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SUMMARY 

Over the l a s t  twenty-f ive years, MACA and NASA have cbnducted numerous 
studies o f  the induced ve loc i t i es  near a l i f t i n g  rotor .  The resu l t s  have been 
presented i n  papers aimed a t  design and research engineers ra ther  than opera- 
tors;  as a resul t ,  the operational consequences o f  these studies are not widely 
known among hel icopter  operators. The present paper reviews a number o f  these 
fundamerital studies and attempts t o  draw aut the operational imp1 i ca t i ons  and 
r e s t r i c t i o n s  o f  these studies i n  a form s p e c i f i c a l l y  aimed a t  the user. 

Wind-tunnel measurements show tha t  the wake o f  a rotor ,  except a t  near- 
hovering speeds, i s  not l i k e  tha t  o f  a prop2l ler.  The wake i s  more l i k e  tha t  o f  
a wing except that,  because o f  the slow speeds, the wake ve loc i t i es  may be much 
greater. The he1 icopter  can produce a wake hazard t o  fo l low ing l i g h t  a i r c r a f t  
t h a t  i s  d ispropor t ionate ly  great compared t o  an equivalent f ixed-wi ng a i rc ra f t .  
This hazard should be recognized by both p i l o t s  and a i r p o r t  con t ro l l e rs  when 
operat ing i n  conyested areas. 

Even simple momentum theory shows that ,  i n  autorotat  i o n  and p a r t i a l  -power 
descent, the required power i s  a complex funct ion o f  both airspeed and descent 
angle. The power required ray  increase v io len t l y ,  ra ther  than decrease, w i th  
r a t e  of descent. The nonl inear charac ter is t i c ,  together w i th  an almost t o t a l  
lack o f  usable instrumentct ion a t  low airspeeds, has l ed  t o  numerous "power- 
s e t t l i n g "  accidents. Simple rd les  can avoid the regions i n  which these 
a c c ~ d c r ~ t s  occur. 

;he same theory shows tha t  there i s  a minimuin forward speed at which a r o t o r  
can ailtorotate. Neglect of ,  ur inadequate appraisal of, t h i s  minimum speed has 
l e d  t o  numerous accidents. 

Ground ef fect  i s  general ly counted as a blessing since i t  allows overloaded 
takeoffs;  however, i t  a1 so introduces addi t ional  operat ion problems. These 
problems include premature blade s t a l l  i n  hover, s e t t  i i ng i n  forward t r a n s i t  ion, 
shuddering i n  approach t o  touchdown, and compl i cat  i ons w i th  yaw contro l  . Some 
o f  these problems have been t reated a n a l y t i c a l l y  i n  an ap~roximate manner and 
reasonable experiment agreement has been obtained. An awareness of these 
e f fec ts  caq prepare the user f o r  t h e i r  appearance and t h e i r  consequences. 



I NTROOUCTION 

The ear ly  years of he l i copter  development concentrated on e f f o r t s  t o  get 
i n t o  the a i r  and fly. Theoretical treatments (such as ryf. 1) were l a r g e l y  
based on e a r l i e r  work aimed a t  the autogyros o f  the 1920's. The self-generated 
in ter ference f i e l d  o f  the r o t o r  was t rea ted  i n  a "lump-sum" manner by simple 
analogies t o  airplanes. These elementary treatments were adequate f o r  a time 
i n  which he1 icopters were 1 i gh t l y -1  oaded c u r i o s i t i e s  bus i l y  engaged i n  carv ing 
out a small niche where t h e i r  unique hovering c a p a b i l i t i e s  were of paramount 
importance. 

Numerous problems developed i n  the ear ly  years which required a more 
de ta i l ed  treatment of the f low generated by a rotor. The e a r l i e s t  invest igators 
noted the problems encountered i n  ve r t i ca l  f l  i ght (refs.  1-6) and substant ia l  
e f fo r ts  were made t o  study tha t  f l  i g h t  regime by fl ow- f ie ld  v i sua l i za t i on  and by 
de r i v i ng  empir ical  rules. Ground e f f e c t  was attacked by theory (ref. 7) w i t h  
usable resul ts ,  and f low visual i z a t  i on  studies (ref. 8) demonstrated many 
unusual features o f  the wake. The nonl inear behavior c f  ind l~ced power a t  iow 
speeds was examined i n  references 9 and 10. F ina l l y ,  induced f l o w - f i e l d  
theor ies ( refs .  10-12) aimed at expla in ing v ib ra tory  r o t o r  loads and the 
interference between the r o t o r  and a u x i l i a r y  wings and t a i l s  began t o  appear. 

The piecemeal s ta te  of knowledge of r o t o r  flow f i e l d s  was evident i n  the 
review paper by Gessow (ref .  13) i n  the 1954 NACA Corlference on He1 icopiers;  
however, the same m e t i n g  also resul ted i n  a paper ( ref .  14) presenting pre l  i- 
minary r e s r ~ l t s  from the f i r s t  comprehensive w i  nd-tunnel studies o f  r o t o r  f low 
f i e lds .  The complete presentat ion and analysis o f  these resu l t s  ( ref .  15) 
showed the s ign i f i cance o f  the rad ia l  load d i s t r i b u t i o n  o f  the r o t o r  on the 
external flow. Even p r i o r  t o  pub1 ica t ion ,  t h i s  paper lead t o  a m j o r  expansion 
o f  theore t ica l  studies ( refs .  16-20). 

Reference 21 demonstrated the u t i l i t y  o f  the theory i n  p red i c t i ng  
in ter ference between ro tors  and wings, t a i l s ,  and other  rotors;  however, it also 
demonstrated tha t  the t i ~ n e l ~ i s e  f l uc tua t i ng  f i e l d  o f  the r o t o r  was necessary t o  
stuay the rap id l y  varying loads on the blades as they rotated. The s t a r t l i n g  
experimental resu l t s  o f  reference 22, i n  combi nat ion w i th  the observations of 
reference 21, i n i t i a t e d  a revo lu t ion  i n  r o t o r  theory (refs.  23-28) t ha t  
continues t o  t h i s  day. 

The papers described hereto, and subsequent NASA studies, were intended 
p r imar i l y  for, and d i s t r i bu ted  to, engineers i n  the industry. They have played 
a major r o l e  i n  the development of current he1 i copters; however, because of the 
1 im i ted  i n ten t  and d i s t r i b ~ ~ t i o n  o f  these papers, many aspects per ta in ing  t o  the 
operat ion of he1 icopters have not been emphasized nor have they been presented 
d i r e c t l y  t o  the user. 

The purpose o f  the present paper i s  t o  present some h igh l i gh ts  o f  the broad 
NACAINASA e f f o r t s  throughout the years, w i th  par t  i c u l  a r  emphasis given t o  those 
r e s u l t s  having special importance t o  the user. Subjects covered include the 
r o t o r  wake and vortex hazards, p a r t i a l  power descent and minimum speed f o r  auto- 
r o t a t i  on. Several aspects o f  ground e f f e c t  are covered, i n c l  udi ng nonuniform 



wakes, nonl inear  power and cont ro l  e f f ec t s  i n  forward f l i g h t  , and yaw contro l  a t  
near-hoveri ng speeds. 

SYBMOLS 

'; G 

" m i  n 

W 

aspect ra t i o ,  b2/s 

span 

1 i f t  coe f f i c i en t ,  L/qS 

r o t o r  power coef f i c i ent , P , ~ R ~  (PR) 

r a t e  of gain of po ten t ia l  energy 

height of r o t o r  above ground 

l i f t  

induced power t o  c l  i mb 

induced power when hovering out o f  ground e f f e c t  

induced shaft power 

loca l  dyna~iii c pressure 

f rec-strea~n dy na~ni c pressure Mpv2 

r c t o r  radius 

wing or ro to r -d i  sk area 

tht'rrst 

forward vel oci  t y  

vel oc i  t y  a1 ong gl i desl ope 

~ n i  n i  lnum speed 

1 ocal ve r t i ca l  induced ve loc i t y  

average i nduccd vcl  oc i  t v  

reference i nduced ve loc i ty  , a1 so, average induced vel oc i  t y  when 
hovering o ~ r t  o f  grounci e f fec t  

long i tud ina l  , l a t e r a l  , and ve r t i ca l  distances from the r o t o r  hub 



a r o t o r  t ip-path-plane angle of attack, pos i t i ve  leading edge up 

Y gl i d e  slope angle 

Au ground- i nduced long i  t u d i  nal in ter ference vel oc i  t y  

& ground-i nduced v e r t i c a l  l nterference vel ocl t y  

B r o t o r  t lp -pa th  plane I n c l i n a t i o n  w i t h  respect t o  the hor izon 

tip-speed ra t i o ,  V/ W 

P mass density of a i r  

X wake skew-angle, angle from v e r t i c a l  t o  the center l i n e  o f  the wake 

R r o t o r  ro ta t iona l  speed 

THE ROTOR WAKE AND VORTEX HAZARD 

Nature o f  wake.- The wake of a r o t o r  i n  forward f l  i g h t  i s  very l i k e  t h a t  of - 
a wing. ~ i g u r e  (ref. 15) shows the flow angles measured behind a r o t o r  i n  
c ru i s ing  f l i g h t  and f igure 2 shows simultaneous measurements o f  the clynamic 
pressure i n  the wake- The wing1 i k e  character of the f low i s  evident. Even a t  
the t r a i  l i ng  edge o f  the ro tor ,  the f lcw has a1 ready r o l l e d  up almost completely 
i n t o  a strong vortex pair .  Local ly,  the flow angles exceed 30 degrees and the 
dynamic pressures are as much as 60 percent greater than the  dynamic pressure 
corresponding t o  the he1 icopter '  s forward speed. 

Strength o f  wake.- The masure~nents o f  reference 15 were p d e  behind a very 
1 i g h t l y  loaded rotor ;  the disk load was only 96 Pa (2  l b / f t  ). Curre t r o t o r  9 designs are much Inore heavi ly  loaded, w i th  disk loads o f  287 Pa (6 l b / f t  ) being 
re1 a t  i vely common. These rllore heavi l y  loaded ro tors  produce substant ia l  l y  
stronger wakes. 

A gross i nd i ca t i on  of the magnitude o f  the induced v e l o c i t i e s  behind a 
modern r o t o r  can be obtained from lnomentum t h e ~ r y  ( ref .  29). The usual non- 
dinensional form of the theore t ica l  resu l t s  fo r  l eve l  f l i g h t  i s  shown i n  
f i g u r e  3. A l l  of the resu l t s  are presented i n  terms o f  a reference ve loc i t y  

(The two forms of wh 
are i den t i ca l  when it i s  recognized tha t  the aspect r a t i o  

o f  a s ingle ro to r  i s  4/71,) The average induced ve loc i t y  over the r o t o r  i s  w . 
This average ve loc i ty  doubles i n  the wake and loca l  values o f  induced veloc?ty 
three t o  four times as great as wo may be found. Nevertheless, Q provides 
a reasonable measure by which t o  compare the sever i ty  of d i f f e r e n t  wakes. 



The induced power required by a r o t o r  i s  suppl ied d i rec t1  by the r o t o r  
sha f t  and never appears as an external force a t  the  a i r c r a f t .  ? n a sense, t h i s  
f s one reason tha t  a he1 icopter  can hover. Autogyros and wings are d i f f e ren t .  
I n  these cases, the induced losses appear as an external drag which must be 
overcome e i t h e r  by a separate propulsion system or  by loss o f  a l t i t ude .  As the 
speed i s  decrea'ied, the induced drag vector t i l t s  f u r t h e r  and f u r t h e r  rearward 
u n t i l  it f i n a l l y  s t a r t s  tcr decrease the l i f t .  As a resu l t  ( ref .  30), wings and 
autoro ta t ing  ro tors  fo l l ow  a ctlrve d i f f e r e n t  from tha t  f o r  hel icopters, as shown 
i n  f i g u r e  3. The difference i s  not s i g n i f i c a n t  for wings since Impossibly la rge  
1 i f t  coe f f i c i en ts  \muld be reqlrired t o  reach such low speeds; however, f i g u r e  3 
i ndicates the existence nf minimum possible speeds for autogyros that  w i  11 be 
dddrcssed i n  a l a t e r  sect ion o f  t h i s  paper. 

Comparison w i th  8747.- The nondimensional i z a t i o n  of ve loc i t i es  i n  f i g u r e  3 - 
masks the t r u e  character of the theore t ica l  results.  Figure 4 uses appropriate 
values of \Jh t o  compare d i r e c t l y  the induced ve loc i t i es  o f  hel icopters w i th  
those f o r  a R747-200F cn approach at maximum landing weight (2.80 MN 
(630 000 1 b f ) ) .  This wide-body a i r c r a f t  approaches a t  about 72 m/s (140 knots) 
a t  a l i f t  coef f i c ien t  of ahn~tt  1.0. Corresponding curves are shown f o r  s i n  l e  3 
r o t o r  hel icopters w i th  disk loads from 96 Pa (2  l b f / f t 2 )  t o  479 Pa (10 l b f / f t L ) .  
For reference, the fol lowing tab le  l i s t s  a few current hel icopters and t h e i r  
d i sk  loads: 

.r\t i dent ica l  forward zpecds, sin!;le r o t o r  hel icopters w i th  disk loads o f  
t h i s  nr,\gni tuda haw s i  ~ n i  f icantly lowcr i n d ~ ~ c e d  ve loc i t i es  than the wide-hody 
tr,?lisport. 0~ t.ht\ i?thcs. ti<:nd, the he1 icopters can f l y  slower, and the induced 
vc 'oc i t  rcs dre 11111c:tl :j:'t?dtcr ,?t low S ~ C C ~ .  For exdmple, a he1 i cop tc r  w i th  a disk 
lnnd of 287 Pa ( 6  f a w l  ~ [ ~ e r n i i n g  a t  n speed o f  about 21 m/s (40 knots) 
produccs the stme ,iver,l!ic i :-drrccii \/el o c i  t y  2s  d 8747-200F on 1 andi ng approach. 
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Vortex hazard.. The evaluat ion of vortex hazard i s  a complex business 
invotwing many fac tors  such as span, spanwise load d i s t r i bu t i on ,  and wake 
rol l -up. Nevertheless, the simp1 e order-of-magni tude analysis o f  f i g u r e  4 i ndi - 
cates tha t  hel icopters produce wakes o f  such s ign i f i can t  strength t h a t  t h w  must 
be t rea ted  w i th  respect. He1 icopter  p i l o t s  and a i r  t r a 4 f i c  con t ro l l e rs  should 
be constant ly aware of the unseen hazard i n  the wake of a hel icopter.  Fata l  
accidents invo lv ing  1 i g h t  planes in te rcept ing  he1 i cop te r  wakes have a1 ready 
occurred. Indeed, the experimental study of reference 31  was i n i t i a t e d  as a 
consequence o f  one f a t a l  accident twenty years ago i n  Chicago. 

Tandem rotors.- Figure 4 appl i e s  only t o  s ing le  r o t o r  he1 icopters. A tandem 
he1 icopter  involves addi t ional  considerat ions as indicated i n  f i g u r e  5. A 
s i ng le  r o t o r  produces an induced ve loc i ty  o f  w over i t s e l f  and t h i s  ve loc i t y  
doubles t o  2w i n  i t s  wake. For equal ly lo lded tandem rotors,  each m t o r  
induces a veloc 9 t y  of w0 over i t s e l f ;  however, the rear  r o t o r  sees the f u l l y  
developed downwash o f  the f ron t  r o t o r  (2w ) as rtel l .  The t o t a l  downwash a t  the  
rea r  r o t o r  i s  3w and i t  requires thre& times as much induced power as the 
f r o n t  m t o r .   hi!? fac t  has been confirmed repeatedly by experiment (refs.  14, 
21, 32, and 33). I n  the wake, the self- induced ve loc i t y  o f  the rear  r o t o r  a lso 
doubles so tha t  the t o t a l  induced ve loc i t y  i s  4h,-, . As a resu l t ,  f o r  equal 
d isk  load, the  ve loc i t i es  i n  the wake of a tandem ro to r  he l i copter  are twice 
those o f  a s ing le  r o t o r  hel icopter.  The values f o r  the tandem he l icopter  are 
compared w i th  those f o r  a 8747 i n  f i gu re  6. Evident ly,  f o r  a machine such as 
the  Boeing-Vertol 234 LR (w i th  a disk load o f  432 Pa (9.02 l b f / f t 2 ) ) ,  the  wake 
v e l o c i t i e s  are o f  the same magnitude as those of the 0747 even a t  the same f o r -  
ward speeds. Pa r t i cu la r  caut ion should be used when fo l lowing,  or crossing 
behind, such loaded tandem ro to r  he1 i copters. 

PARTIAL PCWER DESCENT 

Accident rates.- P d r t  i a1 power descent and au to ro ta t i  ma1 1 andi ngs combine 
t o  produce a s t a r t l i n g  la rge  accident rate. Table I (from ref .  34) shows the 
t o l l  from U.S. Arrrly autorctat ion accidents f o r  three f i s c a l  years during the 
Southeast Asia c o n f l i c t .  For these three years, there were 790 accidents cost- 
i ng almost $90,000,000 and 92 1 ives. Table I I shows that,  for tho same three 
yl.ars, a i l torotat  i on  accidents accounted for 42 percent of a1 1 Army he1 i copter 
a1;cidents. These accidents were not confined t o  novice p i l o t s .  Figure 7 shows 
the accident r a t e  by he1 icopter  type. The t r a i n i n g  he1 icopters, nctwi thstandi ng 
t h e i r  use by novices, have the lowest accident rate. Instead, there i s  a gross 
trend, w i th  some exceptions, t o  higher accident rates as the he l icopter  d isk  
load i s  increased. This t rend indicates an impact o f  the induced f l ow- f i e ld ,  
since i t s  magnitude and ef fects depend heavi ly  on disk load. 

Ver t i ca l  descent .- Even before the advent o f  successful autogyros and he1 i- 
copters ( ref .  2 ! h e  unusual f l o w - f i e l d  o f  a r o t o r  i n  v e r t i c a l  descent had 
drawn at tent ion.  Subsequent invest igators con t r i  b i ~ t e d  numerous empir ical  and 
f low v i sua l i za t i on  studies (refs.  1, 3-6). 

P i l o t s  are aware tha t  the pub1 i c  in~dgc of hcl i cop ters  descending rap id l y  i n  
a ve r t i ca l  path i s  simply not a f a c t  of l i f e .  Ver t i ca l  descent i s  an operat ion 



be accomplished very slowly, careful ly,  a d  on1 a t  f i n a l  touchdown. Even 
, v e r t i c a l  descent i s  a l og i ca l  place t o  begin a 8 scussion o f  descent because 
allows a simple grasp o f  many concepts which apply t o  the more p rac t i ca l  case 
i nc1 i ned descent. 

Flow i n  v e r t i c a l  descent.. One o f  the most s t r i k i n g  f low studies i s  t ha t  o f  
reference 6 from which f i gu re  8 was prepared. Figure 8(a) shows the wake o f  a 
hovering he1 icopter  which gathers a i r ,  l a rge l y  from above the ro tor ,  and funnels 
i t  downward t o  produce l i f t .  As soon as the r o t o r  begins t o  descend 
( f i g .  8 ( b ) ) ,  i t s  motion produces a flow upward past the r o t o r  opposing the 
induced flow, u n t i l  the so-called point  of ideal  au toro ta t ion  i s  resched 
( f i g  8 ) ) .  For t h i s  condit ion, the mean induced ve loc i t y  i s  j u s t  cancel led by 
the  he l icopter 's  r a t e  of descent. The f low becomes more v io len t  as the r a t e  o f  
descent increases fu r the r  ( f i g .  8(d) and 8(e), and then f i n a l l y  smooths out 
again a t  very high rates o f  descent where the r o t o r  operates i n  a t r u e  windmil l -  
brake mode. 

The h igh ly  disorganized flow shown i n  f igur-es 8(b) t o  8(c )  i s  termed the 
vor tex- r i  ng state. A1 though 1 arge vor t ices are present, there i s  no sembl enre 
t o  the regular  r ing-1 i k e  vor t ices which are usual ly  conjured up by the name 
"vor tex-r ing state." This f low i s  so complicated and unsteady tha t  no complete 
t reatmeni has ever been at tempted, Instead, only simp1 e one-dimensi onal analy- 
ses are used. These treatments are usual ly  re fe r red  t o  as momentum theory. 

Even momentum theory has problems i n  descent. A t  " ideal autorotatior!" where 
the  descent ve loc i ty  eq~ia ls  the average induced vcl  n;i t y  (Vg = wo), t h i s  simp1 c 
the3r.y obtains zero f low through the rotor.  Under such circumr,tances, i t  
requi res an i n f  i n i  t e  i nduced vel oc i  t y  t o  produce thrust .  This theoret ica! 
r e s u l t  i s  shown i n  f i gu re  9, where i t  i s  compared w i th  experimental measurements 
frc~n references 5 and 35. The ~neast~rernents o f  reference 5 are t i~e-averaged 
r o s ~ ~ l t s  and are shown by symbols; the measuretnents o f  reference 35 are 
i nstantancous values and arc shown by the cross-hatched band. 

4s might he ant ic ipated, the i n f i n i t e  ve loc i t i es  o f  the slmple theor j  are 
not found i n  pract.ice. The roto-  and the a i r  exchange momentum t o  produce l i f t .  
As t , ? ~  &scent veloci ty increases, the sndrlced ve loc i t i es  increase m r e  rap id l y  
t.!ran i y  the  t.tlcnr!l; ;.'..!s i s  r x y c t c r !  s i w e  the theorby only y i e l t s  the min'rn-ll-t 
! ~ ~ ~ s s i h : e  viiltrps. The? ~ t ,  I? d(?scc?t V C ~ O C ~ ? ~  het\.!e~n 1.5 and 2 v,%, the! indllccll 
\I?? s c i t y  drops ~ l r e c i  pi.olls l v  to t.?? i r!vcr t!!corct i cal curve \ h i c h  rcprc??en';s i?? 
i lin,':!!i? 1 -hraltc s:(::.c! nc npc-3: - on. 

nc:.~ep i n  v e r t  i c i l l  dr!sccrlt .- ,I k~lo\-,'?r!?e cf the induced ve loc i t y  cs necessary - --- 
f o r  "*I? d ? s i q r ~  t n  t ? ~ : . i ! ~ i \ t ~  p r? r r~~~ ! i ?nc? ,  hat i t  has l i t t l e  manin? t.o thc 
1 i t  1 s t  it:c (I??.;\ o? f l y r e  ? a f t e r  con\lersion t o  nondimcn- 
s io~ l ,~ ' i ze r !  I~OVICP. The n r d i w t c  i s  the  indur:cd s h a f t  power d iv ided t?\r ;.!I(! 
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ipi!llc,r!-j s)laKt ~o!.Ic- i n  h,-\r:r. I : : + S  :1g..-t> i s  i n  more meansnyful te rns  t o  ? 

r?i i ,:: sincp Vr, " 3 1  s d?s,:('?t, v4:lnri : .!r ,  ,?~i: !ID con?.rol s p c w r  ci ;.her direc:.l y 
:L~;'o~~g'l t)1e t , t i - o t t l ~  $ 3 ~  l ? i l i r ~ ~ t i > t  :?-o~I~!I the c13gi:ic-govcrnnr respmse t o  h i s  
co l1ect ivo p i t c h  cc.i!!m?nds. 

Power s t a b i l i t y . -  I f  e r o t o r  operated a t  constant ef f ic iency f o r  a l l  
dcsc.:ni r a t e s ,  t5u power req~l ircc! t o  c l  imb or descend \ ~ o u l d  be j us t  equal t o  the 



r a t e  o f  gain of po ten t ia l  ener ; t h a t  is, PC E - "F . This power i s  shown 
as a dashed l i n e  i n  f i g u r e  1K Unfortunately, t he  r o  o r  e f f i c i ency  becomes 
poorer as the  descent ve loc i t y  increases. According t o  theory (ref. 30), the 
power change f o r  small rates, o f  c l imb o r  descent i s  j u s t  one-half the .ate o f  
change o f  po ten t ia l  energy (E). The experimental measurements i nd i ca te  an even 
more d i f f i c u l t  s i t u a t i o n  i n  which there i s  essen t i a l l y  no change i n  power f o r  
ra tes  of descent as great as 1.5 t imes wh. Thus, the power s t a b i l i t y  i s  essen- 
t i a l l y  neutra l  and i t i s  d i f f i c u l t  t o  cont ro l  rates o f  descent w i t h  precision. 

Reversed contro l  response.. A t  large rates o f  descent, there i s  the possibi-  
1 i t y  o f  a reversed response t o  power o r  c o l l  ec t  i v e  pitch. For example, consider 
a he l icopter  establ ished i n  v e r t i c a l  descent a t  a ve loc i t y  VG approaching 
2wh. Co l l ec t i ve  p i t c h  i s  appl ied t o  check the descent. The t h r u s t  and induced 

ve loc i t y  respond promptly, increasing Ph = T W ~  = i 3 / 2 d 2 2 *  The descent r a t e  

changes only slowly since i t  requi res a change i n  accelerat ion o f  the e n t i r e  
mass o f  the he1 icopter.  The r e s u l t  i s  a m j o r  and rap id  increase i n  shaf t  power 
which may overpower the engine governor. If so, the r o t o r  slows down, the 
t h r u s t  decreases, and the cyc le repeats. Eventual ly, the  desired cor rec t ion  may 
he obtained, but there i s  l i k e l y  t o  be a considerable loss i n  a l t i t u d e  before 
t h e  f i n a l  equ i l ib r ium s ta te  i s  reached. 

Obviously, ;*apid v e r t i c a l  descent should be avoided. If a task demands ver- 
t i c a l  descent, such as the placement o f  an external s l  i ng  load i n  a confined 
area, the descent should be made from the minimum possible height and as slowly 
and ca re fu l l y  as possible. 

I t  i s  i n te res t i ng  t o  note tha t  the r o t o r  can be considered simply as a drag 
producing device i n  v e r t i c a l  autorotat ion. As such, i t  has a drag c o e f f i c i e n t  
o f  about 1.15 ( ref .  36). This i s  roughly equivalent t o  the drag produced by a 
parachute w i th  a diameter equal t o  t ha t  of the rotor.  

Power i n i ncl i ned descent. - Ca1 cu l  a t  i on of power i n  i n c l  i ned descent becomes 
more complicated since i t  i s  necessary t o  consider both the gl ide-slope angle 
and t k  r o t o r  t ip -pa th  plane i n c l i n a t i o n  as wel l  as the speed along the f l  i n h t  
yath. Figure 11 -presents the nondimensional shaf t  power as- a func t ion  o f  g l ide-  
s' ;;c angle f o r  three r o t o r  inc l ina t ions :  - lo0 ( t ipped forward); O0 ( l e v e l ) ,  and 
1:' ' ( t ipped rearward). For r e l a t i v e l y  m i l d  descent ang!es, less than about 15O,  
tk power decreases as the g l i d e  slope increases. This t rend conforms t o  the 
p i l o t ' s  i n s t i n c t i v e  fee l  for  power s t a b i l i t y ;  t h a t  is,  an increase i n  desce-?t 
r a t c  resu l t s  from a decrease i n  t h r o t t l e  se t t i ng  (or  c o l l e c t i v e  p i tch) .  A t  
la rge  descent angles however a point  may be reached a t  which the power t rend 
reverses; tha t  is ,  a s t a b i l i z e d  steep g l ideslcpe requires more power than a 
shallower slope. The increase i n  power required i s  very sharp and abrupt f o r  
g l i d e  slopes i n  excess o f  60° and fo r  speeds less  than 2wh . This sudden 
increase has a magnitude as great as the t o t a l  induced power normally required 
t o  hover. 

A t  r e l a t i v e l y  low spe3ds and on steep g l i d e  slopes, the instruments i n  the 
he1 icopter  are subject t o  la rge  errmors. Thus, the p i l o t  f l i e s  by reference t o  
the  ground, e i t he r  v i sua l l y  or by means of instrument landing systems. He can 
sense sidewinds as a d r i f t ,  but h i s  perception o f  a steady head wind o r  t a i l  



wind i s  poor. If s t a b i l  i xed  on a steep g l  I de s1 ope, the forward component o f  
speed i s  small. If a l i g h t  t a i l  wind springs up, the g l i d e  slope w i t h  respect 
t o  the a i r  ( ra ther  than the ground) can steepen by lo0 t o  150 w i t h  no warning 
o ther  than an astounding and sudden increase i n  power required. Because of the 
i ncreased power requirement the he1 i cop te r  s e t t l e s  faster ,  f u r the r  increasing 
t h e  g l  i d e  slope and fu r the r  increasing the power requirement. 

Power s e t t i n  .- Operationally, t he  appearance of t h i s  phenomenon i s  sudden d It i s  general ly termed power se t t l i ng ;  however, one o f  our and unexpecte 
research p i l o t s  re fe rs  t o  it more desc r ip t i ve l y  as "stepping i n t o  the sink 
hole." A p i l o t  may negotiate a combination o f  geometric slope and speed so many 
t i n e s  tha t  he i s  conf ident of i t s  safety; however, on the  next approach, he may 
encounter a t a i l w i n d  t h a t  produces disastrous consequences. 

The normal react ion o f  a p i l o t  t o  excessive sink ra tes  i s  t o  increase 
c o l l  e c t i  ve p i t c h  and power. Unfortunately, f o r  reasons dl scussed ea r l  i e r  w i th  
respect t o  ve r t i ca l  descent, t h i s  procedure may only increase the descent rate. 
The proper procedure i s  the rap id  appl i c a t i o n  o f  forward c y c l i c  u n t i l  the  speed 
increases and, only then, an increase i n  power. Obatiously, such a recovery w i l l  
e n t a i l  a substant ial  loss i n  a l t i tude.  

Examination o f  f i gu re  11 shows' t ha t  rearward r o t o r  i nc l i na t i ons  r e s u l t  i n  
power s e t t l i n g  a t  shallower gl i d e  slopes. P i l o t s  should be p a r t i c u l a r l y  carefu l  
t o  avoid la rge  o r  rap id  appl icat ions o f  rearward c y c l i c  when on steep 
approaches. 

Operational res t ra in t . -  The best way t o  t r e a t  power s e t t l i r l g  i s  t o  avoid it. 
A l l  too often, the f l i g h t  manual t r e a t s  t h i s  subject cava l i e r l y  w i th  a one-l ine 
sentence such as, "Avoid part ial-power descent." More spec i f i c  ru les  can be 
obtained by an examination o f  the complete resu l t s  o f  reference 30. Power 
s e t t l i n g  w i l l  not be encountered i f  the speed on the g l i de  slope i s  greater than 
twice wh. This r e s t r i c t i o n  o f ten  resu l t s  i n  f u l l  autorotat ion, and the descent 
ra tes  may be uncomfortably rapid. As 3n a l ternat ive,  keep the descent shallow. 
Power s e t t l i n g  should not be encountered i f  the g l i d e  slope i s  shallow. A 
reasonable l i m i t a t i o n  t c  jl ide  slopes o f  no more than l o0  o r  15O shou? d provide 
adequate rnargi ns of safety. 

MINIMUM SPEEDS FOR AUTOGYROS 

Theoretical resul ts .  - Reference 30 a1 so exami nes the  m i  nimum speeds fo;- 
autorotat ion. This subject was noted e a r l i e r  i n  the  discussion o f  f i g u r e  1. 
The minimum possible s p e d  i s  a d i r e c t  funct ion o f  wh and depends t o  some 
extent upon g l  ide  slope. For leve l  f l  ight ,  the m i  nimum speed i s  



When @?scending, the  minimum s eed alosg the f l i g h t  path oc.curs a t  a l i d e  slope 

speed i s  
P of 45 with a r o t o r  i n c l i n a t  on of 0 (w i th  respect t o  the horizon? and t h i s  

If only the hor izonta l  component of speed i s  measured i n  t h i s  ' a t t e r  c .  :e (strc 
as by a pace car  on the ground), the apparent minimum speed would be 

Comparison w i t h  advert ised val ues.- Figure 12 compares these theore t ica l  
values w i th  t h m u e s  oiven m n e s ,  where minimum speeds are described 
var iously  as "minimum," "minimum leve l  f l  i ght ," "approach," o r  "1 andi ng." 
Considering the  crude nature of the theory, the inadequacies of low-speed aero- 
dynamic on-board instrumentation, and the  less-than-precise termi no1 ogy i n  
Janes, the agreement between theory and the  stated speeds appears reasonably 
good. Only two "landing" speeds f a l l  f a r  below the theore t ica l  curves, and 
t+ese machines are known t o  have a high accident rate. 

The autogyros o f  f i g u r e  12 tend t o  have lower disk loads than hel icopters; 
however, a he l i copter  w i th  a f a i l e d  engine immediately becomes an autogyro. 
Appropriate minimim speeds f o r  these more heavi ly  loaded "dutogyros" can be 
calculated rap id l y  from the foregoing equations. 

GROUND EFFECT IN HOVERING 

Power+- He1 icopters general l y  experience a 1 arge and useful  increase i n  
p e r G c e  when hovering i n  ground e f fec t .  Ground e f f e c t  has been studied 
theo re t i ca l l y  (refs.  7, 21, and 37) and experimentally ( f o r  example, refs. 8, 
38, and 39). The theore t ica l  treatments postu late a s ty l ized,  r i g i d ,  c y l i n d r i -  
ca l  wake extending from the r o t o r  t o  the ground. It does not even deform t o  l e t  
the  wake escape l a t e r a l l y  along tho ground. Although t h i s  simple scheme has 
l imi t?t . ions ( ref .  37), i t does y i e l d  reasonable resul ts .  The i n i t i a l  study by 
Knight and Hefner ( re f .  7) i s  s t i l l  va l id ;  i t has merely :&en extended t o  d i f -  
fe ren t  cases and t o  d i f f e ren t  r o t o r  l oad -d i s t r i  b u t i  ons. 

Flow field.- Even the extreme dif ference between unifonn and t r i angu l  a r  
d i rk - load d i s t r i bu t i ons  makes l i t t l e  d i f ference i n  the required power ( f i g .  13); 
however, i t  does make a major d i f ference i n  the flow f i e l d  below the rotor .  
Figure 14 (from re f .  21) shows theore t ica l  contours o f  downwash near a r o t o r  
operat ing a t  a height o f  one r o t c r  radius. A uni formly loaded r o t o r  would have 
allnost uniform ve1 oc i  t ies  between i t s e l f  and the ground; however, the r o t o r  o f  
f igure  ! ; has a t r i angu la r  loading \.rhich resu l t s  i n  a large region o f  upwash 
below the center of the rotor.  E a r l i e r  dust-flow photographs i n  reference 8 
( f i g .  15) had shown t h i s  region; however, i t  has been thought t o  be the wake o f  
the  la rge  hub. I n  any event, independent conf irmation o f  t h i s  e f f e c t  ( re f .  39) 
was provided very shor t l y  a f t e r  the pub1 i cat  i on  of reference 21. 



GROUND EFFECT I N  FORWARD FLIGHT 

Theoret l c a l  Conslderat ions.- Theoret ical  study or ground e f f e c t  i n  forward 
f l i g h t  lagged f a r  behind s i m x a r  studles i n  hovering. Only one approximate ana- 
l y s i s  (ref. 40) was pub1 lshed p r i o r  t o  1960. Another approximate analysis 
( ref .  41) d i d  provide some in te res t i ng  q u a l i t a t i v e  results.  Thls study assumed 
a wake s i m i l a r  t o  t ha t  o f  Knight and Hefner w i th  one exception -- the  wake was 
blown rearward, o r  skewed, by the forward ve loc i t y  c f  Xhe rotor .  The skew angle 
o f  the wake i s  termed x and reference 29 hc.; a1 read shown that,  i n  f r e e  a i r ,  
t h e  induced ve loc i t y  a t  the r o t o r  would vary as 4+- cos X as the speed and x 
increased. Ground ef fect  was obtained as an upwash opposing the  r o t o r  wake, and 
decreasing as cos4 X . This r e s u l t  ind icated tha t  i n  ground e f f e c t  the maximum 
power requirement would occur a t  some forward speed ra ther  than i n  hovering. 

A reasonably complete treatment o f  ground ef fect  f o r  he l i copter  (ref.  42) 
was not achieved u n t i l  recent ly  and then only  as the func t ion  o f  years o f  
research (begi nni ng w i th  references 43-45) on the re1 ated problem o f  w i  nd-tunnel 
wa l l  interference. Rotary wing ground effect was complicated because the  ground 
induces, not only an upwash, but a lso hor izonta l  ve loc i t i es  which e f f e c t i v e l y  
reduce the airspeed o f  the rotor .  Furthermore, these ground-i nduced v e l o c i t i e s  
o f  such great magnitude tha t  i s  i s  necessary t o  consider than i n  es tab l ish ing  
t h e  momentum balance o f  the rotor.  

Power i n  ground effect.- The theore t ica l  resu l t s  of reference 42 are shown 
i n  f i au re  16 f o r  a r o t o r  w i th  a t r i angu la r  disk loadinq. Normally, the r o t o r  i s  
a t  a "height o f  0.3 t o  0.4 o f  the r o t o r  radius whi le res t i ng  n the  ground. 
Figure 16 shows the power f o r  even lower r o t o r  heights merely t o  accentuate the 
trends. A t  a1 1 heights, i n  ground effect,  the maximum power occurs a t  some fo r -  
ward speed; t h i s  speed increases as the r o t o r  height decreases. Gr. ' e f f e c t  
i s  o f ten  used t o  l i f t  overloads greate:. than the f ree -a i r  hovering i l i t y  o f  
t h e  he1 icopter;  however, i t  i s  not enough t o  barely c lea r  the  grot.- Jnless an 
a l t i t u d e  prov id ing several feet  o f  clearance can be obtained, the CL., . ,na t ion  o f  
t he  loss o f  ground e f f e c t  w i th  speed, and the addi t ional  power required t o  
accelerate, may resu l t  i n  contact w i th  the ground. This subject has been 
covered i n  reference 46, which provides some ru les  f o r  UH-1 class he1 i c o p t r s .  

The pecul iar  loops i n  the povrer curves a t  H/R = 0.1 are o f  in te res t .  
Obviously, a massive he l icopter  does nct  o s c i l l a t e  i n  speed t o  fo l l ow  such a 
power curve. Instead, i t  jitmps cli scont i  n~rnusly across the theore t ica l  crrrves 
through t h i s  range o f  speeds. This i s  most elrident i n  the wake, v.hicCI i s  mrc 
v e r t i c a l  than i n  f ree  a i r  at  low speeds i n  grot~nd e f f e c t ,  and the? suddenly 
jumps upward t o  a nearly hor izonta l  posit ion. This t rend has bccn obscr\lc:! 
experimentally i n  references 47 an3 48. 

The powerful i n f l  uence of the hor izonta l  ground-i nduced ve loc i t y  can bc seen 
by comparing f igures 15 and 17. The n~rrrerical values are ident ica l  ; the  onl? 
d i f fe rence i s  tha t  f i g u r e  1 7  i s  p lo t ted  against V + Au , the e f f e c t i v e  a i r -  
speed, whi le  f i g u r e  16 \gas p lo t ted  against \/ , the apparent airspeed. As a 
r e s ~ r l t ,  the curves o f  f ig t i re  17 are snooth and unremarkable compared t:, those c?f 
f i g w e  16. The reason i s  simply the large e f fec t ive  reduct ion i n  r o t o r  speed 
caused by ground e f fec t .  3 : s  speed r e d ~ ~ c t i o n  can be observed i n  a steeply 
f l a r e d  touchdown. The rearward t i l t of the r o t o r  allows par t  o f  the forwerd 



speed t o  pass upward through the rotor.  When combined w i th  ground effec*, which 
i s  ac tua l ly  greater for  rearward t i l t (ref. 42), the resu l t  i s  a b r i e f  passage 
through the vor tex-r ing s ta te  ( f ig.  18) as evidenced by a shuddering v ib ra t i on  
o f  the hel icopter.  Other than the v ib ra tory  stress levels,  there i s  no par- 
t i c u l a r  danger here; t he  speed and the a l t i t u d e  are both too low. 

No theory i s  complete without experimental v e r i f  i ca t i o r i *  Figure 19 compares 
the  theore t ica l  power ca lcu la t ions  w i  t n  wind tunnel measurements from 
reference 49. Experimentally, the e f fec ts  o f  the ground on power are even more 
pronounced than they are i n  the theory. 

YAW CONTROL I N  GROUND EFFECT 

Loss o f  Yaw Control .- Ta i l  ro to rs  had always been simply an appendage tacked 
on t o  a he l icopter  t o  overcome ro to r  torque and t o  provide yavr control .  They 
seldom received the same a t ten t i on  as the ~na in  r l ~ t o r  since t h e i r  power consump- 
t i o n  was an order o f  magnitude less than tha t  required by the main rotor .  This 
s i t u a t i o n  changed dramat i cal  l y  when one of our combat he1 i copters suffered t o t a l  
losses of yaw contro l  whi le  hovering wi th winds i n  ground e f f e c t  ( ref .  50). 
Many experimental studies o f  the problem were i n i t i a t e d  (refs.  49-56). The 
importance of t a i l - r o t o r  p rob lem was s ign i f i ed  by the t o t a l  dedicat ion o f  the 
October 1970 issue of the Journal o f  the American He1 i cop te r  Societv t o  tha t  
subject. A recent survey o f  t h i s  problem and other t a i l  rsotor probleit8; i s  pre- 
sented i n  reference 57. 

A major factor  i n  the yaw-control problem turned out t o  be almost i den t i ca l  
t o  a problem encountered ear l  i e r  i n  studies o f  w i  nd-tunnel t e s t i n g  techniques. 
Experimental (refs.  48 and 58) a11d theore t ica l  (recs. 59 and 60) studies o f  the 
problem already ex is ted and the observed e f fec ts  had not been recognized as a 
po tent ia l  real  operational probl em. 

Flow-Field i n  Grou~d  Effect.-  The ef fect  o f  the ground on the r o t o r  wake i s  
i l l u s t r a t e d  i n  f igures 20 t o  26 (from ref.  60). I n  each case, the f i gu re  on the 
r ' l b t  shows the florv i n  ground e f fec t  by f low vectors i n - a  \ ~ e r t i c a l  
l o t ~ g i t u d i n a l  plane through the rotcir hub and on the ground below the rotor .  The 
f i g w e  on the l e f t  shows the f low at the sane locat ions out o f  ground e f fec t .  
The ro to r  i t s e l f ,  ind icated by the upper e l l  rpse, i s  2.6 r o t o r  r a d i i  above the 
ground. This i s  a height general ly considered t o  be out o f  ground ef fect .  The 
in tersect ions of the r o t o r  wake on the planes of the vectors are a lso shown. 

Figure 20 shows the f low f o r  a r e l a t i v e l y  high speed condit ion. There i s  
l i t t l e  difference between the flows i n  ground e f fec t  and free a i r  except very 
close t o  the po in t  at which the wake reaches the grognd. As the speed 
decreases, the wake skew angle also decreases. A t  x = 60° ( f i g .  21), the 
d i s t~~ rbances  at the ground increase and the f low i s  retarded immediately i n  
f r o n t  of the wake. A t  a s t  ill lower skew angle o f  X = 5!1° ( f i g .  2 2 )  , the f low 
i n  f ron t  o f  the wake at the ground i s  esscr i t ia l l y  zero. A t  X = 40° ( f i g .  2 3 ) ,  
the  f low i s  d i s t i n c t l y  reversed a t  t h i s  point, and the reversed f low region 
increases i n  s ize and ve loc i t y  as the wake continues t o  steepen ( f igs .  24-26). 



Sround Vortex.. The deformations o f  the wake which occur i n  rea l  l i f e ,  but 
are not-a-rroweu i n  theory, fu r ther  increase mgni tude the  reversed f law 
( ref .  59). The resu l t  i s  a strong la rge  vortex on the ground which passes o f f  
t o  each s ide i n  a "horseshoe" pa t te rn  ( f ig.  27). I n  the case of the combat 
he1 icopter,  t h i s  vortex immersed the t a i l  r o t o r  when the wind was from behind. 
The vortex and the t a i l  r o t o r  turned i n  the same di rect ion,  e f fec t i ve l y  decreas- 
i n g  the ro ta t iona l  speed and th rus t  of the t a i l  ro tor .  The reduced t a i l - r o t o r  
thrust ,  i n  combination w i th  unstable f i n  and fuselage moments i n  rearward flow, 
resul ted i n  uncontrol led yaw. Recovery was only possible a f t e r  approximately a 
180° r o t a t i o n  o f  the a i r c ra f t .  

The design o f  t h i s  p a r t i c u l a r  he1 i cop te r  was such a1 1 these events combined 
t o  producL an unusually d i f f i c u l t  s i tuat ion.  Even though t o t a l  loss  o f  contro l  
may not occur on other raehines, elements of the same problem exis t .  A p i l o t  
should always remember tha t  hovering w i th  respect t o  the ground i s  not the same 
as a t r u e  hover because of the presence of winds. Cor',rol w i l l  be much simpler 
i f  it i s  possible t o  determine the d i rec t i on  of the ambient winds and t o  plan 
"hovering" maneuvers such tha t  the a i r c r a f t  headed i n t o  tha t  wind. 

L A T E R A L  CONTRQL I N  GROUND EFFECT 

The lcny i tud ina l  nonuniformity of induced flow over the  r n t o r  has a major 
influence on l a t e r a l  t r i m  requi~ements i n  forward f l i g h t .  Figure 28 shows the 
theorct i c a l  (ref.  n2) d i  s t r i  Su i i  on of grourd-i nduced upwash over the longi  t ud i  - 
nal axis of a rotof  a t  low s?eed. It w i l l  be seen tha t  t h i s  upwash i s  large i n  
,nagnitude, and tha t  it, incrc6ses as the grolrnd clearance decreases. Further- 
more, the u p ~ s h  increases frorr; tbe leadFng to the t r a i l  i n g  edge o f  the ro to r  
disk. T5is t rcnd i s  exact ly opposite t o  tha t  generated by the r o t o r  i ' , .self i n  
f r c o  a i r  where downwash increases toward the t r a i l  i n g  edge. Consequently, the 
1 ~ t e r a l  control  requi yexctnts skctrl d decrease i n  ground e f fec t .  

The p:icd-tunnel tes ts  of referenr,: 4-1 elnployed a model o f  the YUH-61A h e l i -  
copter which has a hingeless rotor.  Because o f  the lack o f  hinges, hub r o l l i n g  
moments at f i xed  cycl i c  p i t c h  5 e t i i n ~ s  il! ust ra te  the l a t e r a l  contro l  require- 
ments. The data, s5crwn i n  f igure 29, confirms the predicted reduct ion i n  
1a:oral control  as heigbi  sbovc t!?e sround i s  reduced. Furthermore, a t  the 
l a w ~ s i  height, i t  shows :!:.:'. the e f fec t  of the ground vortex i s  not confined t o  
Y A W  coniro l  ; i t  a; so prod~lces dnciderl nonl i n e a r i t i e s  i n  l a t e r a l  contro l  as the 
ground vortex moves under the rotcr .  

CONCL113 IPJG REMARKS 

Wind-tunnel neasuretl1ent.s shm tha t  the wake of a ro to r ,  e x c e ~ t  at near- 
hovering speeds, i(i not l i k e  tha t  o f  a  propel ler.  The wake i s  more l f k e  tha t  of 
a wing except that,  because of the slow speeds, the \.ake ve loc i t i es  may be much 
greater. The $el icopter  can produce a wake hazard t o  '71 lowing l i g h t  a i r c r a f t  
t h a t  i s  disproport ionately great compared t o  an equi valc.nt f ixed-*  l ing a i r c r a f t .  
This 5azard sholrld be recognized by both p i l r t s  and , i r p o r t  con t ro l l e rs  when 
operating i n  congested areas. 



Evan simple momentum theory shows that, i n  autorotat ion and art ir l -power d descent, the required power i s  a complex function o f  both airspe and descant 
angle. The power required may increase v io lent ly ,  rather than decrease, wi th 
r a t  o f  descent. The nonlinear characterist ic, together w i th  an almost t o t a l  
lack of  usable instrumentation a t  l ow  airspeeds, has led t o  numerous "power- 
se t t l i ngn  accidents. Simple rules can avoid the regions fn which these acci- 
dents occur. 

The same theory shows that  there i s  a m i  nlmutn forward speed a t  which a ro to r  
can autorotate. Neglect of, or inadequate appraisal of, t h i s  minimum speed has 
1 ed t o  numerous accidentas. 

Ground effect i s  generally counted as a blessing since i t  a\ lows overloaded 
takeoffs; however, i t  a1 so introduces addi t i ona1 operation probl ens. These 
problems include premature blade s t a l l  i n  hover, se t t l i ng  i n  forward t ransi t ion,  
shuddering i n  approach t o  touchdown, and compl Icat lons wi th yaw control. Some 
o f  these problems have been treated enaly t ica l ly  i n  an approximate manner and 
reasonable experiment agreement has been obtai ned. An awareness of these 
e f fec ts  can prepare the user f o r  thef r appearance and t h e i r  consequences. 
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TAME 1.- COST OF AUTOROTATION ACCIDENTS 

TABLE I I .  - PERCENTAGE OF TOTAL ACCIDENTS ATTRIBUTED TO AUTOROTATION 

F.Y. 
. 

70 

7 1 

72 

Total  

Oeat hs 

43 

3 1 

18 

92 

& 

F.Y. 

70 

71 

7 2 
. 

Tot a 1 
* 

Injurler 
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360 

222 

70 
I 

652 
b 

Nunber 

395 

289 

106 

790 

Cast, $ 

14,364,000 

35,614,000 

9,312,000 

89,290,000 

% 

41.8 

45.7 

36.2 
i 

42.3 
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Total  

944 

632 

293 

1869 

Autorotat  i on 

39 5 

289 

106 

790 
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