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FULL POTENTIAL SOLUTION OF TRANSONIC QUASI-3-D FLOW THROUGH
A CASCADE USING ARTIFICIAL COMPRESSIBILITY
C. Farrell and J. Adamczyk
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
ABSTRACT

A reliable method is presented for calculating the flowfield about a
cascade of arpitrary 2-D airfoils. The method approximates the
three-dimensional flow in a turbomachinery blade row by correcting for
streamtube converyence and radius change in the throughflow direction. The
methcd is a fully conservative solution of the full potential equation
incorporating the tinite volume technique on a body-fitted periodic mesh,
with an artificial density imposed in the transonic region to insure
stability and the capture of shock waves. Comparison of results for several
supercritical blades shows good agreement with their hodograph solutions.
Other calculations for these profiles as well as standard NACA blade
sections indicate that this is a useful scheme for analyzing both the design
and off-gesign performance ot turbomachinery blading.

INTRODUCT ION

Some very useful tools for the study of transonic flows have been
developed during the last few years. Conservative schemes, finite volume,
and artificial density have all contributed to acceierating progress in this

area. CLach has been applied to the analysis of external flow over isolated

airfoils in two and three dimensions with promising results.

In the area of internal flows the need to design lighter, more

efficient turbomachine components has led to consideration of machines with
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fewer stages, each with blades capable of higher speeds and higher loading.
As speeds increase, the numerical problems inherent in the transonic regime
have to be resolved. These include the calculation of imbedded shock
discontinuities and the dual nature of the governing equations, which are
elliptic in the subcritical flow regions but become hyperbolic for
supersonic zones. The development of supercritical blade design has
eliminated some of these difficulties by returning to the hoaograph plane
and explicitly cesigning blades that will be shock free. However, unlike
the case of external wing aerodynamics, undesirable of f-design conditions
can develop much faster in turbomachinery flows and are not readily
controlled or easily corrected. For these reasons the study of off-design
conditions (high incidence, shocks, etc.) will remain a major requirement
for internal flows. In aadition, the periodic nature of the geometry for
turbomachine components adds another gegree ot complexity which contributes
to the importance of grid generation as another area of study in its own
right.

The present analysis combines some of the most promising transonic
analysis techniques to caiculate tne flowfield surrounaing a cascade of
airfoils. The full potential equation in conservative form has been
discretized at each point on a body-fitted periogic mesh and a mass balance
calculated through the finite volume surrounding the point. Each local
volume is corrected in the third dimension for any change in streamtube
thickness along the streamtube. Each is also corrected in the tangential
y(re) direction due to any change in the radial position of the streamtube
from upstream to downstream. The final result is a trigiagonal matrix
formulation involving putential corrections at each grid point as the

unknowns. The right hand side of each equation is equal to the net mass




flux through a volume. The resulting system of equations is solved along
each grid line by an SLOR procedure. At points where the Mach number
exceeds unity, the density at the forward (sweeping) edge of the volume is
replaced by an artificial density as suggested in reference 1. This
artificial density is a function of the real gas cansity and its streanwise
derivative.

In the following sections, two body-fitted mesh generators that were
incorporated into the resulting computer code are discussed. The full
potential equation in finite difference form is also reviewed along with
details on the solution method employed. Subsonic and transonic
calculations using this method on a NACAQUlZ profile are compared to other
computational procedures. Results for several supercritical blade designs
of Sanz are compared to their hodograpn solutions. The quasi-3-U
capabiiities of the method are compared to results from reference Y.

MESH GENERATION

The flowtield is aiscretized using a body-fittea, periodic O-type
mesh. Two techniques were developed to generate computational grigs. The
original grid generation technique, referred to here as the interpolation
scheme, is near-orthogonal and combines the use of analytical functions,
interpolations, and simple stretchings. No numerical system must be solved
for the generation of the grid. The secona methoa, an electrostatic analog
was developed when the grigs generated by the interpolation scheme were
found to be unsatisfactory for cascades of high camvoer, thickness, and
soligity.

Interpolation Scheme

A summary of this procedure is shown in figure 1. As suggested in

reference 2, beginning with the orthogonal, computational plane,
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the transformation to a physical (x,y) plane as described by the Jacobian

elliptic functions sn, cn, and an(3), is given as:

X = %;[in<% -2 1n %J )
S

y =2
where
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and
A = stagger angle
s = blade spacing
¢ = chord (1)

2 2 1/2
T = [(Fn(n.m) . an(:,ml)) + <Fn(n.m) . dn(n,m) . sn(g,ml) . cn(c,ml))

T's cnz(t,ml) +m., snz(n,m) . snz(:,ml)

-1 cn(n,m) . dn(n,m) . sn(z.ml) . cn(c.ml)
2 = tan sn(n,m) « an(g,m;]

m:kz

2
mlzl-k J

with K, the complete elliptic integral of the first kind for m,K(m) ang
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The specified geometric parameters of chord, stagger angle and blade
spacing are sufficient to perform the analytical transformations aescrivea
by equations (1). After computing K and K' for a blade spacing of
s = 2r and for zero stagger, values of n and ¢ are then selected at
equal intervals (or at weighted intervals if the grid is to be dense near
the body or at the trailing edge). Tables of (x,y) for corresponaing {(&,n)
points are generatea using equations (l). In the Cartesian plane this gives
an orthogonal coordinate system about a cascade of flat plates at zero
stagger. An example is shown in figure 2. From this, the contormal

transformation to a circle is (4),

. -i § i §
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where ¢ = & + ic 1in the circle plane, and the stagger, i, is zero.
Equation (2) is easily inverted to obtain (é,c) taoles if

A= 0

S = 2w
which was the Justification for the original calculation of K and K'
noted above. The parameter R in equation (2) represents the locations of
the upstream and downstream infinity points in the conformal plane. It is a
function of cascade solidity (c/s) ana stagger angle and can be interpolatea
from information in reference 4 for the specifieo values of stagger and
spacing. This same R 1is used in calculating (é,¢c) for the zero stagger

transform.




The resulting circle is then rotated by applying the exponantial terms
with the correct stagger and desired spacing, s, to equation (2). The
calculated values of 2 *n the Cartesian plane then give an orthogonal gria
about a flat plate cascade at the desired stagger angle and solidity.

Figure 3 is an example of such a mesh.

The final step in generating this computational mesh is the adjustment
of the flat plate grid sc that the innermost ellipse coincides with the
specified blade shape. This is accomplished by performing a straightforwara
Newton iteration alony each line of constant ¢ which intersects the flat
plate. The three unknown; to be determinea at the intersection of each
t-line and the bouy are x, y, and n. The three equations requirea are
equations (1) and

y = F(x)
where F 1s a tabular tunction giving the specified boay shape.

A successful iteration yields (x.y)oody and npogy Where

UD<n K

oody <
for most blade surfaces, or

0<Kc “body

for the pressure surface of blades whose chordiine lies outside the

blade. The coordinates (“'y)body replace the point on the flat plate

where the {-line endea. Al1l other grid points on this {-line are shiftea by
means of a simple linear stretching function that reflects the reviseu

length of the {-line:

n
boay
K-=x" "
X =

(x5 - xplate) * *plate (3)
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and similarly for each y,. Completed grids are seen in figures 4 ana 5
for several typical blade shapes. This mesh generation scheme has no
problem with larger stagger angles (a75°) nor with high solidities. Cases
with c/s = 1.45 have been attempted with good results. However, if the
turning angle or camber of the blade is high, while at the same time,
stagger and soligity are near the limits mentioned above, the grid lines may
become crowded on the suction surface. This is common for turbine olade
geometries.

Electrostatic Analog

An Electrostatic Analog has been developed to generate body-fittea
orthogonal grias for cascaues of large turning thickness ana soliagity. The
development of this grid generation scheme begins by considering the
potential field generated by an infinite spacial array of point charges in
free space. The density ot the charges is assumea to alternate between plus

and minus one. The mathematical expression tor this field is given by

Xz -z = 2 (-1)Mniz - z - ins) (4)

Nz o0

where (z - z;) is the complex potential, z = x *+ iy, z; the location
of the Oth charge, 1 = "-1, and s the aistance between charges.
Equation (4) can be evaluated in closed form by utilizing the theory of

calculations of resigues (ref. 5). Tne result is

oo n . (z - zU)v
X(z - zU) = nz-:«o (=1)"1In(2 - z0 - ins) = 1n tanh —7 (5)

(Note that this expression is periodic in y with period 2s.) The
potential fie.d generated by gistributing these funadamental solutions over

the surface of an airfoil in the cascade is given by the integral

— T




v(2) = 7(10)Jf(l - zO)ozo (6)
S/ |

where v(25) is the yet unknown source density distribution. On the
surface of the airfoil (i.e., 2¢clL) tne real part of w, L, will bDe set equal
to one,

Real y(z) = 1 2el (7)
At large gistances upstream and downstream of the cascade {(z) is assumed

to approacn zero. This far-field conagition imposes the requirement that

lmf v(z,)azy = 0 - (8)
L

Equation (6) evaluated on the airfoil surface in conjunction with equations

(7) and (8) forin the integral equation

1 = Real {/ y(zo)x(z - zo)ozo} s el

L
(9)

0= lmf vizglazg
L

for the source density function. Once y 1is known, the entire potential
field can in theory be computed by direct integration of equation (b).
Equation (9) is a singular integral equation, which can be solved by
paneling procedures similar to those used in solving potential flow
problems. To employ these procedures one must first factor out of the
integral equation its singular behavior. For this problem the factor form

of equation (9) is

e el

e e R —




(2 - zp)
~ 1 « Real 1(zg)1n _T— az,
: L
(2 - lo)v
. + v(z,)1n -(-———-)— tanh —y—— dz, (10)
L

Next the airfoil surface is divided into a series of lin2 segments. Over
each of these segments v(2,,) ana In{2s/(z - Zg)w]tann((z - 2;)v/2s)
are approximated by their value at the midpoint of the segment. Tne

singular part of equation (lu) is thus approximated as

2y

(z-z)n

(z - z4)
1(20)10 -_?_Si 020 (T/ [(Z -2 )ln -T_

3
(z - za)-
- (2 -2)In ——r (12)
with the regular part approximated by
2y
(2 ~ 2,)w
2$ 0
1(20)1n ok tanh 5 gz,
Z,
. 25 (z - zo)- )
= 1(20)(20 - Za)lﬂ -(z—_—-i—-u): tanh 3 (1¢)
L . 2 * 2,
V) 2

The auxiliary condition is approximated by

h-n—.._ e LD AT e e s s
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b 3
2, * 2,
Im y(zo)dzo o Im<y —_— (zb - z‘) (13)

2a

Introducing equations (11), (12), anc (13) into (10) and restricting the
value of 2 to the mid-point of each line segment leads to & system of
linear algebraic equations for the source density aistrivbution. The
solution of these equations can be obtained by standard matrix methods.
With y known, the complex potential fiela surrounaing the cascade can de
determined from equation (6j. Tnhe real part, n and the imaginary part,
of this field form a periodic orthogonal boay-fitted coorainate system. A
typical coordainate system is shown in figure 6. The contours n = constant
enclose the airfoil, while the curves (= constant project trom the
airfoil to the perioaic oounaary n = U. The line extending to upstream ana
downstream infinity are ¢ =+ L, and ¢{ = 0, respectively.

Presently this grid generation scheme utilizes the direct integration
procedure outlined above for constructing the pounding curvilinear
coorainate. for the otner gria lines, on the interior of the mesh, however,
the direct procedure proved to be inefficient because of slow convergence.
To overcome this giftficuity an inverse procedure was developed in which { ,n
become the independent variables ang x,y the dependent variavles. This
inverse procedure i1s constructed by first noting that the field conversion

for the electrostatic potential and flux is the Laplace equation

vzz.u.vé\.o (14)

Inverting these equation yields

1
-
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as the governing equations for the inverse mapping (1.e., x « x(f,n),
Yy = Y¥(&m)).

The solution of the field equation (15) subjected to bounaary
conditions consistent with the coorginates of the pounding curvilinear
curves yields the desired interior coordinate curves. A second sample grig
for a highly compinec thick turbine blade generated by the above procedure
is shown in figure 7. It is seen that the grid 1s hignly regular with
clustering of grid points in regions of rapia flow variations. The
periodicity of the grig is quite apparent ana leaas to simple nuinerical
approximation of flow variables in the neighborhood of the periodic
boundary. Flow computations applying this grid generation procedure are
presented later in the paper.

SOLUTION METHOU

Governing Equations

The equation to be solved is the 2-D steady, compressible

tull-potential equation 1n its conservative form
(o0,), * (ooy)y =0

Similar to the approach taken by several others (7, 12), this equation is to
be written at the finite volume =:ement which surrounds each grid point.
With superscript n referring to the artificial time step, a typical

formation at each gria location (i,j) 1is
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with,

(16)

n+] n n
01,5 04,5 * wby
then
L") = (o]70), ¢ (o071, = 0 = L0B™ + Liet™) « w(ot™ (et (17)

or

_ M

L(ao?'j)- - v(oé")i.j - 7

where 7, j is the volume of the local element, w is the over-relaxation

parameter, 867 . 1is the unknown change in the local potential field

+J
and Ri j 1s the residual net mass flow out of the finite volume Sur-
]
rounging the gria point. Expanding equation (17) in finite difference form:

n-l n

n n
o .(6‘1*1.3 i 1) IS o 1 Bl S W
n ]"]/2"] X]‘L’j - X‘lj "1/2’3 xi.j - xi-l.j
L(é"‘i,J) =

Rislr2,5 - Mi-1/2, ]

n n n n
o" (“i.m - “m) S (“i..i‘ “i.a'-l)
ACA VTR DNt g ) R g
1/ .

Vij*12 - Vi,3-1/2 i0d

Each volume element is defined by the four surfices parallel to ana locatea
halfway between neighboring grid lines as shown in figure 8, The tnickness
of the element (i.e., relative local streamtube height) is obtained from a
specified height distribution or is set to unity for strict two-dimensional
flow. Variations in the radial (spanwise) position, r, of the streamtube
are accounted for by scaling all tangential re coordinates, (y) with a
ratio of local radius, r, to a given upstrean radius, ¥_o Then, over the

area, Ac defined by the four surfaces of the volume element
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— n =n :
Rig ™ / ou dA = E (’ii.llZ.j"iﬂIZ.J‘1'*112,.)"131/2,,1
VA
E

n -N
+°i-Jt112“i.J:t1/2'i,,jﬂ/z"i,jﬂlz) (19)

where h is the local streamtube height normalized to unity far upstream,
The velocities, u, are normal to the element boundaries and located at the
boundaries. Velocity, u, and density, p, are calculated using the values of
potential at the previous iteration.

Using equation (17) and isolating all unknown potential corrections un

the left-hand side, equation (18) can be expressea in the form

n n n n B
Ai, el 803,501 T Ry 85,5 A 5o 8 g = Ry (20)
where
non_.n

QI,J = R\,J + G(‘ Y |6‘i_1) (21)

and the coefficients

. N

A= Ao ,AC.A!\) (22)

By writing equatior (20) for each point on a grid line of constant ¢
(j = 1,d) a tridiagonal matrix system is formed which is then solved by the
standara Thomas algorithm (ref. 6) for tne potential corrections so".
New values of the field potential are obtained using equation (16) after ail
lines are sclved (i = 1,1).

Sweep Strategy

The grid lines are solved in order beginning with the line which goes
to downstream infinity and then proceeding clockwise arouna the blade
shape. This order results in a solution which sweeps against the flow

direction on the bottom (pressure) surface of a compressor blade at positive

AT e L afak e e L
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incidence, where the flow is more likely to be subcritical. This minimizes
the chances of sweeping against a supersonic flowfield. It became evident,
when symmetric supersonic flows were Successfully solved, that direction of
sweep s not critical, The apparent reason is that additivnal damping is
applied by the elliptic-like nature of the artificial density usea in
combination with the sweep strategy. More detail on this effect is
described in the next section.

Artificial Density

In equation (18), there is no explicit artificial viscosity term
necessary for stability in supercritical flow regions and for smearing
shock jumps. As suggested by Hafez, et al. (ref. 1), an implicit viscosity
term is incorporated in the density, This modified density is used instead
of the physical density in equation (18). The form of the modification

is (1)

P =0 - upg as (23)

where y 1is the switching function to eliminate the density modification in
subsonic regions (M < 1)

b= max(O. l - #)

and e¢ a5 is the total differential component of the density in the flow
direction, S, defined by the contravariant velocity components a and b,

Then:

Meg AS = ¥, % ° an * ¥p % D‘At (¢5)

where,
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The switching function was split into two terms so that the effect of each
component of the density change could be even more efficiently gauged in

areas of high flow gradient. 1n addition, an upwind averaged Mach number

was used:
i 1 )
uy = max {0,1 - g?- , where Mava =3 ("i+1/2.J * Mi*lIZ-J*J)
av
a
# (20)
1 1
Vp = max 0,1 - ;4?"" » where Mayb -7 (M]*l/Z,J * M\*‘ll&tlaj)
avy
/

Similarly, Upwind differencing is used for approximating o and

0 The physical densities used to calculate and o, are updated

t
as each line is reachea., Implicit in this arrangement is the creation of a
timelike cross derivative of density, Pgys When sweeping against the flow
direction. This 1s because tne density at tne current line has been
calculated using the values of potential and velocity at the latest
iteration (i,e., artificial time step), while the values at the next
upstream line, where the upwind difrerences are formed, remain at the
previous time step until 1t in turn is solvea. However, when sweeping with
the flow, the upstream line from which the density gradients are formed has
already been solved and updatea. Thus this additional damping due to the
time lag of densities is not present when solving with the fluw and the

artificial compressibility reduces to the original space-liag only.

Boundary Conditions

The boundary conditions apoliea to the solution system include a
specified upstream axial mass flow in the form of an oncoming Mach number,
plus incidence and stagger angles. Using global continuity,

PaeYteree = P_ Y A o (27)
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where A is the flow area normal to the streamtube.

The specified flow angle at downstream infinity together with a simple
{teration procedure on the isentropic density ratio gives the downstream
Mach number boundary condition. For a stagger angle, A, and upstream

incidence (chordwise) of a__, equation (27) can be rearranged to yiela

+1 Y+l
2(v-1) A 2(v-1)

M, 1 -F(M.J-F-c-gs—:—':n”___l_r_é_
1+17'__.I Mi +eo €05 Pug = 1"-7-—2-—04_“°
(28)
where
Bz a * A

Using a straightforwara Newton iteration on equation (28) yields M, From

this tie relative soeed ratio is available as:

2 1/2
+
O .WM”""’ - ! L:I"'” (29)
q—ce -cca—ce 1 ¢+ < MZ

1_ c

Periodicity is maintained in the tangential (y) direction by enforcing the
relation

¢(x,y +s) = #(x,y) + C (30)
where s 1is the blade spacing and

(x,y*s)
C = V., df . v § (31)
-0 =

o0

(x,y)

On the grid line defining the body, a standard zero normal flow

condition is imposed

V8 .N0el (32)

vy
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RESULTS

Some results obtained from these methods are shown in figures 9
through 21. Verification of the code at low speed is provided in figure Y
by the comparison to the methods of Caughey (ref. 7) for the NACAQOl2 blaae
shape. The transonic nonlifting case is shown in figure 10 for this same
blade. The shock strength and location agree well with similar results
using the methods of reference 7. The solution is surprisingly symmetric,
particularly 1n light of tne fact that the solution on the lower surface was
obtained by marching against the supersonic flow and the upper surface was
obtained by marching with the flow. This relative shift in marching
direction occurs because the solver was written such that it makes one
continuous clockwise sweep of all grid lines around the airfoil. Thus there
is a primary difference between tnis methoa and other transonic tecnniques.
It is apparently insensitive to the relative direction of the supersonic
flow. For the cases tested thus far, trhis insensitivity to flow girection
does not seem to be affected Dy mesh size (down to aX = 2 percent chord).
The symmetry of the solution can be seen very effectively in the isonacn map
of figure 11.

The sensitjvity of the system to a near-shock condition car be seen in
the results for the supercritical blade shown in figurz l¢. This is a
compressor stator tip section designed for NASA-Lewis by Sanz using a method
based on Bauer, et al. (ref. 8). The trailing edge ends in a cusp. The
fast recompression is captured well without any over-reaction or steepening
into a shock.

The capadbility to approximate moderate 3-D streamtube effects is
demonstrated in figure 13 where both the strict 2-D flow and quasi-3-D flow,

as corrected for a given streamtube convergence profile, are compared for

e
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the double circular arc stator of figure 5. Agreement is excellent with
results using the method of reference 9. For this case there was a
7-percent gradual contraction in the streamtube from far upstream to far
downstream. In addition, the streamtube varied its position along the span
(radial shift) by 0.7 percent over the same distance, a negligible effect.
The resulting isomach map is shown in figure 14.

A comparison of results for a typical turbine blade section is shown in
figure 15. The blade used is designated as the AACE(II) airfoil by
R. A. Delaney, to whom we are grateful for supplying the coorainates and
experimental data (ref. 10). Agreement is good on the pressure side, but
the calculated envelope is slightly low on the suction surface. This is
consistent with tne metal blade coordinates used in this inviscid
calculation. If a suitable boundary layer analysis were incluged and
displacement thickness added to the profile, the suction surface calculation
would more accurately matcn the experimental data. The location of each
peak in speed is predicted accurately, even near the trailing edge, despite
the inherent difficulty for potential flow methods to go around sharp bends
¢t high velocity without some artificial limitation on calculated speeds.
Such limits were not necessary for the coarse mesh used for figure 15 (26
points around the blade). However, finer meshes were unsuccessful without
some artificial barrier imposed on Mach number,

Figure 15 also gives an interesting comparison between the two mesh
generators described earlier. The results for both grids are virtually
identical in the subsonic region as would be expected. In the high-speed
region, the exact-orthogonal mesh (electrostatic analog) appears to be
slightly more conservative overall than the near-orthogonal grid.

Subsequent experience with otier Jenser meshes showed that tne

e I Y
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exact-orthogonal mesh provided more stability in high gradient areas, such
as the trailing edge. Figures 16 and 17 give views of the two grids used
for the calculations of figure 15. An isomach map for the AACE(1]l) turbine,

using the near-orthogonal grid, is shown in figure 18.

As a final example of tne importance of streamtube effects on

supercritical blade design, figure 19 shows a series of calculations

performed on a thick compressor stator hub section developed for NASA-Lewis
by Sanz (via ref. 8). The present method was first used to calculate the
strict 2-D flow over the blade. This is seen to agree very well with the
Sanz hodograph design envelope except at the trailing edge, where the
idealized blade of infinite length (hodograph solution) was replacea by a
cap of constant radius to connect pressure and suction surfaces for the
present method. The remaining two curves are quasi-3-0 cases which
hightlignt tne effect of changes in spanwise (raaial) position of the
streamtube. Both cases involve a streamtube thickness cnhange of about

-14 percent (AVDR = 1.15). The axial distribution of this tnickness change
(h/h__) as well as the distribution of spanwise streamtube position

(rlr_u) as shown in figure 1Y were obtainea for this Sanz hub section by
using the Katsanis meridional plane computeri,program (ref. 11). The results
are typical for a section near the hub wall with thickness aecreasing, and
spanwise positicn increasing about 5 percent. One quasi-3-D case in

figure 19 has only the thickness change applied, with ragius held constant.
The other case nas both thickness and radius cnange. Note that the
increasing radial position of the streamtube has a strong decelerating
effect on the flow since the blade-to-blade passage now diverges (re larger
at trailing edge than at leading edge). A aesign using this result could

tolerate higher blade flow rates than one wiich ignored these radial effects,
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Figure 20 shows the isomach map for the case of thickness variation
only. The shock appears as expected near 40 percent chord. Figure 21 is
for the case of both thickness and radius variation. Note that the shock
has washed out and flow in the passage has decelerated.

CONCLUSIONS

A reliable method has been presented for calculating the flowfield
about a cascade of arbitrary 2-D airfoils which can be made to approximate
the three-dimensional flow in a turbomachinery blade row by correcting for

streamtube convergence and radius shift. The method is a fully conservative

solution of the full potential flow equation using a body-fitted periodic

mesh, with an artificial density impcsed in the transonic region to insure
the capture of shock waves. A computer code nas been developed using the
methods described above. It has been tested using a variety of j
turbomachinery and general blade profiles. The calculation of a shocked
symmetric NACA blade has verified that this method is insensitive to the
relative airections of supersonic flow and SLOR sweep. Comparison of
results for several well-known supercritical blades has shown satisfactory
agreement with their hodograph solutions. The approximation of moderate 3-D
streamtube effects was demonstrated by a good comparison between this method
and results using the Katsanis coae on a OCA compressor stator. 2-0 and
quasi-3-D calculations for a supercritical compressor stator indicated that
the moderate 3-D effects included in this method are important enough to
radically affect design considerations in high-speed regions of the blaue. i
These results all indicate that the method aescribed is a useful one for

analyzing off-design performance of turbomachinery blaaing.
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APPENDIX A
LIST OF SYMBOLS
(eqs. (20)(22)) variable coefficient of change in potential for
field equation
(eqs. (27)(28)) flow area normal to the streamchannel direction
(eq. (19)) total surface area of finite voiume element
contravariant velocity component (n direction) in computational

space

contravariant velocity component ({ direction) in computational space

circulation about tne airfoil as defined by the given values of
flow angle

blade chord

length of passage along x-axis, from leaaing edge to trailing edge
when blade is at setting angle

tabular function of body shape (x,y) pairs

transposed terms in field equation involving known (previously
determined) potential corrections

local streamtube height normalized to unity far upstream

complete elliptic integral of the first kind for (kz)
NG at/V1 - 2 sintt

complete elliptic integral of the first kind for (1 - kz)

complex electro-static potential field generatea by infinite array
of point charges

e~(nC) /(s €05 A) ,orameter, defined by cascace geometry, for
obtaining Jacobian elliptic functions

full potential operator (eq. (17))

length of bounding surfaces for finite volume (see fig. 8)
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Mach number

k2

unit vector, normal to airfoil surface

magnitude of flow speed, normalized to unity at far upstream
conditions

residual net mass flow out of a finite volume using potential
values from previous iteration (eq. (1Y))

R + G, total residual right hand side for field equation at each
volume

local spanwise radial position of streamchannel normalized to unity
far upstream

flow girection as defined by contravariant velocities a and b in
equation (&5)

blade spacings

a combination of Jacobian elliptic functicns, defined in equa-
tion (1)

x-componert of velc:ity in the physical plane

total physical velocity vector, ui + v3 (eq. (31);

y-component of velocity in the prysical plane

streamwise position coordinate, i.e., in figure 4 x-axis is
horizonal

tangential position coordinate, i.e., in figure 4 y-axis is
vertical

coordinate to transform a physical point to complex plane,
2= x + iy

coorainate of beginning of one line segment. Blade is diviaded into

segments in solving for electrostatic analog grid
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a3

coordinate at the end of a segment of the blace surface

coordinate of zeroth charge for electrostatic analog

incidence angle of flow as measured from chordline of blade

angle of flow as measured from x-axis

ratio of specific heats

(electrostatic analog grid procedure). Source density distribution

defined in equation (1)

abscissa coordinate in the plane of tne conformal circle transfor-
mation (interpolation scheme, eq. (2))

change in the local potential field, the unknowns in equation (18)

ordinate in conformal transformation plane (eq. (2))

coordinate in computational space whose contours in pnysical space
radiate from the blade and terminate on the periodic boundary

coordinate in computational space whose physical contours Surround
the airfoil

tangential coordinate in radians, y = re

stagger or setting angle of the blade row, as measured from x-axis
to chordline

switch function to control the artificial density modification
(eq. (24))

3.14155265

physical density

artificial density as described in equation (23)

flow velocity potential function

electrostatic potential function due to cnarge distribution on
blace surface (eq. (6))

over-relaxation parameter, 1 < w< 2

definea in equation (1)
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Subscripts:
i position on computational plane in f-direction
| position on computational plane in n-direction
X differentiation with respect to streamwise position coordinate, x
y aifferentiation with respect to tangential coordinate, y
4 differentiation with respect to ¢
n differentiation with respect to ¢
- conditions at far upstream station
+o far downstream conditions
Superscripts:
n artificial tim: step (iteration level)

- bar) (eq. (1Y) and fig. 8) average over the length, %, of the velocity

component normal to the element surface along ¢
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Figure 1(a). - Analytical transformation steps for near-orthogonal grid development.
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Figure 1(b). - Interpolation and shear transformation steps for near-orthogonal grid development.
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Figure 2. - Flat plate cascade at zero stagger,

Figure 3. - Flate plate cascade rotated to desired stagger angle,




Figure 4. - Near-orthogonal mesh for a symmetric blade,
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Figure 5. - Near - orthogonal mesh for a double circular arc
compressor stator.




Figure 6. - Typical mesh generated by electro-static analog procedure
for a turbine blade with trailing extension.

Figure 7. - Computational mesh developed by electrostatic analog
procedure for another thick turbine blade,
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Figure 9. - NACAOO12 cascade nonlifiting subsonic results,
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Figure 10, - NACA0012 cascade nonlifting transonic results,
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< Katsanis (9) 2D
O Katsanis (9) 3D
® Present method 2D
O Present method 3D
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Figure 13. - Comparison of 2D and 3D results for DCA
compressor stator,

Figure 14. - Isomach map for quasi-3D case of
DCA stator using present method.
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Figure 16, - Near-orthogonal coarse mesh for DDA AACE(II) turbine

cascade,
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Figure 17. - Exact orthogonal coarse mesh for DDA AACE (Il) turbine
cascade,

Figure 18. - Isomach map of DDA AACE (1I) turbine using
the near-orthogonal mesh,




La— Sanz, hodograph design curve
®  Present method, strict 2D

A A Present method, ho/N_oo® .88, M/l oo 1.00
O  Present method, Neo/N_go® .88, e/l oo L 05

L2
A
Lo o
A
®
8 A

Surface Mach number
o
|

Al > TLZ
00 0 & 009
600000 \
Al ([ S — L0

_—hih_o,

<><><>/<><><>

I NN N (N IR M i
-2 0 oL .4 .6 .8 L0 |

xlc

Figure 19. - Effect of streamtube's radial position and thickness on flow about a
supercritica! compressor stator hub section.
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