimensional wave numbers of ten (based on radius) with less than ten percent
error in the acoustic quantities of interest.

During the past si‘ximc:)nths the computer codes have been refined and
expanded so that they are now more efficient computationally by a factor of
about three and they are now capable of producing accurate results up to
non-dimensional wave numbers of twenty. Computer programs have also
been developed to help generate accurate geometrical representations of the
inlets to be investigated, This data is required as input for the computer
programs which calculate the sound fields. This new "geometry generating"
computer program considerably reduces kth,e, time- required to genérate the
input data which was one of the most time consuming” steps in the process.

The results of sample runs using the NASA-Lewis QCSEE inlet are
presented and combarison of run timies and accuracy are made between the
old and upgraded computer codes. The overall accufacy of the computations

is determined by comparison of the results of the computations with simple

source sciutions.
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INTRODUCTION
This research program consists of two major tasks. The first task is
concerned with the upgrading and testing of the computer codes and the
second is concerned with the calculation of the radiation patterns for
specific inlet configurations. This report describes the progress made to date

on the completion of the first task.

The computer programs previously developed are capable of

predicting the sound field radiated by various geometrical configurations.

The theoretical basis for these programs is presented in Refs. 1-3 (See

Appendix A for Ref. 3). These publications describe the development of a

unique integral formulation of the acoustic radiation problem and its
application in the calculation of 2-D, 3-D and cylindrically symmetric
radiation patterns. In the present investigation the cylindrically symmetric

form of the equations3

is employed as the inlet geometries we are concerned
with in this study are all axisymmetric.

The computer codes developed for the calculation of radiation
patterns about an axisymmetric body were initially devel§m6 for
calculations at relatively low non-dimensional wave numbers (i.e., less than

10) and thus were not as efficient as they could be. To calculate results for

higher wave numbers (i.e,, up to 20) the computer codes had to be upgradedf

so that more calculation points could be handled on the bodies; and, to keep

the calculation tjmes reasonable the computer codes had to be made more
efficient. Also, in using these “;oldf“ éom’puter codes considerable time was
required for the specification of the body geometry and boundary conditipns
(i.e., the input data). To expedite the input process computer codes had to be

developed to generate the input data in a form which could be directly input
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into the "new" computer éodes.

Once the computer codes were upgraded they were tested for speed
and accuracy. To test for speed the upgraded programs were simply
compared to a bench mark set of computer runs done with the old computer
codes for the "QCSEE"“ inle;t previously studied for the Air Force‘s's. The
accuracy of the computer codes was checked by comparison of the
calculated solutions to those geherated by simple sources. The method of
using a simple source to generate and check solutions for complex
geometries is detailed in Ref. 3(See Appendix A.).

The particular form of the equations used in this study is termed
cylindrically symmetric as th‘lé solutions describing the radiatién patterns
from the axisymmetric inlets may have tangential‘ dependence. In this case,
the radiation patterns may be calculated separately for‘any tangential mode;
and, since each tangential mode must be solved for sebaratély there 'is no
coupling between them. Also, since the equations are linear, as many

~

tangential mode. solutions as required may be calculated and these modal

solutions may be summed. For each tangential mode all radial modes (both

cut-on and cut-off) are automatically considered and thus the theory does

allow coupling between the various radial modes present for each tangential

mode. That is, if a particular radial mode is present at the driver (i.e.,the
fan) plane but it is above cut-off for the duct the theory shows that it dies

out exponentially as it should.

In this study tangential mode numbers, M, of up to 13 are considered

with corresponding non-dimensional wave numbers of up to 20. Since the

cut-off frequency'for the first radial mode of the 13th tangential mode is
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approximately ka = 14,92837 (where k is the wave number and a is the

characteristic body dimension -- typically the duct radius at the driver

plane) the cut-off ratio is of the order of 1.3. The limiting factor is the non-

dimensional wave number so that higher cut-off ratios may be achl‘evgd_ for
lower tangential mode numbers. In this connection it should be pointed out
that during the f’%rsf half of this contract period computer programs have
also been developed to calculate the non-dimensional cut-off wave numbers
for any tangential and radial mode and to calculate the mode shapes for

these conditions.
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EFFICIENCY AND ACCURACY OF THE COMPUTER CODES

The original computer codes were used to produce bench mark runs

for comparison purposes. One of these runs (which is representative) was
made for the case where there were 105 points on the surface of the QCSEE
inlet (See Appendix A for geometry.) at a non-dimensional wave number of
ka = 10.0 and a tangential mode number of M = 10. The acoustic velocity for
a simple source was specified on the surface of the body and the acoustic
potential was calculated. The calculation of the distribution of the acoustic
potential on the surface of the body required 867 sec. and the average
absolute errors in its modulus and phase were found to be 14.4% and 33.0%
respectively. With this data available a separate program is then used to
calculate the acoustic potential at points in the field surrounding the body.
Since this program involves a straight forward summation, not much
optimization could be done on it. Thus, most of the optimization work was

directed towards the program which calculates the acoustic quantities on

the surface of the body. This surface program contains an NxN matrix

(where N is the number of points on the body) that must be filled and solved
to generate the surface quantities. Therefore, the computing time for the
surface quantities go up roughly as the square of the number of points on the
body which can become very significant for large N..

Much of the work in this area was directed simply towards generating

a more efficient computer code, and significant gains were made. Also,

different numerical integration methods were tested along with different

matrix solving schemes; however, these were not as fruitful. For example,
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different integration schemes such as Filon lntegrati@ny were tried in the

circumfrential, 8 , direction. Compared to the presently used Gauss-
Legendre integration scheme they were found to be no better and in most
cases worse., Also, different matrix solvers such as Gauss-Seidel iteration
with both over and under relaxation were tested and it was found that in
order to maintain the accuracy obtained with the presently used Gauss-

Jordan matrix reduction scheme too may iteration steps were required.

Some very minor changes to the computer codes such as adding the

normals to the body at all the integration points within an integfation sub-
interval, yielded dramatically better results. It was also found that
specifying the distance in the Gauss-Legendre integration formula in the
o direction in reverse order (i.e., starting at 180° instead of 0°) yielded
better results, Neither of these charges increased computing time
significantly but they were found to be responsible for much better
accuracy.

New computer runs were then made for the same cases as the original
bench mark set. For the representitive runs mentioned at the begining of
this section (i.e. ka = 10.0, M = 10, 105 points on the surface of the QCSEE
inlet with the normal acoustic velocity specified everywhere) the run time
required for the surface solution of the acoustic potential decreased by
almost a factor of 3 from 867 to 309 sec. Also, the average absolute percent
errors in the modulus and phase of the computed acoustic potential on the

surface of the inlet decreased from 14.4% and 33.0% to 9.4% and 10.3%

respectively.
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UPGRADING OF THE COMPUTER CODES

The second effort during the reporting period was concerned with the
upgrading of the computer codes so that better accuracy could be obtained
at higher non-dimensional wave numbers, This was done by the addition of
more points on the surface of the body. It was expected that this effect
would be linear in that twice the number points on the body should halve the
arror in the potential calculated on th‘e body. ,

Another set of computer runs were then performed with 156 points on
the surface of the QCSEE inlet. The increase in the required computer time

should fall between 1/3 N3, the operation count for the matrix solution via

Gauss-Jordan reduction, and Nz,‘ the number of terms that must be

calculated to fill the matrix. This being the case the run time should fall |

between 681 sec. and 1013 sec.. For the representative case of M. = IO and
ka = 10,0 the run time was in fact found to be 791 sec. which is less than the
original bench mark runs of 867 sec, for the same case with only 105 paints.

The average absolute percent errors in the modulus and phase of the
potential on the surface of the body were found to be 8.7% and 93.5%
respectively. In this connection one should note that although the average
absolute percent error in the modulus of the acoustic potential decreased it
did not decrease as much as expected and the error in the phase actually
went up 9 times. |

This anomoly was fbuﬁd io be due to the way in which the error was

calculated; that is, the peréént error was very small where the values of the

potential were high but with the same magnitude error the percent errors

were very high when the potential was small. Upon studying the results of
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various runs it was found that the magnitude of the error remained almost
constant over the entire body and thus a bester measure of the error would
be the normalized average absolute error in percent. It should be pointed out

that this will be a departure from the way in which the errors were

calculated in the past (i.e,,in the proposal for this research) and therefore

previous error estimates can not be compared directly with these, It is also
felt by the authors that this is a more reasonable way to calculate the error
as the high tangential mode numbers whose characteristics are of interest in

this study have solutions that tend to vary over many orders of magnitude.

As an example of this, the solution for the acoustic potential on the surface -

of the inlet for the simple source case where M = 10 and ka = 10.0 varies
from zero at the centailine of tne inlet to (10161) near the fan plane on
the centerbody. The formula for the normalized average absolute error in

percent is given by:

E = (E | (®gxacr - ‘PcALc)I/N)‘x( %x)
by -

(1)
These errors, for the modulus and phase of the acoustic potential
calculated on the surface of the inlet, were then recalculated for the
representative bench mark run (i.e., M " 10, ka = _l,‘DA.O, 105 points on the

surface of the body) and were found to be 0.139% and 8.75% respectively.

These errors were also calculated for the results generated by the improved

computer code again using 105 points on the surface of the body and they
were found to be 0.0999% and 3.10%, respectively. Finally, these same error

estimates were made for the case where 156 points were used on the
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surface of the body and they were found to be 0.0679% and 2,59%. As can be
seen these error estimates show that the error is decreased by about a third
as is expected when the number of points is increased by about a half. These
results are presented in compact form in Table I.

A run was then made for a case where the cut-off ratio was greater
than one. The case chosen was for a tangential mode number of 5 and a cut-
off ratio of 2, This yields a non-dimensional wave number of ka = 12,83. To
obtain an exact solution for comparison purposes, both on the surface and in
the field, the artifice of a simple source within the body was again
employed. Having calrulated the distribution of the acoustic potential on the
surface of the QCSEE inlet using the normal acoustic velocity distribution is
input the normalized average absolute errors of the modulus and phase of
the potential were found to be 0.452% and 4.14% respectively.

The computer program that calculates the potential and the acoustic
velocity in the field was then used to calculate these acoustic quantities at
38 points in the field surrounding the inlet. These points v&ere placed every 5
degrees from the centerline to 90° from the centerline on two quarter
circles centered at the entrance plane of the inlet at distances (radii) of 25a
and 100a, where a is the non-dimensionalizing body length (i.e., the inside
radius of the inlet at the fan plane). Results were then caiculated for two
different distributions of the acoustic potential on the surface of the inlet.
The first distribution used was the ekact one that had been calculated for
comparison purposes and the second one was the distribution calculated
using the surface code. The exac’tﬂ normal acoustic velocity distribution was

used in both cases as it was used as the boundary condition for the surface

|
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solution. The respective computing times for 38 points in the field with 156
points on the surface of the body are 138 sec. and 146 sec.. The difference in
computing times is due to the fact that the CDC 70/74 computer that was
used has a time sharing system and thus run times vary slightly as the load
(number of jobs) on the system changes.

!Using the exact distribution of the acoustic potential on the surface
of the inlet yielded results with normalized averzagé abslute errors in the
modulus and phase of 0.229% and 30.1%. These results are presented in Figs.
1 and 2 in terms of both SPL and PWL in dB along with the exact sclution in
the field, The equations used for SPL and PWL in dB are presented below in

terms of the acoustic potantial ¢ and the outward normal acoustic velocity

-]

an °

SPL(dB) = 20 log,. kle| + 143.6
10

(2)

PL(dB) = 10 log; o k<ig g- >+ 143,3
(3)

where <> means time average.

Using the calculated surface solution, the errors were 0.385% and
36.3% respectively and these results are presented in Figs. 3 and 4. Since the
error in the phase is so high (compared to the error in the phaise in the
surface solution) a run was made with more points on the surface of the
body using the exact solution on the surface to see if the results would get

better as they should. For the case where 230 points were used on the
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surface of the inlet with the exact solution specified for both the acoustic
potential and normal acoustic velocity the errors in the acoustic potential
at 38 points in the field were fdund to be 0,0127% and 1.18% for the modulus
and phase, respectively. These results are presented in Figs. 5 and 6. This
shows that the calculated field solutions do converge to the proper values as
more points are specified on the surface of the body.

Another set of runs, surface solution and Iield‘: solution, were then
done for a tangential mode number of 2 and a cut-off ratio of 5 so that the
non-dimensional wave number is ka = 15.27. The same number of points were
used in this case as in the previous one (i.e., 156 points on the body and 38
points in the field) and again the artifice of a simple source within the inlet
was employed. ;

For the surface solution the normalized average absolute errb'orsk‘ot‘
the modulus and phase of the acoustic potential was found to be 1.42% and
5.35%, respectively. Since this run is for a relatively low tangential mode

number M = 2 the modulus of the acoustic potential on the surface of the

“body doesn't change much (i.e., it only changes 4 orders of magnitude) so

that the average absolute percent errors are a relatively good measure of
the error also. For comparison purposes they were computed and found to be
9.87% and 13.7% for the modulus and phase, respectively. 8 ”

The acoustic potential and the outward normal acoustic velocity were
then calculated in the field on fhe same two quarter circles as,beforgv. The
normalized average absolute percent errors are found to be 1.27% and 8.59%
respectively for the modulus and phase of the acoustic potential. These

results are plotted in Figs. 7 and 8 in terms of SPL and PWL in dB as before.
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Also, a summary of the results for the two cases where 156 points were used
on the surface of the body are presented in Table II,

The final two runs were made for a case that will be run for the
NASA Lewis JT15D bellmouth inlet. This particular case was chosen as it
requires the highest non-dimensional wave number and therefore should
represent the worst case (i.e., the case with the most error). For this case a
tangential mode number of M = 13 and a cut-off ratio of 1.30 were used
which translates into a non-dimensional wave number of ka = 19.41. On both
of the following runs 181 points were specified on the surface of the QCSEE
inlet.

For the first run of the set the artifice of a simple source was again
used so that an exact solution would be known and the error could be
calculated. The normalized average absolute error in the modulus and phase
of the acoustic potential were found to be 0.105% and 24.0% on the surface
and 0.111% and 38.2% in the field. The results in SPL and PWL in dB are
presen‘ted in Figs. 9 and 10. In evaluating these results, it should be pointed
out that considering the range of dB values covered by the solution, the
errors in dB are relatively small.

For the final run, the simple source was not used; instead; the
acoustic velocity was specified for the 13th tangential mode at the fan plane
and the rest of the body was specified as having a hard wall (i.e., g% =0)
First, the surface distrubution of the acoustic potential was calculated (1131
sec.) and then the values of the acoustic potential and outward normal
acoustic velocity were caiculated at 38 points in the field as before (142

sec.). Finally the results were plotted as before (See Figs. 11 and 12.) except
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) that for this case no exact solution was available. It should be noted here
S that a computer program has been developed to calculate the normal
"A acoustic velocity distribution at the fan plane for any mode (tangential and
o radial).
] 1
)
|
;
a
12

b

£y

|

i 24
év;”‘; Wﬁm _L’i’f" y ‘\:i" 2 ps B SE EE S e B




T T o

SUMMARY
During the first half of this contract period the basic computer
praograms have been made much more efficient and accurate. Furthermore,

they have been upgraded so that they can handle many more points on the

surface of the body thus significantly extending their range of applicability. |

Also, new computér programs have been developed to help generate the
required input data for these progrars. This data consists of the body
geometry and the input modal distribution at thz fan plane. Another program
has been developed which can accurately calculate the modal cut-off wave
numbers for any tangential and radial mode. Finally, a cornph,te‘r program
was developed that is capable of plotting the calculated data in the field in
terms of SPL and PWL in dB (See Figs. 1-12.).

Various results are calculated for the NASA Lewis QCSEE inlet as

part of the test program for the "new", upgraded computer codes. Tanwge}\tial

mode numbers of up to 13 were used with corresponding non-dimensional

wave numbers over 19. The artifice of a simple source ,solution was
employed for most of the computer test cases so that error estimates could
be calculated. Large improvements in both accuracy and computing time
required for the "new" computer codes when compared to the "old"

computer cudes were found.
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Appendix A

prediction of the Sound Field Radiated from Axisymmetric Surfaces (Ref.3)
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Prediction of the sound field radiated from axisymtpetric

surfaces
W, L. Meyer and W. A. Bell

School of Acrospuce Engineering, Georgla Institute of Technology, Atlanta, Georgia 30322

M. P. Stallybrass

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

B. T. Zinn

School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 19 March 1978; revised 10 September 1978)

A general analytical method for determining the radiated sound. fields from axisymmetric surfaces of
irbitrary cross section with general boundary conditions is developed, The method is based on an integral
representation for the external sojutions of the Helmholiz equation. An integral equation is developed
governing the surface potential distribution which gives unique solutions at all wavenumbers. The
axisymmetric formulation: of the problem reduces its salution to the numerical evaluation of line integrals
by Gaussian quadrature. The applicability of the solution approach for both a sphere and. finite cylinder is
demontrated by comparing the numerical results with exact analytical solutions for both discontinuous and
continuous boundary conditions. The method is then applied to a jet-engine-inlet configuration and the

computed results are in good agreement with exact values,

PACS numbers: 43,20,Rz, 43,20.Tb

INTRODUCTION

To reduce the nolse radiated to the community from
turbofan inlets, the effects of sound suppression mate-
rial in the inlet and the spatial distribution of the sound
source on the radiated sound levels and patterns must be
determined, Analytical techniques for predicting these
effects must be capable of dealing with general axisym-
metric geometries and complicated boundary conditions
which are encountered in multiply lined inlets. For in-
stance, ina typical inlet the compressor-fan combina-~
tion represents a noise source with a nonuniform spatial
excitation pattern. Thus, the analytical method should
be capable of taking into account sound sources of gen-
eral spatial distribution, Also, inlets may contain mul-
tiple acoustic liners to reduce the radiated sound power,
and admittance boundary conditions are commonly used

to account for the absorption characteristics of the liner,

Therefore, the analytical method must be capable of
dealing with spatially varying surface admittancesi
Finally, the method should be capable of predicting the
characteristics of the radiated sound field in an infinite
domain. Keeping these requirements in mind, the work
presented in this paper describes the results of an in-
vestigation which has been concerned with the analytical
determination of radiated sound fislds from axisymmet-
ric surfaces of arbitrary cross section and with general
boundary conditions.

The method used in this investigation is based on an
integral form of the solutions of the Helmholtz equa-
tion.!=® With this formulation the acoustic potential
anywhere external to the surface can be found once the
distribution on the surface is known. Thus, to deter-
mine the radiated sound field the problem reduces to
the determination of the distribution of the acoustic po-
tential on the two-dimensional surface of the geometry
under consideration instead of solving the Helmholtz

- -0001-4966/79/03063 1-08$00,80

equation in the surrounding infinite three-dimensional
domain,

It has been previously shown'~® that when applied to
exterior sound radiation problems the classical tech-
niques fail to produce unique solutions at frequencies
corresponding to certain interior eigenvalues of the ge-
ometries under consideration. Unless special precau-
tions are taken, straightforward numerical solution of
the integral equation produces large errors at frequen-
cies close to these eigenvalues. For the general geom-
etries of interest in this study, these eigenfrequencies
are not known a priori. Therefore, the frequencies
about which large numerical errors can occur cannot be
easily avoided, A critical review of available analytical
techniques for avoiding these errors is provided by Bur-
ton in Ref. 1. In a search for an appropriate technique
for use in the present study of inlets, the authors pro-
grammed each of these methods for a sphere and ob-
tained numerical results for the surface and radiated
sound fields. This study showed that the method of Bur-
ton and Miller! was the most straightforward to imple-
ment, However, an interpretation of a strongly singular
integral, given in the analysis in Ref. 5 by Meyer et al.,
was necessary for the equations to be amenable to nu-
merical solution. Basically the method proposed by
Burton and Miller involves a reformulation of the inte-
gral equation for the acoustic potential, and the solu-
tions obtained are valid at all frequencies. It also yields
the most consistently accurate results for a given number
of points at which the acoustic potential is numerically
evaluated on the surface. Therefore, the method based
on the analysis in Ref. 5 has been chosen for this inves~
tigation.

The resulting integral equation for the surface acous-
tic potential is solved numerically and, for axisymmet-

ric geometries, the equation reduces to the evaluation
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of line integrals, Thus, the axisymmetric case can be
reduced to an equivalent one-dimensional problem, Hav-
ing discretized the integral equation, the resulting sys-
tem of algebraic equations is solved using complex
Gauss~Jordan olimination, Since the coefficient matrix
involves the free-space Green's function, which becomes
singular as two points on the surface approach one an-
other, numerieal teehniques are prosomed which cin
deal with these singularities and yield accurate results,
Gaussian integration is used to increase the accuracy of
the solution without significant penalties in computer
storige and time requirements, The applicability of

the integral formulation and the accuracy of the numeri-
cal techniques are demonstrated by computing the sur-
face and farfield distribution of the acoustic potential

on both @ sphere and a fintle cylinder, The numerical
results are compared with known exact solutions gen=
erated by the separation of variables technique. Sur~-
faces with spatially varying forcing functions and ad-
mittances are considered, for different tangential niodes,
to evaluate the capability of the integral approach to
handle boundary conditions of a general nature, With
the sphere, agreement between computed and exact re~
sults is to three signifiéant figures, For the cylinder
agreement 1s to two significant figures, The effect on
the accuracy of discontinuous boundary conditions in-
volving nonzero admittances over the surface and of the
corners encountered in the cylindrical configuration are
also presented, Finally, the numerieal resulis for an
inlet configuration are compared with exact solutions and
agreement is to within 10%.

. THEORETICAL CONSIDERATIONS

In this section the general three-dimensional integral
representation of the solutions of the Helmholtz equa~
tion is developed for application to radiation problems,
This particular formulation ylelds unique solutions at
all frequencies and does not have strong singularities
which are difficult to handle numerically, The general
integral equation is then specialized for axisymmetric
geometries, A more detailed development is presented
in Ref, 5.

A. General formulation

Beginning with the three-dimensional Helmholtz equa-~
tion which governs the spatial dependence of the acous-
tic field for harmonic oscillations

Vi + h@=0 ' (1)
where ¢ is the acoustic potential and * is the wavenum-
ber; the standard integral representation of the exterior
potential is found to bel®

S S (@ 2 - otp, 0 2R )as, - notp) , (2

where the term B/an, represents an outward normal
derivative with respect to the body S as shown in Fig, 1
that is

3
‘;’,fm e =9,0(Q)  n | (3)

Also, G(P, Q) is a fundamental three-dimensional solu-
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r{P,Q)

FIG, 1, Geometrical proporties of the general acousiic radin-
tion problem,

tion of the Helmholtz equation and is taken {o he the free~
space Green's function for a point s_ource’ defined as

G(P, Q) =explikr(P,Q))/r(P,Q) . 4

From Eq. (2), if the acoustic potential and the normal

acoustic velocity 8 ¢(Q)/an, are known at each point on
the surface of the body, then the acoustic potential may
be calculated anywhere in the exterior domain,

Ta solve for the surface potential, the point P is
moved to the surface of the body, and Eq. (2) then be~
comes

j; f (q)(Q)m G(P,Q) aw(“)))ds,:zw(m,

o
(5)
For the inhomogeneous Robin boundary c¢ondition em-
ployed in this study, a relation between 8¢(Q)/9n, and
(@) exists and is given by

29 - v@re@=4@) | | (®)

so that Eq. (5) can be written in terms of the potential
only, thatis,

S Je@ wg’; B s, f f ¢(Q)6(P,Q) YQ)dS,

=2mp(P)+fsz(Q)G(P,Q)dS . V)

If the acoustic veloéity A(Q) and the admittance Y(Q) are
specified at each point on the surface of the body, then
the acoustic potential may be calculated at each point
using Eq. (7).

As .mentioned earlier this equation does not yield
unique solutions when the wavenumber k is an internal
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elgenvalue assoctated with the problem under considera-
tion, Since these eigenvalues are not known a priori

for general bodies, the formulation cannot be relied upon
to give consistently good résults, There are a number
of papers in the literature?= dealing with this problem,
and the relative merite and shortcomings of the methods
employed are discussed in detail In Ref, 1.

An attractive approach from an analytical point of
view is provided by Burion and Millar, * who have sug-
gested the use of the following identity to derive an al-
ternative integral equation for the acoustic potential at
the surface:

, 2eP) 8G(P,Q) 3G(P,Q) 3¢(Q)
an f f ( (@ - i, Bm, an, B, )dS

(8)
This equation can now be solvéd for @(P) by using Eq,
(6) to relate the normal acoustle veloeity and the poten-
tial at the surface, However this integral equation has
its own set of assoclated eigenvalues at which unique
solutions cannot be obtained. To circumvent the prob-
lem assoclated with the solution of the integral equations
derlved from Eqs. (5) and (8), Burton and Miller sug=
gested the solution of the following linear combination
of these equations:

fsf(w(Q) 9'9%}:@

J

[ f (o 02 - cp, @) 268,
s ]

an,
oy 2G(P.Q) AG(P, Q) 89(Q)
+aj;f (cp(Q) 3, n, an, on, )S,
<2n{otp)va 228)) (9)

where 8¢ /0n and ¢ are related by Eq, (6), Equation (9)
will yleld unique solutions if the complex coupling con~
stant is properly chosen, It is shown that @ must meet
the following restrictions to guarantee that Eq, (9) yields
unique solutions”;

Im(a)#0 , krealorimaginary , (10)
Im(a)=0, A complex .

A problem arises in the numerical solution of Eq. (8)
as the third term on the left hand side is strongly singu-
lar in its present form as the point @ approaches the
point P on the surface of the body, The authors of this
paper have shown that this difficulty can be overcome
by a proper interpretation of this singular term,* Em-
ploying a vector transformation® and taking the Cauchy
Principle Value, Eq. (9) is shown to be equivalent to

-GlP,Q) a“’(Q))dS, f f [0(Q) - p(p)] ZEE.Q) 4

bn an .
..a(P(P)fsf(n,»n.)(ik)zc(P,Q)ds'_afs E",g_{::_g_).?_‘%?_). das, 2”(‘9(},)“! a::'fp) ' (1)

All of the terms in Eq, (11) are row well defined; however, all integrands are oscillatory and singular so that

care must be taken in their numerical approximation,

8. Axisymmetric formulation

When dealing with a body of revolution as shown in Fig, 2 an axisymmetric formulation of the problem is advan-
tageous,!® This being the case an ¢element of area dS, becomes pdsdf, where s is the distance along the perimeter
of the surface in the p -z plane, Assuming an acoustic velacity dxstrlbution of the form

2’ =t(s) cos(ms) , (12)
and describing the s dependence of the potential function by
®(s) = p/cos(m8), (13)
and letting 6, =0 (so that cosf, =1) Eq. (11) becomes:
9G(P : 2
fs‘fd»(s') _—.%.’;:_9.). cos(m8,)dS, - a ¥(s,) '/s“/G(P) Q) (ik)*(n, + n,)dS,
(ara iy wre v 5GP, Q)
+a_£f [#(s,) cos(mB,) ~ (s,)] ~——t%= = an das, - ffu(s ) G(P, Q) cos(m8,)dS,
8G(P, § |
-a £[ v(s,) -——g-;’-@ cos(m8,)dS,=2n ¥(s,)+ av(s,)] . (14)
f ‘ ' "
Now, three sets of functions are defined: . ]
! Liry)=2a f 3G, Q) ——==cos(mb ) d8,; - {15)
Influence functions: oy
Ifr)=2 [ G(P,Q) con(mo,)ds g
N 3(mi
e o ] et Kernel functions:
633 J, Acoust. Soc. Am, Vol. 65, No, 3, Maich 1979 “Moyer et ol Sound field from axisymmetric surfeces 633
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K,(r,,)le_/: lq‘;’}-‘i’-’-aw(ma,)ue. )
L "

(16)
v al
Ky(r, ) =2a fo i’-;.--(’;'—:'-I-:-;?—)-t.zmz(mt?,)dt?,, 8,496, ;i
Forcing functions:
14
Filry) =20 [ G, QKR 0, * n)d8,

' 9*G(P,Q)

B, B, dg, , 6,48, ,

F;(V'.)DZG‘v A
where r,, Is the distance between points P and Q and n,
and n, are the outward normals to the surface at points
P and @, respectively, In evaluating K, and Fy, the
point at which 6, = 6, Is excluded from the integration,
Substituting Eqs, (15)~(17) into Eq. (14) gives

, £ , A
J (s TR ) + Kl s, - Ls,) [ tin0+ Rt s,
A

- _g ' v(s Iir,d + Ia(r,,)l‘(";s, =2n[#(s,) + ae(s,)] , (18)

where [ is the length of the generating line of the surface
of revolution, The $-8 coordinate directions have now
been essentially uncoupled so that the problem has been
reduced to the evaluation of the line integrals in the co-
ordinate directions on the surface of the body,. This
formulation does not restrict the form or type of
boundary conditions on the body; it merely assumes that
the boundary conditions can be represented by a sum
{expanded in a set) of tangential modes.

I, RESULTS

The acoustic fields for a sphere, cylinder, and inlet
configuration have been computed by numerical solution
of Eq, (18) using the techniques described in Ref, 11,
Basically, this niethod consists of first specifying the
p ~z coordinates and the normal vector at each point on
the surface, From these quantities the distances and
the normal derivatives c¢an be obtained, The integral in
Eq. (18) is then separated into » integrals taken over
subintervals of length I/n. The acoustic potential is as-
sumed constant over each subinterval and the integra-
tions are performed numerically using Gauss-Legendre
quadrature in the p -z plane, Over the subinterval con-
taining the point P, the integrand in Eq. (18) becomes
infinite since r,, approaches zero, Thus, only an even
number of points is used in the quadrature algorithim,

FIG. 2. Cylindrical surface geometry,
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FIG, 3. Effect of the coupling constant on the somputed siir-
face potontinl for a sphere of unit radius with 20 subintervals,

since an odd number would necessitate inclusion of the
point where 7,,=0, A Gauss-Legendre quadrature for-
mula is used in the circumferential direction to evaluate
Eqs. (15)-(17). All calculations were pérformed on the
Georgia Tech CDC Cyber 70/74 with 16 significant fig-
ures,

In all geometries investigated, exact solutions were
obtained for »i =0 by assuming a monopole source located
at point (p,2)=(0,0) inside the surface, 'The normal ve-
locities and/or admittance values are then computed at
each point on the surface using Eq. (6) and taken as the
boundary conditions in Eq. (18). The surface potential
%(s,) is then computed from Eq. (18) and the farfield
potential is obtained by numerically solving Eq. (2) with
Eq. (6). The computed surface and farfield potentials
are then compared with the known potential distribution
of the monopole source

e(P)=~-e"/a , : (19)

where a is the distance from the source to the observa-
tion point. For m=1 a dipole source was used to gen-
erate exact solutions, and for m =2 a quadrapole source
was used, e

To investigate the effect of the coupling constant o in
Eqs. (15)-(17), the surface potential distributions for a
sphere of unit radius with a uniformly vibrating surface
(i.e., m=0)were computed for a=0, i, and i/k. Twenty
subintervals were taken in the p - z plane, a four-point
Gauss—-Legendre quadrature formila was used over each
subinterval and a 20-point Gauss-Legendre formula wis
used in the § direction, The magnitude of the potential
should be unity at all points on the surface. The results
presented in Fig. 3 show the computed magnitudes of the
surface acoustic potential to be in error by 12% for
a =0 at nondimensfonal wavenumbers ka close to r, 27,
and 37, These results are those that would be obtained
from Eq. (7). The relatively large errors are expected
from the analysis of Burton and Miller* and from previ-
ous investigations using Eq. (7).%® Burton proves that
setting the imaginary part of ¢ nonzero guarantees
unique solutions to Eq. (18), For a={the maximum
error is reduced to less than 4% except when & is close
to 8,0, However, when a={, and for sufficiently high
values of ka, Eq. (9) is dominated by terms arising from
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TABLE I, Effect of the coupling parameter o on the computed
voalues of the surface potential for n sphere, On the surface
AQ)=(1=ik)c!, Q)= 0, ¢ld) mmetmconstant, m=0, All
values of ka correspond to intornal clgentrequencies, Twenty
subintervals were duken tn the p=z plane.

s
Ao iy P I . T

ka N\ 0 ik i Exact
v v, 20 1,000 0,998 1

¢ =0.3 0.001  =0,012 0
4493409 p, 0,190  0.217 0,308 0,217

¢ 0,970 0,976, 0,955 0.976
Bx ¢, =20 ~1,000  ~0,006 -1

v 12,0 0.000 0,031 0
7726252 ¢, =0,081 ~0,128 ~0,400 ~0,128

@i =0.994  =0.992 -0,872 -0,092
or v, 2,0 1,000 0,995 1

v‘ b ksn 0

0. 000 ~ 0,050 0

S g " =

Eq. (8), As a result, the solution equations become ill-
conditioned when ka is sufficiently high and close to one
of the eigenfrequencies associated with the integral equa~
tion based on Eq, (8), In Table I computed values close
to these eigenfrequencies and the eigenfrequencies of Eq,
(7) are compared with exact results for a =0, #, and i/k,
In all case, the value of i/k gives the most accurate re-
sults, In Table II, the effect of introducing an admit~
tance condition is presented for o =i/k, The admittance
¥(Q) and forcing function 4(Q) in Eq, (8) are chosen so
that the relations

8(0 . ) . —G‘"
o, YR)¢=AQ) § ¢=—— (20)

are satisfied on the surface and the exact solutions can
be readily computed, The loss in accuracy when an ad-
mittance condition is used is minimal and restricted to
the third significant figure. However, for discontinuous
boundary conditions, where the forcing function is spe~
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FIG, 4. Dependence of the computed surface potential for n
finite cylinder with a zero admittance and nonzero normal velo=
city everywhere on the surface for 20 subintervals.
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FIG. 5. Effect of discontinuous boundary conditions on the
accuracy of the computed sgurface potontial for a cylindor,

cified over one part of the surface (i,e,, the admittance
is zero there) and the admittance is specified over the
remaining surface, errors of over ten percent in the
real and imaginary parts of the computed surface poten-
tial result, For comparison, the case of a constant
foreing function and admittance over the sphere for o =0
is also presented and In all cases yields results of less
accuracy than those obtained with a =i/k,

In this study consistently good results ware obtained
with a={/k. In Fig. 3 the computed and exact values
for a=i/k agree to three significant figures over the
range of nondimensional wavenumbers from one to ten.
In fact, for this value of a, the accuracy Is significantly
better at all wavenumbers investigated. While Burton
and Miller! provide no recommendations for choosing
one value of o over any other value with an imaginary
component, the choice a =i/k used in the present study
can be explained as follows. The terms in Eqs, (15)-
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FIG. 6, Computed surface potential for a cylinder at the flrst
and second tangentlal modes for ka =2,
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N magnitude of the potential of about 10% occur on the ends
PHASE i ‘ of the cylinder and at the corners, The results at the
i 9-0:0:0:0:0-9:0'0:0:0:0:0:0:0:0:0-0 cpdl can be improved without Increasing the number of

| os; o008 ot points by area welghting rather than taking equidistant

i (Pl O s points along the perimeter, The errors in the phase are

‘ PHASE® ===+ less than 4% in all cases. The errors in the magnitude

06 006f of the computed surface potential increase with increas-
Ing nondimensional wavenumber, but, even when ka =10,
oS ] ; the numerical results are within 10% of the exact solu-
04y 004} tions, For ax0 or { the errors ore significantly larger
¢ K sl Baasie | above ka=2, ’
' e il § 2 '
o2t oo} 4 *N"‘“‘:“::i“ In most inlet problems the boundary conditions are
discontinuous with the acoustic, velocity or potential
(which is directly proportional to the acoustic pressure)
ok o 30 7 P 35 specified over part of the surface and the admittance
} 4 - " .
- , {representing liners) over the rest, To determine the

f FIG, 7. Computed farfield potential distribution for a cylin- efect of the discontinuities and the use of an admittance

der ot k=2, m=0, and 20 radii from the centor, function on the numerical results for m =0, a cylinder
was investigated, The velocity was specified on the
L P ends and the admittance was specified in the center so
, U7 i ol ar o e, wherene " b o oo for  wuegven by En. (19 B
i wavenumbers the terms of order k"domh:;'ate. Blyt choos - f‘?di; :‘r:im?:‘;.A‘,l:‘g‘!r:guﬁ?;t;e“:&:f?ni ';,-‘i:'e hL
; ing.ato vary invc’rsely with the ‘wmenum er, al ermﬁt though the errors in the numerical results for this case
In Eqs. (ls)-(l’l‘)z remain of the same order with respect /"oy e ihose observed in Fig, 4, the errors
to wavenumber, still remain within 10% for values of ka less than 5,
A problem of more practical importance Is the finite However, when ka =10 errors of up to 40% in the magni-
axisymmetric duct since this surface approximates an tude of the potential are encountered close to the dis-

i engine configuration. The surface potential distribu- continuity in the boundary condition, This error can be
tions are presented in Fig, 4 at different nondimensional  reduced by increasing the number of subintervals in the
wavenumbers for »i«0, The normai gcoustic velocity p -z plane, Doubling the number of subintervals halves
distribution A(Q) is chosen so that the solution for the the error, When both the normal scoustic velocity and
acoustic potential satisfies Eq, (19), The parameter o the admittance are continuous on the surface, the errors
is taken to be i/k. Twenty subintervals are taken in the  are of the same order of magnitude as those of Fig, 4,

j p =z plane and 4 20<point Gauss-Legendre quadrature For tangential modes, the variation in the ¢ircumferen-

k Is used in the 6 direction, In Fig. 4 the variations of tial direction behaves as cosmé where »i=1,2,,,.. To
the magnitude and phase with distance along the perime- . check the numerical Integration scheme in the circum-
ter s are presented. The largest errors in the computed ferential direction, the surface acoustic potential was

o (Ko of
, ]
. 0.8f~
. o ©
4 osf- o FIG. 8, Dependence of the accuracy of
3 91 the computed farfield solution of a cyl-
; {nder upon the distance from the surface
oak © COMPUTED O for k=2 and m =0,
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FIG. 9, Inlet geometry,

computed for ms=1 and m=2 for the eylinder shown in
Fg. 4. The results are presented in Fig, 6 for ka=2
with the normal ncoustie velocily specified everywhere
on the surface, The computed and exact resulls (i,e,,
from a dipole and quadrapole) ave In zzreement to within
2% for both m=1and m=2,

It has been shown® that once the surface potential has
been accurately computed, the farfield can be deter-
mined to at least the same accuracy as the surface po-
tentinl, This resuit {8 confirmed by the data presented
In Fig. 7 for the cylinder of Fig, 4 with the veloeity
specified everywhere on the suprlace with kba=2 and m =0,
The results al 20 radii from the surface are in agree-
ment with exact results obtained from Eq, (19) to within
1% even though the surface errors st some polnts are
above 2%, Data in Fig, 8 show tiat accurate results are
obtained at distances greater thian one integration step=
size from the surface, At closer distances errors from
the numerical evaluation of the singularity in the Green's
function defined by Eq, (4) leads to large errors,

The studies of the acoustic fields of the sphere and
cylinder served to check out and vefine the numerieal
procedures and programming techniques, The next con-
figuration Investigated was an inlet used in a study by
NASA,' This inlet is shown in Fig, 9 and was chosen
because:

(1) unlike most inlets used in research studies, it
does not have a bell-mouth shape but is shaped like a
typical inlet used in existing alrcraft, and

] o Computéd, n<53
2 o Computed ns32
3 ; e Exact, nz53
19} 1! T R Exact, n:32
1_/2*, = » B SO S
! ;
(0] 2 4 6 8

sla

FIG. 10, Effect of increasing the number of subintervals in
computing the surface potential for the Inlet configuration at
ka=l, m=0,
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(2) complete details on generating the inlet boundary
are given in Ref; 13, For this inlet, all cases were in~
vestigated with a=i/k,

As seen in Fig, 10, the normal velocity distribution,
which represents a forcing function, is highly discon-
tinuous and provides a severe test of the humerical tech-
niques employed, The numerical and exact solutions
for the surface acoustic potential are compared in Fig,
10 for 32 and 54 subintervals taken along the perimeter
of the inlet in the p - z plane, Because of the errors in
approximating the lengths of each subinterval, the exact
solutions differ slightly as the distance along the perime~
ter s increnses, The centerbody in Fig. 9 extends from
0= 50,8, the fan inlet covers 0,.8= 5= 1,4, the interior
contour extends from 1,4 5=<3,5, the exterfor from
3,55 55,5, and the circular arc lies within the inter-
val 5,55 55,45, Increasing the number of points de~
creases the error proportionstely as indicated by the
data in Fig. 10 at a nondimensional wavenumber ka of
unity, where a is the radius of the inlet at the fan entrance
section, The absolute average error in the results de~
creases from 10,2% for 32 subintervals to 4,16% for 53
subintervals, The computation time increased from 53
to 143 s, respectively.

TABLE II, Effect of specifying an ndmittance on the computed
surface potential for a sphere. 1In all cases ni=0, twenty sub-
intervals are taken In the p =~z plane, and @,0¢®=e'* every-
where on the surface, For CaseI; A(Q)mcr

where on the surface, For case I, 4(Q)=e'™(1—~ik) and ¥(Q)
=0 over 1/5 of the surface and A(Q)= 0, ¥ =(1~ik) over the
remainder, Case¢ II {s considered in Table I,

Case I Casel Case 11 Case I Exuot
ka axi/k a={ ax=t/k a=ifk values
1 g, ~-0.509 -0.537 -0,538 ~0,52 -0,540

¥, =~0.845 —0,849  -0,843  -0,87 -0,842
Y
2 ¢ 0.418 0.422 0,417 0.43 0.416
¢, ~0.911 -0,937 -0.909 0,02 - 0.909
3 e 0.993 0,916 0,990 1,00 0.990
@, =0.142  ~0,496 -0.140 -0,16 -0.141
5 @, ~—0,285 -0,288  -0,284 =-0,25 —-0,284
@ 0. 961 1.145 0,959 1.00 0,859
10 @, 0,841 ~0,3 0,839 0.90 0,838
@ 0.548 0,8 0,544 0,49 0,544
Meyer et al.: Sound field from axisymmetric surfaces 637

Vand ¥(Q) =revery-
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FIG, 11, Elfect of inereasing frequency for the Inlet configura~
tlon al m =0, n =53 on the computed surfuce potential,

As shown in Fig, 11, the errors increase with In-
creasing frequency, Like the eylinder, the maximum
error in the acoustic potentinl for the inlet configuration
occurs at the points of discontinuity, The average error
increases from 4,18% at ka =1 to 15% at ka =10,

For the data in Figs, 10 and 11, the acoustic potential
is assumed constant in the tangential plane, The results
for a cos{m®@) distribution are presented in Fig, 12 at
ka=2, These resulls show the insensitivity of the accu-
racy of the computed results to the tangential distribu-~
tion for m=1,2, The exact solutions were again gener-
ated by assuming dipole and quadrapole sources located
at (p,2)=(0,0).

Based onthe above results our numerical and program-
ming techniques are capable of yielding reliable results for
arbitrary geometries and boundary conditions. At higher
frequencies, (ka>5) It appears that more points must be
taken to Increase the accuracy of the computed results,

i, SUMMARY AND CONCLUSIONS

An Integral golution of the Heimholtz equation is de-
veloped for use in acoustic radiation problems, Unlike
the classical formulation which can lead to integral equa-
tions that do not have unique solutions at frequencies
corresponding to certain internal eigenfrequencles of the
region enclosed by the surface under consideration, the
formulation used In this study is valld at all frequencies,
Also, unlike miost current methods and fermulations it
is straightforward to implement regardless of how com-~
plicated the surface or the boundary conditions may be,
The surface potentials computed numerically for a sphere
and-¢ylinder using 20 subintervals along the perimeter
and for an inlet configuration with 53 subintervals are
accurate to within 10% for nondimensional wavenumbers
ka of from one to ten, where 4 is the wavenumber and a
is the characteristic length. For discontimious boundary
conditions, the numerical and exact vaiues are in agree-
ment to within 10% for ka< 5, - At higher frequencies the
results are as much as 40% in error at points of discon~
tinuity, which suggests taking more points in evaluating
the integril equation to increase the accuracy when dis-
continuous boundary conditions are specified, Increas-
Ing the number of subintervals decreases the error pro-
portionately. At distances greater than the numerical
integration stepsize, the farfield results are at loast as
accurate as the corresponding surface potential solutions,
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potential of the inlet configuration for ka=2 und n =53,

Nole added in proof: We wish to thank Dr, P, J, T,
Filippl for drawing our attention to the following paper:
P. J. T. Filippl, “Layer Potentials and Acoustic Dif-
fraction,” J, Sound Vib, 84, 473-500 (1977).
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