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ABSTRACT

The study of turbulence with spatially homogeneous but anisotrople

statistical properties has applications in space physics and laboratory

plasma physics. The first step in the systematic study of such

fluctuations is the elucidation of the kinematic properties of the relevant

statistical objects, which are the correlation tensors. We review the

theory of isotropic tensors, developed by Robertson, Chandrasekhar and

others, and extend it to cover the general case of turbulence with a

pseudo—vector preferred direction, without assuming mirror—refleotion

invariance. Attention is focused on two point correlation. functions and it

is shown that the form of the decomposition into proper and pseudo—tensor

contributions is restricted by the homogeneity requirement. It is also

shown that the vector and pseudovector preferred direction cases yield

different results. We present an explicit fora of the two point

correlation tensor which is appropriate for anElyzing interplanetary

magnetic fluctuations. A procedure for determining the magnetic helicity

from experimental data is presented.
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I. INTRODUCTION

The essential ingredients of a statistical treatment of homogeneous

turbulence are correlation functions of the components of tho relevant

fields, measured at various temporal and spatial 3eparations 1•2 . The

atructure of correlation matrioes is the subject of the theory of isotropic

tensors, developed by RobertWd, Von Kansan and Howarth  and Batchelor 5.

The input to this theory is the set of symmetries possessed by the system.

The most common assumption is that of complete isotropy, in which the

turbulent fields are taken to be invariant under rigid rotations and

coordinate inversion. In recent years interest has developed in systems

for which neither of these assumptions are necessarily good ones. Closer

correspondence of theory to the physical situation may be achieved by

imposing less restrictive assumptions on the statistical framework.

Particularly in the theory of plasma behavior, it is of interest to study

turbulence which is nearly homogeneous and invariant under rotations about

a single axis. Turbulent plasmas often persist in the pre3ence of mean

magnetic and fluid velocity fields. To the extent that .uch a ple-Ma can

be described in terms of magnetohydrodynamics, the mean velocity may be

removed by a Galilean transformation, but the mean magnetic field and its

associated preferred direction cannot be so removed 6 . Plasa1183 with

anisotropic statistical properties are found, for example, Ln inter-

planetary space and in certain laboratory deviues. Ex perimenta have shown

that interplanetary magnetic fluctuations exhibit a strongly anisotrOpic

energy spectrum which is nearly axisymmetric about the loca. mean field

direction 7.8. Many of the interesting properties and outstanding problems

of the interplanetary magnetic field have been reviewed by Barnes9.

The evolution of a plasma, in a reversed field pinch con Cinement device

(such as the Los Alamos ZT-40 or the Culham Zeta) is charac-erized by a

strong mean toroidal magnetic field. Magnetic fluctuations in Zeta have

been observed to preferentially Lie in the plane perpendicu<ar to the mean

field 1D '	 Evidently the a l ialy.43 applied to these anisott opie magnetic

fluctuations has not made use of the moat general form of the correlation

tensors, which will be presented in this paper.
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The assumption of coordinate inversion or mirror-reflection invariance

of the correlations in a turbulent plasma rules out the possibility of

non-zero values of several interesting pseudo-scalar mean values. The

magnetic helicity density, an important quantity in the Taylor relaxation

theory 12 , which has also been conjectured to participate in dual-cascade13

and selective decay 14 processes, is such a pseudo-scaler. The mean value

of the inner product of electric current density and magnetic field is a

pseudo-scalar which is related to the time derivative of the magnetic

helicity. Large values of the pseudo-scalar cross helicity 15 are to be

expected when field fluctuations are largely "Alfvenic" such as in the

solar wind.

The correlations most easily accessible experimen'.ally are the two

point correlations <Bi(x)Bj(x)> where B is the field of interest and x and

Y are the measurement positions at a single time. The brackets denote

ensemble averaging, which is taken as equivalent to time averaging l . Often

B has a stationary non zero mean value which induces a preferred direction

on the system. The mean value <B> is usually not a statistical quantity,

and it is convenient to deal directly with the fluctuating part of B 16 . A

somewhat surprising result i:, that the structure of the two-point

correlations depends on whet}er <B> is a proper or pseudo-vector.

The theory of correlation tensors for fields with a preferrea proper

vector direction has been de , eloped in detail t,y Chandrasekhar. with the

assumption of inversion invarlance 17 . The simplest case of isotropic

correlations without inversion invariance was presented by Betchov18•

Tensor representations for m,,gnel.ohydrodynamic (MHD) correlations in the

isotropic case were develope< by Chandrasekhar 9 and further discussed by

Frisch et al. 13 Recently MoAgomery and Turner have investigated the

structure of magnetic correlations in terms of their Fourier transforms 20

The principal goals of 'This paper are to present the nnmplete structure

of two point magnetic correlations for axisymmetric MHD, and to discuss how

some physically interesting quantities may be extracted from this model.

We begin in :;ection I1 by presenting some general developments which are

applicable to two point corr- lations of soleno dal vector fields in
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situations in which no symmetry except homogeneity is assumed. In

particular it is shown that for the usual sorts of correlation tensors a

simple theorem can be derived which immediately restricts the form of the

tensors to about half of the general set described by Batchelor21 . In

section III the theory of isotropic tensors is reviewed. In section IV the

form of two point correlations with a single pseudo-vector preferred

direction is presented. In section V the form of the correlation tensor is

given for the proper vector preferred direction case. Section VI briefly

introduces the Fourier space version of the above results. Particular

attention is addressed to comparison of the present results with those of

Montgomery and Turner. We emphasize discussion of the pseudo-tensor

correlation and associated measures of helicity which play an important

role in the MHD description of a turbulent plasma. The results are
L.	

summarized in section VII. The Appendix outlines a procedure for

calculating the magnetic helicity in an axisymmetric plasma from

experimental data.

II. PROPERTIES OF THE CORRELATION MATRIX

The basic quantity under consideration is the matrix of corre'ations

between two spatially separa'.ed components of a solenoidal vector field

B(x, t). We consider only tie homogeneous case, where the statistical

properties are invariant under bulk translation of the measurement

apparatus. In that situatioi the correlation matrix, R depends only on the

vector sepac• ation of the two measurement point:;. We define,

R
ij

(r) = <Bi (x Bi (x+r)>	 (1)

where the time dependence ha; been suppressed and Rij is explicitly

independent of x. Homogeneity implies the add.tional property:

R
ij

(r) = R ai (-_)	 (2)

which follows by letting x + x-r in (1). The :;olenoidal nature of B

, requires that
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Rii(r) = 8	 Rij(r) a 0.
or 	

on

Here, and subsequently, repeated tensor Indioes imply summation over all

coordinate directions, unless specified otherwise.

A useful property of the matrix elements is

I Rij (01 2 < R ii (0) R 11 (0) (no am implied)	 (4)

which follows from a Schwarz inequality, treating the ij-th element of R as

the inner product of Bi (x) and Bi (x+r). The above properties are discussed

in detail in reference 1.

In the most general case the matrix Rmust transform under coordinate

rotationz in a way which reflects its tensor character 3 '
4
 6•5'. R iss

basically a time averaged dyadic product of two vectors (or perhaps

pseudo-vectors), so contributions to R must transform as proper on

pseudo-tensors. The homogeneity property allows certain conclusions to be

drawn concerning the decomposition of R ij (r_). Coordinate inversion will be

designated by ! and taken in the usual sense to be that improper rotation

for which

	

j r = - r
	

(5)

where r is the position vector. Under inversi(n coordinate basis vectors

are mapped into their opposites and a right-herded system becomes

left-handed. A proper tensor T of rank n trans forms as

4 T = (-1) n T

whereas an nth rank pseudo-tensor P satisfies

4 P = (-1) n+1 P.

(3)
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Now the correlation matrix can always be decomposed into symmetric and

anti-symmetric parts:

3 Ri'(r) : Ri
j
(r) + Ri'(r)

were Rig s R;i and Ri' a - Rai :. Letting operate on Ri ' (r) and using

the homogeneity property (2) yields

R3^(r) a Ri,(-r) (by definition of inversion)

a Rai (+r) ( by homogeneity)

x RS ( +r) ( since RS is symmetric),

showing that ARi^ is a symmetric proper tensor form. Similarly Ri^(r) _ -

Rii (r) and Rii is an ant13ymmetric pseudo-tensor. The argument is

invertible. A proper tensor part of the correlation can be shown to be

symmetric and a pseudo -tensor part shown to be antisymmetrie. Thus, any

homogeneous correlation matrix R 
of the fora ( 1) consists of the sum of a

symmetric proper tensor and an ant13ymmetric pseudo-tensor. This result,

which will be subsequently referred to as theorem A,follows for either

proper or pseudo-vector- field B.

In addition to excluding symmetric pseudo-tensors and antisymmetric

proper tensora from consideration as possible components of :, the above

result suggests several corollaries. Let R i , ( r) x Tij ( r) + P ij ( r) where

Tip : Tai , Pik a -Pji „^T x +T andaE = -_. Several useful properties are

easy to show:

a) The proper tensor part of Ris an even function of r, i.e.,

Tij (r) x Tij(-r)

while the pseudo-tensor is odd,

P ij (r) : -Pij(-r).
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If one writes down a power series for R ij (r), supposed to be valid

for acme region near r a 0, the above property Lows that the evan

order terms are part of Tij and the odd order terms part of P ij . If

the symmetries of the system allow dependence on fir) a r, then

analyticity requires that such terms only appear in even powers, If

dependence is allowed on a projection of r on a preferred direction

A, then this property determines the parity of the power series

dependence on r•A.

b) The solenoidal property of R (equation (3)) implies that : and T are

separately solenoidal, i.e.,

a	 P 1 (r) = 0
ar i	j

a	 Pij(r) _ 0
ari

aari Tij(r) c 0

a	 Tij(r) = 0
ari

In the application of the theory of isotropic tensors this property

serves to reduce the number of independent scaler functions which

multiply tensor forms.

c) The diagonal elements of IItt are purely proper tensor and all

pseudo-tensor contrib,tions vanish as r + 0. Thus,

R ii (r) = T ii (r) (no sum),

R ij ;0) = Tij(0)

and, from the Schwarz inequality we have
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Tii(0) > T
II(E) (no as).

d) The Schwars inequality. ( g), tales on the slightly more restrictive

form:

Tit (0) Tji
(0) ) (Tl,tr)) • + (Pij (r)) A + ilPi^(r) TI^(r)l

where the bar& denote absolute value and no sum is Implied. In

oases where there is a large 'holloity' this form may booms

relevant.

The" properties as well as theorem 1 are useful formulae for
constructing minimal tensor representation& for hamcgeneous systems with

arbitrary symmetries. It should be noted that in related circumstances

similar results can be shown. For example. The correlation of B with J a

tn® can be treated by considering the tensors

(B(x)J(x+r) t J(x)B(S+r) >.

In each can there is a homogeneity property which along with the

transformation properties of $ and J. implies a theorem which eliminates

certain tensor forms from admissibility.

III. TIM TWAY OF ISOTROPIC TENSORS

Here we briefly review the t1wory of the construction of correlation

tensors, due to Ibbertson and ot1wrs3 ` 4 ' 5 ' 17 ' 19. W focus an two point

oorrelation tensors, but the generalisation to arbitrary rank is

straightforward.

Consider a correlation S whitsh is assumed to Poo"" an invariance

property with respect to an ortiv)gonal symootry transformation whioR has a

(matrix) representation 0+ (Hers Alan ad)oint of 0) and maps a vector r

Into r' so that r' • O+r. We deflue a scalar F as.

F s F(a.b.r) • ael(r)•b
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and require that

where the prises denote action of the trassforsation a and a Wad :p are
arbitrary vectors. Equation (6) is just the requirement that the

correlation measured between the a and b direction with separation r be

Invariant when a, Q and r are all rigidly transformed under 0 +. A sisple

manipulation straws that the requirement on the structure of a(r) Is that it

satisy the matrix equation

!(r) a 0$(O+r)0+ 	(^)

Robertsod has shown that this requirement is satisfied if R 
consists of a

sum of all possible dyadic products of the vectors fundamental to the

problem and the fundamental invariants 6 
i 

and c ijk . each multiplied by a

scalar function of the invariant scalars allowed by e. Thus in the case

of one preferred direction (i. say) 0 + is an arbitrary rotation about the a

direction and the scalar functions may depend on r • r and reh.

The results of the previous section further restrict the candidates.

Each tensor form (dyadic products and combinations including 6 1j and cijk)

may be symmetrized and ant13yometrized. If a is a proper vector there are

no intrinsically pseudo-scalar quantities in the problem, each scalar

function is a proper scalar, and the transformation properties of each form

depends only on the "part with Indices".

If the preferred direction is a pseude vector 6, such as a mean

magnetic field, then z a r • 8 is pseudo-scalar and there is the possibility
of forming a proper aymmmetric tensor by taking the product of a symmetric
pseudo-tensor form with a pseudo-scalar function of z. 1%*re is no
guarantee that such correlat ons exist in physical situations, but there is

nothing in the mathematics t, 1 rul e them out.
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IV. TWO POINT CORRELATION WITH A MEAN MAONETIC FULD

Here we consider the correlations of the fluctuating part of a pseudo

vector field Be s <Be> + B(I,t). We assume that the only preferred

direction is

,.	 <Be>
b a

which is a pwudo-vector. The fluctuating part has zero seen so M s 0.

This situation is probably the one most relevant to interplanetary magnetic

fluctuations viewed in a frsse moving with the plaaa. The correlation of

Interest is R, J (r) n (BM) Bi ( x+r)> which as above, is taken to be

independent of x. This correlation tensor contains fluctuations of the

same field as the one responsible for producing the preferred direction,

but the results obtained hold for correlations with a pseudo-vector

axisymmetry direction of any origin.

Keeping in mind the results of sections II and III we may catalogue the

tensor forms allowed in the construction of R. First we consider proper

tensors. There are four independent symmetric proper tensors which may

appear multiplied by scalar functions. They are

6 i ,, r i r i , b ib,	 (8)

and

rixjkt 
t 
k 

r 
t + r i C ikt bkrt.

Note that the last of these is a proper tensor since S x r is a proper

vector. There are two independent symmetric pseudo-tensor forms which may

be to ken to be

biri+ribi
	

(9)

and
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bitJkACkrL+b'sikibkr10

These two forms are admissible provided they are each multiplied by

pseudo-scalar function, which is possible since s is a paeudo-scalar.

Turning to the pseudo-tensor contributions, we see that there are a

total of three independent possibilities; two antisymmetric pseudo-tensors

and one antisymetric tensor which must be multiplied by pseudo-scalar

functions. The antisymmetric paeudo-tensora are the forms

c
Uk

rk and bi r d-bir i .	 (14)

The only independent antisymmetric proper tensor form is

C Qkbk .	 (11)

Other forms such as bi c Jktbkr A-bJe ikibkr t2
and r1cjktbkrt-ricik4bkrt are

not independent due to certain identities . Each of these contributes• to

the pseudo-tensor part of 
R 
when multiplied by a function which is odd in

S.

Assembling the terms fron (8)-(11) and applying the solenoidal

condition, we arrive at the repro3entation for Rij(r):

R 1j (r) = T
ij

(r +P i.i (r)	 (12a)

Tij (r) = Adji+ltriri+C(biri+bJri)

+ Db i ba	(12b)

+ E(ric kLbkrt+r,jciktbkrt)

+ P(bic,kLbkrt+bJciktbKry)

P ij (r) = Gcijk'k+Kcijkbk 	
(12C)
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Here A, B, D, E and G are functions of even powers of r and z. C. F and K

are odd functions of z and contain even powers of r. Note that the form

bir3-biri has disappeared entirely due to the solenoidal property. Clearly

not all of the above functions are independuot. The aolenoidal condition

gives one constraint between G and K, one between E and F and two

constraints among A, B, C and D. These equations yield sets of partial

differential equations relating the scalar functions to each other.

Equivalently these constraints may be solved in principl e by relating them

to four "basic" functions. The problem of presenting the solution of these

equations in a form which is both compact and experimentally meaningful

will be discussed in a later section. For nuw, we note that the equation

connecting the scalars in the pseudo-tensor sloes take a simple form. Using

a subscript to denote explicit differentiation, so that

ar G (r,z) = Gr ^J+ Gzb^

We find that the solenoidal property implies

G = Kr
z --

r

and thus

G = 4r(r,z)/r

K = 0z(r,z)

where • is a function which .-.ontains even powers of r and z in its Taylor

series.

Several important physical quantities can be extracted from equation

12, 12a and 12b. In the appropriate units, the energy density of the field

B is Just

<B=(x)> = Trace R(0).a

= 3 A(0,0)+D(0,0) .
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Note that throughout this paper regularity of the scalars at r0 is

assumed. Evidently A(0,0) is the isotropic component of the energy while B

(0,0) represents the influence of the preferred direction 6 on the
distribution of energy in the fluctuations. In the case where almost all

of the energy is in fluctuations perpendicular to 6, D(0,0) A(0,0)
achieves the necessary projection, while in the isotropic limit D(0,0)+0.

Other aspects of these limiting cases will be discussed in later sections.

The "helicity" H  of the field B is the pseudo- scalar correlation of, say,

the magnetic field with the electric current J a VxB. A simple calculation

shows

H  
a <B• V"B>

- b G(0,0) - 2 KZ(0,0)

Thus, in the case of magnetohydrodynamic configurations which are nearly

"force free" (i.e., J x B Z it and J Z A B) one would expect G(0,0) to take

on large values sub,jeet to the limitation

H J 	<B-> <J=>

1
or, —6 G(0,0) — 2 K z (0,0) < 3 V O,O) + D(G,0)) W>-

Wu shall return to discu:;sion of the pseudo—vector preferred direction

case in section VI. In the following we briefly discuss that "mean flow"

case, wherein the preferred direction transforms under inversion rrs a

proper vector.

V. TWO 10INT COREFLATION WITH A MEAN FLOW DIRK <TION

W 'n a proper vector a ( 4 a = —a) induces a preferred direction on a
turbulent system tht aenerat form of the correlation R is simplified.

Chandraaekhar has gi4en an elegant presentation of the inve-sion symmetric

part. of' R for this ci+se. t7 The notable difference between he result of

the last —section and the present cane is the Pbsenee of the tensor forms
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riCJkl '
kri, + r j

e1kAAkrI and I
i t JklbkrA + IJciklbkra

6 These forms may not

appear because rxi is now a pseudo-vector and r-1 is a proper scalar. The

tensor 
Rij 

now has the form

Rij ( r ) a Tij ( r ) + P, J (r)	 (13)

Tij ( r - z) : A6 ii + Briri + C(A i ri + r Ik i ) + DIiIi

P, J (r,z) z Gc ijkrk + Hcijkak

where z : r- A .

The dependence of the scalar functions on z must again satisfy the

properties discussed in section II. A summary of these properties and

those of section IV may be found in Table I.

VI. FOURIER TRANSFORM OF THE CORRELATION TENSOR AND FORMAL SIMPLICATION OF

R

The Fourier transform of the two point correlation l . also known as the

energy spectrum tensor is defined as

S (k) =	 1	 I dr R (r) a 
ik-r	 (14)

1 ^ 	 (201	
- i,j -

For our purposes the important properties of AS are reality (Sii (r) s

Sij i (-k)) homogeneity (S ii(k) _ :3ji (-k)) and hermiticity (Sij (k) :

Sjie (k)). Since theorem A applies equally well in k space,, it follows that

the real part of S, which is a symmetric matrix and even under k+-k can
contribute only to the proper , tensor part of S. Imsi s ant13ymmetric, odd

under k+-k and is a pseudo-tensor. With these properties in mind, the

application of the same arg uient:i leading to equations (12) and (13) yields

the general form of 
s 

(for the case of a preferred pseudo-vector direction

B)

a-
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S ij (k) a td
ij 

+ 6kiki + 6(biki + biki)

+ 6bi b
i
 + f(ki e

jktbkkI + k  eikAbkka)	 (15)

+ f(bic jkkbkkI + b19ikAbkkA)

+ deijtkI

The Solenoidal condition k iS ij (k) = k  Sij ( k) = 0 has been implicity

used in this equation, yielding algebraic constraints among the scalars

which appear. These constraints have eliminated terms proportional to

e ijk bk and r i bs	 r b i . The functions	 through 6 depend on 1k1 : k and kz
k • B. Only 6 and i are odd under kz -k Z . Again, if the preferred

direction were a proper vector we have 	 _	 0 0.

In order to solve the constraints implicit in equation (14), we make

use of the form for S ij (k) introduced by Montgomery and Turner, which

includes the solenoidal property at the onset 20 . Defining L3 = R, e2 = k x

6/It x 61 and 6 1 = 62 x 6 3 , the most general form of S(k) is

SW) =	 E	 Aa4 6a 61(
	 (16)

which automatically satisfies th

independent scalar functions are

all are functions of k and k • B a

evaluated in terms of the A CO; by

results are:

property kSi.) = k.)Si,) = () . The four

A 11 , A22' A 3 and A  where A l2 = AS+i Aa;

k 7 . The scalar functions in (14) may be

use of various vector identities. The

^A22

-1 k`A22 - k-.-. A

k :	 k' - k

k

	

z	 _

=	 kk' -	 -^ ( % 22	 A 1 1 )
z
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2

	

t a k

k' - k	

(A11 - A22)

z ^

(17)

k 	 As

k (k' - kz')

:	 k	 A Tki
Z

^a 1 A
k

Consistent with the discussion of Montgomery and Turner, we note that

when A22 + A11 and A
s a Re A l2 + 0, equation ( 14) becomes

kik	 Aa(k)
Sij (k) a (6

ij 
- kikj ) A22(k) + i 

k 
cijkkI

which is the familiar isotropic result if A 22 and A  depend only onik 113 .

From the above discussion one can easily deduce that A 1l , A22 and

Im A l2 are even in kz , while ReA l2 is odd. Furthermore since 6 1 
6
2 is a

pseudo-tensor dyadic but contributes symmetrically through Re At2' we must

have Re A l2 : 0 for the case where 6 + t (a proper vector direction). As
expected this would insure 9 a f a 0 in (14).

The decomposition of S due to Montgomery and Turner suggests several

ways of expressing R in explicit terms of four functions. Equations (15)

and (17) may be used in the inverse of (14) to show that

R ij (r) = 61j 
02 Q(1)

2
_ a	 8	 (Q (1) _	 Q(2)

ir i ar k 	azI	 )

- (bi a + b a a 
o2Q(2)

 3r d ') 
or  

az
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+ bibs
 p2 p2Q(2)

(16)

+ bm 	
a	 "	 + b c	 a	 a	 a Q(3)

m Jimari Wit
iem 

ark ar, az

— (bicjlm bm 
ar + b^ f ift bm ar 

V20(3)

1 i	 R

a
+ c i,jk 

ar 'k

Equation (18) may be further reduced by expanding the derivatives, but the

result is unwieldy. The four independent functions Q (1) , Q (2) , Q (3) and

0 are functions of r and z, Q (3) being the only one which is odd in z.

Isotropy is achieved when Q (2) + 0 and 0 (3) , 0 and 0 and Q (1) depend only

on r. Mirror reflection invariance is recovered when 0 * 0. The

fluctuations concentrate in the plane perpendicular to 6 when V2Q(2)

—Q(1 ) and Q (2) Q 0.
z

An alternative formulation of the real space correlation 1. may be

written in terms of four scalar functions W(1), W (2) , W (3) and 0:

R ij (r)=	 a x 8

	 ( '—
xDW(1)(r,z)

ar	 i	 a 	 ,j

+ a X a X	 61	 a Xr a X ^J	 W (2) (r,z)	 (19)
Tr ^ar	 i ar l aI,

+ a X a X 6)	 a X 6	 +) x( a X 6,	
a X	 W(3>(r.z)

Tar f ar	 i ar	 i	 )r l8r	 ,j ar	 i

+ Ei,jk	 0(r, z).
ar k

This is the most compact fore we have found for expressing the

structure of R in terms of f,)ur 'unctions. The solution of !;he constraints
implicit in equations (12a) ,nd -12b) may be found by expanding the

derivatives in equation ( W but again the form is cumbersrr.,e. Various

formulae connecting the W functions with the Q's in (18) an(, the Fourier

transforms of the A as may be easily derived. In the isotropic limit W (1) a
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v2W(2) 9 •s + 0, W(3)+ 0. Mirror reflection symmetry implies • a 0. The
two dimensional limit ( fluctuations 4 8) is approached when only W (1) is

non-zero and W  110 s 0.

Of particular intorest in equation ( 19) is the function 0 which

generatea all pseudo-tensor correlations. Comparison with the discussion

following equation 12b shows that the pseudo -tensors involving • in (18)

and (19) are equivalent to (rk Eijk 
G + b  xi3k K) which is guaranteed to

be solenoidal when G = ♦r/r and K = • z .	 It can be shown that

•(r,z) : Im I d k 
Al2(k) eik•r

k

and from equation ( 32) of Montgomery and Turner it follows that

20(0,0) = "Magnetic Helicity Density" = HM

(20)
<A• B>

where B = v x A. Also, recalling the discussion of section IV we have

H
i _ "helicity den:city" _ <B•vXB>

= 1^^+0 (- 2*rr - J14 r /r - 2#zz)
(21)

_ -6G(0,0) - 2 KZ;0,0)

Equation ( 20) is perhaps the most significant result of this paper and

can be derived by the following procedure: R may be expressed as the

inverse transform of § and may b.! uncurled in Fourier space, yielding the'

symmetric part of the correlatioi <B A).Here A is the magnetic vector

potential sa.isfying

v • A = 0. Thy Fourier transform ,)f <B A > is defined to be H ij (k) z ik 2

EjrskrS13 which satisfies <A • B> : I dk H ( k) where H(k) __ HiiW W. Then it

follows that the k-space pseudo- tensor ( equation 15) may be written
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c iitkid = i c iii H;k) kt
2

It is easy to verify that •, the generator of the real space , pseudo-tensor

satisfies

•(r,z) = -i ! ck e:ik•r d(k)
— 1 0 e ik r H(k)
2	 -	 -

which yields equation (20) when evaluated at r = 0.

The conclusion, then is that knowledge of the real space pseudo-tensor

correlation near the origin can be used to extract the helicity of the

field 8, while knowledge of 4 at the origin is necessary to find H M . In

this formulation, there is nc det:om position of magnetic helicity into

isotropic and anisotropic contributions, but the helicity density H
i
 rnas an

isotrop.c contribution G(0,0) and an anisotropic contribution KZ(0,0).

VII. SUMMARY AND DISCUSSION

In this paper we have eximinod the structure of homogenous correlation

tensors with an emphasis on the ocinclusions which may be dr. wn concerning

axisymmetric magnetohydrod ynimic fluctuati)ns in the presenq:e of a mean

magnetic field. The formal results of section II are helpfrl in the

con:;truction of the approprii to .ensors wi :h any assumed s5nrmetry. 1i

section III we reviewed the technique for ., onstructing "iso ropic tensors"

and presented the axisymmetric results in sections IV and V 	 When th,

flu(Auations have a pseudo-victor axisymme ry direction (me; n magneti

field), four scalar function: art, required to determine R. tut when tie

axisymmetry direction is a "iroper" vector (mean flow direction) only three

such functions exist. In each c:;se the ps udo-tensor part (f the

correlation is antisymmetric in is spatia indices, odd unier r . -r and

is completely determined by ( ne :scalar fun :tion. The relat vely simp e

structure of the pseudo-tenser cilrrelatior is used in Appen ix A to g ve a

prescription for measurement of *he magnetic helicity. It s importa,t to
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note that we have calculated the magnetic helicity of the fluctuations. If

inhonogeneities were present, there would be on additional contribution

which may be thought of as the magnetic helicity of the mean field. In

section VI we considered s, the Fourier transform of : and showed its

equivalence to the form deduced by Montgomery and Turner. The Fourier

representation was used to derive explicitly solenoidal versions of R
containing derivatives up to fourth order. Chandrasekhar 17 has solved the

solenoidal constraints for the proper tensor part of the correlation (for

the mean flow direction case) in terms of derivatives up to second order on

two functions. Complications arise when applying his technique to the more

general case treated here, but we believe that it may be possible to

develop a representation, similar to (18,, -.:nd (19) containing only second

derivatives of four scalar functions.

The tensor structures presented here have obvious application in the

further development of the kinematic theory of axisymmetric turbulence.

Each of the four functions discussed in sections IV and VI implicitly

contain microscales and correlation lengths which characterize certain

moments of the energy spectrum tensor. Another application lies in the

calculation of transport coefficients. For example, use of the form of R

we have presented may impact calculations of the scattering of cosmic rays

induced by interplanetary magnetic fluctuations 24 . Hasselman has studied

this problem using ax13ymmetric correlations which are not as general as

those presented here.

At this point in time any cleim of the existence of a universal

equilibrium range for magnetohydrodynamic turbulence must be viewed as

conjectural . However, one may envision the intriguing possibility that

the four scalar functions characterizing ax13ymmetric MHD may possess

universal limiting behavior at large magnetic Reynolds number.
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APPENDIX A: Evaluation of the Magnetic Helicity

Here we develop a simple procedure for calculating the magnetic

helieity, (A• B> from experimental knowledge of the two-point magnetic

correlation R i,(r). We assume that to good approximation the statistics

are homogeneous, axisymmetric about B and time -stationary. The two-point

correlation is given for values of r : QS where 9 is a time independent

unit vector and 3 is a parameter. In section VI we found that <A • B> a

2#: r a 0). If 0 is single valued and sufficiently well behaved, it may be

evaluated at r a 0 by

0
•(0) a I •#-9dS + ♦(OR)	 (22)

R

If #OR) + 0 rapidly as R becomes large, the second term in (22) may be

dropped and the lower limit replaced by -. This will introduce little

error if the relevant correlation lengths are small compared with both the

range of available measurements and the lengths characterizing departure

from the symmetries we have assumed.

Consider a unit vector c in the direction of 6 xr = s 8x0, and an angle

which satisfies coo i = 0 -6 and Bxr = r sin* S. From equation ( 120 and

the discussion following equation (19) we may deduce that

•r sin	 = e-=-B

and
	

•z sin + _ -le-P-0

A
where a is the pseudo- tenaf . r ;art of B. Using v#-V = ^r + cos *0Z the

magnetic helicity may be evaluated as

<A • B> =	 1	 I [ c- e • v cos + - c • e • b] dS	 (23)- -	 sin* 0	 -	 -



This form may be useful for calculating tA• B> in laboratory plasmas from a

series of single time two-point measurements, making use of P ij : 1/2 (R i3

- Rji).

A slightly different approach is appropriate to extract the magnetic

helicity from interplanetary magnetic data which, at this time are limited

to time series of single point field measurements. First we extend our

definition of s to include two-time measurements, so

hi ,(r,T) : <Bi (x,t) B
i
(x+r, t+T)>

where the new argument represents time. Then, we adopt the "frozen flux"

approximation,

Rij(O,T) 2 R ij (- uvt,0)

where uv is the solar wind streaming velocity. This approximation is

expected to be valid when the streaming speed u is much greater than the

local Alfven speed, the magnetic Reynolds number is very large and the

correlation lengths are small compared with the scales of spatial variation

of uv and b. Since the pseudo-tensor P ij is equivalent to 1/2 (Rij (r,t) -

Rij (-r.t)), we may rearrange (23) using the frozen flux property resulting

in

<A• B> a
2sinv 0	 0

^,	
A	

^ A

(c- J • b - cos. c•g+v) d (24)

where R is evaluated at r : 0 but with temporal argument T.

Many data sets may disallow use of the above prescriptions (23) and

(24) by virtue of strong inhomogeneities. The question of whether useful

numbers can be obtained from other candidates remains to be decided by a

posteriori consistency tests. Only simple modifications of -3) and (24)
are necessary to accommodate data with spatial separations parallel to the

mean field.
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a

TABLE I

,a

Summary of Properties of the Scalars in the Tensor

kid = A 3 i ^ + B r ir^ + C(bir^ + b^ri)
a

+ D b ib s + E(r iE jk ,, bkre + ri iktbkrt)

+F(bE	 b 	 +b.E	 b 	 )i jktk I 	) iklkt
+ G E ijkrk + H EiJ)bk

Pseudo-vector 6	 Proper Vector Dependence on
7

Function ( pseudo-scalar S • r)	 (6 + k► ) Basic Functions

A Even in z	 Even Q1. Q2

B Even	 Even Q1, Q2

Ce Odd in z	 Odd Qi, Q2

D Even	 Even Q1, Q2

E Even	 Does not appear Q3

F Odd	 Does not appear Q3

G Even	 Even m

H* Odd	 Odd 4

Notes to Table I

The asterisk ( 0 ) signifies that the tersor character of the farm n.Atiplying
the function changes when 6 + 1.

Even and odd refer to the powers of z in the series representing the function.

The dependence on basic functions column li. ;ts symbolically which of the
underlying functions determines each form. Only forma depending on the same
basic function are 'mixed' in the Fourier transformed representation (see
section VI).
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