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INTROOlOION 

Flutter can result in costly (both in time and 
money) overruns in turbof'an-engine devel~nt pro­
grams. Solving the probl. of flutter (at the 
engine developlllent stage) lilY ... 11 .. an lIIjor engine 
redesign and retesting. For this reason. engine 
manufacturers and goven.ent agencies are currently 
support ing n .. rous researc:h progrlllS in an attellPt 
to develop flutter prediction systems that can be 
used to deSign flutter-free engines. To date. these 
research programs have identified five regions of 
the cOl' • .,ressor perfol"llanc:e .1Ip where flutter is 
generally encountered (fig. 1). 

Of the five regions shown in figure i. the 
supersonic low back-pressure flutter region hts been 
the most thoroughly investiglted Inalytically 
(refs. 1 to 3). In generll, these Ina lyses hive 
considered the flow field through a clscide of two­
dimensional airfoils undergoing simple hanaonic 
pitching or plunging. The gl5 stream WIS assumed to 
be an inviscid. nonconducting. perfect gas. Shock 
waves that originated in the flow fiela were assumed 
to be weak so that supersonic SIIal1-4isturbance the­
ory could be used. Although these assumptions ap­
pear to oversliDplify the flow conditions encountered 
by a rotor at the onset of flutter. the flutter 
boundaries predicted by tnese analyses correlate 
well with experimental data. 

A recent analysis (ref. 4) has attelPted to 
apply the supersonic. linearized. small-disturbance 
theory to higher backpressure operating conditions 
(i.e •• region IV of fig. 1) by including a finite­
strength shock wave within the cascade passage. 

Results from this analysis show that the unsteady 
mot ion of the shock wave tends to induce bendi ng 
flutter. The existence of this flutter mode is 
documented in reference 5. 

The remaining operating region where supersonic 
flutter occurs (region V of fig. 1) lies close to 
the stall ltne of a stage. Analyses of this region 
have not appeared in the open 1 iterature. Liter .... 
ture on this subject (e.g., refs. 5 to 7) generally 
presents experimenta 1 data to document the extent of 
the flutter region. These data provide a very 
limited base from which an empirical correlation can 
be derived for predicting the onset of this flutter 
mode. 

The objective of the present analySis is to 
develop a model for predicting the onset of super­
sonic stall flutter encountered by rotors that do 
not have part-span dampers or tip shrouds. lxperi­
mental data reveal that the flutter mooe is gen­
erally the first flexural mode at a reduceo fre­
quency (based on tip relative velocity and tip semi­
choro) of about 0.2. The vibratory pattern around 
the rotor tends to be very regu lar: All blades 
vibrate at the same frequency but are shifted in 
phtSe by a positive interblade phase angle of about 
20 to SOO (ref. 7). This positive phase shift 
implies that the vibratory pattern is traveling 
around the wheel in the direction of rotation (i.e •• 
a forward-trave 1 i ng wave). 

A further characteristic of the flow regime 
associated with stall flutter is shown by the 
steady-state Prtssure distribution in figure 2. 
This pressure distribution was produced from mea­
surements taken across a rotor tip while the rotor 
was operating near the flutter boundary. This fig­
ure clearly indicates a detached. leading-edge bow 
shock wave impinging on the suction surface of the 
adjacent blade. The large extent of the compression 
region at the base of the shock wave seems to sug­
gest I seplrlted flow region thlt would Increlse in 
size IS the fan operlting point moved tOWlrd the 
supersoniC still bending flutter boundlrv. 



The present analysis develops a flutter IDdIl 
for the highly cOlPlicated flow field illustrated in 
ftgure 2 by using t~i .. nsional actuator disk t .... 
ory. The effects of flow separaUon are tncluded in 
the lIOdel throu,,, rotor-loss and deviation-angle 
correlations. or low-speed flows, actuator disk 
flutter lIOdals have ~n able to predict the onset 
of a single-degree-of-freedOil bending flutter IIOCI, 
(e.g., refs. 8 and 9). The success of tnt .odels at 
low speed, suggests that a cCIIIPressible actuator 
disk lIOCIel _i9ht be capable of predicting the onset 
of bending flutter at supersonic speeds. Th~S hr­
pothesis has been confinl8d by a n..-ber of calcula­
tions. These calculations, however, did require as 
input the interblade phase angle at the onset of 
flutter. So that this requtre.nt could be avoided, 
the actuator disk model was modifiea to allow for 
moderate values of interblade phase angle. This 
modification results in a flutter lOdel that can be 
developed into a flutter prediction syst •• The 
validity of this flutter predtction syst .. is d .. on­
strated by c.aring th. predicted flutter boundary 
of a high-speed fan stage with its .asured boundary. 

FORftlLATION 

The present analysis for stall bending flutter 
of an iso 1 ated rotor IIIOde 1 5 the rotor as a two-
di .. nsional cascade of airfoils. The cascade is 
defined by the blade-element geometry on a cylindri­
cal surface at a distance R frOll the axis of rota­
tion. The flow field in the cascade plane is 
ass\llled to be two dilll8nsional. cOllPressible. and 
time dependent. Viscous forces are considered only 
within the blade channel. The unsteady flow vari­
ables associated with the rotor vibratory ~tion are 
assumed to be smaller than their steady-state coun­
terparts. These variables at an instant in ti .. are 
required to be periodic around the wheel at a period 
equal to a fractional part of the circumferential 
distance d. 2wR. 

The motion of the ai~oils in the casclde plane 
is restricted to simple harmonic plunging and edge­
wise motion at I cycliC frequency .. (fig. 3). In 
addition the motion of each airfoil at an instant in 
time is assumed to be shifted from that of its 
neighbor by an interblade phase angle of G. 2wn/N, 
where n is an integer and N is the nUlllber of 
blades in the rotor. In the present analysis the 
reduced-frequc~cy paralll8ter kb and the inter­
blade phase angle are assumeo to be small. (Reduced 
frequency kb ... b(cj __ where b is the semi-
chord of an airfoil and 1- is the .agnitude of 
the relative inlet velocity in the cascade plane.) 

Field Eguations 
The governing linearized equations for the flow 

field upstream and downstream of the cascade are 
written with respe,t to the relative coordinate sys­
tem. The variables in these equations are non­
dimensionalized by the steady inlet speeo ~. 
the circumferential distance around the wheel d, 
the inlet steady-state fluid density ~. ana the 
inlet steady-state fluid temperature T... In 
addition the subscripts (., --) signify downstream 
and upstream flow variables. 

The linearized continuity equation for the up­
stream and downstream flow fields is 

- -IP. 10._ _ .U i •• ar + Ui •• _ 'iIi + II .... ~ • 0 (1) 
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.... re the ttldl dlnotes I ttM-dtpendent vlMable 
Ind the blr stgntftes I .steldy-stlte YlMable. The 
vlrtables ,I. Ute t. Ind Xt are the denstll. 
veloctty cQlllPOnents. ti.. and spactal coordtnltes 
relPecttvel,. (See ftg. ~ for dlftnttton of coord1-
nlte SlSt-.) In adcItUon the use of repelted 
tndtces denotes s .... tton wtth respect to the re­
pelted index. The ltneartzed _nt .. equattons for 
the flow ftelds are 

aUt •• aUi •• 1 a; .. 
~+lJ ~. --ax:- i. I, 2 (2) 

at j, •• allj i •• a t 

. 
where p.. is the noncst_nstonal pressure. The 
,...t~ing field equattons are the energy equation 
for an tnvisctd, nonconducting gas 

- . 
as.. as •• 
~ + "i, •• 111- 0 

and the equation of stlte 

- 1 1 ;.. 1 1;'. 
s .=:rr---"-+-~-
•• M- y , - .l J ' - .l M- ; -' .. - .. 

(3) 

(4) 

The variables appeartng tn equations (3) Ind (4) are 
the entropy s; the ratio of spectfic heats ~; and 
the inlet steady-state relattve Mach n~r "-e. 
Hhe~ntropy was nondi_nsiona1tzed with respect to 
T_tq~ .. ) 

The present Inalysts ass .. s thlt there Ire no 
sources of entropy or vortictty upstre .. of the cas­
cade. The upstre .. , unsteady velocit, field lUst 
therefore be irrotational and hence is equal to the 
gradient of a potent tal functton i_ where 

-- .t 
U -1,-·~ i • I, 2 

The unsteady velocity field downstream of the cas­
cade is expressed as 

. 

(5) 

- .t.:":tl 
U • ~ + U 1 • I, 2 (6) 
i.· IAi i •• 

where .i-laXt represeMs the trrot.tional COlllpO-
nent of the field and • its rotation.l 
cOlllPonent. The source 0 'the rotation field is the 
vorttctty shed by the oscl11.ting airfoils. 

The solution to the fteld equations is obtained 
by .ssuming a st.,le h'nlonic spacial and tampori.l 
dependency for the pot,nt ta 1. the rotat tonal ve loc­
ity fields and the dowrstream entropy field. The 
details of the solution procedure can be found in 
reference 10. 

Boundary Conoittons 
It is shown tn reference 10 that four boundary 

condittons .,st be sPectfied at the actuator dtsk to 
relate the unsteady flow fteld to the caSCade defor­
matton and the steady inlet flow conditions. 

The ftrst I)~ t"Clse bOundary conottion requires 
the flow t~ ~ continuous across the defonling 
disk. The analytical fonn of this boundary condi­
tion is 



(1 +; )URel • (; +; )UR
n
el 

- n,-_ • • ,. 
where ",el. represents the nOl"lllal velocity 
cOlllPonenn relat he to the defoming disk. These 
velocity components to first order (i.e •• small 
cascade-plane deflection) are equal to 

R 1 .t_ aii1 ih1 
un~_ .. • U'l._ + 1ll- "it - U'2._ .. 'i1'2 

(7) 

(8) 

R 1 at.. .ii1 Ih1:it (g) 
U e • U' + -=- - "::'r" - U' ~ t 1f1; n.... 1... aAl h. 2." tA2 .oo 

where hi is the displacement of the dis,' from 
Its mean position In the axial (Xl) directIon 
(fig. 4). 

The next boundary condition requires the total 
enthalpy with respect to the defonning actuator disk 
to be locally conserved across the Jisk. The equiv­
alent mathematical statement is 

liT + 1 ~.Rel 'Y"=17 - 1 .. -.. 
liT + 1 q2.Rel 

T="lMT" 1 .. ( 10) 

-.. 
where T.. is the uDstream and downstream gas 
temperature and qi!' is the magnitude of the 
relative velocity app~a~r.ing and leaving the diSk. 
The expressions for ql~ are 

r(, .t.. ~ Ih1\2 
q~el • L\U1 ... + 'iX"i + U1, .. - at} 

(, at"::R ilhZ)~ l/Z 
+ ,U'z, .. + ax; + UZ, .. -"it J (IZ) 

where hZ is the local displacement of the cas­
cade in the tangential (X2) direction (fig. 4). 

The third boundary condition requires that the 
local inlet and exit flow angles relative to the 
defonning disk satisfy a deviation angle correlation 
of the form 

4. g(o, M_ .. , ~, e') ( 13) 

where 0 is the local. relative Incidence angle, 
M Is the 10ca1, relative Inlet Mach number, ~ 
is"'the local sol1dity of the defonned cascade, and 
e' is the local stagger angle measured from the 
nonnal to the leading-edge plane (fig. 4). The 
local, relative incidence angle is related to the 
local, relative inlet flow angle 8_ .. measured 
from the nonnal to the leading-edge plane by the 
equat Ion 

0 •• ' - e' - , 
- 111 

(14) 

The variable 'ml in this equation Is the angle 
between the chora Une and the tangent to the camber 
line at the leading edge. The corresponding re la­
tion for the local deviation angle is 

••• ' - e' - • 
• !liz 

(lS) 

where .~ is the local. relative exit flow angle 
measured from the normal to the trailing-edge plane 
and 611 is the angle between the chord line 
and the2tangent to the camber line at the trailing 
edge. 

Relationships for the angles. inlet Mach number 
and cascade solidity In the above equations are 
derived by expanding these variables along wtth 
equattons (13). (14) and (15) to first order. The 
details of this expansion can be flund In refer­
ence 10. 

The last boundary condition speciftes the local 
entropy tnat is generated as the fluid passes 
through the cascade. The loss assoc iated wi th the 
local entropy rise is defined in terms of a loss 
coefficient defined as 

~el _ pRel 
0.-. 0," (16) 

• 1 q2.REl 
1 p-. - .. 

The variable pSe.!,. - P6el In this 
equation represe~ts the 10cal total-pressure loss 
measured relative to the defonnlng aduator disk. 
The entropy rise across the disk is related to this 
quantity by the equstion of state 

Thus 5.. must be equal to 

1 
5 .... -7 1n (17) 

-... 
The analysis assumes that the local loss co­

efficient x is related to the local Inlet flow 
field, as observed with respect to the deformlR9 
disk, by a relationship of the fonn 

x- x(o. M_, II, e') (18) 

As in equation (13) tne parameters appearing In this 
equation can be relateo to the unsteady flow fipid 
approaching the cascade and the cascade oef,.,..1-
tion. Upon combining equation (17) with ~Quati~n 
(18) the entropy rise across the cascode can be 
evaluated in tenns of these perturbed quanitles. 

Aerod~namic Force 
aving described the procedure for ci,=t~rmining 

the flow field surrounding the cascade, the unsteady 
forces acting on the cascade and hence its stabilit, 
can be assessed, The aerodynamic force acting on 
the cascade is obtained by considering the flow 
field through" control volume that is fixed to a 
cascade passage (fig. 3). The present analysis 
assumes that the relative motion between neighboring 
airfoils, a measure of which is the interblade phase 
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Ingl.. is "Ill Ind thlt the reduced freClUtftC1 of 
this .otton ts Ilso "Ill. The ftrst ISSUMPtton 
t.,1tu thlt the SPit til vlrtltton' of the flow 
vlrllbles ICroSS I Clsclde pissige Ire .-.11 Ind 
thus can be neglected. The low-frequency IssUIIIPtton 
sU9tests thlt the rite of chlnge of .ISS Ind molen­
tum within the control volume is SII.11.r th.n tnt 
n.t miSS Ind IIC)IIItntUIII flux ICroU the contro I volume 
surflce Ind thus will Ilso be neglected. 8.Sed on 
these constder.tions the linelrized .omentum equa-
t ion for the Cl)ntrol volume' lIustrlted In flguf\. 3 
c.n be written IS 

(1g) 

FZ • (i - i )'"z . -. 
::1Iel U U IT - -

+ W (2.- - 2.-.) + w(Ul •• - Ul ,_.) (20) 

where i\ Is tile force ellerted by the lirfoils on 
the control volume, t a the pitCh of the tlSClde. 
wRel 15 the mus flow u!ting the control volume, 
Ind ni is the unit vector normal to the ellit 
pl.nt> of the control volUIM.. (TillS equation c.n be 
jerlved by ekpanding the quasi-steady momentum equa­
tions for the control volume shown in figure 3 to 
first order in perturbed variables. The details ,an 
be f(lund in reference IG.) 

The ~or~ done by the aerodynamic force on an 
airfoil over a cycle of motion Is equal to 

..... · -! R.V.2'/k~ I ~ • f 2 ~H ("I 

where R, ( ) denotes the real part of the eKpres­
sion and the asterisk superscrIpt signifies tile com­
plex conJugate of tne variable. The a,rfoi 1'5 
mot ion can be <lescrlbell by 

where k2. the wave number in the Xz direc­
tion. I, equal to ~,. l.n. Equation (21) can be 
integrated to yield 

WAero • -~(Fi~) (U) 

whe... J. ( ) rep ..... nh the 11II.llinlry put ot the 
expression wltllin the brlcket.. At the onset of 
flutter the aerodyn_lc work per cycle Is equal to 
the mecll.nlc.1 energy d~ssipated over a cycle. If 
the lIIfeh.nical dissipative force is proportional to 
tile velocity of tile airfoil, the _clllnic.1 energy 
dlssiplted over a cycle of motion is 

.. 

.. Ihlh Ihl [1"· /k
(- .. - .. ) ~ 

"0· zt~CI...aA. ~.t + i1~ d~ 

(23) 

wh .... the d..,lng coefftct.nt C is d.ftned I' 

(24) 

The vartlble • tn this equltton ts the log dec,... 
IIOnt of the .. chlntcal dlllPtng. Ind ..., is the 
IIISS p.r unit l.ngth of a rotor blld.. Thts vlrt­
able Is d.flned IS 

(16) 

where K Is I constlnt of proportlonIUtI .... is 
the blld. density. t is the lverlge thickness of 
Vee b lid.. Ind C is its lverll' chord length. 
Introducing thl, equ.tton along with equltton (24) 
into the intecr.Jted form of equ.tfon (23) yl.lds 

(26) 

Equlting equltion (26) with .qultton (22) Ind solv­
Ing for • estlbllshes the .tnt.WI l.vel of .. ch­
Intcil damping required for st.blltty It In operlt­
ing point as 

'Onset • - J~-4+ ~~ ,I ') Mink r"(Fz~] ~~b7 c kb h1hl + h2hZ zl 

(27) 

The sy.abOl Mink2 denotes the .in'~ vljut of 
tile function wit" respect to kZ' If the IVltl.ble 
.chlnlcel d~ing of • rotor blade exceeds this. 
critical level, any small bending .otion 1"lrted to 
the blade will declY In ti •• Hence the syst_ is 
stable Ind flutter will not occur. However. if 
'On~ft is grelter thin the avall.ble .chlntc.1 
d....,l"9 of I rotor blade, any SIIa11 lIo::ondlng IIOtion 
implrted to tile blade will cause the bllde to flutter. 

RESUl TS 

for tile flutter mode under stuQy the a.plitud. 
of the motion intrtlses monotonlc.lly Ilong the blad. 
span from the node line. for blldes thlt Ire rtgldly 
flked at their loot (i.e., Mech.nlcally constrllned), 
th. node 11 ne can be ISS.-d to II. outbo.nI of the 
blade plltfona (I •••• outbolrd of the l.rodyn_lc hub 
of the blade). The node line of the first fl •• urll 
DOde of the rotor to be investigated liter In this 
section is approklmltely ZO percent of spin ht19ht 
outbo.rd of the plltfenn. Thus, tile vibrltory ~tlon 
of the blade In the rotor It Iny splnwise s.ctton is 

hI • -t sin e' (201) (28) 

h
Z 

• t cos e' (201) ,29) 
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whe,.. , h tile IIIPHtud. of the ..,tion It the sec­
t ton Ind i' (lOS) h the sugger I",le It 20 per­
cent of ..,In. 

The ItrodJft.tc work per untt of .In It I 
ghen redtll locltion depends on the .,Uta of 
the IIOtion of the sectton Ind the ,..llthe d",.ic 
pressure of the inc.t", stre.line to the section. 
Thus beCluse both inc,..IH with dtstu-:e froll the 
hub. the totll work done III the lirstre. on I bllCle 
ts strongly influenced by the unsteldy flow field 
surrounding the tip region. A si.,le cllculltion 
shows thlt thh influence Is concentrated in the 
outer 25 percent of the spin. If the outer-USI", 
boundlry lQer is I"..ad to Influence the flow 
field over 5 percent of the tip region of I bllde. I 
dtrect correlltion .ight exist betwe.n the flutter 
boundl..,. of I rotor Ind I t~-di .. nsionll clScld. 
whose g'(IIIIItry Ind dyn.ic response coincide with 
thlt of the rotor It 85 p.rcent of .In (i •••• Ilge­
brlic .In of 15 Ind 95 percent of .In). The re­
sults presented in the ,..inder of thh section Ire 
blsed on this pre-ise. 

The objective of the first series of cllcull­
tions is to estlblish the influence Of reduced fre­
quency kb Ind ·interbllde phlse I",le on the 
leroellsttc stlbllity of I cISClde of lirfoils. For 
this study ~ nOnillized dlllPing plrlleter defined IS 

•• _ 1 - I.! _ sin .,(20I)I.'F e 2 2 e- ikt -; t . -ik X ) 

N 11O.Amb k! t \ 1 

• co. i·(20II!. (f, .-"h .-.. t)] (30) 

Is cilculited IS I function of kb Ind the inter­
bllde phlse Ingle. The plr ... ter DO AMb in this 
e~ltion is the inlet stagnltion denstty melsured in 
the Ibsolute coordinlte syst... For 'N grelter 
thin zero the lirstream is supplying energy to the 
clsclde. If the mechlniCll da-ping of the clsclde 
syst .. is zero, the operlting condition would be 
unstlble. For vllues of 'N less thin zero the 
ClStide is doing work on the airstrellll, Ind hence 
the system is stable. 

Solving equltion (30) requires as input infor­
mation the steady-state inl.t flow properties, the 
geOlllltry of the casclde, and the frequency of os­
cillation. A set of loss Ind deviltion-Ingle cor­
relations mus~ also be specified. The present 
Inllysis mikes use of the correlltions derived in 
reference 10. The steldy-st.te inlet flow condi-
t ions are derived from the bl.de-e l ... nt d.t., _1-
sured It 85 percent of design speed, of the second 
st.ge of the NASA l45G-ft/sec-t ip-speed two-stage 
hn. This blade-element dlte set is reported 1n 
reference 5. The clsc.de glOllletry represents the 
geanetry of the second-stlge rot.or element It 8~ 
percent of sp.n height from the hub. 

Figure 5 shows, plot of 'N .s I function 
of interbl.de ph.se angle Ind reduced frequency 
kb for the second stlge rotor operlting It the 
flutter-bound.ry .t 85 percent of design speed. 
This figure shoWS thlt the benGing flutter ~e Is 
Issocilted with I positive Interblade ph.se .ngle 
(I.e., Implies thlt the vlbr.tion p.ttern is travel­
ing .round the rotor in the direction of rot.tion). 
The figure· Iho shows th.t increasing the reduced 
frequency stabilizes the motion.t I constillt inter­
bl.de ~lh.se .ngle. 

Figure 6 shOws 8 plot Of '" IS I functton 
of interbllCle phi" l"Ile Ind percent", of dlSt", 
wetght flow 110"11 the 5-percent-speed line. For I 

'

hen tnterblloe phlse l"IIle. dec"'''i", the .. tght 
low It consUnt wheel speed (i.e •• tnc,..lsing the 

steldy-stlte lerodynamic 10lding) tends to 
destlbllize the rotor. 

The results plesented in figures 5 Ind 0 Ire 
81so consistent with the observ~ thlrlcteristtcs of 
supersonic bending flutter reported in reference 1. 

A deficiency of the present theory. IS shown by 
the results in figures ~ Ind b. is thlt it predicts 
the danping.'N to increlse monotionicilly with 
interbllde phlse Ingle. This trend Is p~Slcllly 
unrellistic. and is I consequence of the smlll 
Interbl,de phase .ngle assumption inherellt in actul­
tor disk theory. To overcome this deftciency In 
additionll Issumptlon was incorporlted into the the­
ory which limited the value of the lerodynamic daMp­
ing. The .ss....,tion is mlde to repllce 0 by sin 
° everywhere in the .nalysis. This Iss..-ption is 
mathematically constant with the .ctultor disk 
model. Figure 1 shows the results obtlined with 
this assumption Incorporated Into the In.lysis. 
For 1011 4S·. the mOdified Inalysis yieldS results 
that .re Coql.rlble to those obtained fl"lllll the 
original fonnulation. In .ddition the modified 
Inalysis predicts a finite mlximum value for 'N 
for 0. !IO'. Thh mlximum value for d...,ing is 
equ.l to the v.lue computed at o. 1 rldiln ustng 
the orlgln.l fonnulation. Experimentll results of 
reference 7 show that this v.lue for ° (i.e., 0. 1 
radian) corresponds rather close ly to the measured 
Int~rblade ph.se angle of the le.st stable flutter 
mode. 

An additional validation of the modified analy­
sis '5 a flutter prediction system for supersonic 
stall ~endlng flutter can be est.bllshed by showing 
that, for a given rotor, flutter wi 11 De observed 
whenever the preclicted n.u imum v.l ue of 'N ex­
ceells the ncnn.llzed structura 1 Il...,i ng of • rotor 
assembly. For this demonstr.tion the measured flut­
ter boundary of a scaled model of F.n C of the NASA 
Quiet Engine Program (ref. 6) is correl.ted with the 
predicted boundary. The perfonnance map for the 
sc.le model (fig. 8) shows two flutter instlbility 
lanes. The first lOlle is torsion.l flutter th.t 
occurs at p.rt speed and lies close to the stall 
line. Just .bove this lone lies a lone of benalng 
flutter that .ppe.rs to extend p.st 95 percent of 
design speed. Only the bending flutter molle of this 
rotor is analyzed In this paper. 

Figure ~ shows a plot of the ph.se shift be­
tween the amplitude time history of • rotor blade 
and the reference blade No. 17 at the 9!J percent of 
design speed flutter point. The date iql·' ies the 
flutter mOlle is predomlnatly • l nodal diameter for­
ward tr.veling wave whiCh correspondS to .n inter­
bl.de phase angle of approximately 41'. This v.lue 
for the interblalle phase an91e of the flutter mode 
corre l.tes we I; with the d.t. of reference 7 and 
lies within the unstable range predicted by the 
analysis. Figure 10 shows the calculated m.xlmum 
nO!1llallnd 't!l'OIlync\mic d_ing for this rotor as • 
function of weight flow and wheEl speed. The re­
sults presentf'd on this curve were calcul.ted using 
the blade elemrnt data recorded at tn~ five oper.t­
ing condItIon shown on figure 8. To/ sh .. deo region 
on figure 10 represents the unstaolc {-utter 
region. The bounaary of tnlS ~iol' .... \"0 estimated 
by assuming a log decrement of O.U~~ fJr the mech­
anical Il~ing of the aSsl"fllbly (ref. 3). Hence .11 
operating conditions whiCh h.ve .n aerOIl~amlc damp-
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lng level in excess of this vllue Ire ISSYlid to be 
witnin the flutter region. while those thlt hive In 
aerodyn.ic dllllPtnv level less thin 0.02~ are stlbl •• 

The results on figure 10 clelrly show the 
slgnif1cant i nf lu,nc. of wheel speea Ind I.roayn.ic 
10lding on the aerodynllDic dllllPing. The cllcullted 
I,rodyn .. ic dllllPlng It 60 Ind 70 percent whe.l speed 
lie Signlflclntly below the instlbility ~undary. 
No bending flutter wlS observed It tntse operltlng 
conditions. At 90 percent of design speed bending 
flutter wlS observed nelr the stan region. The 
calculated aerOdynamic damping for the near stall 
operating point is seen to lie just inside the un­
stable region. Bending flutter was also observed at 
95 percent of des ign speed neir the stall bounCilry. 
The calculated aerodynamic d..,lng for this operat­
Ing point lies well within the upstable region of 
figure 10. At the Intenaeulate opera·109 point on 
the 9:, percent spee~ Hne the calculat.,,' aerodyn41lllic 
damping falls below t~ instability bo~~~ary. 
Therefore tne predictea flutter boundary It this 
wAtel speed lies between the measured flutter bound­
ary and tne intennediate operating point. Tran­
scribing the stability boundary of figure 10 onto 
tile Fan C performance map yields a the"reticil flut­
ter boundary. which is shown as a ~asned line on 
figure 11. Tile measured operating co~~tlons at . 
whiCh hending flutter occu."red are Sh01ll1l on this 
figure as solid symbols. The overall a~reelent 
between theory and measurement is very good, with 
the analysis slightly over predicting the extent of 
the flulter boundary at ~~ percent of wheel speed. 
Below IJO percent of wllef'1 speed the analysts pre­
dicts the flutter boundary will bend back into the 
stall region. This result is confinued by the 
experimental measurements. 

The results presented in thIS section clearly 
show that the current a~alysis can be used to pre­
dict tile onset of supersonic bending flutter in un­
shrouded fans. The input variables to tht analysiS 
can all be derived from fan structural and aero­
dynamic design variables. The governing equations 
are SImple algebraic equations, and hence are easily 
programed. Tllese features proviae the designer 
with a simple and reliable model for analyzing the 
susceptibility of a fan design to supersonic stall 
bending flutter. In addition it provides him with a 
tool that can also bf' used to evaluate proposea 
fixes to an existing flutter problem. 

The engineering approximation intrOduced to 
extended the range of validity of actuator oisk 
theory appears reasonable. To ~velop a correct 
first principles extension of actuator disk theory 
to fInite interblade p~ase angle for the flow 
conditions as they exist at the tip of a rotor at 
the onset of supersoniC stall flutter would re­
quire a viscous transonic cascade analysis for 
finite interblade phase angle. No such analySis 
appears to be forth coming in toe near future. Any 
extension which is derived from inviscid aeroayn.ic 
theory wo~ld be an approximation, the result perh~s 
being no more accurate then the simple extension 
develop~d in this analYSIS. 

CONCLUDI NG REMARKS 

In the present investigation an analytical 
model was aeveloped to preaict tne onset of super­
sonic stall bending flutter in high-speeo rotors. 
The stability bounoary predicted by the analysts was 
shown to be in good agreement with the me~sured 
boundary of a high speed fan. Tne analySIS lisa 
preoicted that the flutter mGde would be I forwara 

6 

trlveling wave. be sensitive to .... , IPHClInd 
lerod1n.ic 10lding. This .IS confi ..... by the 
experi .. ntal "ISUNlllnts. In _ilion the lnallli. 
showed thlt reduced frequency 1M d",.iC held 1110 
play a signlficant 1"01, tn tltlbUShing the lupe,... 
soniC stall bending flutter boundlry of In un­
shrouded ftn. 

This Inllysts provideS the deSigner with lsi .. 
pi_ and Ifficilnt prediction tool which hi cln use 
to anllyze tne suscepttbtlity of a fin d.iign t~ 
supersonic still bending flutter. 

APPENDIX A 

SYMBOlS 

b .trfoi 1 ".tchord 

c average bllde chord and dllPtng coefficient 

d c 1 rcUlif erenU 11 d istlnee Il"Ound whit 1 

Ft lerodynll1ic foree 

hl axtll displac ... nt of an lirfol1 

hZ tangent III dtspllc ... nt of an atrfoil 

~ 

K constant 

k reduced frequency bir-eel on ctre.-erlnUal 

dhtance • ..cI/q_ 

kb reduced frequency blsed on se_lchord. 

IIIb/q_ 

kZ Wive "\lllber of dtsturbance along cascade 

pl.ne 

M Mach ", .. ber 

"b miSs of • rotor blade per unit length 

N number of blade) ln rotor 

n lnteger 

nl unit vector 

P total pressure 

p stat Ic pressure 

q .agnitude cf veloctty field 

R radii I distlnce 

S entropy 

T tllllPe rat u re 

t ti. 

Ui velocity components 

Un relative velocity component normll to disk 

UR rotltional velocity 



"Aero llroQn.tC wo .. k pe .. CJCl. of .Uon 

"0 'M'V dtlltp.ttd PI" CJCl. of .olton " 

.ch.ninl dllllPi .. 

w .. " flow ... tt 

Ii lP.ci.1 coordtn.ttl 

• i ne idlne •• ",1. 

• flow .",1. 

., ... tio of specific he.ts; axi.l w.VI nYlbl .. 
• , log d.c..-nt; d.vi.tion ... 1 ••• q. (3). 

eq (15) 

'. I • t.1 .",Ie .t leadi", edge 

'. .t.1 .",le .t tr.11i", edge 
2 . ' stagg.r ... 1 • 

II soltdity , IIIIP It tude of blade ..,Uon 

, density 

0 interbllde ph.se .",le 

t c.sc.de pitch or .ver.ge thickness of • 

rotor blade 

• weloe ity pot' nttll 

x totll-pressure-Ioss coefficient 

.. frequency of osciliition 

SUBsauPTS 

-- upstream vlrilble 

- downstream varilble 

SUPERSCRIPTS. 

(-, steady-st.te Vlriable 

(-) ti .. -dependent vlrilble 

* complex conjuglte 

ReI re I at he cOllPonent 
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Figu re 2. - Typical tip rotor static-pressure distribution near supersonic stall 
flutter boundary, 
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