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INTRODUCT JON

Flutter can result in costly (both in time and
money) overruns in turbofan-engine developwent pro-
grams. Solving the problem of flutter (at the
engine development stage) may well mean major engine
redesign and retesting. For this reason, engine
manufacturers and government agencies are currently
support ing numerous research programs in an attempt
to develop flutter prediction systems that can be
used to design flutter-free engines. To date, these
research programs have identified five regions of
the conpressor performance map where flutter is
generally encountered (fig. 1).

Of the five regions shown in figure i, the
supersonic low back-pressure flutter region has been
the most thoroughly investigated analytically
(refs. 1 to 3). In general, these analyses have
considered the flow field through a cascade of two-
dimensional airfoils undergoing simple hammonic
pitching or plunging. The gas stream was assumed to
be an inviscid, nonconducting, perfect gas. Shock
waves that originated in the flow fiela were assumed
to be weak so that supersonic small-disturbance the-
ory could be used. Although these assumptions ap-
pear to oversmplify the flow conditions encountered
by a rotor at the onset of flutter, the flutter
boundaries predicted by tnese analyses correlate
well with experimental data.

A recent analysis (ref. 4) has attempted to
apply the supersonic, linearized, small-gisturbance
theory to higher backpressure operating conditions
(i.e., region 1V of fig. 1) by including a finite-
strength shock wave within the cascade passage.

Results from this analysis show that the unsteady
motion of the shock wave tends to induce bending
flutter. The existence of this flutter mode is
documented in reference 5.

The remaining operating region where supersonic
flutter occurs (region V of fig. 1) lies close to
the stall line of a stage. Analyses of this region
have not appeared in the open literature, Litera-
ture on this subject (e.g., refs. 5 to 7) generally
presents experimental data to document the extent of
the flutter region. These data provide a very
limited base from which an empirical correlation can
be derived for predicting the onset of this flutter
mode.

The objective of the present analysis is to
develop a model for predicting the onset of super-
sonic stall flutter encountered by rotors that do
not have part-span dampers or tip shrouds, txperi-
mental data reveal that the flutter moge is gen-
erally the first flexural mode at a reduceo fre-
quency (based on tip relative velocity and tip semi-
chora) of about 0.2, The vibratory pattern around
the rotor tends to be very regular: All blades
vibrate at the same frequency but are shifted in
phgse by 2 positive interblade phase angle of about
20" to 50 (ref. 7). This positive phase shift
implies that the vibratory pattern is traveling
around the wheel in the direction of rotation (i.e.,
a forward-traveling wave).

A further characteristic of the flow regime
associated with stall flutter is shown by the
steady-state pressure distribution in figure 2.

This pressure distribution was produced from mea-
surements taken across a rotor tip while the rotor
was operating near the flutter boundary. This fig-
ure clearly indicates a detached, leading-edge bow
shock wave impinging on the suction surface of the
adjacent blade. The large extent of the compression
region at the base of the shock wave seems to sug-
gest a separated flow region that would increase in
size as the fan operating point moved toward the
supersonic stall bending flutter boundary,



The present analysis develops a flutter mode)
for the highly complicated flow field 11lustrated in
figure 2 by using two-dimensional actuator disk the-
ory. The effects of flow separation are included in
the mode! through rotor-loss and deviation-angle
correlations. For low-speed flows, actuator disk
flutter modals have been able to predict the onset
of a single-degree-of-freedom bending flutter mode
{e.g., refs. B and 9). The success of tne models at
Tow speeds suggests that a compressible actuator
disk model might be capable of predicting the onset
of bending flutter at supersonic speeds. Th's hy-
pothesis has been conf irmed by a number of calcula-
tions. These calculations, however, did require as
input the interblade phase angle at the onset of
flutter. So that this requirement could be avoided,
the actuator disk mode) was modifiea to allow for
moderate values of interblade phase angle. This
modiffcation results in a flutter model that can be
developed into a flutter prediction system, The
validity of this flutter prediction system is demon-
strated by comparing the predicted flutter boundary
of a high-speed fan stage with its measured boundary.

FORMULATION

The present analysis for stall bending flutter
of an isolated rotor models the rotor as a two-
dimensional cascade of airfoils. The cascade s
defined by the blade-element geometry on a cylindri-
cal surface at a distance R from the axis of rota-
tion. The flow field in the cascade plane is
assumed to be two dimensional, compressible, and
time dependent. Viscous forces are considered only
within the blade channel. The unsteady flow vari-
ables associated with the rotor vibratory motion are
assumed to be smaller than their steady-state coun-
terparts. These variables at an instant in time are
required to be periodic around the wheel at a period
equal to a fractional part of the circumferential
distance d = 2wR,

The motion of the aivfoils in the cascade plane
is restricted to simple hammonic plunging and edge-
wise motion at a cyclic frequency w (fig. 3). In
addition the motion of each airfoil at an instant in
time is assumed to be shifted from that of its
neighbor by an interblade phase angle of o = 2wn/N,
where n 1is an integer and N is the number of
blades in the rotor. In the present analysis the
reduced-frequercy parameter ki and the inter-
blade phase angle are assumed Eo be small. (Reduced
frequency kp = wb/Q.., where b is the semi-
chord of an airfoil and q__ 1is the magnitude of
the relative inlet velocity in the cascade plane.)

Field Equations
e governing linearized equations for the flow

field upstream and downstream of the cascade are
written with respect to the relative coordinate sys-
tem., The variables in these equations are non-
dimensionalized by the steady inlet speed Q.
the circumferential distance around the wheel d,
the inlet steady-state fluid density .., ana the
inlet steady-state fluid temperature t In
addition the subscripts (e, -=) signify downstream
and upstream flow variables.

The linearized continuity equation for the up-
stream and downstream flow fields is
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where the tilde denotes a time-dependent variable
and the bar stgnifies a steady-state variable. The
varfables o, Uy, t, and X§ are the density,
vﬂocn{ components, time, and spacfa) coordinates
respectively. (See fig. 3 for definttion of coordi-
nate system.) In addition the use of repeated
indfices denotes summation with respect to the re-
peated index. The linearized momentum equations for
the flow fields are
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where 5... is the nondimensional pressure. The
resaining field equations are the energy equation
for an inviscid, nonconducting gas
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and the equation of state
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The variables appearing in equatfons (3) and (4) are
the entropy $; the ratio of specific heats y; and
the inlet steady-state relative Mach number L

+The ,_Qnt;'opy was nondimensionalized with respect to
[ -

The present analysis assumes that there are no
sources of entropy or vorticity upstream of the cas-
cade. The upstream, unsteady velocity field must
therefore be irrotational and hence is equal to the
gradient of a potential function ¢_,, where

o
Ui._. --;xi—- ie],2 (5)

The unsteady velocity field downstream of the cas-
cade is expressed as

¥
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nent of the field and .o fits rotational
component. The source of the rotation field is the
vort icity shed by the oscillating airfoils.

The solution to the field equations is obtained
by assuming a simple hamonic spacial and temporial
dependency for the pot:ntial, the rotational veloc-
ity fields and the dowrstream entropy field. The
details of the solution procedure can be found in
reference 10.

Boundary Conaitions
Tt is shown in reference 10 that four boundary

conditions must be specified at the actuator disk to
relate the unsteady flow field to the cascade defor-
mation and the steady inlet flow conditions.

The first of trese poundary condition requires
the flow tn be continuous across the deforming
d‘i’sk.1 The analytical form of this boundary condi-
tion is

where 2%_JaX represesgs the frrotational compo-
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where URel. represents the normal velocity

component? relative to the deforming disk. These

velocity components to first order (i.e., small

cascade-plane deflection) are equal to

Rel W, on o,
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where h) is the displacement of the dis: from
its mean position in the axial (Xxj) direction
(fig. 4).

The next boundary condition requires the tota)
enthalpy with respect to the deforming actuator disk
to be locally conserved across the Jisk. The equiv-
alent mathematical statement is

1 1 1 2,Rel
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at Xl-O (10)

where Te.. 1s the upstream and downstream gas
temperature and qBE! is the magnitude of the
relative velocity app a?mng and leaving the disk,
The expressions for q8! are
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where hy is the local displacement of the cas-
cade in %he tangential {Xy) direction (fig., 4).

The third boundary condition requires that the
local inlet and exit flow angles relative to the
deforming disk satisfy a deviation angle correlation
of the form

é = 9(0. M_m' ¥y 5‘) (13)

where o 1is the local, relative incidence angle,
M_. 1is the local, relative inlet Mach number, u
is the local solidity of the deformed cascade, and
@' is the local stagger angle measured from the
normal to the leading-edge plane (fig. 4). The
local, relative incidence angle is related to the
local, relative inlet flow angle 8., measured
from the normal to the leading-edge plane by the
equation

1/2

=B -0 -8 (14)
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The variable &y, fin this equation is the angle
between the chorb 1ine and the tangent to the camber
line at the leading edge. The corresponding rela-
tion for the local deviation angle is

.!_0_ 15
§=8L-9 cm2 (15)

where gL is the local, relative exit flow angle
measured from the normal to the trailing-edge plane
and &g, is the angle between the chord line

and the“tangent to the camber line at the trailing
edge.

Relationships for the angles, inlet Mach number
and cascade solidity in the above equations are
derived by expanding these variables along with
equations (13), (14) ana (15) to tirst order. The
details of this expansion can be fiund in refer-
ence 10.

The last boundary condition specifies the local
entropy that is generated as the fluid passes
through the cascade. The 1oss associated with the
local entropy rise is defined in terms of a loss
coefficient defined as
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The variable PRel. - pBel 1n this

equation represefts the local total-pressure loss
measured relative to the deforming actuator disk.
The entropy rise across the disk is related to this
quantity by the equation of state

phel _ pRel _ ,Rel [, e‘*“f..s.
0,-= " "0,= " "0,-= \"

Thus s, must be equal to

(16)
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The analysis assumes that the Jocal loss co-
efficient X 1s related to the local inlet flow
field, as observed with respect to the deforming
disk, by a relationship of the form

X = x{a, M_,- vy ©') (18)

As in equation (13) the parameters appearing in this
equation can be relatead to the unsteady flow fisig
approaching the cascade and the cascade gef¢mi-
tion. Upon combining equation (17) with equation
(18) the entropy rise across the cascsde can be
evaluated in temms of these perturbed quanities.

Aerodynamic Force

Having described the procedure for Getermining
the flow field surrounding the cascade, the unsteady
forces acting on the cascade and hence its stability
can be assessed, The aerodynamic force acting on
the cascade is obtained by considering the flow
field through » control volume that is fixed to a
cascade passage (fig. 3), The present analysis
assumes that the relat ive motion between neighboring
airfoils, a measure of which is the interblade phase

3



angle, 1s small and that the reduced frequency of
this motion 1s also small. The first assumption
impliss that the spatial variations of the flow
variables across a cascade passage are small and
thus can be neglected. The low-frequency assusption
suggests that the rate of change of mass and momen-
tum within the control volume is smaller than tne
net mass and momentum flux across the contro) volume
surface and thus will also be neglected. Based on
these considerations the |inearized momentum equa-
tion for the control volume illustrated tn figur. 3
can pe written as

Frep ~p )Y *(p, ~p_)t
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where F, ts tne force exerted by the airfoils on
the control volume, t is the pitch of the cascade,
wRel 15 the mass flow exiting the control volume,
and n; is the unit vector normal to the exit
plane of the control volume. {(This equation can be
derived Dy expanding the quasi-steady momentum eqQua-
tions for the control volume shown in figure 3 to
first order in perturbed variables. The cdetails can
be found in refererce 10.)
The work done by the aerodynamic force on an
airfoil over a cycle of motion is equal to
-~ -®
. 2w lk g '"1 .y
Whero = ~ 2 Re Fior tfasr ot} @b
0

where R [ ] denotes the real part of the expres-
sion and the asterisk superscript signifies the com-
plex conjugate of tne variable, The airfoil's
motion can be gescribeu dy

- Tk,X.
”l'hle ZZeH\t

~ ’X, ikt
e

where k;, the wave number in the X, direc-
tion, ie equal to k, = Zen. Equation (21) can be
integrated to yield

¥rero * "‘(Fi;:) (22)

where Jus [ ] represents the imogincry part ot the
expression within the brackets. At the onset of
flutter the aerodynamic work per cycle is equal to
the mechanical energy dissipated over a cycle, If
the mechanical dissipative force is proportional to
the velocity of the airfoil, the mechanical energy
dissipated over a cycle of motion is

Bk 10k, ahy  ahy Whg
¢ 11
b = 7 R (TT".T{?:!)“
(23)
where the damping coefficient C s defined as
M. q
Coylk q—‘d-' (24)

The variable & in this equation is the log decre-

ment of the mechanical damping, and is the
mass per unit length of a rotor blade. This vari-
able is defined as

M, = Koyte (25)

where K 1is a constant of proportionality, op s
the blade density, 1 is the average thickness of
the blade, and ¢ 1s its average chord length.
Introducing this equation along with equation (24)
into the inteor ated forw of equation (23) yields

% \t ,2fse =

Equating equation (26) with equation (22) and solv-
ing for ¢ establishes the minimum level of mech-
anical demping required for stability at an operat-
ing point as

P 1 1 - ~F
fomset * - K- win, [Jou(F 572)
Onset 'K(o ) Y 2( * ‘5 "2[ (2 ]
b 3 kb hlhl‘hzhz

(22)

The symbol Minyg, denotes the minimum vaiue of

the function uit‘ respect to k3. If the available
mechanical damping of a rotor blade exceeds this
critical level, any small dbending motion imparted to
the blade will decay in time. Hence the system is
stable and flutter will not occur. However, if
$0nset 15 greater than the availsble mechanice)
damping of a rotor blade, any small bunding motion
imparted to the blade will cause the blade to flutter.

RESULTS

For the flutter mode under study the amplitude
of the motion increases monotonically along the blade
span from the node line. For blades that are rigidly
fixed at their oot (i.e., mechenically constrained),
the node line can be assumed to 1ie outboard of the
blade platform (i.e., outboard of the aerodynamic hud
of the blade). The node line of the first flexural
mode of the rotor to be investigated later in this
section is approximately 20 percent of span height
outboard of the platfcrm. Thus, the vibratory motion
of the blade in the rotor at any spanwise section is

hy = ~€ sin o (20%) (28)

h, = & cos o (%) 129)
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where ¢ is m ampl itude of the motion at the sec-
tion and ¢ (V%) 45 the stagger angle at 20 per~
cent of span.

The aerodynamic work per unit of span at &
given radial location depends on the amplitude of
the motion of the section and the relative dynamic
pressure of the incoming streamline to the section.
Thus because both increase with distanze from the
hub, the tota) work done by the airstream on a blade
is strongly influenced by the unsteady flow field
surrounding the tip region. A simple calculation
shows that this influence is concentrated in the
outer 25 percent of the span. [f the outer-casing
boundary layer is assumed to influence the flow
field over 5 percent of the tip region of a blade, a
direct correlation might exist between the flutter
boundary of a rotor and a tw.-dimnsional cascade
whose geometry and dynamic response coincide with
that of the rotor at 85 percent of span (i.e., 2lge-
braic mean of 75 and 95 percent of span). The re-
sults presented in the remainder of this section are
based on this premise.

The objective of the first series of calcula-
tions is to establish the influence of reduced fre-
quency k, and interblade phase angle on the
aeroehst?c stability of a cascade of airfoils. For
this study a normalized damping parameter defined as

l-o- 1
s, = -
N zﬁ.migc

ik
. cos 5 (205) Jm (Fz o ke e-m) (30)

is calculated as a function of kp _and the inter-
blade phase angle. The parameter Bg aap in this
equation is the inlet stagnation density measured in
the absolute coordinate system. For &y greater
than zero the airstream is supplying energy to the
cascade. If the mechanical damping of the cascade
system is zero, the operating condition would be
unstable. For values of &y less than zero the
cascade is doing work on the airstream, and hence
the system is stable.

Tving equation (30) requires as input infor-
mation the steady-state inlet fliow properties, the
geometry of the cascade, and the frequency of os-
cillation. A set of loss and deviation-angle cor-
relations myst also be specified. The present
analysis makes use of the correlations derived in
reference 10. The steady-state inlet flow condi-
tions are derived from the blade-element data, mea-
sured at 85 percent of design speed, of the second
stage of the NASA 1450-ft/sec-t ip-speed two-stage
fan. This blade-element data set is reported n
reference 5. The cascade geometry represents the
geometry of the second-stage rotor element at 85
percent of span height from the hub.

Figure 5 shows & plot of &y as a function
of interblade phase angle and msucea frequency
ky for the second stage rotor operating at the
f?utter—ooundary at 85 percent of design speed.
This figure shows that the bencing flutter mode is
associated with a positive interblade phase angle
(i.e., implies that the vibration pattern is travel-
ing around the rotor in the direction of rotation).
The figure also shows that increasing the reduced
frequency stabilizes the motion 4t a constant inter-
blade nhase angle.

kX
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Figure 6 shows a plot of &y 4as a function
of interblade phase angle and percentage of design
weight flow along the 85-percent-speed line. For a
’wen interblace phase angle, decreasing the weight

low at constant wheel speed (i.e., increasing the
steady-state aerodynamic loading) tends to
destabilize the rotor.

The results presented in figures 5 and 6 are
also consistent with the observed characteristics of
supersonic bending flutter reported in reference 7.

A deficiency of the present theory, as shown by
the results in figures 5 and 6, is that it predicts
the damping, &y to increase monotionically with
interblade phase angle. This trend is physically
unrealistic, and is a consequence of the small
interblade phase angle assumption inhevent in actua-
tor disk theory. To overcome this deficiency an
additional assumption was incorporated into the the-
ory which limited the value of the aerodynamic damp-
ing. The assumption is made to replace o by sin
o everywhere in the analysis. This assumption is
mathematically constant with the actuator aisk
model. Figure 7 shows the results obtained with
this assumption incorporated into the amalysis.

For o] < 45, the modified analysis yields results
that are comparable to those obtained from the
original formulation. In aodition the modif ied
analysis prgdicts a finite maximum value for &y
for o« 9 . This maximum value for dasping is
equal to the value computed at o = 1 radian using
the original formulation. Experimental results of
reference 7 show that this value for o (i.e., 0=l
radian) corresponds rather closely to the measured
interblade phase angle of the least stable flutter
mode.

An additional validation of the modified analy-
sis as a flutter prediction system for supersonic
stall tending flutter can be established by showing
that, for a given rotor, flutter will pe observed
whenever the predicted maximum value of &y ex-
ceeds the ncrmalized structural gamping of a rotor
assembly, For this demonstration the measured flut-
ter boundary of a scaled model of Fan C of the NASA
Quiet Engine Program (ref. 6) is correlated with the
predicted boundary. The performance map for the
scale mode! (tig. 8) shows two flutter instability
zones. The first zone is torsiona) flutter that
occurs at part speed and lies close to the stall
line. Just above this zone lies a zone of benaing
flutter that appears to extend past 95 percent of
design speed. Only the bending flutter moge of this
rotor is analyzcd in this paper,

Figure 9 shows a plot of tne phase shift be-
tween the amplitude time history of a rotor blade
and the reference dlade No. 17 at the 95 percent of
design speed flutter point, The data impiies the
flutter moge is predominatly a 3 nodal diameter for-
ward traveling wave which corresponds to an inter-
blade phase angle of approximately 41°. This value
for the interblaoe phase angle of the flutter mode
correlates wel: with the data of reference 7 an¢
lies within tne unstable range predicted by the
analysis, Figure 10 shows the calculated maximum
nomalized aerodynamic damping for this rotor as a
function of weight flow and wheel speed. The re-
sults presented on this curve were calculated using
the blade element data recorded at tne five operat-
ing condition shown on figure 8. Th shodea region
on figure 10 represents the unstaoiv f utter
region, The boundary of tmis regior .4 estimated
by assuming a log decrement of 0,.U¢d for the mech-
anical gamping of the assembly (ref, 3). Hence all
operating congitions which have an aeroaynamic damp-
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ing level in excess of this value are assumed to be
witain the flutter region, while those that have an
aerodynamic damping level less than 0.025 are stable,
he results on figure 10 clearly show the
significant influence of wheel speea and aerodynamic
loading on the aerodynamic damping, The calculated
aerodynanic damping at 60 and 70 percent wheel speed
1ie significantly below the instability houndary.
No bending flutter was observed at these operating
conditions. At 90 percent of desi?n speed bending
flutter was observed near the stall region. The
calculated aeroaynamic damping for the near stall
operating point is seen to lie just inside the un-
stable region. Bending flutter was also observed at
95 percent of design speed near the stall boundary.
The calculated aerodynamic damping for this operat-
ing point lies well within the urstable region of
figure 10. At the intermediate opera*ing point on
the 95 percent speed line the calculated aerodynamic
damping falls below tAS instability boundary.
Therefore the predictea flutter boundary at this
wheel speed lies between the measured flutter bound-
ary and the intermediate operating point., Tran-
scribing the stability boundary of figure 10 onto
the Fan { performance map yields a thenretical flut-
ter boundary, which is shown as a dashed line on
figure 11. The measured operating conditions at -
which bending flutter occurred are shown on this
figure as solid symbols, The overall agreement
between theory and measurement is very good, with
the analysis slightly over predicting the extent of
the flutter boundary at 95 percent of wheel speed.
Below Y0 percent of wheel speed the analysis pre-
dicts the flutter boundary will bend back into the
stall region. This result is confirmed by the
experimental measurements.

The results presented in this section clearly
show that the current analysis can be used to pre-
dict the onset of supersonic bending flutter in un-
shrouded fans. The input variables to the analysis
can all be derived from fan structural and aero-
dynamic design variables. The governing equations
are swmple al?ebraic equations, and hence are easily
programmed. These features provide the designer
with a simple and reliable model for analyzing the
susceptibility of a fan design to supersonic stall
bending flutter. In addition it provides him with 2
tool that can also be used to evaluate proposea
fixes to an existing flutter provolem.

The engineering approximation introduced to
extended the range of validity of actuator aisk
theory appears reasonable. To develop a correct
first principles extension of actuator disk theory
to finite interblade phase angle for the flow
conditions as they exist at the tip of a rotor at
the onset of supersonic stall flutter would re-
quire a viscous transonic cascade analysis for
finite interblade phase angle. No such analysis
appears tu be forth coming in tne near future., Any
extension which is derived from inviscid aeroaynamic
theory would be an approximation, the result perhaps
being no more accurate then the simple extension
developed in this analysis,

CONCLUDING REMARKS

In the present investigation an analytical
mode! was developed to predict the onset of super-
sonic stall bending flutter in high-speea rotors.
The stability boundary predicted by the analysis was
shown to be in good agreement with the mesured
boundary of a high speed fan, The analysis also
predicted that the flutter mcde would be a forwarg
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traveling wave, be sensitive to wheel speed and
aerodynamic loading. This was confirmed by the
experimental measurements. In addition the amalysis
showed that reduced frequency and dynamic head also
play a stgnificant role in osnbl\sMn, the super-
sonic stall bending flutter boundary of an un-
shrouded frn,

Tnis analysis provides the designer with a sim-
ple and eff icient prediction tool which he can use
to analyze tne susceptidbility of a fan design tn
supersonic stall bending flutter.

APPENDIX A

SYMBOLS

b airfoil semichord

c average blade chord and damping coefficient
d circumferential distance around whee)

F‘ aerodynamic force

hl axial displacement of an airfoil

h, tangential displacement of an airfoil

' v

K constant

k reduced frequency based on circumferential

distance, wd/q__

kb reduced frequency based on semichord,
wb/q__

"2 wave number of disturbance along cascade
plane

M Mach number

"b mass of a rotor blade per unit length

N number of blades in rotor

n integer

n unit vector

P total pressure

p static pressure

q magnitude of velocity field

R radial distance

] entropy

T temperature

t time

u‘ velocity components

Un relative velocity component normal to disk

R rotational velocity



asrodynamic work per cycle of motion

Aero

% eneryy dissipated per cycle of motion by
mechanical damping

] mass flow rate

X, spacial coordinates

. incidence angle

(] flow angle

v ratio of specific heats; axial wave number

s log decrement; deviation angle, eq. (13),
eq (15)

.'l metal angle at leading edge

“2 metal angle at trailing edge

o' stagger angle

¥ solidity

£ amplitude of blade molion

' density

0 interblade phase angle

t cascade pitch or average thickness of 2
rotor blade

¢ velocity pot ntial

X total-pressure-loss coefficient

™ frequency of oscillation

SUBSCRIPTS

- upstream variable

- downstream variable

SUPERSCRIPTS

O steady-state variable

(") t ime-dependent variable

* compiex conjugate

Rel relative component
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Figure 2. - Typical tip rotor static-pressure distribution near supersonic stall
flutter boundary,
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