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Laplace transfer function of continuous filter
Z-transform of H(s)

imaginary operator, /=1

wS/wn, normalized sample frequency or discrete time index
Laplace variable
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Laplace transform of u

continuous input variable

Laplace transform of y

continuous output variable

Z-transform operator
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damping ratio of second-order model
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frequency of sinusoidal input variable, rad/sec
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SAMPLE DATA EFFECTS OF HIGH-PASS FILTERS

David 0., Chin
Ames Research Center

SUMMARY

The fact that aircraft motion simulators inherently have less travel than
the actual aircraft being simulated has resulted in the application of digital
washout filters in the computer software. Four commonly used mathematical
models of linear first— and second-order high-pass washout filters were ana-
lyzed. These models were Euler's Integration, Zero-Order Hold, Bilinear
Transformation, and Second-Order Adams-Bashforth Integration. Bode responses
for each model at various sample rates were compared to the continuous filter
response. The results show that higher sample rates produce Bode responses
approaching the continuous response and the Bilinear Transformation model pro-
duced the best responses over the frequency spectrum and sample rates. Pole
location analysis of each model in the z-plane shows the Bilinear Transforma-
tion and Zero-Order Hold models gave stable poles regardless of time step
size, whereas the other models did not always display stable poles.

A near constant gain error over the entire frequency spectrum was dis-
covered in the Zero-Order Hold cases and a correction gain was calculated for
the first-order high-pass filter case.

INTRODUCTION

One of the continuing areas of research in real-time man-in-the-loop
aircraft simulations is simulator motion recovery. The fact that motion simu~
lators have less travel than the aircraft being simulated results in compro-
mises in the motion felt by the simulator pilot. In an attempt to utilize the
limited travel most effectively, low—frequency portions of the motion signals
are eliminated with ''washout filters."

Washout filters are merely high-pass filters and can be implemented
digitally by any number of mathematical models which approximate continuous
filters. This study examines the effects of modeling a linear first- and
second-order high-pass filter with four commonly used models. The models are:
Euler's Integration, Zero-Order Hold (ZOH), Bilinear Transformation (Tustin's
Approximation), and Second-Order Adams-Bashforth Integration.

As a means of comparison, the frequency responses for each mathematical
model are analyzed against the continuous filter response while varying the
sample rate. The z-plane pole locations of each model are also analyzed for
stability.



HIGH-PASS FILTER MODELS

To obtain the Bode plots for comparing the various mathematical models,
the mathematical representations of the first- and second-order high-pass
filters are needed.

First-Order High-Pass Filter
The first—order high-pass filter (FOHP) is defined as:
. 1 .
ytTy=u (1)

Taking the Laplace transform of equation (1) and assuming all initial condi-
tions are zero, one obtains the first-order transfer function:

Y(s) _ -5
U(s) Bis) = 5= W, (2)
where o = 1/t is the cutoff frequency.
Second-Order High-Pass Filter
Defining the second-order high-pass filter (SOHP) as:
T . 2, _ =
yt2tuy+uwy=u (3)

and taking the Laplace transform of equation (3) (assuming all initial condi-
tions are zero) yield the second-order transfer function

Y(s) _ g2
U(s)  s2 + 2zw s + w?
n n

(4)

MATHEMATICAL MODELS

The mathematical models to be considered are Euler's Integration, Zero-
Order Hold, Bilinear Transformation, and Second-Order Adams-Bashforth
Integration.

Euler's Integration

Euler's Integration is defined as:

y(n + 1) = y(n) + Ty(n) (5)




First-order filter with Euler implementation- Applying equation (5) to
(1) and taking the =z-transform of the equation result in the transfer
function:

(6)

Second-order filter with Euler implementation- The transfer function for
the second-order high-pass filter (equation (3)) can be written as two differ-
ential equations:

%1 = —ZCwnxl - w;xz + u
(7)
X =X
2 1
with the output equation as:
= -2 - w?lx +
y tw x - wx +u (8)

Applying Euler's Integration and taking the z-transform, one obtains:

z? + Az + A,
H(z) = 5 ¢))
z< + Byz + By

where
A0 =1
A = =2
1
B =1- 2w T+ w>T?
0 n n

=
1

Z(CwnT -1

Zero—Order Hold

The z-transform of the ZOH implementation can be stated as:

H(z) = 2 x D, {H(S)} (10)

S

FOHP with Z0H implementation- Substituting equation (2) into (10), the
z—-transform of the FOHP becomes:

-1
H(z) = z — (11)
z ~e C




SOHP with ZOH implementation- Applying equation (10) to (4) yields:

z? + Az + Ay

H(z) = 12
(2) z% + B,z + By (12)
where
-k
A0 = Ge
Al = —-(1 + Bo)
_ 2k
B0 = e
B, = -2e_k cos (m)
G = cos(k) + (m/k)sin(k)
k = gwnT
- 2
'3 (wnT)
m = wnTV1 - z2
Bilinear Transformation
The z-transform for the Bilinear Transformation is defined as:
H(z) = H(s) 2 z-1 (13)
S T z 1
FOHP using bilinear- Applying equation (13) to (2), we obtain the
z-transform of the FOHP as:
_ 2(z - 1)
H(z) = (wCT + 2)z + (wcT - 2) (14)

SOHP using bilinear- Applying equation (13) to (4), one finds the
z-transform of the SOHP to be:

A?_z2 + Az + A
H(z) = — (15)
Bzz + Blz + B0




where

Ay = A, =4

A, = -8

By =4 - 4zw T + (mmr)2
B, = -8 + 2(wnT)2

B, =

2
2 4 + 4§wnT + (wnT)

Second-Order Adams-Bashforth Integration

The Second-Order Adams-Bashforth Integration is defined as:

T . .
y(n + 1) =y@) +5 [B3y(n) - y(o - D] (16)
The z-transform of equation (16) is:

H(z) = H(s) 25 s - 1 17)
T 3z -1

FOHP using Adams-Bashforth Integration- 1f we substitute equation (2)
into (17), we find the FOHP transfer function as:

2z(z - 1)

H(=) = 222 + (3wcT - 2)z - wCT (18)
SOHP using Adams-Bashforth Integration- Substitution of equation (4)
into (17) results in the SOHP transfer function:
2 2
H(z) = i z (AZ: + Alz + Ao) (19)
B,z  + Bzz® + B,z" + Bz + B,
where
Ay =4, =4
A = -8
B, = (u)nT)2

o8]
"

_ 2
, = 20200 T - 3(0 D]
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il

- 2
4 16CwnT + (3wnT)

=]
I

3 4(3CwnT -2)
B, =4

The z-transfer functions of the four mathematical models are summarized
in table 1. Bode plots for each model were produced by evaluating these
transfer functions at z = eJuT = cos(wT) + j sin(wT). The amplitude and
phase of the steady-state response to a sinusoidal input are plotted as a
function of normalized frequency (normalized to the natural frequency of the
filter) for various normalized sample frequencies (parameters with units of
samples per cycle at the natural frequency of the filter). The Bode responses
of the associated continuous high-pass filters are included in the plots for
comparison.

The normalized sample frequency is defined as:

n =-S5 .21
w Tw
c c
for the FOHP, and
Lo s _om
w Tw
n n

for the SOHP.

In the pole-location analyses, the poles of each model in table 1 are
plotted as a function of w.T for the FOHP cases and wpT for the SOHP
cases. For the SOHP cases, damping ratios of 0.3, 0.707, and 0.9 are repre-
sentative of purposes of these analyses.

RESULTS

First-Order High-Pass Filter

Figures 1 through 4 present the Bode plots for the FOHP models. Based on
the deviation from the desired continuous frequency response, the application
of the Bilinear Transformation produced the best results over the sample fre-
quency domain. All the mathematical models produced acceptable results when
the normalized sample frequency (n) was greater than 50, or when the natural
frequency times the sample period is less than or equal to 0.125
[weT < (27/50)]. With the normalized sample frequency greater than 50, the
gain deviation was within 1 dB and the phase was within 2° from the continuous
FOHP for all mathematical models in the entire normalized frequency range up
to the normalized Nyquist frequency of w/w, = n/2.




Figures 5 through 8 show the pole locations of each model as a function
of w.T. Euler's Integration (fig. 5) becomes unstable when w.T > 2.0.
The Second-Order Adams~Bashforth (fig. 8) becomes unstable when w.T 2 1.0,
which corresponds to n £ 6. This is also shown in the phase plot of fig-
ure 4. In the limit, as w.T approaches infinity, the Bilinear pole goes to
-1.0 and the ZOH pole goes to O, which means that these two models give stable
poles over the range of w,T. Table 2 summarizes the value of w,T for mar-
ginally stable poles. These results are also applicable to first-order low-
pass filter models.

The Bode plot for ZOH (fig. 2) shows a near-constant gain error across
the frequency range for each sample rate. From the plot, one concludes that a

DC gain must be calculated and applied to eliminate the error when using this
model. The gain error is analyzed in appendix A and is found to be approxi-

mately equal to:
7 2m 2T ]
: = +{L =22 _ Sulll
gain error [? (12 o 1) n

Therefore, the ZOH model for FOHP should be:

_1/2

z - 1

—wcT
(gain error){z - e

Second-Order High-Pass Filter

H(z) =

Comparing figures 9 through 20 with the addition of the damping ratio (g)
as another variable to the Bode plots, the Bilinear Transformation again pro-
duced the best overall results. With the normalized sample frequency greater
than 50, the gain deviation was within 2.5 dB of the continuous SOHP for all
mathematical models over the frequency range up to and including the appro-
priate Nyquist frequency. The phase deviation was within 9° of the continuous
SOHP for all mathematical models except the ZOH model. However, the ZOH model
was within 9° of the continuous SOHP when the normalized frequency was greater
than 0.4. The ZOH results in figures 10, 14, and 18 show a gain adjustment
can be calculated to compensate for the near—constant gain errors across the
frequency spectrum, but this would not improve the phase errors.

Figures 21 through 24 show the pole locations of all four models versus
wpT. Euler's Integration (fig. 21) and Adams-Bashforth (fig. 24) show at what
values of w,T the roots become unstable. These values of w,T relate to
the normalized sample frequency (n) and to the increased phase deviations in
the associated Bode plots. Table 3 summarizes the values of w,T for mar-
ginally stable poles. These results are also applicable to second-order low-
pass filter models. Appendix B develops a stability check for Euler's
Integration. Stable roots for SOHP using Euler's Integration will result if
wyT < 2z.



CONCLUSION

The application of all four mathematical models to the linear first- and
second-order high-pass filters reflects the dependence of the digital models
on sample rate. As seen from the Bode plots, reasonable results can be
obtained when the normalized sample frequency (n) is greater than 50. This
sample frequency produced gain deviations within 1 dB and phase deviations
within 2° of the associated continuous first-order high-pass filter output to
a sinusoidal input. Gain deviations within 2.5 dB and phase deviations within
9° were obtained for the second-order high-pass filter except for the ZOH
model at low normalized frequencies. The pole-location analyses show the
Bilinear Transformation and ZOH models yield stable poles for all practical
natural frequencies and calculation rates. Based on frequency response and
pole-location analyses, Euler's Integration and Adams-Bashforth models should
both be used with caution. The Bilinear Transformation model gave the best
overall results over the entire frequency range up to the Nyquist frequency
and is recommended for both high-pass filter cases.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif. 94035, September 15, 1980



APPENDIX A
APPARENT GAIN ON ZOH FIRST-ORDER HIGH-PASS FILTER

The Bode plot for the FOHP using ZOH (fig. 2) shows a near constant gain
across the frequency range as a function of sample rate. The following ana-
lysis is an effort to find a compensation for the apparent gain error.

ZOH Model
The transfer function for the ZOH first-order high-pass filter model is:
z - 1

-w T
c
z - e

H(z) =

The frequency response equation is obtained by substituting the relationship:

jwT Jf2r w 21 w . . 21 w
z = e = e ——)]=cos|——}+ j sin|— —
n w, n W, n we

in the transfer function. If a = 2n/n and b

w/wc, the equation is:

H(eij) - cos (ab) - ia+ j sin(ab)
cos(ab) ~ e © + j sin(ab)

The magnitude squared is:

IHIZ _ 2[1 - cos(ab)]

1 - 22 cos(ab) + e 28

Taking the series expansion of each term to the fifth power and combining the
terms result in the equation:

|H|? = b2[1 - (b?/12)]
(1 - a)(1 + b2) + (7/12)a% + a*b?{(1/2)[1 - (b?/6)] - (a/6)[1 - (b%/2)]}

If b <1, the magnitude squared is:

12 - b
(1 - a) + (7/12)a® + (a*b?/12)[6 - b% - a(2 - b3)]

Therefore, for small b, the magnitude is

) 1/2
IHI = > 2
1 -a+ (7/12)a




Continuous Case

The transfer function for the continuous case is:

s
H(s) = s + 1
Let
s = juwT
and
1
T =—
w
c
and the frequency response becomes
j(WT/w)
H(GuT) = JT/w) + 1
- —1b
jb + 1
The magnitude is:
2
-
b + 1
or
IHI =___]l.____.
b2 + 1
Therefore, for b << 1,
[H| = b

Comparing the magnitudes of the ZOH and continuous case results in:
2 1-1/2

- S|y _2m, (e
gain error = |1 m +-12 (11

The gain error is a function of the normalized sample frequency (n), if nor-
malized frequency (b) is less than unity. Therefore, to correct the gain
error in the ZOH FOHP, the transfer function should be:

10




where

_ (gain)(z - 1)
H(z) = ~w T
z-e ©

1

gain = —————
gain error

11



APPENDIX B
EULER'S INTEGRATION — STABILITY CHECK FOR SOHP

This appendix derives a simple check for stability when applying Euler's
Integration on a SOHP. The transfer function for SOHP using Euler's Integra-
tion is:

22 -2z + 1
2 _ _ 2m2
z° + 2(;wnT Dz + (1 2cwnT + wnT )

H(z) =

After factoring, the denominator is:
[z + (cwnT - 1) + jwnTv’l--c2 1z + (CwnT -1 - jwnTVI - r2]

For stability, the magnitude of the vector Z must be less than or equal to
unity (|zl < 1). Therefore,
2

1
[(w T - 1? + (wnT/l ~2)?] / <1

which reduces to w,T < 27 for stable roots. This relationship is also
applicable when applying Euler's Integration to a second-order low-pass filter
because the characteristic equation for both filters is the same.

12
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TABLE 2.~ FOHP wCT VALUE FOR MARGINALLY STABLE POLES

Math model wCT
Euler 2.0
ZOH None
Bilinear Infinity
Adams-Bashforth{1.0

TABLE 3.~ SOHP wcT VALUES FOR MARGINALLY STABLE POLES

w T
n
Math model
z =0.3(¢ =0.707 t = 0.9
a

Euler 0.6 1.41 1.8
ZOH None None None
Bilinear Infinity | Infinity | Infinity
Adams-Bashforth | 0.84 0.95 0.99

%Stable poles for Euler's Integration can be cal-

culated using the relationship wnT < 2t.

15
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Figure 1.- Bode plot for first-order high-pass filter using
Euler's Integration.
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Figure 2.- Bode plot for first-order high-pass filter using
zero-order hold.
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Figure 3.- Bode plot for first-order high-pass filter using
Bilinear Transformation.
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Figure 4.- Bode plot for first-order high-pass filter using
Adams-Bashforth.
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Figure 5.- Euler's integration FOHP pole location.
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Figure 6.~ Zero-order hold FOHP pole locatiom.
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Figure 7.- Bilinear Transformation FOHP pole location.
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Figure 8.-~ Second-Order Adams-Bashforth FOHP pole location.
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Figure 9.- Bode plot for second-order high-pass filter using
Euler's Integration; z = 0.3,
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Figure 10.- Bode plot for second-order high-pass filter using
zero—-order hold; ¢ = 0.3.
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Figure 11.- Bode plot for second-order high-pass filter using
Bilinear Transformation; z = 0.3.
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Figure 12.- Bode plot for second-order high-pass filter using
Adams-Bashforth; ¢ = 0.3.
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Figure 13.- Bode plot for second-order high-pass filter using
Euler's Integration; z = 0.707.
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Figure l4.- Bode plot for second-order high-pass filter using
zero—order hold; ¢z = 0.707.
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Figure 15.- Bode plot for second-order high-pass filter using
Bilinear Transformation; ¢ = 0.707.
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Figure 16.- Bode plot for second-order high~pass filter using
Adams-Bashforth Integration; ¢ = 0.707.
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Figure 19.~ Bode plot for second-order high-pass filter using
Bilinear Transformation; z = 0.9.
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Figure 21.- Euler's Integration SOHP pole location.
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Figure 22.- Zero-order hold SOHP pole locations.
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Figure 23.- Bilinear Transformation SOHP pole location.
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Figure 24.- Second-order Adams Bashforth SOHP pole location.
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