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ABSTRACT

The study of turbulence with spatially homogeneous but anisotropic
statistical properties has applications in space physics and laboratory
plasma physics. The first step in the systematic study of such
fluctuations is the elucidation of the kinematic properties of the relevant
statistical objects, which are the correlation tensors. We review the
theory of isotropic tensors, developed by Robertson, Chandrasekhar and
others, and extend it to cover the general case of turbulence with a
pseudo-vector preferred direction, without assuming mirror-reflection
invariance. Attention is focused on two point correlatiorn functions and it
is shown that the form of the decomposition into proper and pseudo-tensor
contributions is restricted by the homogeneity requirement. It is also
shown that the vector and pseudovector preferred direction cases yield
different results. We present an explicit forn of the two point
correlation tensor which is appropriate for anelyzing interplanetary
magnetic fluctuations. A procedure for determining the magnetic helicity
from experimental data is presented.




I. INTRODUCTION

The essential ingredients of a statistical treatment of hamogeneous
turbulence are correlation functions of the components of the relevant
fields, measured at various temporal and spatial separations"z. The
atructure of correlation matrices is the subject of the theory of isotropic
tensors, developed by Robert.aonB. Von Karman and Howart.hn and Batohelors.
The input to this theory is the set of symmetries possessed by the system.
The most common assumption is that of complete isotropy, in which the
turbulent fields are taken to be invariant under rigid rotations and
coordinate inversion. In recent years interest has developud in systems
for which neither of these assumptions sre necessarily good ones. Closer
correspondence of theory to the physical situation may be achieved by
imposing less restrictive assumptions on the statistical frumework.
Particularly in the theory of plasma behavior, it is of interest to study
turbulence which is nearly homogeneous and invariant under rotations about
a single axis. Turbulent plesmas often persist in the presence of mean
magnetic and fluid velocity fields. To the extent that .uch a plasma can
be described in terms of magnetohydrodynamics, the mean velocity may be
removed by a Galilean transformation, but the mean magnetic field and its
associated preferred direction cannot be so removedG. Plasmas with
anisotropic statistical properties are found, for example, in inter-
planetary space and in certain laboratory devices. Experiments have shown
that interplanetary magnetic fluctuations exhibit a strongly anisotropiec
energy spectrum which is nearly axisymmetric about the loca mean field
direction7'8. Many of the interesting properties and outstanding problems

of the interplanetury magnetic field have been reviewed by nnrnea9.

The evolution of a plasmi in a reversed field pinch confinement device
{such as the Los Alamos 2T-40 or the Culham Zeta) is charac.erized by a
strong mean toroidal magnetic field. Magnetic fluctuations in Zeta have
been observed to preferentially :(ie in the plane perpendicu.ar to the mean
f1e1d10'1‘. Evidently the analy:is applied to these anisotropic magnetic

fluctuations has not made use of the most general form of the correlation

tensors, which will be presented in this paper.
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The assumption of coordinate inversion or mirror-reflection invariance
of the correlations in a turbulent plasma rules out the possibility of
non-zero values of several interesting pseudo-scalar mean values, The
magnetic helicity density, an important quantity in the Taylor relaxation
theorylz. which has also been conjectured to participate in dual-cascade13
and selective decay1u processes, is such a pseudo-scaler. The mean value
of the inner product of electric current density and magnetic field is a
pseudo-scalar which is related to the time derivative of the magnetic
helicity. Large values of the pseudo-scalar cross helicity15 are to be
expected when field fluctuations are largely "Alfvenic" such as in the
solar wind.

The correlations most easily accessible experimen‘.ally are the two
point correlations <Bi(§)Bj(z)> where B is the field of interest and X and
Yy are the measurement positions at a single time. The brackets denote
ensemble averaging, which is taken as equivalent to time averaging‘. Often
B has a stationary non zero mean value which induces a preferred direction
on the system. The mean value <B> is usually not a statistical quantity,
and it is convenient to deal directly with the fluctuating part of §16. A
somewhat surprising result i: that the structure of the two-point

correlations depends on whetler <B> is a proper or pseudo-vector,

The theory of correlatior tensors for fields with a preferrea proper
vector direction has been de'eloped in detail by Chandrasekhar, with the
assumption of inversion invariance17. The simplest case of isotropic
correlations without inversicn invariance was presented by Betchovla-
Tensor representations for m.gnetohydrodynamic (MHD) correlations in the
isotropic case were developec by Chandr‘a:’zekhar'g and further discussed by
Frisch et al-13 Recently Moutgomery and Turnet have investigated the

P

structure of magnetic correl.tions in terms of their Fourier transforms .

The principal goals of "his paper are to present the complete structure
of two point magnetic correlitions for axisymmetric MHD, and to discuss how
some physically interesting uantities may be extracted from this model.

We begin in section I1 by prusenting some general developments which are

applicable to two point corr.lations of soleno:dal vector fields in

o
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Ssituations in which no symmetry except homogeneity is assumed. 1In
partincular it is shown that for the usual sorts of correlation tensors a
simple theorem can be derived which immediately restricts the form of the
tensors to about half of the general set described by Batohelorz‘. In
section III the theory of isotropic tensors is reviewed. In section IV the
form of two point correlations with a single pseudo-~vector preferred
direction is presented. In section V the form of the correlation tensor is
given for the proper vector preferred direction case, Section VI briefly
introduces the Fourier space version of the above results. Particular
attention is addressed to comparison of the present results with those of
Montgomery and Turner. We emphasize discussion of the pseudo-tensor
correlation and associated measures of helicity which play an important
role in the MHD description of a turbulent plasma., The results are
summarized in section VII. The Appendix outlines a procedure for
calculating the magnetic helicity in an axisymmetric plasma from

experimental data.
II. PROPERTIES OF THE CORRELATION MATRIX

The basic quantity under consideration is the matrix of correlations
between two spatially separa.ed components of a solenoidal vector field
B(x, t). We consider only tie homogeneous case, where the statistical
properties are invariant und:r bulk translation of the measurement
apparatus. In that situatio: the correlation matrix, 5 depends only on the
vector sepaation of the two measurement points., We define,

Rij(r_) s <Bi(5 B x+r)> (1)

J

where the time dependence ha; been suppressed :nd RiJ is explicitly
independent of x. Homogenei.y implies the add:tional property:

Ryj() = Ryi(=0) (2)

which follows by letting x + x-r in (1). The :solenoidal nature of B

. requires that




1 -
1
- 6
)
! 3 ]
— Ryyed o R0 L, (3)
arJ ry
. Here, and subsequently, repeated tensor indices imply summation over all
J coordinate directions, unless specified otherwise.
A useful property of the matrix elements is
|R15 (£)}* < Ry, (0) RJJ(O) (no sum implied) (4)

which follows from a Schwarz inequality, treating the ij-th element of R as
the inner product of B, (x) and Bj(g+g). The above properties are discussed
in detail in reference 1.

In the most general case the matrix R must transform under coordinate
rotationc in a way which reflects its tensor character3‘u'5'6. ﬁ is
basically a time averaged dyadic product of two vectors (or perhaps
pseudo-vectors), so contributions to ﬁ must transform as proper on :
pseudo-tensors. The homogeneity property allows certain conclusions to be ]
drawn concerning the decomposition of Ry (r). Coordinate inversion will be
designated by l and taken in the usual sense to be that improper rotation

for which

dr=-r (5)
where r is the position vector. Under inversicn coordinate basis vectors
are mapped into their opposites and a right-harded system b:comes
left-handed., A proper tensor T of rank n tran:forms as

J1:n"1

whereas an nth rank pseudo-tensor P satisfies

dp - )™ b

o sl s EL e -
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Now the correlation matrix can always be decomposed into symmetric and
anti-symeetrio parts:

S A
were Rfj = "31 and R:J g - R31 =, Lottin¢9 opé‘rato on Rfj(g) and using
the homogeneity property (2) yields

J Rij(;) z R'I'J(-g) (by definition of inversion)
z R§1(+5) (by homogeneity)
RS (¢ S 4
14(+r) (since R” i3 symmetric),

ah)wing thatAﬂij is a symmetric proper tensor form., Similarly R J(r) z -
1'j(r) and R1J is an antisymmetric pseudo-tensor. The argument is
invertible. A proper tensor part of the correlation can be shown to be
symmetric and a pseudo-tensor part shown to be antisymmetiic. Thus, any
homogeneous correlation matrix 5 of the form (1) consists of the sum of a
symmetric proper tensor and an antisymmetric pseudo-~tensor. This result,
which will be subsequently referred to as theorem A,follows for either
proper or pseudo-vector field B.

In addition to excliuding symmetric pseudo-tensors and antisymmetric
proper tensors from consideration as possible components of 5. the above
result suggests several corollaries., Let RiJ(E) : Tij(g) + Pij([) where
TiJ z TJi' Pj.J = -PJi.,ﬂg x +1 andog = =P, Several useful properties are

easy to show:
a) The proper tensor part of R is an even function of r, i.e.,

Ty ,(r) = Tij('E)

while the pseudo-tensor is odd,

i3




b)

c)

If one writes down a power series for Rn(g). supposed to dbe valid
for same region near r = 0, the above property zfhows that the even
order terms are part of TiJ and the odd order terms part of PiJ' If
the symmetries of the system allow dependence on |r| = r, then
analyticity requires that such terms only appear in even powers, If
dependence is allowed on a projection of r on a preferred direction
A, then this property determines the parity of the power series
dependence on rea,

The solenoidal property of R (equation (3)) implies that P and T are
separately solenoidal, i.e,,

2 op =0
ar J
J
)
— Pij(g) -0
Ty
?
= Tij(g) =0
ry .
?
- Tij(E) = 0
ar,

In the application of the theory of isotropic tensors this property
serves to reduce the number of independent scaler functions which

multiply tensor forms.

The diagonal elements of g are purely proper tensor and all

pseudo-tensor contribitions vanish as r + 0. Thus,

Ryg'n) = Tyy

(r) (no sum),

R, .:0)

ij T, ,(0)

i)

and, from the Schwarz inequality we have




T,,(0) 2 Ty,(r) (no mm).

d) The Schwars inequality, (%), takes on the slightly more restriotive
form:

T,,4(0) TJJ(O) P4 ('l'“(_l;))' . (Pu(g))' . éll'“(;) ‘!‘u(g)l

svhere the bars denote absoclute value snd no sum is implied. In
cases where there is a large 'helicity' this form may become
relevant.

These properties as well as theorem A are useful formulae for
constructing minimal tensor representations for hamogeneous systems with
arbitrary symmetries. It should be noted that in related ciroumstances
similar results can be shown. For example. The correlation of B with J &
"xB can be treated by considering the tensors

<B(x)J(xer) £ J(x)B(xer)>,

In each case there is a hamogeneity property which along with the
: transformation properties of B and J, implies a theorem which eliminates
certain tensor forms from adnissibility.

III. THE THEORY OF ISOTROPIC TEMNSORS

Here we briefly review the theory of the construction of correlation
tensors, dus to Robertson and otlura3'~'5"7"9. We focus on two point

i oorrelation tensors, but the gensralization to arbitrary rank is
straightforward.

; Consider a correlation R which is assumed to possess an invariance

% property with respect to am orthogonal symmetry transformation which has a

» (matrix) representation 0 (Herm.tisn adjoint of 0) and maps & veotor r
tnto r* so that r' = O'r. e derine a scalar F s,

‘ F = F(a,b.r) = a°R(p)°D
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and require that
F(a',b',r') = F(a,b,r) 6)

where the primes denote sotion of the transformation 0% and a and:b are
arbitrary vectors. Equation (6) is just the requirement that the
correlation measured between the 8 and b direction with separation r be
invariant when a, b and r are all rigidly transformed under 0*. A simple
manipulation shows that the requirement on the structure of R(r) is that it
satisy the matrix equation '

R(r) = 0g(0*r)0* n

3

Robertson™ has shown that this requirement is satisfied if 5 consists of a
sum of all possible dysdic products of the vectors fundamental to the
problem and the fundamental invsriants 61 j and €45k each myltiplied by a
scalar function of the invariant scalars allowed by 0'. Thus in the case
of one preferred direction (i, suy) O* is an arbitrary rotation about the )

direction and the scalar functions may depend on r°r and rei.

The results of the previcus section further restrict the candidates.
Each tensor form (dyadic procucts and combinatior.s including 611 and ‘1Jk’
may be symmetrized and antisymmetrized. If A is a proper vector there are
no intrinsically pseudo-scalur quantities in the problem, each scalar
function is a proper scalar, and the tranasformation properties of each form
depends only on the “pert with indices",

If the preferred direction is a pseudo-vector 6, such as a mean
magnetic field, then z £ r*°6 is pseudo-scalar and there is the possibility
of forming a proper symmetric tensor by taking the product of a symmetric
pseudo-tensor form with s pscudo-scalar function of z, There is no
guarantee that such correlat ons exist in physical situations, but there is

nothing in the mathematics t. rule them out.
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IV. TWO POINT CORRELATION WITH A MEAN MAGMETIC FIELD

Here we consider the correlations of the fluotuating part of a pseudo
veotor field B* = <B*> + B(x,t). We assume that the only preferred
direction is

. <p®

1<8%>|

which is a pseudo-vector. The fluctuating part has zero mean so <B> = 0.
This situation is probadbly the one most relevant to interplanetary magnetic
fluctuations viewed in a frame moving with the plasma. The correlation of
interest is 311(5) = <B,(x) BJ(5+;)> which as above, is taken to be
independent of x. This correlstion tensor contains fluctuations of the
sanme field as the one responsible for producing the preferred direction,
but the results obtained hold for correlations with a pseudo-vector
axisymmetry direction of any origin,

Keeping in mind the results of sections II and III we may catalogue the
tensor forms allowed in the construction of 5. Firast we consider proper
tensors. There are four independent symmetric proper tensors which may
appear multiplied by scalar functions. They are

615. £y bibJ (8)

ri‘Jkl bkr‘ + rj‘ikl bkrz'
Note that the last of these is a proper tensor since S x r is a proper
vector. There are two independent symmetric pseudo-tensor forms which may

be taken to be

birjoribJ 9)

and
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These two forms are esdmissidble provided they are each multiplied by
pseydo-scalar function, which is possible since z is a pssudo-scalar.

Turning to the pseudo-t.ensor contrihutions, we see that there are a
total of three independent possibilities; two antisymmetric pseudo-tensors
and one antisymmetric tensor which must be aultiplied by pseudo-acalar
functions. The antisymmetric pssudo-tensors are the foras

The only independent antisymmetric proper tensor form is
‘Xkak‘ (1)

Other forms such as bi‘JkLbkrz'bjtiknbkrz and ri‘)klbkrl'rjcikzbkrz are

not independent due to certain identitieszz. Each of these contributes to
the pseudo-tensor part of 5 when multiplied by a function which is odd in

Assembling the terms fror (8)-(11) and applying the solennidal

condition, we arrive at the 1epresentation for Rij(g):

Rij(t) = Tij(£ ¢Pij([) (12a)
ij(:) e Aélj’“rirJ*C(birj*bjri)
* Dbibj (12b)
+ E(ric.klbkrl’rjciktbkrl)
+ F(bic_klbkrz’bjciklbxra)
P, .(r) = Ge, .t +Ke (12c)

13400 = Oyt oKy by
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Here A, B, D, E and G are functions of even powers of r and 2. C, F and X
are odd funetions of z and contain even powers of r., Note that the form
bt’j‘bjri has disappeared entirely due to the solencidal property. Clearly
not all of the above functions are independeat. The solenoidal condition
gives one constraint between G and K, one between E and F and two
constraints among A, B, C and D. These equations yield sets of partial
differential equations relating the scalar functions to each other.
Equivalently these constrairts may be solved in principle by relating them
to four "basic™ functions. The problem of presenting the solution of these
ejuations in a form which is both compact and experimentally meaningful
will be discussed in a later section. For nuw, we note that the equation
connecting the scalars in the pseudo-tensor does take a simple form. Using
a subscript to denote explicit differentiation, so that

3 - r
G (r,2) = Gr _J+ sz.

J
arJ r
We find that the solenoidal property implies

G =Kr
.
r

and thus

(2]
"

Or(r.z)/r

»~
1]

Qz(r,z)

where ¢ is a function which :contains even powers of r and z in its Taylor

series.

Several important physical quantities can be extracted from equation
12, 12a and 12b, In the appropriate units, the energy density of the field
B is just

<B2(x)>

Trace R(0),
=

3 A(0,0)+D(0,0) .

o o e . A
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Note that throughcut this paper regularity of the scalars at r*0 is
assumed, Evidently A(0,0) is the isotropic ocomponent of the energy while B
(0,0) represents the influence of the preferred direction b on the
distribution of energy in the fluctuations. In the case where almost all
of the energy is in fluctuations perpendicular to 6, D(0,0)+-A(0,0)
achieves the necessary projection, while in the isotropic limit D(0,0)+0.
Other aspects of these limiting cases will be discussed in later sections,
The "helicity" HJ of the field B is the pseudo-scalar correlation of, say,

the magnetic field with the electric current J = VxB., A simple calculation
shows

HJ z <Be gxg)

]

- 0 G(0,0) - 2 KZ(O,O)

Thus, in the case of magnetohydrodynamic configurations which are nearly
"force free" (i,e., J x B I 0 and § < A B) one would expect G(0,0) to take
on large values subject to the lumitation
Hy  <BD> >
\
or, =6 G(0,0) - 2 K_(0,0) ¢ .3 A.0,0) + D(G,0)) «*>,

W shall return to discussion of the pseudo-vector preferred direction

case tn section V1. In the following we briefly discuss the "mean flow"
case, wherein the preferred direction transforms under inversion as a

proper vector.
V. TWO LOINT CORRFLATION WITH A MEAN FLOW DIRE TION

W 'n a proper vector i ( & A = -1) induces a preferred .direction on a
turbulent system. the general form of the correlation ﬁ is implified.
Chandrasekhar has given an elegant presentation of the inve-sion symmetric
part of R for this Cn30.17 The notlable difference between .he result of

the last section and the present case is the absence of the tensor forms
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Jkl k'g + rJ 1kzx r amnd Age k8 kr‘ * AJ'iklbk K These forms may not
appear because rx) is nou a pseudo-vector and r*i is a proper scalar. The
tensor R1J now has the form

ij(ﬂ) * ij(ﬁ) . Pij(g) (13)
Tij(r' z) = A‘iJ + BrirJ * c(xi gt r x ) + DxixJ
Pij(r.z) z G‘ijkrk - H‘ijkxk
where z = re).

The dependence of the scalar functions on z must again satisfy the
properties discussed in section II. A summary of these properties and
those of section IV may be found in Table I.

VI. FOURIER TRANSFORM OF THE CORRELATION TENSOR AND FORMAL SIMPLICATION OF
R

The Fourier transform of the two point oorrelation’. also known as the
energy spectrum tensor is defined as

(k) = —— s dr R {1¢0) e k'L (14)

1J (2%)? J

For our purposes the important properties of § are reality ‘513‘5) =z

Sy 4"(-k)) homogeneity (S, (k) = 3,,(=k)) and hermiticity (S, (k) =
531"“’) Since theorem A applics equally well in k space, it follows that
the real part of S, which is a symetric matrix and even under k+-k can
contribute only to the proper tensor part of S. Im§ is antisymmetric, odd
under k+-k and is a pseudo-teonsor. With these properties in mind, the
application of the same arguient:s leading to equations (12) and (13) yields

the general form of 2 (for the case of a preferred pseudo-vector direction

6)
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S;4(k) = Keij N 5k1kj + Sloky bk, )

+ Bo + Bk k, + kJ

1chzbk . bkk.) (15)

1y “1ke

[ + f(bitjkzbkkg + bjcikzbkkz)

+ &‘ijlk!

The 3olenoidal condition kiSiJ(g) z kJ sij(g) = 0 has been implicity
used in this equation, yielding algebraic constraints among the scalars
which appear. These constraints have eliminated terms proportional to
€; 4D and ryby = rib,. The functions % through § depend on |k| = k and k,
z k6. Only € and ¥ are odd under k, + -k,. Again, if the preferred

direction were a proper vector we have £E=¥=:o.

In order to solve the constraints implicit in equation (14), we make
use of the form for 513(5) introduced by Montgomery and Turner, whickh
includes the solenoidal property at the onsetzo. Defining 83 = R, 82 = kx

6/|k x 6| and &, = &, x 63. the most general form of S(k) is

3(k) = t A& € (16)
= a,B = ! o8 "o H
which automatically satisfies the property kisij = kJSiJ = 0%, e four
S

independent scalar functions are A11. A22. A” and A® where A12 = AT+ Aaz

all are functions of k and k*6 = k?. The scalar functions in (14) may be

evaluated in terms of the Ami by use of various vector identities. The

|
results are:

K= ay,
2 2
5. SV [KRpp - kA,
K1 Kt - k!
kz
¢ —Z . (oo = Ayy)
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(A

- A,,)
" 22
!t g
k k:

a7

k
E 8 = z AS
k (k® - k:’)

5 s i At
k

Consistent with the discussion of Montgomery and Turner, we note that
when A22 - A11 and A3 : Re A12 + 0, equation (14) becomes

Kk, k A% (k)
R S | _
813(5) e (61J " ) A22(5) + 4 N ‘ijkkt

which is the familiar isotropic result if A22 and A® depend only on|5‘13.

From the above discussion one can easily deduce that Ao Ay, and
Im A,, are even in k,. while ReA,, is odd. Furthermore since 81 82 is a
pseudo-tensor dyadic but contributes symmetrically through Re “12' we must
have Re Ay> = 0 for the case where % + £ (a proper vector direction). As
expected this would insure E=F=01n (10),

The decomposition of g due to Montgomery and Turner suggests several
ways of expressing R in explicit terms of four functions. Iquations (15)
and (17) may be used in the inverse of (14) to show that

_ 2 4(1)
2

? 2 :

3?‘1 N‘J z

-(b oy Ly- %@
i
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(18)
2 _2.(2)
+ bibJ v vQ
3 9 3 2 ? 4(3)
+ (b ¢ +be¢ - \_0N
( m - Jjim 3?: 3?; mim ary ar, |z
? 3 2,(3)
- (biejlm bm = * b,jcilm bm ﬁ_)v Q
[ 3 L
]
‘cijk;;—.
Kk

Equation (18) may be further reduced by expanding the derivatives, but the
1

result is unwieldy. The four independent functions Q( ). Q(z). 0(3) and

¢ are functions of r and 2z, 0(3) being the only one which is odd in 2.

@ , o ana @ (1

Isotropy is achieved when Q + 0 and ¢ and Q depend only

onr, Mirror reflection invariance is recovered when ¢ + 0. The

fluctuations concentrate in the plane perpendicular to 6 when v’Q(Z) s

An alternative formulation of the real space correlation i. may be

M y@ 3

written in terms of four scalar functions W and ¢:

Ry () = (2« (3_. b) w2
ar itar J
. i_xla__. s)) 3_.{_’__. l))) W@r,2) (19)
ar lar ijaer \ar J

+ 3 x(a x 8)) (_a_ x 6) + L x(f_ x 5)) (_a__ x 9 H(3)(r.z)
ar lar iljer 4 {ir ter J\er i

(]

+ €
13k - —
Brk

o(r, 2).

This is the most compact foru we have found for express:ng the
structure of E in terms of four ‘unctions. The solution of vhe constraints
implicit in equations (12a) ind ' 12b) may be found by expanduing the
derivatives in equation (19) but again the form is cumbersrsie. Various
formulae connecting the W furctions with the Q's in (18) anu the Fourier

1
transforms of the Aue may be easily derived. In the isotropic limit N( ) -
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2,(2) (3)
TwW, 0 - 0, W'« 0, Mirror reflection symmetry implies ¢ = 0. The
two dimensional limit (fluctuations 4 8) is spproached when only H(1) is
non-zero and Hz(1' = 0,

Of particular intcrest in equation (19) is the function ¢ which
generatea all pseudo-tensor correlations. Comparison with the discussion
following equation 12b shows that the pseudo-tensors involving ¢ in (18)
and (19) are equivalent to (rk cijk G + bk ‘1Jk K) which is guaranteed to
be solenoidal when G = or/r and K = .. It can be shown that

Ayo(k)
¢(r,2) = Im s dk e - =
k

and from equation (32) of Mortgomery and Turner it follows that

20(0,0) = "Mugnetic Helicity Density" = Hy
(20)

= <A*B>
where B = Vv x A, Also, recalling the discussion of section IV we have

HJ =z "helicity density" = <BeoxB>

lim
= Tr+0 (- .. - u.r/r - 2‘21)

(21)
= =6G(0,0) - 2 KZ(O.O)

Equation (20) is perhaps the most significant result of this paper and
can be derived by the following procedure: 5 may be expressed as the

inverse transform of § and may be uncurled in Fourier space, yielding the’

symmetric part of the correlation <B A>.Here A is the magnetic vector
potential sa.isfying

VA = 0. The Fourier transform of <B A> is defined to be Hij(g) = ik
‘Jrskrsis which satisfies <A°B> = / dk H(K) where H(K) = H,,(K). Then it
follows that the k-space pseudo-.ensor (equation 15) may be written

2




. . e Bt

i

20

=i ‘

n

It is easy to verify that ¢, the generator of the real spacc pseudo-tensor
satisfies

o(r,2) = =1 f ck e¥T S

which yields equation (20) when ovaluated at r = O.

The conclusion, then is that knowledge of the real space pseudo-t:nsor
correlation near the origin can be used to a2xtract the helicity of th:
field B, while knowledge of ¢ at the origin is necessary to find HH. In
this formulation, there is nc decomposition of magnetic hel:city into
isotropic and anisotropic cortributions, but the helicity density HJ has an
isotrop:c contribution G(0,0) and an anisotropic contribution KZ(O.O).

VII. SU!NMARY AND DISCUSSION

In this paper we have exiémin:d the structure of homogentcous correlation
tensors with an emphasis on the conclusion3 which may be dr:wn conceraing
axisymmetric magnetohydrodynimic fluctuatisns in the presence of a mean
magnetic fie’d. The formal resu ts of section II are helpfil in the
construction of the appropri:te “.ensors wi:h any assumed syimetry. In
sect.ion IIl we reviewed the techunique for :ronstructing "iso ropic tensors"
and presented the axisymmetric results in sections IV and V When th»
fluctuations have a pseudo-vector axisymme ry direction (me:n magneti:
field), four scalar function: arc required to determine ﬁ' lut when t e
axisymmetry direction is a "jroper" vector (mean flow direc'ion) only three
such functions exist, In each cise the ps udo-tensor part «f the
correlation is antisymmetric in ts spatia indices, odd unier r « -r and
is completely determined by (ne :calar fun:tion. The relat vely simp e
structure of the pseudo-tenscr correlation is used in Appen ix A to g ve a

prescription for measurement of 'he magnet.c helicity. It s importa it to
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note that we have calculated the magnetic helicity of the fluctuations. If
inhamogeneities were present, there would be an additional contridbution
which may be thought of as the magnetic helicity of the mean field. 1In
section VI we conaidered 2- the Fourier transform of 5 and showed its
equivalence to the form deduced by Montgomery and Turner. The Fourier
representetion was used to derive explicitly sclenoidal versions of R
containing derivatives up to fourth order. Chundraaokhnr17 has aolved the
solenoidal constraints for the proper tensor part of the correlation (for
the mean flow direction case) in terms of derivatives up to second order on
two functions. Complications arise when applying his technique to the more
general case treated here, but we believe that it may be possible ta
develop a representation, similar to (18., =nd (19) containing only second
derivatives of four scalar functions.

The tensor structures presented here have obvious application in the
further development of the kinematic theory of axisymmetric turbulence.
Each of the four functions discussed in sections IV and VI implicitly
contain microscales and correlation lengths which characterize certain
moments of the energy spectrum tensor, Another application lies in the
calculation of transport coefficients. For example, use of the form of ﬁ
we have presented may impact calculations of the scattering of cosmic rays
induced by interplanetary magnetic fluctuationazu. Hasselmn25 has studied

this problem using axisymmetric correlations which are not as general as
those presented here,

At this point in time any cleim of the existence of a universal
equilibrium range for magnetohydrodynamic turbulence must be viewed as
conjectural 6. However, one may envision the intriguing possibility that
the four scalar functions characterizing axisymmetric MHD may possess
universal limiting behavior at large magnetic Reynolds number.
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APPENDIX A: Evaluation of the Magnetic Helicity

Here we develop a simple procedure for calculating the magnetic
helicity, <A°B> from experimental knowledge of the two-point mesgnetic
correlation Rij(z)‘ We assume that to good approximation the statistics
are homogeneous, axisymmetric about 6 and time-stationary. The two-point
correlation is given for values of r = 9S where ¢ is a time independent
unit vector and 8 is a parameter. 1In section VI we found that <A°B> =
20Kt 2 0). If ¢ is single valued and sufficiently well behaved, it may be
evaluated at r = 0 by

0
0(0) = / 90-9dS + ¢(9R) (22)
R

If o(%R) + O rapidly as R becomes large, the second term in (22) may be
dropped and the lower limit replaced by =, This will introduce little
error if the relevant correlation lengths are small compared with both the
range of available messurements and the lengths characterizing departure
from the symmetries we have assumed.

Consider a unit vector & in the direction of 6 xr = s 6x?, and an angle
v which satisfies cos y = 06 and Bxr =z r sinv &. From equation (12c) and
the discussion following equation (19) we may deduce that

.. sin ¢ = 8°g°5
and o, siny = ~gepet

A
where § is the pseudo-tenscr jart of g. Using ve*V = 'r + cos voz the
magnetic helicity may be evaluated as

B>z 1 [&opeVcosw - 2epdloas (23)

siny 0




This form may be useful for calculating <A°B> in laboratory plasmas from a
series of single time two-point meassurements, making use of PiJ s 1/2 (RU
- R’i).

A slightly different approach is appropriate to extract the magnetic
helicity from interplanetary magnetic data which, at this time are limited
to time series of single point field measurements., First we extend our
definition of R to include two-time measurements, 30

RygLemd = <B(x,t) By(xer, terdd

where the new argument represents time. Then, we sdopt the "frozen flux"
approximation,

RiJ(O.T) s Rij(' uct.O)

where uV is the solar wind streaming velocity. This spproximation is
expected to be valid when the streaming speed u i3 much greater than the
local Alfven speed, the magnetic Reynolds number is very large and the
correlation lengths are small compared with the scales of spatisl variastion
of uv and b, Since the pseudo-tensor P1J is equivalent to 1/2 (Rij(z't) -

‘13 (=r,t)), we may rearrange (23) using the frozen flux property resulting
in

- -

A
<A*B> = f - f (é-g-b - COSy 3-@3) dt (2u%)
28iny 0 0

where § is evaluated at r =z 0 but with temporal argument r.

Many data sets may disallow use of the above prescriptions (23) and
(24) by virtue of strong inhomogeneities. The question of whether usaful
numbers can be obtained from other candidates remains to be decided by a
posteriori consistency tests, Only simple modifications of ..'3) and (24)
are necessary to accommodate data with spatial separations parallel to the
mean {ield.




Function
A

B

ce

G

H®

TABLE I

Summary of Properties of the Scalars in the Tensor

RiJ

= A 5ij + B rirJ + C(birj + bjri)

+

D bib, + E(riejkzbkre + rj‘ik;bkrz)

J
F(biejklbkrz + bjciklbkrl)

+

+

Goeygurye + Heyqby

Pseudo-vector D
(pseucdo-scalar ber)

Even in 2
Even

0dd in 2
Even

Even

0dd

Even

Odd

Notes to Table I

Proper Vector
(6 +» %)

Even
Even
Odd
Even
Do:s not appear
Does not appear
Even

0dd

Dependence on
Basic Functions

Q1 ’ 02
Q. 9,
Q. 9

Q1' Q2

The asterisk (#*) signifies that the tersor character of the form nultiplying
the function changes when b + %.

Even and odd refer to the powers of z in the series representing the function.

The dependence on basic functions column 1ists symbolically which of the

underlying functions determines each form.

Only forms depending on the same

basic function are 'mixed' in the Fourier tiransformed representation (see

section VI).
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