NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Small Passenger Car
Transmission Test—
Dodge Omni A-404 Transmission

September 1980

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Under Contract DEN3-124

for
U.S. DEPARTMENT OF ENERGY
Conservation and Solar Energy
Office of Transportation Programs
Small Passenger Car Transmission Test—
Dodge Omni A-404 Transmission

M. P. Bujold
Eaton Corporation
Engineering & Research Center
Southfield, Michigan 48037

September 1980

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135
Under Contract DEN3-124

for
U.S. DEPARTMENT OF ENERGY
Conservation and Solar Energy
Office of Transportation Programs
Washington, D.C. 20545
Under Interagency Agreement DE-AL01-77CS51044
The Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976 (Public Law 94-413) authorized a Federal program of research and development designed to promote electric and hybrid vehicle technologies. The Energy Research and Development Administration, now the Department of Energy (DOE), which was given the responsibility for implementing the Act, established the Electric and Hybrid Vehicle Research, Development, and Demonstration Project within the Division of Transportation Energy Conservation to manage the activities required by Public Law 94-413.

The National Aeronautics and Space Administration under an Interagency Agreement (Number EC-77-A-31-1044) was requested by ERDA (DOE) to undertake research and development of propulsion systems for electric and hybrid vehicles. The Lewis Research Center was made the responsible NASA Center for this project. The work presented in this report is an early part of the Lewis Research Center program for propulsion system research and development for electric vehicles.

The work described in this report was conducted under Contract DEN3-124 with the National Aeronautics and Space Administration (NASA) and sponsored by the Department of Energy through an agreement with NASA.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY............</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION.......</td>
<td>2</td>
</tr>
<tr>
<td>EQUIPMENT TESTED...</td>
<td>3</td>
</tr>
<tr>
<td>TEST APPARATUS.....</td>
<td>4</td>
</tr>
<tr>
<td>TEST PROCEDURES....</td>
<td>16</td>
</tr>
<tr>
<td>TEST RESULTS.......</td>
<td>26</td>
</tr>
<tr>
<td>DRIVE PERFORMANCE COVER SHEET..................</td>
<td>27</td>
</tr>
<tr>
<td>Drive Performance 1st Gear Input Torque = 10 lb-ft</td>
<td>29</td>
</tr>
<tr>
<td>" " " " " " " " " " 20 lb-ft</td>
<td>34</td>
</tr>
<tr>
<td>" " " " " " " " " " 30 lb-ft</td>
<td>39</td>
</tr>
<tr>
<td>" " " " " " " " " " 40 lb-ft</td>
<td>44</td>
</tr>
<tr>
<td>" " " " " " " " " " 50 lb-ft</td>
<td>49</td>
</tr>
<tr>
<td>" " " " " " " " " " 60 lb-ft</td>
<td>54</td>
</tr>
<tr>
<td>" " " " " " " " " " 70 lb-ft</td>
<td>59</td>
</tr>
<tr>
<td>" " " " " " " " " " 80 lb-ft</td>
<td>64</td>
</tr>
<tr>
<td>" " " " " " " " " " 90 lb-ft</td>
<td>69</td>
</tr>
<tr>
<td>DRIVE PERFORMANCE COVER SHEET..................</td>
<td>74</td>
</tr>
<tr>
<td>Drive Performance 2nd Gear Input Torque = 10 lb-ft</td>
<td>76</td>
</tr>
<tr>
<td>" " " " " " " " " " 20 lb-ft</td>
<td>81</td>
</tr>
<tr>
<td>" " " " " " " " " " 30 lb-ft</td>
<td>86</td>
</tr>
<tr>
<td>" " " " " " " " " " 40 lb-ft</td>
<td>91</td>
</tr>
<tr>
<td>" " " " " " " " " " 50 lb-ft</td>
<td>96</td>
</tr>
<tr>
<td>" " " " " " " " " " 60 lb-ft</td>
<td>101</td>
</tr>
<tr>
<td>" " " " " " " " " " 70 lb-ft</td>
<td>106</td>
</tr>
<tr>
<td>" " " " " " " " " " 80 lb-ft</td>
<td>111</td>
</tr>
<tr>
<td>" " " " " " " " " " 90 lb-ft</td>
<td>116</td>
</tr>
<tr>
<td>DRIVE PERFORMANCE COVER SHEET..................</td>
<td>121</td>
</tr>
<tr>
<td>Drive Performance 3rd Gear Input Torque = 10 lb-ft</td>
<td>123</td>
</tr>
<tr>
<td>" " " " " " " " " " 20 lb-ft</td>
<td>128</td>
</tr>
<tr>
<td>" " " " " " " " " " 30 lb-ft</td>
<td>133</td>
</tr>
<tr>
<td>" " " " " " " " " " 40 lb-ft</td>
<td>138</td>
</tr>
<tr>
<td>" " " " " " " " " " 50 lb-ft</td>
<td>143</td>
</tr>
<tr>
<td>" " " " " " " " " " 60 lb-ft</td>
<td>148</td>
</tr>
<tr>
<td>" " " " " " " " " " 70 lb-ft</td>
<td>153</td>
</tr>
<tr>
<td>" " " " " " " " " " 80 lb-ft</td>
<td>158</td>
</tr>
<tr>
<td>" " " " " " " " " " 90 lb-ft</td>
<td>163</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
TABLE OF CONTENTS (cont'd)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSS SECTIONAL ROAD LOAD PERFORMANCE COVER SHEET</td>
<td>168</td>
</tr>
<tr>
<td>Cross Sectional Road Load Performance 3rd Gear</td>
<td></td>
</tr>
<tr>
<td>Output Torque</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>175</td>
</tr>
<tr>
<td></td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>190</td>
</tr>
<tr>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>COAST PERFORMANCE COVER SHEET</td>
<td>215</td>
</tr>
<tr>
<td>Coast Performance 1st Gear Converter Torque = 10 lb-ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>227</td>
</tr>
<tr>
<td></td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>242</td>
</tr>
<tr>
<td>COAST PERFORMANCE COVER SHEET</td>
<td>247</td>
</tr>
<tr>
<td>Coast Performance 2nd Gear Converter Torque = 10 lb-ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>254</td>
</tr>
<tr>
<td></td>
<td>259</td>
</tr>
<tr>
<td></td>
<td>264</td>
</tr>
<tr>
<td></td>
<td>269</td>
</tr>
<tr>
<td></td>
<td>274</td>
</tr>
<tr>
<td></td>
<td>279</td>
</tr>
<tr>
<td></td>
<td>284</td>
</tr>
<tr>
<td>COAST PERFORMANCE COVER SHEET</td>
<td>289</td>
</tr>
<tr>
<td>Coast Performance 3rd Gear Converter Torque = 10 lb-ft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>306</td>
</tr>
<tr>
<td></td>
<td>311</td>
</tr>
<tr>
<td></td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>321</td>
</tr>
<tr>
<td>NO LOAD LOSSES COVER SHEET</td>
<td>326</td>
</tr>
<tr>
<td>No Load Losses</td>
<td></td>
</tr>
<tr>
<td></td>
<td>328</td>
</tr>
<tr>
<td></td>
<td>330</td>
</tr>
<tr>
<td></td>
<td>332</td>
</tr>
<tr>
<td></td>
<td>334</td>
</tr>
<tr>
<td></td>
<td>336</td>
</tr>
<tr>
<td></td>
<td>338</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>A-1</td>
</tr>
</tbody>
</table>
EQUIPMENT TESTED

This report involves the tests conducted on a 1979 Dodge Omni A-404 automatic transmission (P/N: 4186090 & 151614). The transmission consists of two multiple disc clutches, an overrunning clutch, two servos, a hydraulic accumulator, two bands, and two planetary gear sets to provide three forward ratios and a reverse ratio. The common sun gear of the planetary gear sets is connected to the front clutch by a driving shell which is splined to the sun gear and to the front clutch retainer. The hydraulic system consists of an oil pump, and a single valve body which contains all the valves except the governor valve.

Output torque from the main centerline is delivered through helical gears to the transfer shaft. This gear set is a factor of the final drive (axle) ratio. The shaft also carries the governor and the parking sprag.

An integral helical gear on the transfer shaft drives the differential ring gear. The final drive gearing is completed with the "Federal" (49 states) gear set producing an overall ratio of 3.48:1.
INTRODUCTION

The Dodge Omni A-404 transmission is a commercially available automatic transmission which is suited for a small passenger car installation. The transmission is equipped with three forward driving ranges, a neutral, reverse, and park. Very little technical information in the area of torque, speed and efficiency data is currently available on this transmission. This lack of available information was the principal reason for the initiation of this test.

The principal object of this test was to map torque, speed, and efficiency curves of the test transmission in each gear range and in both drive performance and coast performance conditions. The test was performed per the specifications of the Passenger Car Automatic Transmission Test Code - SAE J651b. The torque and speed limits of this test were governed by the torque and speed limits of an engine which would typically be supplied with this transmission. The test code specified that three basic tests were to be conducted which involved holding the torque constant and varying the transmission speed. The three specific tests were drive performance, coast performance, and no load losses which were conducted in first, second and third gear.

The test code required that the transmission should be held in gear over the complete range of the test. In order to accomplish this, it was necessary to block the valves. This kept the transmission locked in gear. The test code also specified an oil temperature requirement to ensure that a set viscosity level be attained throughout the tests. This temperature requirement was accomplished through the use of an immersion heater and oil cooler. The oil temperature was the main factor in limiting the amount of load that could be applied to the transmission.

The data that was obtained from the torque and speed sensors was placed directly onto tape. The tape was then fed into a computer which reduced the data and generated the necessary graphs and technical information. The main advantage to this method of data reduction is that any fluctuation that may occur due to system resonance is averaged by the computer. This method minimizes the error and allows the data to be viewed after the tests are completed.
This report involves the tests conducted on a 1979 Dodge Omni
A-404 automatic transmission (P/N: 4186090 & 151614). The
transmission consists of two multiple disc clutches, an
overrunning clutch, two servos, a hydraulic accumulator, two
bands, and two planetary gear sets to provide three forward ratios
and a reverse ratio. The common sun gear of the planetary gear
sets is connected to the front clutch by a driving shell which is
splined to the sun gear and to the front clutch retainer. The
hydraulic system consists of an oil pump, and a single valve body
which contains all the valves except the governor valve.

Output torque from the main centerline is delivered through
helical gears to the transfer shaft. This gear set is a factor of
the final drive (axle) ratio. The shaft also carries the governor
and the parking sprag.

An integral helical gear on the transfer shaft drives the
differential ring gear. The final drive gearing is completed with
the "Federal" (49 states) gear set producing an overall ratio of
3.48:1.
TEST APPARATUS

The test apparatus used to operate the Dodge Omni A-404 transmission consisted of the following basic items which are described and listed below. The apparatus was basically the same for drive and coast performance tests with the exception of the transmission which was indexed 180° for coast performance tests.

The driving dynamometer was used to power the transmission. A torque sensor was placed on the dynamometer shaft to accurately monitor the torque into the transmission. A speed pickup was placed on the dyno shaft to measure the speed into the transmission.

The output shaft of the transmission was coupled to a torque sensor which accurately measured its torque. The torque sensor shaft was then coupled to a HY-VO chain drive (4:1 ratio) which was coupled to the absorber shaft. The purpose of the chain drive was to increase the slower output shaft speed into a range which would be acceptable to the absorber power requirements. The absorbing dynamometer was used to apply the system load. A speed pickup was mounted to the absorber shaft to measure output speed.

The transmission oil temperature was controlled through the use of a heat exchanger and circulation heater. When the transmission was operating at light load, the oil cooler was shutdown and the circulation heater was engaged so that the oil could be kept up to temperature specification. When the transmission was operating under heavy load, the oil cooler was operating and the circulation heater was disengaged so that the temperature specification was not exceeded.

The transmission was held in first gear by placing the gear selector lever in its appropriate setting. The transmission was held in second gear by blocking the 1 to 2 shift valve in the second position. The transmission was held in third gear by placing stops in the 1 to 2 shift valve and the 2 to 3 shift valve so the valves were kept in the 2 and 3 position respectively.

The transmission differential was locked for the entire test program. This was accomplished by welding the pinion gears to the differential carrier. This allowed the power to flow through one output shaft. This means that the output torques (drive perf.) and input torques (coast perf.) shown in the graphs are twice the values that each wheel would feel. However, the output speeds (drive perf.) and input speeds (coast perf.) are the actual speeds at each wheel.

The instrumentation for the setup consisted of the following basic items. The Lebow torque sensor was used in conjunction with a Daytronic signal conditioner (878). The Himmelstein torque sensor was matched with a Daytronic signal conditioner (878A). The magnetic speed pickup was used with an Airpax speed readout. These signals were then fed into a Sangamo 3500 tape recorder. The tape recorded data were then fed into a Hewlett Packard Analyzer which reduced the data.
<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>PART NO.</th>
<th>MANUFACTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driving Dynamometer</td>
<td>Model 26G308</td>
<td>General Electric</td>
</tr>
<tr>
<td>Flexible Coupling</td>
<td>226 SN</td>
<td>Thomas-Rexnord</td>
</tr>
<tr>
<td>Torque Sensor</td>
<td>MCRT6-02T(2-3)</td>
<td>Himmelstein</td>
</tr>
<tr>
<td>Pilot Bearing</td>
<td>SFT-15</td>
<td>Sealmaster</td>
</tr>
<tr>
<td>Transmission</td>
<td>A-404</td>
<td>Dodge</td>
</tr>
<tr>
<td>Rear Bearing</td>
<td>209-SFF</td>
<td>MRC</td>
</tr>
<tr>
<td>Flexible Coupling</td>
<td>226 SN</td>
<td>Thomas-Rexnord</td>
</tr>
<tr>
<td>Torque Sensor</td>
<td>1648-5K</td>
<td>Lebow</td>
</tr>
<tr>
<td>Torque Sensor</td>
<td>1248-20K</td>
<td>Lebow</td>
</tr>
<tr>
<td>Absorber</td>
<td>1014DG</td>
<td>Dynamatic</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>F-301-ER-2P</td>
<td>Young</td>
</tr>
<tr>
<td>Circulation Heater</td>
<td>NWHO-2</td>
<td>Cromalox</td>
</tr>
<tr>
<td>Pressure Gage</td>
<td>D-0252</td>
<td>Marsh</td>
</tr>
<tr>
<td>HY VO Chain Drive (4:1)</td>
<td>1.25 wide</td>
<td>Morse</td>
</tr>
</tbody>
</table>

INSTRUMENTATION

<table>
<thead>
<tr>
<th>Instrumentation</th>
<th>Part No.</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque Signal Conditioner</td>
<td>878A</td>
<td>Daytronic</td>
</tr>
<tr>
<td>Torque Signal Conditioner</td>
<td>878</td>
<td>Daytronic</td>
</tr>
<tr>
<td>Speed Readout</td>
<td>761400110</td>
<td>Airpax</td>
</tr>
<tr>
<td>Temperature Conditioner</td>
<td>810</td>
<td>Daytronic</td>
</tr>
<tr>
<td>Thermocouples</td>
<td>6610WBA2</td>
<td>Applied Instruments</td>
</tr>
</tbody>
</table>
Drive Performance Test Setup
DEN3-124
TEST PROCEDURE

The test was conducted per the Passenger Car Automatic Transmission Test Code-SAE J651b. The code states that three basic tests should be performed on the transmission. These tests were drive performance, coast performance and no load losses. Each test was performed to the accuracies stated in the code. The throttle valve was modulated throughout the test to its normal operating positions. The chart on page 22 indicates the engine torque and its related throttle valve setting.

The first test conducted was the drive performance test. The limits of the test were determined by the normal operating conditions of an engine typically supplied with this transmission. The torque limit was set to 90 lb-ft and the speed limit was set to 5000 rpm. The input shaft of the transmission was tested at a torque which ranged from 10-90 lb-ft on the input shaft of the transmission. The torque was incremented by 10 lb-ft for each test. The speed limits of the test ranged from 500 to 4500 rpm on the input shaft of the transmission.

Section 1 of the test code which is labeled Drive Performance - Constant Input Torque was conducted first. The input torque was held at 10 lb-ft and the speed was incremented from 500-4500 rpm. The torque was then set to 20 lb-ft and the transmission was run through the same speed range. This procedure was followed for input torques of 10, 20, 30, 40, 50, 60, 70, 80, and 90 lb-ft. The throttle valve was modulated to match the appropriate input torque for these test ranges. The starting speed was dependent on when the torque could be attained which was characteristic of the torque converter. The data recorded in this test were input and output speed, input and output torque, line pressure, sump temperature, outlet temperature, case hotspot temperature and ambient temperature.

This procedure was performed on the transmission in first, second and third gear range. The transmission was held in each gear through the entire torque and speed range per the explanation given in the test apparatus section of this report.

The next portion of the test to be conducted was the Cross Sectional Road Load Performance Test. This test was conducted in third gear and involved holding the transmission output shaft at a constant torque while varying the input speed. The output torques selected were 15, 50, 80, 115, 140, 175, 210, 240, and 280 lb-ft. The speed range was from 500-4500 rpm on the input shaft. The starting speed was dependent on when the torque could be attained. The throttle valve was modulated throughout the test to match the appropriate engine torque. The data recorded in this test were input and output torque, input and output speed, line pressure, sump temperature, outlet temperature, case hotspot temperature, and ambient temperature.
The No Load Loss portion of the test was performed next. This test was run with the output shaft turning freely. The input torque and speed were recorded for an entire speed range which ran from 500 rpm to 4500 rpm. This test was performed in each gear range by disconnecting the output shaft and allowing it to turn freely.

The parameters recorded in this test were input torque and speed, line pressure, sump temperature, outlet temperature, case hotspot temperature, and ambient temperature.

The final set of tests performed were the coast performance tests. For this test the transmission was oriented in the reverse direction so that the dynamometer drove through the output shaft of the transmission and the power was taken up in the absorber. The test was operated by setting the converter impeller torque at a constant level and varying its speed in the range set by the previous tests. In order to run this test, it was necessary to spin the torque converter shaft at approximately 400 rpm so that the charge pump would generate the line pressure necessary to operate the transmission. The torque and speed ranges of this test were different from the previous tests due to torque converter characteristics. The speed was limited by two conditions. These conditions were the lowest speed necessary to maintain line pressure and the lowest speed at which the torque could be attained. The amount of torque which could be applied to the system was limited by the current limits of the dynamometer controller. The 1st gear coast performance tests reached the current limit at the 60 lb-ft run. This was due to the slow output speed in first gear which was beyond the dynamometer torque speed characteristics. The data recorded during this portion of the test were input and output torque, input and output speed, line pressure, sump temperature, outlet temperature, case hotspot temperature, and ambient temperature. The throttle valve was set to the idle position during the entire test.

The transmission was filled with Dextron II automatic transmission fluid through the entire test schedule. The physical and chemical properties of the transmission fluid were monitored throughout the test. The fluid appeared slightly brown after the second and third gear coast performance tests. This was attributed to the slow charge pump speeds which meant less oil flow for cooling purposes at high torque levels. The fluid was replaced each time the discoloring was noticed. This indicates that care should be taken if this transmission is to be operated in the coast performance mode (regenerative braking) for any length of time. This problem could be solved by setting a minimum charge pump speed at each torque level.
The test apparatus was calibrated before and after a major test. The major components calibrated were the torque sensors and the speed readouts. The torque sensors were calibrated with their respective readouts and attaching cables so that a total system accuracy was obtained. The calibration was performed on the torque sensors by placing them in a hydraulic test stand which applied a torque against the test specimen and a calibrated torque cell simultaneously. The calibrated torque cell is traceable to the National Bureau of Standards (once removed). The calibrated torque cell was used as an indication of the applied load, while the test specimen was the measured load. The torque sensors were calibrated to the limits of the range over which they were to be operated.

The speed readout was an AIRPAX counter (Model No. 761400110) which was calibrated in an operating range from 0 to 4500 rpm. The counter was calibrated with a Hewlett Packard electric counter (Model No. 5245L) used in conjunction with a WWVB frequency comparator (True Time, Inc. Model No. 60-TR). The accuracy of the digital readout was ±1 count.
CALIBRATION SHEET

HIMMELSTEIN TORQUE SENSOR #MCRT 6-02T (2-3)

CAL VALUE = 58.0 lb-ft

(Drive performance torque was positive. Direction of torque was clockwise.)

<table>
<thead>
<tr>
<th>APPLIED TORQUE (lb-ft)</th>
<th>MEASURED TORQUE (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25.0</td>
<td>25.0</td>
</tr>
<tr>
<td>50.0</td>
<td><0.0</td>
</tr>
<tr>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>125.0</td>
<td>125.0</td>
</tr>
<tr>
<td>150.0</td>
<td>150.0</td>
</tr>
<tr>
<td>125.0</td>
<td>125.0</td>
</tr>
<tr>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>75.0</td>
<td>75.0</td>
</tr>
<tr>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>25.0</td>
<td>25.5</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Coast performance torque was negative. Direction of torque was counterclockwise.)

<table>
<thead>
<tr>
<th>APPLIED TORQUE (lb-ft)</th>
<th>MEASURED TORQUE (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>-25.0</td>
<td>-24.5</td>
</tr>
<tr>
<td>-50.0</td>
<td>-49.5</td>
</tr>
<tr>
<td>-75.0</td>
<td>-74.5</td>
</tr>
<tr>
<td>-100.0</td>
<td>-99.5</td>
</tr>
<tr>
<td>-125.0</td>
<td>-124.5</td>
</tr>
<tr>
<td>-150.0</td>
<td>-149.5</td>
</tr>
<tr>
<td>-125.0</td>
<td>-125.0</td>
</tr>
<tr>
<td>-100.0</td>
<td>-100.0</td>
</tr>
<tr>
<td>-75.0</td>
<td>-74.5</td>
</tr>
<tr>
<td>-50.0</td>
<td>-49.5</td>
</tr>
<tr>
<td>-25.0</td>
<td>-24.5</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
CALIBRATION SHEET
LEBOW TORQUE SENSOR #1648-5K
CAL VALUE = 271.5 lb-ft
(Drive performance torque was positive. Direction of torque was clockwise.)

<table>
<thead>
<tr>
<th>APPLIED TORQUE (lb-ft)</th>
<th>MEASURED TORQUE (lb-ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50.0</td>
<td>49.0</td>
</tr>
<tr>
<td>100.0</td>
<td>99.5</td>
</tr>
<tr>
<td>150.0</td>
<td>149.5</td>
</tr>
<tr>
<td>200.0</td>
<td>200.0</td>
</tr>
<tr>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>300.0</td>
<td>300.5</td>
</tr>
<tr>
<td>350.0</td>
<td>351.0</td>
</tr>
<tr>
<td>400.0</td>
<td>401.5</td>
</tr>
<tr>
<td>350.0</td>
<td>351.0</td>
</tr>
<tr>
<td>300.0</td>
<td>300.5</td>
</tr>
<tr>
<td>250.0</td>
<td>250.0</td>
</tr>
<tr>
<td>200.0</td>
<td>200.0</td>
</tr>
<tr>
<td>150.0</td>
<td>149.5</td>
</tr>
<tr>
<td>100.0</td>
<td>99.0</td>
</tr>
<tr>
<td>50.0</td>
<td>49.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Start performance torque was negative. Direction of torque was counterclockwise.)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.0</td>
<td>-1.0</td>
</tr>
<tr>
<td>-50.0</td>
<td>-52.0</td>
</tr>
<tr>
<td>-100.0</td>
<td>-101.5</td>
</tr>
<tr>
<td>-150.0</td>
<td>-152.0</td>
</tr>
<tr>
<td>-200.0</td>
<td>-202.0</td>
</tr>
<tr>
<td>-250.0</td>
<td>-252.0</td>
</tr>
<tr>
<td>-300.0</td>
<td>-302.5</td>
</tr>
<tr>
<td>-350.0</td>
<td>-352.5</td>
</tr>
<tr>
<td>-400.0</td>
<td>-402.0</td>
</tr>
<tr>
<td>-350.0</td>
<td>-352.0</td>
</tr>
<tr>
<td>-300.0</td>
<td>-302.0</td>
</tr>
<tr>
<td>-250.0</td>
<td>-251.0</td>
</tr>
<tr>
<td>-200.0</td>
<td>-201.5</td>
</tr>
<tr>
<td>-150.0</td>
<td>-151.5</td>
</tr>
<tr>
<td>-100.0</td>
<td>-101.0</td>
</tr>
<tr>
<td>-50.0</td>
<td>-51.0</td>
</tr>
<tr>
<td>-0.0</td>
<td>-0.5</td>
</tr>
<tr>
<td>APPLIED TORQUE (lb-ft)</td>
<td>MEASURED TORQUE (lb-ft)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>300.0</td>
<td>300.3</td>
</tr>
<tr>
<td>600.0</td>
<td>599.8</td>
</tr>
<tr>
<td>900.0</td>
<td>898.7</td>
</tr>
<tr>
<td>1200.0</td>
<td>1197.2</td>
</tr>
<tr>
<td>1500.0</td>
<td>1500.0</td>
</tr>
<tr>
<td>1200.0</td>
<td>1199.7</td>
</tr>
<tr>
<td>900.0</td>
<td>898.5</td>
</tr>
<tr>
<td>600.0</td>
<td>597.6</td>
</tr>
<tr>
<td>300.0</td>
<td>297.4</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(Coast performance torque was negative. Direction of torque was counterclockwise.)

-0.0	-0.0
-300.0	-297.4
-600.0	-598.5
-900.0	-899.3
-1200.0	-1199.7
-1500.0	-1500.0
-1200.0	-1198.8
-900.0	-898.5
-600.0	-598.5
-300.0	-298.2
-0.0	0.0
Following is a table of engine torque vs. throttle cable position. The transmission throttle cable was modulated for each engine torque level throughout the tests.

<table>
<thead>
<tr>
<th>ENGINE TORQUE (lb-ft)</th>
<th>THROTTLE CABLE POSITION (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>closed</td>
<td>.00</td>
</tr>
<tr>
<td>10</td>
<td>.07</td>
</tr>
<tr>
<td>20</td>
<td>.14</td>
</tr>
<tr>
<td>30</td>
<td>.21</td>
</tr>
<tr>
<td>40</td>
<td>.28</td>
</tr>
<tr>
<td>50</td>
<td>.35</td>
</tr>
<tr>
<td>60</td>
<td>.42</td>
</tr>
<tr>
<td>70</td>
<td>.49</td>
</tr>
<tr>
<td>80</td>
<td>.56</td>
</tr>
<tr>
<td>90</td>
<td>.62</td>
</tr>
<tr>
<td>open</td>
<td></td>
</tr>
</tbody>
</table>
SYSTEM ACCURACY

The instruments used in the test setup have been calibrated to insulate the accuracy of the test data. The individual components utilized in the tests contain manufacturers specifications which guarantee the accuracy of the instrumentation. These accuracies are listed and combined in the appendix section to determine the total system accuracy. The three major components involved in the system accuracy are the torque signals, speed signals, and data reduction equipment. Worst case system accuracies for the torque sensors, cabling and readouts were determined from the calibration charts and are shown below.

TAPE RECORDER: Sangamo Model #3500
ACCURACY: \(\pm 0.05\%\) of Full Scale

TORQUE SENSOR: Lebow (1648-5K) + Daytronic (878A)
ACCURACY: \(\frac{\text{\text{(Calculated Torque-Measured)}/\text{Full Scale Torque}}}{100}\) \(\frac{(175.79 - 176.0)/416.66}{100} = \pm 0.05\%\) of Full Scale

TORQUE SENSOR: Himmelstein (MCRT 6-62T(2-3)) + Daytronic (878)
ACCURACY: \(\frac{\text{\text{(Calculated Torque-measured)}/\text{Full Scale Torque}}}{100}\) \(\frac{(56.26 - 55.9)/(166.66)}{100} = \pm 0.21\%\) of Full Scale

SPEED SENSOR: Speed Pickup + Airpax Counter
ACCURACY: Calibration was \(\pm 1\) Count \((1/4000)\) \(x (100) = \pm 0.025\%\) of Full Scale

SPEED CONDITIONER (Frequency to Voltage Converter-Daytronic 840)
ACCURACY: \(0.05\%\) of Average DC Voltage \(\pm 0.10\%\) of Full Scale

HEWLETT PACKARD ANALYZER (HP 5451B Fourier Analyzer)
ACCURACY: 12 Bits = \(\frac{211}{2048}\) Bits = 1 Volt
\(\frac{(1/2048)}{100} = \pm 0.048\%\) of Full Scale

COMPUTER INTER NUMBER CALCULATION (Method of Program Calculation)
\(= 0.5\%\) of Full Scale

The inter number calculation error resulted from the method that the computer used to average the acquired data. This method is explained in the Appendix A.

From the instrument accuracy determined above, a system accuracy may be determined. There are two generally accepted methods for calculating a system error. These methods are the root mean square and the sum of the errors. Both methods are tabulated in the appendix and charted below for torque, speed, power and efficiency readings.
Root Mean Square Method

<table>
<thead>
<tr>
<th>Error Type</th>
<th>% of Full Scale</th>
<th>Sum of Errors Method % of Full Scale</th>
<th>Full Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torque Error (Lebow)</td>
<td>0.08%</td>
<td>0.15%</td>
<td>416 lb-ft</td>
</tr>
<tr>
<td>Torque Error (Himm.)</td>
<td>0.221%</td>
<td>0.31%</td>
<td>166 lb-ft</td>
</tr>
<tr>
<td>Speed Error</td>
<td>0.124%</td>
<td>0.223%</td>
<td>4000 RPM</td>
</tr>
<tr>
<td>Power Out Error</td>
<td>0.50%</td>
<td>0.70%</td>
<td>90 HP</td>
</tr>
<tr>
<td>Efficiency Error</td>
<td>0.58%</td>
<td>1.0%</td>
<td>100%</td>
</tr>
</tbody>
</table>
DATA REDUCTION

The signals obtained from the torque and speed transducers of the test stand were placed directly onto a Sangamo Tape Recorder Model No. 3500. The information on the tape was then fed into a computer which was used to compile the data. While in the computer, the data was reviewed to insure their accuracy and then a hard copy was printed out on a line printer.

The following procedure was used to record the input and output torque. The torque signals were placed on the tape recorder as voltage. A calibration value was determined in engineering units (lb-ft) for each torque sensor. The torques were recorded on channels one and two in the following manner:

CHANNEL 1: PRECALIBRATION ZERO CALIBRATION VOLTAGE PRERUN ZERO DATA
CHANNEL 2: PRECALIBRATION ZERO CALIBRATION VOLTAGE PRERUN ZERO DATA

This information was then fed into the computer which integrated and compiled a 2.5 second sample of data to obtain an average value in engineering units.

The frequency signals from the speed pickups were placed directly onto the tape recorder. The data on the tape was then fed into a frequency to voltage unit which turned the frequency into a dc voltage which in turn was fed into the computer. The method for recording speeds is shown below.

CHANNEL 3: ZERO FREQUENCY CALIBRATION FREQUENCY PRERUN ZERO FREQUENCY DATA
CHANNEL 4: ZERO FREQUENCY CALIBRATION FREQUENCY PRERUN ZERO FREQUENCY DATA

The data on these channels was then fed into the computer which integrated and compiled a 2.5 second sample of data to obtain an average speed value in engineering units.

The computer was programmed to take the values of torques and speeds and calculate efficiency and power from them. From the data it has generated, the computer would print out the required graphs and data per the contract specification. The main advantage to taking data in this manner was that the computer would calculate an integrated average which would minimize the error in a fluctuating signal. Any fluctuation due to system resonance or gear teeth meshing would be integrated and averaged.
TEST RESULTS

The data contained in this segment of the report has been divided into three major sections. These sections are drive performance, coast performance, and no load losses. There are five data sheets for each test condition in the drive performance and coast performance tests. The organization of this data is described and listed in the table of contents. Cover sheets for drive performance, coast performance and no load losses have been placed at the beginning of each section to describe the enclosed sheets.
DRIVE PERFORMANCE

1st Gear
Graphs Contained in This Section

Torque Ratio -vs- Output Speed
Output Torque -vs- Output Speed
Input Speed -vs- Output Speed
Efficiency -vs- Output Speed
Efficiency -vs- Power Out

Drive Performance Tests
1979 DODGE OMNI TRANS, DEN3-124 7/11/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 10 LB-FT (13.6 N-M)
OUTPUT TORQUE:

EFFICIENCY %

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/11/80
OUTPUT TORQUE VS OUTPUT SPEED
GEAR RANGE
FIRST
INPUT TORQUE 20 LB-FT (27.2 N-M)
OUTPUT TORQUE
1979 DODGE OMNI TRANS, 23N-124 7/11/80
EFFICIENCY VS OUTPUT SPEED
GEAR: RANGE
INPUT TORQUE: 20 LB-FT (27.2 N-M)
OUTPUT TORQUE:
1979 DODGE OMNI TRANS.DEN3-124 7/11/80
OUTPUT TORQUE VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 30 LB-FT (41.8 N-M)
OUTPUT TORQUE: 678 - 500 N-M
500 - 450 LB-FT
450 - 400 N-M
400 - 350 LB-FT
350 - 300 N-M
300 - 250 LB-FT
250 - 200 N-M
200 - 150 LB-FT
150 - 100 N-M
100 - 50 LB-FT
50 - 0 N-M
0 - 0 LB-FT
0 - 500 OUTPUT SPEED RPM
500
1979 DODGE OMNI TRANS.DEN3-124 7/11/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 40 LB-FT (55.4 N-M)
OUTPUT TORQUE:

EFFICIENCY %

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEN3-124 7/11/80
OUTPUT TORQUE VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 60 LB-FT(81.6 N-M)
OUTPUT TORQUE:
OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/11/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 60 LB-FT (81.6 N-M)
OUTPUT TORQUE: 500 RPM
OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/11/80
EFFICIENCY VS POWER OUT
GEAR RANGE: FIRST
INPUT TORQUE: 60 LB-FT (81.6 N-M)
OUTPUT TORQUE:

POWER OUT
0 3 7 11 14 18 22 26 29 33 KW 37
1979 DODGE OMNI TRANS. DEN3-124 7/11/80
OUTPUT TORQUE VS. OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 70 LB-FT (95.2 N-M)
OUTPUT TORQUE: 0 - 1000 N-M (0 - 1000 LB-FT)
OUTPUT SPEED: 0 - 500 RPM
1979 DODGE OMNI TRANS, DEN3-124 7/11/80
EFFICIENCY VS POWER OUT
GEAR RANGE: FIRST
INPUT TORQUE: 70 LB-FT (95.2 N-M)
OUTPUT TORQUE:

EFFICIENCY %

0 5 10 15 20 25 30 35 40 45 50
0 3 7 11 14 18 22 26 29 33 37

POWER OUT

HP kW
1979 DODGE OMNI TRANS.DEN3-124 7/15/80
EFFICIENCY VS POWER OUT
GEAR RANGE
FIRST
INPUT TORQUE 80 LB-FT (108.8 N-M)
OUTPUT TORQUE

EFFICIENCY %

POWER OUT

0 3 7 11 14 18 22 26 29 33 37

0 5 10 15 20 25 30 35 40 45 50
1979 DODGE OMNI TRANS, DEN3-124 7/15/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE : FIRST
INPUT TORQUE : 90 LB-FT (122.4 N-m)
OUTPUT TORQUE

INPUT SPEED RPM

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEN3-124 7/15/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 90 LB-FT (122.4 N-M)
OUTPUT TORQUE: 0
DRIVE PERFORMANCE

2nd Gear
Graphs Contained in This Section

Torque Ratio -vs- Output Speed
Output Torque -vs- Output Speed
Input Speed -vs- Output Speed
Efficiency -vs- Output Speed
Efficiency -vs- Power Out

Drive Performance Tests
OUTPUT TORQUE VS OUTPUT SPEED

1979 DODGE OMNI TRANS.DEN3-124 7/11/80

OUTPUT TORQUE VS OUTPUT SPEED

INPUT TORQUE 20 LB-FT (272 N-M)

OUTPUT TORQUE
1979 DODGE OMNI TRANS. 394-124 7/11/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: 2ND
INPUT TORQUE: 20 LB-FT (27 N-M)
OUTPUT TORQUE:
1979 DODGE OMNI TRANS.DEN3-124 7/11/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE SECOND
INPUT TORQUE 30 LB-FT (41.87 N-M)
OUTPUT TORQUE

INPUT SPEED RPM
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
OUTPUT SPEED RPM
0 100 200 300 400 500 600 700 800 900 1000
1979 DODGE OMNI TRANS, DEN3-124 7/11/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 40 LB-FT (54.4 N-M)
OUTPUT TORQUE:

EFFICIENCY %

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/18/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 70 LB-FT (95.2 N-M)
OUTPUT TORQUE:

<table>
<thead>
<tr>
<th>OUTPUT SPEED (RPM)</th>
<th>OUTPUT TORQUE</th>
<th>TORQUE RATIO T0/T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>200</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>300</td>
<td>30</td>
<td>7</td>
</tr>
<tr>
<td>400</td>
<td>40</td>
<td>6</td>
</tr>
<tr>
<td>500</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>600</td>
<td>60</td>
<td>4</td>
</tr>
<tr>
<td>700</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>800</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>900</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>1000</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>
1979 DODGE OMNI TRANS. DEM3-124 7/18/80
OUTPUT TORQUE VS. OUTPUT SPEED
GEAR: RANGE
INPUT TORQUE 80 LB-FT (110.8 N-M)
OUTPUT TORQUE
OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/18/80
INPUT SPEED VS OUTPUT SPEED

INPUT RANGE: SECOND
INPUT TORQUE: 90 LB-FT (122.4 N-M)
OUTPUT TORQUE:
1979 DODGE OMNI TRANS. DEM3-124 7/18/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 90 LB-FT (122.4 N-M)
OUTPUT TORQUE:

EFFICIENCY %

OUTPUT SPEED RPM
DRIVE PERFORMANCE

3rd Gear
Drive Performance Tests

Torque Out

Speed Out

Torque In

Speed In

Graphs Contained in This Section

Torque Ratio -vs- Output Speed
Output Torque -vs- Output Speed
Input Speed -vs- Output Speed
Efficiency -vs- Output Speed
Efficiency -vs- Power Out
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 10 LB-FT (13.6 N·M)
OUTPUT TORQUE:

OUTPUT SPEED RPM
0 200 400 600 800 1000 1200 1400 1600 1800 2000

INPUT SPEED RPM
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 20 LB-FT (27A-M)
OUTPUT TORQUE:
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
OUTPUT TORQUE VS. OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 30 LB-FT (40.6 N-M)
OUTPUT TORQUE: 200 N-M
0 200 400 600 800 1000 1200 1400 1600 1800 2000
OUTPUT SPEED RPM
1979 DODGE DMLI TRANS.DEN3-124 7/29/80

EFFICIENCY VS OUTPUT SPEED

GEAR RANGE: THIRD

INPUT TORQUE: 30 LB-FT (40,6 N·M)

OUTPUT TORQUE

EFFICIENCY %

OUTPUT SPEED RPM

0 200 400 600 800 1000 1200 1400 1600 1800 2000
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE THIRD
INPUT TORQUE 40 LB-FT (54.2 N-M)
OUTPUT TORQUE
1979 DODGE OMNI TRANS. DEN 3-124 7/29/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 40 LB-FT (54.2 N-M)
OUTPUT TORQUE:

INPUT SPEED RPM
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
OUTPUT SPEED RPM
0 200 400 600 800 1000 1200 1400 1600 1800 2000
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE THIRD
INPUT TORQUE 50 LB-FT (67.8N-M)
OUTPUT TORQUE
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
OUTPUT TORQUE VS. OUTPUT SPEED

GEAR RATIO: THIRD

INPUT TORQUE: 60 LB-FT (81.6 N-M)
OUTPUT TORQUE:

OUTPUT SPEED RPM

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0 50 100 150 200 250 300 350 400 450 500

LB-FT
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE THIRD
INPUT TORQUE 70 LB-FT (95.2 N-M)
OUTPUT TORQUE
EFFICIENCY VS POWER OUT

1979 DODGE OMNI TRANS.DEN3-124 7/29/80

EFFICIENCY VS POWER OUT

GEAR RANGE: THIRD

INPUT TORQUE: 75 LB-FT (105 N-M)

OUTPUT TORQUE: 75 HP (56 KW)
OUTPUT TORQUE VS OUTPUT SPEED

1979 DODGE OMNI TRANS.DEV3-124 7/29/80
OUTPUT TORQUE: 80 LB-FT (108.8 N-M)
OUTPUT SPEED: RPM

INPUT TORQUE: 80 LB-FT (108.8 N-M)
GEAR RANGE: THIRD
1979 DODGE OMNI TRANS. DEMO 7/29/80

INPUT SPEED VS OUTPUT SPEED

GEAR RANGE: THIRD

INPUT TORQUE: 80 LB-FT (108.8 N-M)

OUTPUT TORQUE: 0

INPUT SPEED RPM vs OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
EFFICIENCY VS POWER OUT
GEAR RANGE: THIRD
INPUT TORQUE: 80 LB-FT (108.8 N-M)
OUTPUT TORQUE:

EFFICIENCY %

POWER OUT

0 5 10 15 20 25 30 35 40 45 50

0 3 7 11 14 18 22 26 29 33 37
1979 DODGE OMNI TRANS. 3-124 7/29/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 90 LB-FT (122.4 N-M)
OUTPUT TORQUE:

OUTPUT SPEED RPM

TORQUE RATIO T_o/T_1
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE THIRD
INPUT TORQUE 98 LB-FT (122.4 N-M)
OUTPUT TORQUE

INPUT SPEED RPM

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS, DEN3-124 7/29/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 90 LB-FT (122.4 N-M)
OUTPUT TORQUE: 0
CROSS SECTIONAL ROAD LOAD PERFORMANCE

3rd Gear
Graphs Contained in This Section

Torque Ratio -vs- Output Speed
Output Torque -vs- Output Speed
Input Speed -vs- Output Speed
Efficiency -vs- Output Speed
Efficiency -vs- Power Out
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
OUTPUT TORQUE VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 140 LB-FT (190.4 N-M)
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE: 140 LB-FT (190.4 N-M)
OUTPUT TORQUE: 140 LB-FT (190.4 N-M)
OUTPUT SPEED RPM
INPUT SPEED RPM
1979 DODGE OMNI TRANS. DEN3-124 7/29/80
TORQUE RATIO VS OUTPUT SPEED
GEAR: RANGE THIRD
INPUT TORQUE: 250 LB-FT (340 N-M)
OUTPUT TORQUE: 175 LB-FT (238 N-M)
OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. B20-124 7/28/80
OUTPUT TORQUE VS OUTPUT SPEED
GEAR: RANGE: THIRD
INPUT TORQUE: OUTPUT TORQUE: 175 LB-FT (238 N-M)

INPUT TORQUE

OUTPUT SPEED RPM

N-M LB-FT

271 200
244 180
217 160
190 140
163 120
136 100
108 80
81 60
54 40
27 20
0
1979 DODGE OMNI TRANS.DEN-124 7/29/80

EFFICIENCY VS OUTPUT SPEED

GEAR RANGE: THIRD

INPUT TORQUE

OUTPUT TORQUE: 175 LB-FT (238 N·M)

EFFICIENCY

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEN3-124 7/29/80
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: THIRD
INPUT TORQUE
OUTPUT TORQUE: 210 LB-FT (285,6 N-M)

EFFICIENCY %

OUTPUT SPEED RPM

200 400 600 800 1000 1200 1400 1600 1800 2000
1979 DODGE OMNI TRANS.JEN3-124 7/29/80
OUTPUT TORQUE VS. OUTPUT SPEED
GEAR RANGE
THIRD
INPUT TORQUE
OUTPUT TORQUE 240 LB-FT (326.4 N-M)

O - INPUT TORQUE
G - OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEH3-1Z4 7/29/80
EFFICIENCY VS POWER OUT
GEAR RANGE: THIRD
INPUT TORQUE: 280 LB-FEET (380 N-M)
OUTPUT TORQUE: 100 HP
POWER OUT: 74 KW
COAST PERFORMANCE

1st Gear
Graphs Contained in This Section

- Torque Ratio -vs- Output Speed
- Output Torque -vs- Output Speed
- Input Speed -vs- Output Speed
- Efficiency -vs- Output Speed
- Efficiency -vs- Power Out

Coast Performance Tests
1979 DODGE OMNI TRANS.DEN3-124 8/25/80*

EFFICIENCY VS POWER OUT

GEAR RANGE: FIRST
INPUT TORQUE
OUTPUT TORQUE: 26-LB-FT(27.2N-M)

POWER OUT
1979 DODGE OMNI TRANS. 124 0/25/80/4
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE FIRST
INPUT TORQUE 30 LB-FT (40.8 N-M)
OUTPUT TORQUE
1979 DODGE OMNI TRANS. DEMO-124 8/25/80/
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 30 LB-FT (40 N-M)
OUTPUT TORQUE: 30 LB-FT (40 N-M)
INPUT SPEED RPM
OUTPUT SPEED RPM
1979 DODGE OMNI TRANS. DEHM3-124 8/25/80/4
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: FIRST
INPUT TORQUE: 40 LB-FT (544 N-M)
OUTPUT TORQUE: 0
OUTPUT SPEED RPM: 0-5000
1979 DODGE OMNI TRANS. DEN3-124 8/25/80

INPUT SPEED VS OUTPUT SPEED

GEAR: RANGE FIRST
INPUT TORQUE 60 LB-FT (81.6N-M)
OUTPUT TORQUE

INPUT SPEED RPM

OUTPUT SPEED RPM
COAST PERFORMANCE

2nd Gear
Graphs Contained in This Section

Torque Ratio -vs- Output Speed
Output Torque -vs- Output Speed
Input Speed -vs- Output Speed
Efficiency -vs- Output Speed
Efficiency -vs- Power Out

Coast Performance Tests
1979 DODGE OMNI TRANS. DEN3-124 8/25/88/
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 10 LB-FT (13.6N-M)
OUTPUT TORQUE:
INPUT TORQUE VS OUTPUT SPEED

1979 DODGE OMNI TRANS.DEN3-124 8/25/80

INPUT TORQUE VS OUTPUT SPEED

GEAR RANGE: SECOND

INPUT TORQUE: 10 LB-FT (13.6 N-M)

OUTPUT SPEED RPM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

INPUT TORQUE

OUTPUT SPEED

N-M LB-FT

136 100
122
100
95
90
80
70
60
65
60
55
50
45
40
35
30
25
20
15
10
5
0

10
20
30
40
50
60
70
80
90
100

6 10 15 20 25 30 35 40 45 50

0 50 100 150 200 250 300 350 400 450 500
1979 DODGE OMNI TRANS. DEN-124 8/25/80/4
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 20 LB-FT (27.2 N-M)
OUTPUT TORQUE: 0.82

Output Speed RPM
0.00 0.08 0.16 0.20

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1979 DODGE OMNI TRANS.DEN3-124 8/25/80/*
EFFICIENCY VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE
OUTPUT TORQUE: 30 LB-FT(40;8N-M)

EFFICIENCY %

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
OUTPUT SPEED RPM
EFFICIENCY %

1979 DODGE OMNI TRANS.DEN3-124 8/25/80/**
EFFICIENCY VS POWER OUT
GEAR RANGE
INPUT TORQUE
OUTPUT TORQUE, 30 LB-FT(40,8N-M)

POWER OUT
0 1 2 4 6 8 10 12 14 16 18 13 KW 14
1979 DODGE OMNI TRANS.DEN3-124 8/27/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 40LB-FT (54.4N-M)
OUTPUT TORQUE:
1979 DODGE OMNI TRANS. DEN3-124 8/27/80
TORQUE RATIO VS OUTPUT SPEED
GEAR RANGE: SECOND
INPUT TORQUE: 60 LB-FT (80 N-M)
OUTPUT TORQUE: 60 LB-FT (80 N-M)

TORQUE RATIO: T_o/T_i
OUTPUT SPEED: RPM
1979 DODGE OMNI TRANS.0EN3-124 8/27/80
INPUT TORQUE VS OUTPUT SPEED
GEAR RANGE
SECOND
INPUT TORQUE
OUTPUT TORQUE, 50 LB-FT (68 N-M)
OUTPUT SPEED RPM
INPUT TORQUE VS OUTPUT SPEED

1979 DODGE OMNI TRANS.DEN3-124 8/27/80

INPUT TORQUE

OUTPUT TORQUE 70 LB-FT (95 2N-M)

GEAR RANGE SECOND

INPUT TORQUE

OUTPUT SPEED RPM

N-M LB-FT

500

450

400

350

300

250

200

150

100

50

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
1979 DODGE OMNI TRANS.DEN3-124 8/27/80
EFFICIENCY VS OUTPUT SPEED

GEAR RATIO SECOND

INPUT TORQUE
OUTPUT TORQUE, 70 LB-FT (95.2 N·M)

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEH3-124 8/27/80
EFFICIENCY VS POWER OUT:
GEAR RANGE
INPUT TORQUE
OUTPUT TORQUE: 70 LB-FT (95.2 N-M)

EFFICIENCY %

POWER OUT
COAST PERFORMANCE

3rd Gear
Graphs Contained in This Section

- Torque Ratio -vs- Output Speed
- Output Torque -vs- Output Speed
- Input Speed -vs- Output Speed
- Efficiency -vs- Output Speed
- Efficiency -vs- Power Out

Coast Performance Tests
1979 DODGE OMNI TRANS. M3-124 8/27/80
INPUT TORQUE VS OUTPUT SPEED

INPUT TORQUE
OUTPUT TORQUE: 20 LB-FT (27.2 N-M)

OUTPUT SPEED RPM
1979 DODGE OMNI TRANS.DEN3-124 8/27/80
INPUT SPEED VS OUTPUT SPEED
GEAR RANGE
THIRD
INPUT TORQUE
OUTPUT TORQUE 40 LB-FT (54.4 N-M)
1979 DODGE OMNI TRANS. 2.2L 8/27/80

INPUT SPEED VS OUTPUT SPEED

GEAR RANGE: THIRD

INPUT TORQUE: 50 LB-FT (68.0 N-M)

OUTPUT TORQUE: 50 LB-FT (68.0 N-M)
EFFICIENCY VS OUTPUT SPEED

INPUT TORQUE
OUTPUT TORQUE: 50 LB-FT (68.9 N-M)

1979 DODGE OMNI TRANS. DEN3-124 8/27/80

GEAR RANGE: THIRD

OUTPUT SPEED RPM

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

EFFICIENCY %
1979 DODGE OMNI TRANS. DEN3-124 8/27/80
EFFICIENCY VS POWER OUT

INPUT TORQUE
OUTPUT TORQUE: 60 LB-FT (81.6 N·M)

EFFICIENCY %

POWER OUT
0 5 10 15 20 25 30 35 40 45 50
0 10 20 30 40 50 60 70 80 90 100

HP
0 5 10 15 20 25 30 35 40 45 50
0 10 20 30 40 50 60 70 80 90 100

200
NO LOAD LOSSES

1st Gear (Closed Throttle)
NO LOAD LOSSES

1st Gear (Open Throttle)
NO LOAD LOSSES

2nd Gear (Closed Throttle)
NO LOAD LOSSES

2nd Gear (Open Throttle)
NO LOAD LOSSES

3rd Gear (Closed Throttle)
NO LOAD LOSSES

3rd Gear (Open Throttle)
BOOT MEAN SQUARE METHOD

TORQUE ERROR (HIMELSTEIN) = \sqrt{\text{TORQUE TRANS. ERROR}}^2 + (\text{TAPE RECORDER ERROR})^2 + (\text{ANALYZER ERROR})^2
= \sqrt{(0.21)^2 + (0.05)^2 + (0.04d)^2} = \pm 0.221\% of Full Scale

TORQUE ERROR (LEBOW) = \sqrt{\text{TORQUE TRANS. ERROR}}^2 + (\text{TAPE RECORDER ERROR})^2 + (\text{ANALYZER ERROR})^2
= \sqrt{(0.05)^2 + (0.05)^2 + (0.04d)^2} = \pm 0.08\% of Full Scale

SPEED ERROR = \sqrt{\text{SPEED SENSOR}}^2 + (\text{SPEED CONDITIONER})^2 + (\text{TAPE RECORDER ERROR})^2 + (\text{ANALYZER ERROR})^2
= \sqrt{(0.025)^2 + (0.1)^2 + (0.05)^2 + (0.04d)^2} = \pm 0.124\% of Full Scale

POWER OUT ERROR = \sqrt{\text{TORQUE ERROR (LEBOW)}^2 + \text{SPEED ERROR}^2 + (\text{COMPUTER CALCULATION ERROR})^2}
= \sqrt{(0.08)^2 + (0.124)^2 + (0.5)^2} = \pm 0.5\% of Full Scale

EFFICIENCY ERROR = \sqrt{\text{TORQUE ERROR (LEBOW)}^2 + (\text{SPEED ERROR})^2 + (\text{TORQUE ERROR (HIM))}^2 + (\text{SPEED ERROR})^2}
+ (\text{COMPUTER CALCULATION ERROR})^2
= \sqrt{(0.0d)^2 + (0.124)^2 + (0.221)^2 + (0.124)^2 + (0.5)^2} = \pm 0.579\% of Full Scale

SUM OF ERROR METHOD

TORQUE ERROR HIMELSTEIN = (TORQUE TRANSDUCER ERROR) + (TAPE RECORDER ERROR) + (ANALYZER ERROR)
= (0.21) + (0.05) + (0.04d) = \pm 0.308\% of Full Scale

TORQUE ERROR (LEBOW) = (TORQUE TRANS. ERROR) + (TAPE RECORDER ERROR) + (ANALYZER ERROR)
= (0.05) + (0.05) + (0.04d) = \pm 0.146\% of Full Scale

SPEED ERROR = (SPEED SENSOR) + (SPEED CONDITIONER) + (TAPE RECORDER ERROR) + (ANALYZER ERROR)
= (0.025) + (0.1) + (0.05) + (0.04d) = \pm 0.223\% of Full Scale (1 Volt = 4000 RPM)

POWER OUT ERROR = (TORQUE ERROR (LEBOW)) + (SPEED ERROR) + (COMPUTER CALCULATION ERROR)
= (0.0d) + (0.124) + (0.5) = \pm 0.704\% of Full Scale

EFFICIENCY ERROR = (TORQUE ERROR (LEBOW)) + (SPEED ERROR) + (TORQUE ERROR HIM)) + (SPEED ERROR)
+ (COMPUTER CALCULATION ERROR)
= (0.08) + (0.124) + (0.221) + (0.124) + (0.5) = \pm 0.1049\% of Full Scale
The inter number computer calculation error was determined by taking a set of sample calculations and comparing the accurate multiplication to the computer multiplication. A sample comparison is given below.

DATA DRIVE
PERFORMANCE
2ND GEAR
T1=40 lb/ft

<table>
<thead>
<tr>
<th>ACCURATE CALCULATION</th>
<th>COMPUTER CALCULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1=39.500, T0=116.3369</td>
<td>T0/T1=2.9452</td>
</tr>
<tr>
<td></td>
<td>T0/T1=2.9367</td>
</tr>
</tbody>
</table>

Comparison = \((2.9452 - 2.9367)/2.9452 \times 100 = 0.288\%\)

Since every calculation was not checked in this manner, a factor of safety was added to 0.288\%, and 0.5\% was used as the inter number computer calculation error.
OTHER MANUALS

To locate specific manuals in the documentation shipped with the system, refer to the System Configuration Notice for the contents of each binder.

SYSTEM SPECIFICATIONS & CHARACTERISTICS

The specifications in Table 1-1 describe the system's warranted performance. Those items under the heading of "Characteristics" go beyond the guaranteed specifications and give typical performance for some additional parameters and operations. These are included only to give you information which may be useful in applying the system.

Table 1-1. System Specifications and Characteristics

SPECIFICATIONS

(Specifications describe the standard system's warranted performance.)

<table>
<thead>
<tr>
<th>ANALOG-TO-DIGITAL CONVERTER</th>
<th>EXECUTION TIMES*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage Range: ±0.125V to 2.8V peak in steps of 2.</td>
<td>Fourier Transform: <55 ms</td>
</tr>
<tr>
<td>Input Couplings: dc or ac</td>
<td>Stable Power Spectrum Average: <80 ms</td>
</tr>
<tr>
<td>Input Channels: 2 channels wired for 4 standard, 4 channels optional with plug-in cards.</td>
<td>Stable Tri-Spectrum Average: <170 ms</td>
</tr>
<tr>
<td>Resolution: 12 bits including sign.</td>
<td>REAL TIME BANDWIDTHS*</td>
</tr>
<tr>
<td>Input Frequency Range: dc to 50 kHz, 5 Hz to 50 kHz, ac coupled</td>
<td>Fourier Transform: >7.5 kHz</td>
</tr>
<tr>
<td>Sample Rate:</td>
<td>Stable Power Spectrum Average: 5.4 kHz</td>
</tr>
<tr>
<td>Internal: 100 kHz max.</td>
<td>Stable Tri-Spectrum Average: 1.9 kHz</td>
</tr>
<tr>
<td>External: An external time base may be used to allow external control of the sampling rate up to 100 kHz - 200 kHz optional. One sample can be taken for each clock pulse TTL level.</td>
<td>MASS STORAGE SOFTWARE</td>
</tr>
<tr>
<td>Internal Clock Accuracy: ±0.01%.</td>
<td>MAXIMUM REAL TIME DATA ACQUISITION RATE</td>
</tr>
<tr>
<td>DISPLAY UNIT</td>
<td>(Single Channel):</td>
</tr>
<tr>
<td>Vertical Scale Calibration: Data in memory is automatically scaled to give a maximum on-screen calibrated display. The scale factor is given in volts/division, volts/2/division, or in dB offset.</td>
<td>BS 256: 10 kHz</td>
</tr>
<tr>
<td>Log Display Range: 80 dB with a scale factor ranging from 0 to +998 dB. Offset selectable in 4 dB steps.</td>
<td>BS 1024: 39 kHz - 25 kHz*</td>
</tr>
<tr>
<td>Linear Display Range: ±4 divisions with scale factor ranging from 1 x 10^-4 to 5 x 10^-5 in steps of 1, 2, 3.</td>
<td>BS 4096: 80 kHz - 30 kHz*</td>
</tr>
<tr>
<td>Digital UP/DOWN Scale: Allows 6 up-scale and 2 down-scale steps calibrated continuous scale factor.</td>
<td>OFF-LINE B5F4 SOFTWARE</td>
</tr>
<tr>
<td>Horizontal Scale Calibration:</td>
<td>Center Frequency Range: dc to one-half the Real Time Data Acquisition Rate</td>
</tr>
<tr>
<td>Linear Sweep Length: 10, 10.24 or 12.8 divisions.</td>
<td>Center Frequency Resolution: Continuous resolution to the limit of the frequency accuracy for center frequencies >0.02% of the sampling frequency.</td>
</tr>
<tr>
<td>Log Horizontal: 0.5 decades/division</td>
<td>Frequency Accuracy: ±0.01%</td>
</tr>
<tr>
<td>Markers: Intensity markers every 8th or every 32nd point.</td>
<td>Bandwidth Selection: In steps of 1/5n where n = 2, 3, 4, etc.</td>
</tr>
<tr>
<td>BASE SOFTWARE</td>
<td>Max. Resolution Enhancement: >400</td>
</tr>
<tr>
<td>Transform Accuracy: The expected rms value of computational error introduced in either the forward or inverse FFT will not exceed 0.1% of the transform value.</td>
<td>Dynamic Range: >90 dB from peak out-of-band spectral component to the peak level of the passband noise.</td>
</tr>
<tr>
<td>Dynamic Range: >75 dB for a minimum detectable spectral component in the presence of one full scale spectral component after twenty ensemble averages for a block size of 1024</td>
<td>80 dB from peak in-band spectral component to the peak level of the passband noise.</td>
</tr>
<tr>
<td>ENVIRONMENTAL CONDITIONS</td>
<td>Out-of-Band Rejection: >90 dB</td>
</tr>
<tr>
<td>Temperature Range: 0°C to 40°C @104°F.</td>
<td>Passband Flatness of the Digital Filter: ±0.01 dB</td>
</tr>
</tbody>
</table>

*The band limited random noise type signals at block size 1024 in display, in Hanning
**After eight ensemble averages of a power spectrum at block size 1024 Reduced by 10 dB at the center of the band
*These rates apply to systems with modules S4664 and S4657A & having a serial prefix lower than 1842
FM RECORD/REPRODUCE SPECIFICATIONS

Input Sensitivity: .. 0.1 to 2.5 volts rms; adjustable with input attenuator for ±40% deviation. Can be extended to 10 volts.

Nominal Input Level: .. ±1.4 volts peak.

Nominal Input Impedance: 100 K ohms resistive, shunted by less than 100 pf, unbalanced to ground.

Frequency Response:

Flat Amplitude Filter DC to 20 KHz, at 60 ips, ±0.5 db; ±40 deviation.

Linear Phase Filter DC to 12 KHz, at 60 ips, ±0.5 db; ±40% deviation.

DC to 20 KHz at 60 ips, ±0.5, -3 db; ±40% deviation.

Frequency Responses (Optional): DC to 80 KHz at 120 ips using ±40% deviation with IRIG intermediate band center frequency of 432 KHz. Upper frequency limit and center frequencies are proportionately lower at lower speeds, to 3-3/4 ips. DC to 10 KHz at 60 ips using ±40% deviation with IRIG low band frequency of 54 KHz for improved S/N ratios. Upper frequency limit and center frequencies are proportionately lower at lower speeds.

DC Drift (Oscillator and Discriminator): Less than ±0.5% of peak-to-peak deviation per 10°F after 20 minute warm-up.

Signal/Noise Ratio 46 db at 60 ips.
DC Linearity: ... Less than ±0.5% of peak-to-peak deviation reference to best straight line through zero.

AC Distortion: ... Less than 1.5% total harmonic distortion at all speeds.

Transient Response (60 ips):

Flat Amplitude Filter (±1/2db) Rise Time (10% to 90% points) - 22 microseconds. Overshoot - less than 15%.

Linear Phase Filter (-1/2, -3 db) Rise Time (10% to 90% points) - 18 microseconds. Overshoot - less than 2.5%.

Output Level (±40% deviation): ±1.4 volts peak, into 1000 ohms, with short circuit protection (SCP).

Output Current (±40% deviation): ±3 milliamperes peak with SCP.

Output Impedance: ... Less than 50 ohms, unbalanced to ground, with SCP.

GENERAL

Configuration: ... One standard 19 inch wide equipment enclosure for 14 channel FM or Direct Record/Reproduce System. For 28-32 vdc operation. Additional enclosure furnished for operation from other power supplies. Optional Rack Mounting Kit available.

Recorder Size (28-32 v): 26-1/8 inches high by 19 inches wide by 12 inches deep for a 7 channel-6 speed record/reproduce system or a 14 channel-6 speed record, 2 speed reproduce system. Additional enclosure (7-1/2 inches height) which attaches to portable
Rotating Shaft Torque Sensors

Model 1602

Low capacity torque sensor.

<table>
<thead>
<tr>
<th>Capacity (Lb. In.)</th>
<th>Max. Speed (RPM)</th>
<th>Model</th>
<th>Protected for Overloads (Lb. In.)</th>
<th>Torque Sensitivity (Lb. In./Rad.)</th>
<th>Rotating Inertia (Lb.-In.²)</th>
<th>Weight (Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20,000</td>
<td>1602</td>
<td>150</td>
<td>400</td>
<td>.35</td>
<td>3.6</td>
</tr>
<tr>
<td>100</td>
<td>20,000</td>
<td>1602</td>
<td>300</td>
<td>1,000</td>
<td>.35</td>
<td>3.6</td>
</tr>
<tr>
<td>200</td>
<td>20,000</td>
<td>1602</td>
<td>600</td>
<td>2,500</td>
<td>.35</td>
<td>3.6</td>
</tr>
<tr>
<td>500</td>
<td>20,000</td>
<td>1602</td>
<td>1,500</td>
<td>5,500</td>
<td>.35</td>
<td>3.6</td>
</tr>
<tr>
<td>1,000</td>
<td>20,000</td>
<td>1602</td>
<td>1,500</td>
<td>8,000</td>
<td>.35</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Models 1604, 1605 & 1607

Utility rotating shaft torque sensor recommended for general application.

<table>
<thead>
<tr>
<th>Capacity (Lb. In.)</th>
<th>Max. Speed (RPM)</th>
<th>Model</th>
<th>Protected for Overloads (Lb. In.)</th>
<th>Torque Sensitivity (Lb. In./Rad.)</th>
<th>Rotating Inertia (Lb.-In.²)</th>
<th>Weight (Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15,000</td>
<td>1604</td>
<td>150</td>
<td>5,000</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>100</td>
<td>15,000</td>
<td>1604</td>
<td>300</td>
<td>13,500</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>200</td>
<td>15,000</td>
<td>1604</td>
<td>600</td>
<td>33,000</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>500</td>
<td>15,000</td>
<td>1604</td>
<td>1,500</td>
<td>85,000</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>1,000</td>
<td>15,000</td>
<td>1604</td>
<td>3,000</td>
<td>150,000</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>2,000</td>
<td>15,000</td>
<td>1604</td>
<td>6,000</td>
<td>225,000</td>
<td>1.0</td>
<td>18</td>
</tr>
<tr>
<td>5,000</td>
<td>15,000</td>
<td>1604</td>
<td>15,000</td>
<td>700,000</td>
<td>3.25</td>
<td>28</td>
</tr>
<tr>
<td>10,000</td>
<td>15,000</td>
<td>1604</td>
<td>20,000</td>
<td>1,000,000</td>
<td>3.25</td>
<td>28</td>
</tr>
<tr>
<td>20,000</td>
<td>4,000</td>
<td>1605</td>
<td>60,000</td>
<td>6,800,000</td>
<td>52.0</td>
<td>75</td>
</tr>
<tr>
<td>50,000</td>
<td>4,000</td>
<td>1605</td>
<td>150,000</td>
<td>11,800,000</td>
<td>57.0</td>
<td>75</td>
</tr>
<tr>
<td>100,000</td>
<td>4,000</td>
<td>1605</td>
<td>150,000</td>
<td>19,950,000</td>
<td>180.0</td>
<td>75</td>
</tr>
</tbody>
</table>

Model 1615

Stainless steel housing resistant to AND part total in Ft. Lb. meaning of term.

<table>
<thead>
<tr>
<th>Capacity (Lb. In.)</th>
<th>Max. Speed (RPM)</th>
<th>Model</th>
<th>Protected for Overloads (Lb. In.)</th>
<th>Torque Sensitivity (Lb. In./Rad.)</th>
<th>Rotating Inertia (Lb.-In.²)</th>
<th>Weight (Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>15,000</td>
<td>1615</td>
<td>150</td>
<td>1,500</td>
<td>1.0</td>
<td>24</td>
</tr>
<tr>
<td>100</td>
<td>15,000</td>
<td>1615</td>
<td>300</td>
<td>4,000</td>
<td>1.1</td>
<td>24</td>
</tr>
<tr>
<td>200</td>
<td>15,000</td>
<td>1615</td>
<td>600</td>
<td>10,000</td>
<td>1.2</td>
<td>24</td>
</tr>
<tr>
<td>500</td>
<td>15,000</td>
<td>1615</td>
<td>1,500</td>
<td>20,000</td>
<td>1.3</td>
<td>24</td>
</tr>
<tr>
<td>1,000</td>
<td>15,000</td>
<td>1615</td>
<td>2,500</td>
<td>25,000</td>
<td>1.4</td>
<td>24</td>
</tr>
<tr>
<td>50</td>
<td>15,000</td>
<td>1615K</td>
<td>75</td>
<td>1,620</td>
<td>1.04</td>
<td>25</td>
</tr>
<tr>
<td>100</td>
<td>15,000</td>
<td>1615K</td>
<td>150</td>
<td>4,510</td>
<td>1.05</td>
<td>25</td>
</tr>
<tr>
<td>200</td>
<td>15,000</td>
<td>1615K</td>
<td>300</td>
<td>12,900</td>
<td>1.06</td>
<td>25</td>
</tr>
<tr>
<td>500</td>
<td>15,000</td>
<td>1615K</td>
<td>750</td>
<td>940,000</td>
<td>1.97</td>
<td>25</td>
</tr>
<tr>
<td>1,000</td>
<td>15,000</td>
<td>1615K</td>
<td>1,500</td>
<td>204,000</td>
<td>2.00</td>
<td>25</td>
</tr>
<tr>
<td>2,000</td>
<td>15,000</td>
<td>1615K</td>
<td>3,000</td>
<td>347,000</td>
<td>2.08</td>
<td>26</td>
</tr>
<tr>
<td>5,000</td>
<td>15,000</td>
<td>1615K</td>
<td>5,000</td>
<td>500,000</td>
<td>2.38</td>
<td>26</td>
</tr>
<tr>
<td>10,000</td>
<td>15,000</td>
<td>1615K</td>
<td>10,000</td>
<td>5,400,000</td>
<td>2.76</td>
<td>26</td>
</tr>
</tbody>
</table>

Model 1648

Flange drive units recommended for use when short length is mandatory.

<table>
<thead>
<tr>
<th>Capacity (Lb. In.)</th>
<th>Max. Speed (RPM)</th>
<th>Model</th>
<th>Protected for Overloads (Lb. In.)</th>
<th>Torque Sensitivity (Lb. In./Rad.)</th>
<th>Rotating Inertia (Lb.-In.²)</th>
<th>Weight (Lb.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>5,000</td>
<td>1648</td>
<td>3,000</td>
<td>740</td>
<td>23.0</td>
<td>23</td>
</tr>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>1648</td>
<td>5,000</td>
<td>1,811</td>
<td>23.0</td>
<td>23</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>1648</td>
<td>10,000</td>
<td>2,748</td>
<td>23.0</td>
<td>23</td>
</tr>
<tr>
<td>20,000</td>
<td>5,000</td>
<td>1648</td>
<td>20,000</td>
<td>3,507</td>
<td>23.5</td>
<td>23</td>
</tr>
</tbody>
</table>

GENERAL SPECIFICATIONS: (All Models)

- **SENSOR**: Four arm bonded foil strain gage bridge
- **BRIDGE RESISTANCE**: 350 ohms nominal
- **BRIDGE VOLTAGE**: 20 volts maximum, 3 kHz
- **OUTPUT**: 2 to 2.5 millivolt volt nominal
- **LINEARITY**: 0.1% of full scale
- **COMPENSATED TEMPERATURE RANGE**: 30°F to 150°F
- **USEABLE TEMPERATURE RANGE**: 0°F to 200°F
- **EFFECT OF TEMPERATURE ON ZERO**: 0.02% of full scale/F
- **EFFECT OF TEMPERATURE ON OUTPUT**: 0.02% of reading/F

Lebow

DEN3-124
GENERAL DESCRIPTION

The MCRT®6-02T is a compact, high accuracy, flanged torque meter well adapted for vehicle drive line measurements and continuous monitoring and feedback applications. It uses a rotating strain gage torque bridge, temperature compensated for drift and modulus. The bridge is connected to a stationary electronic readout via integral, non-contact rotary transformers.

The torque meter is immune to water, lubricants, coolants, vibration, etc. The elimination of slip rings permits high accuracy low level measurements with long, maintenance-free life. Thrust and bending loads are inherently cancelled by the transducer design. An optional, integral non-contact speed pickup may be specified when ordering.

Linearity: 0.1%

Temperature Effects: From 75 to 175°F maximum drift is 0.2% of full scale and maximum error due to modulus change is 0.2% of reading.

Maximum Operating Temperature: 220°F, assuming permanent lubrication. Above 175°F, the maximum shaft speed may have to be derated.

Readout: Any carrier amplifier suitable for strain gage service may be used.

Excitation Voltage: 10 volts rms, maximum.

Nominal Output: 0.75 millivolts volt (open circuit).

Standard Ratings

<table>
<thead>
<tr>
<th>MODEL</th>
<th>FULL SCALE TORQUE (lb-in)</th>
<th>TORSIONAL STIFFNESS (lb-in/rad)</th>
<th>MAXIMUM BENDING MOMENT (lb-in)</th>
<th>MAXIMUM ROTATING INERTIA (in oz - sec²)</th>
<th>MAXIMUM WEIGHT (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCRT 6-02T</td>
<td>1,000</td>
<td>602,000</td>
<td>500</td>
<td>0.60</td>
<td>13.8</td>
</tr>
<tr>
<td>(1.3)</td>
<td>2,000</td>
<td>1,375,000</td>
<td>1,000</td>
<td>0.60</td>
<td>13.8</td>
</tr>
<tr>
<td>(4.3)</td>
<td>4,000</td>
<td>2,640,000</td>
<td>2,000</td>
<td>0.60</td>
<td>13.8</td>
</tr>
<tr>
<td>(6.3)</td>
<td>6,000</td>
<td>2,430,000</td>
<td>3,000</td>
<td>0.90</td>
<td>17.0</td>
</tr>
<tr>
<td>(10.3)</td>
<td>10,000</td>
<td>2,930,000</td>
<td>5,000</td>
<td>0.90</td>
<td>17.0</td>
</tr>
<tr>
<td>(15.3)</td>
<td>15,000</td>
<td>3,530,000</td>
<td>5,500</td>
<td>0.90</td>
<td>17.0</td>
</tr>
</tbody>
</table>

Overload Capacity: 2 times full scale rating.

Shaft Speed: 0 to 7,500 rpm, bidirectional. Optional speed pickup produces 60 pulses per shaft revolution.

Construction: Load carrying members (flanges, shafts) are 17-4 PH high strength stainless steel.

NOTES:

1. Maximum speed rating assumes permanent lubrication in all driving. For higher speeds, a coolant should be provided.

2. When combined gear and bending loads are present, the bending loads must be divided accordingly.

3. Shaft should be completely restrained from rotation.

S. Himmelstein and Company
DEN3-124
The Model 840 Frequency-to-Voltage Converter is a conditioner amplifier module that accepts input signals in a wide range of frequencies, wave shapes, and voltage levels and produces standard system output voltage precisely proportional to the frequency or repetition rate of the input signal. It is intended for use in '800' systems for measurement of flow, rpm, and similar phenomena that can be derived from magnetic pickups, turbine flowmeters, or other frequency producing sources.

Nine selectable frequency ranges accommodate virtually all mechanical measurement requirements. An internal crystal oscillator reference and adjustable output span allow precise calibration of the indicating device in terms of frequency, rpm, or any other chosen units appropriate to the particular measurement. In flow measurement, for example, the Model 840 can be used with the Model 890 Digital Indicator and calibrated, using the front panel controls, so as to indicate directly in gallons per minute or gallons per hour, provided only that the flowmeter K Factor (cycles per gallon) is known."

The Model 840 is also used in conjunction with the Model 862 Multiplier Module in an instrument that can display torque, rpm, and shaft horsepower in digital engineering units. Additional information on this and other instrument combinations is contained under the Model 862 description.

"If fluid specific gravity is also known, calibration can be made in units of mass flow, such as Pounds per Hour. For applications where specific gravity is subject to change, corrections can be entered manually on a calibrated dial (see Model 868, p. 45) or applied automatically by a temperature sensing channel (see Model 862, page 42).

SPECIFICATIONS

Input:
- Type: Any AC signal, grounded or floating, irrespective of waveform
- Sensitivity: Three ranges: Low, Mid., & High. Plus vernier allows adjustment of threshold level from 5 mv to 50 volts peak. Maximum continuous input voltage is 25 V, 100 V, & 250 V (RMS), respectively. Input is undamaged by momentary peak voltage of 500 volts on any range. Differential input impedance is 20 K ohms, 400 K ohms, and 8 Megohms, respectively.
- Common mode rejection: Greater than 80 dB to 2 kHz, and greater than 30 dB to 100 kHz
- Frequency range: 100 Hz, 200 Hz, and 500 Hz, with multipliers of X1, X10, and X100, each with 100% overrange

Output:
- Standard One Volt Data Signal
- Standard Ten Volt Output Signal
- Step function response (to 99% of final value): 80 ms for X1 multipliers, 2.5 sec for X1 multipliers, 250 ms for X10 and X100 multipliers
- Ripple and noise (max): Less than 0.2% of full scale from 10% to 100% of scale
- Accuracy: 0.05% of scale (based on average value of DC output)
- Housing: Standard full width module
- Operating temperature range: -50 to +120 degrees F
- Power requirements: 105-130 volts, 50-400 Hz

PRICE: Model 840 Frequency-to-Voltage Converter...

Daytronics

DEN3-124

A-9
DYNAMOMETER CHARACTERISTICS

GENERAL ELECTRIC

No 1739498 Type TCL-20 Class 4-125-2700
Amperes 360 Volts 250 Delivers 75 hp
Absorbs 125 hp Torque Arm 15.756 Instr. GE I-7360-B
Speeds 2700/6000
Absorption Model 1014WIG - Speed-Torque Curve

RATINGS:
- 500 HP from 3400 to 6000 RPM (1014-3 WIG)
- 400 HP from 2700 to 6000 RPM (1014-2 WIG)
- 250 HP from 1800 to 6000 RPM (1014-1 WIG)

Dynamatic
DEN3-124
SLIP RING TORQUE SENSORS

Model 1102
Low capacity torque sensors.

<table>
<thead>
<tr>
<th>Capacity (Lb. in.)</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (RPM)</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Model</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
</tr>
<tr>
<td>Torsional Capacity (Lb-in./Rad)</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>Retaining Torque (Lb-in.)</td>
<td>605</td>
<td>676</td>
<td>2</td>
<td>676</td>
<td>2</td>
<td>82</td>
<td>0.750</td>
<td>0.750</td>
</tr>
<tr>
<td>Weight (Lbs)</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Model 1103

<table>
<thead>
<tr>
<th>Capacity (Lb. in.)</th>
<th>10</th>
<th>20</th>
<th>40</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (RPM)</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
<td>20,000</td>
</tr>
<tr>
<td>Model</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
<td>1105</td>
</tr>
<tr>
<td>Torsional Capacity (Lb-in./Rad)</td>
<td>10</td>
<td>20</td>
<td>40</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>500</td>
<td>1,000</td>
</tr>
<tr>
<td>Retaining Torque (Lb-in.)</td>
<td>605</td>
<td>676</td>
<td>2</td>
<td>676</td>
<td>2</td>
<td>82</td>
<td>0.750</td>
<td>0.750</td>
</tr>
<tr>
<td>Weight (Lbs)</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Models 1104 thru 1108, 1114, 1118 and 1119
Standard rotating shaft torque sensor for general application.

<table>
<thead>
<tr>
<th>Capacity (Lb. in.)</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1,000</th>
<th>2,000</th>
<th>5,000</th>
<th>10,000</th>
<th>20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (RPM)</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
<td>16,000</td>
</tr>
<tr>
<td>Model</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
<td>1114</td>
</tr>
<tr>
<td>Torsional Capacity (Lb-in./Rad)</td>
<td>200</td>
<td>400</td>
<td>1,000</td>
<td>2,000</td>
<td>4,000</td>
<td>10,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Retaining Torque (Lb-in.)</td>
<td>1,15</td>
<td>2,30</td>
<td>5,50</td>
<td>11,00</td>
<td>27,50</td>
<td>68,00</td>
<td>150,00</td>
<td>320,00</td>
</tr>
<tr>
<td>Weight (Lbs)</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Model 1115
Flange housing mount with AND pads to match Army-Navy mountings standard Spline drive.

<table>
<thead>
<tr>
<th>Capacity (Lb. in.)</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1,000</th>
<th>2,000</th>
<th>5,000</th>
<th>10,000</th>
<th>20,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (RPM)</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
<td>24,000</td>
</tr>
<tr>
<td>Model</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
<td>1115A</td>
</tr>
<tr>
<td>Torsional Capacity (Lb-in./Rad)</td>
<td>200</td>
<td>400</td>
<td>1,000</td>
<td>2,000</td>
<td>4,000</td>
<td>10,000</td>
<td>20,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Retaining Torque (Lb-in.)</td>
<td>1,15</td>
<td>2,30</td>
<td>5,50</td>
<td>11,00</td>
<td>27,50</td>
<td>68,00</td>
<td>150,00</td>
<td>320,00</td>
</tr>
<tr>
<td>Weight (Lbs)</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>

Models 1228, 1248, 1241
Flange drive for use when short length is mandatory.

<table>
<thead>
<tr>
<th>Capacity (Lb. in.)</th>
<th>2,000</th>
<th>5,000</th>
<th>10,000</th>
<th>20,000</th>
<th>70,000</th>
<th>50,000</th>
<th>100,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max Speed (RPM)</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Model</td>
<td>1228</td>
<td>1228</td>
<td>1228</td>
<td>1228</td>
<td>1228</td>
<td>1228</td>
<td>1228</td>
</tr>
<tr>
<td>Torsional Capacity (Lb-in./Rad)</td>
<td>2,000</td>
<td>5,000</td>
<td>10,000</td>
<td>20,000</td>
<td>70,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Retaining Torque (Lb-in.)</td>
<td>685</td>
<td>1,370</td>
<td>2,740</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
<td>3,000</td>
</tr>
<tr>
<td>Weight (Lbs)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature effect on output of</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
<td>0.002%</td>
</tr>
<tr>
<td>Operating voltage maximum</td>
<td>3000V DC or 4000V AC max</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance bridge case</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Number of bridges</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
</tr>
</tbody>
</table>