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ABSTRACT

This report summarizes the propeller propulsion integration (PPI)
study conducted under this grant. The work {s continuing under the Lewis
Research Center directlion. f bibliography has been compiled of all
readily available sources of propeller analytical and experimental
studies conducted during the 1930 through 1960 period. A propeller test
stand was developed for the measuremant of thrust and torque character-
istics of full scale general aviation propellers and installed in the
LaRC 30 x 60 foot full scale wind tunnel,.

A tunnel entry was made during the January through February 1980
period. Several propellers were tested, but unforseen difficulties with

the shaft thrust-torque balance severely degraded the data quality.
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I. INTRODUCTION

The Propeller Propulsion Integration (PP1) research program, initiated |
in April 1977, under this Grant NSG 1402, was established to help the
general aviation industry design propeller propulsion systems. There
has always been concern about the lack of definitive experimental data and
of useable analytical methods to define the interactions between propeller

and the airframe.

The escalating cost of fuel has placed increased emphasis upon the
fuel efficiency of general aviation aircraft. The increasing level of
sophistication of the panel methods for the analysis of flow about wings
and bodies has made possible the prospect of being abie to model the complex
propeller/airframe interaction problem. Thus, the PPl program was initfiated
to carry out a set of experiments which would establish a data base for the
definition of interference effects and for the validation of aralytical
methods. After each wind tunnel experiment, comparisons are to be made
between theory and experiment.
To carry out these objectives the PPI overall research program can
be summarized in the following major steps.
1. Define state-of-the-art of General Aviation Propulsion System
Design (Phase Zero).
2. Define General Aviation lIsolated Propeller Characteristics
(Phase 1).
3. Define General Aviation Propeller/Nacelle Interference Charac-

teristics (Phase 11).




4. Detfine General Aviation Propeller/Nacelle/Wing/Fuselage Inter-
i ference Characteristics (Phase 111).

é 5. Develop Analytical Propulsion Integration Methods for General

| Aviation Alrcraft Design (Phase I through Phase 1V).

Phase Zero was a review of the state-of-the-art in terms of current

design practice au. a determivation of industry design requirements and

P — -

recommendations for program emphasis. A detailed account of the discus=-

sfions with industry desiga teams is rveported in Reference 1.

The industry state-of-the-art design process {5 best represented as
table look=up methods. One or more catalogues, such as the Hamilton
Standard "Red Book" or the "Gray Charts," which list isolated propeller
performance characteristics in temms of geometric parameters, are used
to select propeller candidates. Performance flight test measurements

are then used to make the final cheice. In most cases, little account

is taken, either during the airframe design stage or during propeller
selection, of the interference between propeller and airframe upon the
predicted installed propulsive efficiencies. This is due to the absence
of suitable design data and practical analytical tools.

A comprehensive review of the literature has been undertaken also as
a part of Phase Zero and is included in this report as Appendix A. Over
one thousand reports and papers have been identified which relate to

i propeller design or selection, but, few ot these consider the mutual

influence of propeller and airframe. None considered the geometry peculiar
to contemporary flat engine designs with asymmetric blockage-arey distribu-
tion around the propeller shaft. Some insight can, however, be gained

by analysis of the available data. Figurel, which was obtained by a plot b
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of Reference 2 data, shows clearly the influence of an afterbody on
apparent propeller efficiency, which becomes greater than 1 with a
blockage ratio, (a/D), over 0.5. The net efficiency, which is directly
proportional to the available thrust power decressed dramatically so
that the net theust available for propelling the airplane is greatly

and adversely affected by a blunt afterbody even though apparent propel-
ler efficiency is over 100X. Figure 2 shows data for a simple stream-
line afterbody shape and the effect is less pronounced. The influence

of thrust line displacement and thrust line angle relative to a wing

chord is shown in Figure 3. The data shows a maximum variance of 10

percentage points for a 152 displacement of the thrust line and 5° thrust
line angle. Thus, the thrust line location and angle are also quite
important in determining the net efficiency of the propulsion system.

All of these effects upon propulsive efficiency need to be explored
further through experiment and analysis.

The goal of the PPl research program is to develop such design data
and analytical tools. This goal is to be attained through a combined
program of wind tunnel investigations in the NASA Langley 30' x 60' Full
Scale Wind Tunnel and the development of appropriate analytical design
methods. Where possible, specilic tests or analyses are to be performed
to bring into use results generated from previous investigations during e
the 1930's and 1940's involving primarily radial engine configurations.

In the Phase I program, a Propeller Test Stand (PTS), for use in
the full scale tunnel, was designed and fabricated. The test stand is

shown in Figure 4 and the installation in the full scale tunnel is shown ’

in Figure 5. The Propeller Test Stand is capable of testing full general
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aviation propellers using a variable frequency electric drive. The
propellers can be operated over a 10 degree angle of attack range. A
thrust/torque balance is used to measure shaft thrust. The PTS is
attached to the wind tunnel balance to measure total forces. The

first tunnel entry was made during the period January through early

March 1980. The goal of this entry was to develop the isolated propeller

baseline data tor future airframe iunterference tests. A family of 13
test propellers were selected and arrangements were made to acquire %he
propellers at no cost to the program. The propellers and first entry
test plan are described in Reference 3. Comparisons were to be made
between the measured data and a current analytical propeller model.

This report summarizes the first wind tunnel entry for Phase I of
t Y study. At this point the management of the PPl investigation
was + .nsferred to the Lewis Research Center under Grant NAG-3-56, The
LeRC Grant was supposed to conduct Phase I1 of the PPI1 study, but due
to unforseen shaft balance problems, the iscolated propeller tests will
also be repeated using an abbreviated test program. Phase I1, is
designed to explore propeller/nacelle interference effects. The PTS
developed during Phase I will be used for this experiment. Two nacelle
shapes are to be considered; a single engine nacelle, Figure 6, and an
axisymmetric body, Figure 7. The shaft thrust is to be measured along
with body pressure distribution and wake surveys. A critical survey of
analysis programs available for the analysis of propeller performance
in a nonuniform flow field and of the interaction of a propeller slip-
stream upon an airframe will be made. Comparisons will be made between
the analytical methods and data oftained from the PPI wind tunnel

experiments and other sources.

&




Phase 111, is the final experimental step in the development of a

more complete understanding of the propeller/nacelle/wing/fuselage
interference problem. It is contemplated that the PTS will be utilized
as shown in Figures 8, 9, and 10, for this experiment., This test stand
will be quite flexible and capable of a wide range of configurations.

Phase 1V is contemplated as an attempt to optimize the propeller/
airframe configuration for overall aircraft efficiency. 1In this case,
the analytical methods will be used to define a configuration (Ref, 4),
and the experiment conducted for verification,

This report describes the details of the propeller test stand and
examines the data obtained in the first entry in the LaRe 30 x 60 foot
full scale wind tunnel. The test stand is capable of a wide range of
propeller experiments as outlined in the PPI overview. Further develop-
ment of the prop shaft thrust-torque balance is required to full exploit

the concept.




2. PROPELLER Tioi #TAND DEVELOPMENT

2.1 Test Stand Design

In Chapter 1 the three propeller test programs defined for the PPI
investigation were described. A study was undertaken to determine the
best configuration for a propelle. test stand which would allow these
three study segments to be conducted using a single drive motor support
configuration., Other design considerations were.

1. Utilize two GFE 266 horsepower variable frequency electric
motors connected in tandem as the propeller drive motors.

2. Propelier angle of attack range ~10 to +20 degree.

3. Mooor support structure must minimize interference with
propeller flow field,

4, System must be capable of being mounted within a Piper Chieftain
nacelle,

5. PTS must be mounted on the 30 x 60 foot wind tunnel force
balance to measure total forces.

Figure 4 shows the configuration which was developed to satisfy the
specifications outlined above, To minimize propeller interference
effects, to minimize propeller vibration levels, and to ease angle of
attack change mechanism design difficulties, a steel cantilever beam
structure was chosen,

The propelier test stand includes six pieces of structural hardware.
These are the motor case, the motor case cradle, the mast, the mast
fairing, nacelle, and the sector fairing. The motor case, cradle,

nacelle, and sector fairing carry the aerodynamic loads on the propeller,
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pecelle, and sector fairing through the mast to the wind tunnel balance
system. The aerodynamic loads on the mast are shielded from the wind
tunnel balance by the mast fairing which s cantilevered from the tunnel
floor independently of the balance system,

Figure 11 shows the steel structure of the PTS. An electric Jack-
screw was used to vary the angle of attack (A0A) while the tunnel was
operating. To ensure a fall-safe design a counterweight was added to
the structure so that the motor system would pitch up to preclude the
propeller from striking the support column i{f the jackscrew shou': fail.

The maximum design torque and thrust developed by the propellers
are 600 1bf thrust and 4200 in 1bf torque. At a speed of 500 RPM and
an angle of attack of 12 degrees maximum harmonic variations of 180 1bf
in thrust and 6360 in 1bf in yaw moment are estimated. The structure
must safely support the static loads and must not be excited to vibrate
by the harmonic loads. To accomplish this it was decided to design the
mast strong enough to support the static loads but flexible enough so
that the lowest exciting frequency of 17HZ (500 RPM for a two blade
propeller) would be well above the natural frequency of the system.

The natural ‘requencies of bending and torsion were found to be 3.5HZ,
6.18HZ, and 6.7HZ. These were calculated assuming a rigid support (the
balance system is not rigid so the frequencies are actually lower than
those calculated), no aerodynamic or structural damping, and the mass
of the mast was neglected., The mass on the end of the mas !s about
seven times the mast mass so one would expect little influence on the
natural frequencies due to the mast mass. However, a lumped mass anal=-

ysis including the mast mass was made to confirm this assumption, and




it produted the same frequencies as above. Complete details of the
static and dynamic structural analysis of the PTS are given in
Appendix B,

Structural details of the support column of the PTS is given in
Figure 12, The structure was convent fonal welded steel plate construc~
tion. Especlial care was taken to weld the structure in steps to mini-
mize warping. The detaiis of the motor support structure is given in
Figure 13. The drive motors were encased in a 0.5 in. steel tube, thus
the structure was not required to align the motors, but rather transfer
the motor weight onto the support column with a minimum distortion.

Also the mot)Or support structure was constrained to minimize the cross-

sectional area of the nacelle., Also the structure was orij irally required

to fit inside a Piper Chieftain nacelle. This design requirement was
followed for the counterweight design.

The detoils of the nacelle structure are given in Figure 14, The
nacelle was configured to minimize the interference with the propeller
flow. The nacelle was constructed using standard aluminum structural
practice. The tail cone was constructed of fiberglass to achieve the
desired shape. The nacelle was attached to the motor support structure
at only two points to allow the installation of a nacelle force balance
at a later time. The upper half of the nacelle structure carries all
of the loads with the lower half divided into two parts for ease of
assembly and access.

Figure 15 shows the fairing constructed to shield the support
column from the tunnel flow. The fairing was constructed of aluminum

in two parts to allow ecasy erection and access to the jackscrew motor,




power cables, and instrumentation lines. A two segment fairing was

designed to ensure the intersection between the nacelle and the support
column remained a low drag configuration over the =10 ro +20 degree

AOA range. The constraint was for the fairing to clear the support
column when the propeller was at +20 degree and yet fill the gap when
the propeller AOA was ~-10 degrees. The sector fairing is attached to
the motor support structure, thus the forces on the sector fairing are
measured by the wind tunnel external balance. The sector fairing was
constructed of 0.125 soft aluminum plate and contoured using a segmented

welded approach.

2,2 Structural Vibration Analysis Summary

This section summarizes the vibration analysis of the PTS given in
Appendix B. The initial study showed that the stresses in the structure
were well below the allowable except the bolts which attach the PTS to
the wind tunnel balance frame. These bolts do not have sufficient strength
to withstand the loads induced on them for the case of the loss of a pro-
peller at speed. The remainder of the structure can withstand this con-
dition.

The mast used to support the propeller test drive motors must be
cantilevered from the balance table and offer minimum wind resistance.
It was also desirable that themast be tapered to minimize mast thick-
ness at the motor attachment location. A mast height of about fourteen
feet was required to place the propellers at the centerline of the
tunnel .

The maximum anticipated loads expected for the most extreme test

cases were 600 1bf thrust and 290 ft. 1bf torque steady lcads. The




weight of the motors and structure when added to the applied propeller
loads gave a loading which was not severe for a design with even a
modest cross-section. Thus it was decided to choose a design based on
stiffness criterion rather than strength, since there was no over-riding
reason for minimiziug the weight or size of the beam. The approach was
to design a beam with natural frequencies well below the minimum
expected harmonic excitations. This approach allows dynamic amplitudes
somewhat greater than static deflections, but the static deflections

are small due to the smallness of the loads. The applied loads shown

in Figure B2 produced the bending méments, torque, and axial load distribu-
tions for the analysis.

The mast deflections and rotations under the assumed 'oads were
computed using Castigliano's Theorem. Using Castigliano's wethod the
strain energy was first calculated from which the detlections and
rotations were found as derivatives of the strain energy. A matrix
formulation of the deflections and rotations in terms of the applied
loads was made. If the mass of the mast is neglected and the equations
of motion for the motor case - motor cradle - propeller and counterweight
system are formulated, the natural frequencies of vibration can be found.
Solving the free vibration equations for the five natural frequencies and

mode shape gives the following table.

10




MODE AMPLITUDE

MODE  DESCRIPTION FREQUENCY (1'7) A B C D E

1 _lateral bending 3.5 6.77 0 0 W 031
fore and aft

2 bend ing 6.18 0 -8.5 .1 0 . -
torsion or

3 pitching mode 6,20 1.8065 0 0 02766 ~.1

4 rolling mode 39.0 L0530 0 0 % | L0004

5 yaw mode 59.0 = 0 3.3 .1 0 0

Each mode has been normalized to a maximum rotatfon of .1 radian,

The fore and aft bending mode and the yaw mode are uncoupled from the
lateral bending, pitching, and rolling modes.

For a forced vibration analysis, propeller loads must be converted to
an equivalent force system at the center of gravity of the motor assembly.
At a speed of 500 RPM there is a harmonic thrust force of 180 Ibf and a
harmonic yaw moment of 6360 in I1bf with frequency twice the rotational
speed for a two blade propeller. This condition occurs at an angle of
attack of 12 degrees and {s the lowest frequency (17HZ) excitation expected
other than an unbalance in the propeller shatt, 17HZ is well above the
bending and torsion frequencies but is below the rolling and vawing
trequencies. The maximum dynamic stress is at the base of the mast and
is 330 psi which is very small. At the lowest propeller freauency expected,
the vibrational modes of the mast are not excited. The magnitude of the
exciting loads ave also low which helps account for the low dynamic
stresses,

The worst case of failure would be to lose a propeller blade while
in operation. The maximum stress induced by this conditfon is 45,000 psi

which is greater than the yvield stress but less than the ultimate stress.

11




It is possible that the mast would hold together until the motors could
be stopped. The critical component is the mast holddown bolts which

would probably fail.

2.3 Wind Tunnel Inscal’at on

The PTS was ins ! 1 in the LaRC 30 x 60 foot full scale wind
tunnel as shown in Figure 5. The steel support column was attached
directly to the wind tunnel balance frame. The falring for the support
column was attached to the floor plane. The electric motors were driven
by a variable f{requency master generator set. The nacelle angle of
attack was controlled through the jackscrew and sensed by an fnclinom-

eter insizlled on the motor support frame.

2.4 Instrumentation Description

The test was conducted using the LaRC full scale wind tunnel data
acquisition system., The propeller thrust-torque balance output was
transmitted through a slip ring to data lines installed in the station-
ary structure. The wind tunnel balance forces were recorded and proved
to be the primary source of thrust data. The drive motor currents were
monitored, but since the motor torque versus current relationship was
not known, torque could not be determined from this source. Vibration
accelerometers were installed on the motor support structure near the
propeiler plane to monitor the vibration levels at the propeller thrust-
torque balance. An automatic shut down system was installed to prevent

divergence.
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3. ENTRY 1 WIND TUNNEL TEST

3.1 Test Program

A total of fifteen different propellers had eriginally been
selected to test in the NASA Langley Full Scale Wind Tunnel. These
propellers are listed in Table 1. The actual test program included
seven of these propellers and consisted of 103 runs (each run being a
test of a particular propeller at a particular blade angle, angle of
attack and tunnel speed with the propeller speed variable during the
run). Of these 163 runs only about half vielded useful information
concerning propeller performance; the remaining runs were judged unac-
ceptable due to problems which will be discussed shortly. Table 2
lists the propellers, tunnel speeds and blade angles for which possibly
useful data was obtained.

The large number of unacceptable runs was the result of several
equipment related problems which were encountered during the tests,
Approximately 60 runs were initially required to sort out the instru-
mentation and obtain what was considered to be "good" data. Just as
this status had finally been reached the propeller shaft bent during a
run. After the shaft was repaired the program essentially started over
again., A further 100 runs were made but these were plagned by acift
in the output of the thiust-torque balance. This was first observed
as a change in the zero tunnel speed-zero propeller speed balance
readings (or "zeroes") before and after a run. At least 20 runs made
after the shaft was repaired are unacceptable because of a large change

in the balance zeroes. Many more runs are of questionable use for this
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same reason. There were also situations when vibration of the propeller-
afterbody unit became excessive and forced a run to be stopped before

the desired range of propeller speeds could be obtained. Finally, some
data which initially looked acceptable turned out to yield meaningless é
results due to a mismatch in the size of the thrust-torque balance.

That is, for lightly loaded or small propellers the loads generated were

too small to be accurately measured by the halance (which was designed

for 1200 1hs. maximum thrust). Therefore the results for the Yankee

propellers (configurations 7 and 8), for exnmble. are not valid although

the measurements themselves were not subject to excess vibration or

zero shift, As a consequence of these various difficulties only a

limited quantity of reliable data has been taken and only three propel-

lers can be thought of as being reasonably we'l-documented (configura-

tions 1, 4 and 10).

Further comments on the thrust-torque balance drift are appropriate,
Several tests were made to establish the nature of the drift. Here the
propeller and tunnel speeds were set at fixed values and the thrust-
torque balance output was monitored. An example of these tests is shown
in Figure 16 where the thrust and torque of the Hartzell 2-bladed pro-
peller are plotted versus time. The continual decrease in measured
output with time is quite clear. There were also Instances when the
test engineers observed sudden jumps in the balance output although
these were not documented. The reasons for these changes is still un-
explained. The drift could, at times, be minimized or eliminated by

running the propeller for 10 to 30 minutes prior to taking data for a

14




given run. This warmup procedure was used in the latter stages of the

test program with apparently some success.

3.2 Results
The measured quantities include the thrust, T, and torque, Q,
acting on the propeller as obtained from the thrust-torque balance, the

total rerce acting on the propeller-afterbody combination as measured

by the tunnel scales, the propeller blade angle, g, the propeller rpm,
N, and the free stream air velocity, V_. Measurements of the afterbody
drag with no propeller along with a correction to the drag to account
for the propeller slipstream permitted the tunnel scales data to be
used to provide a second and independent measurement of the propeller
thrust, Fiom these measurements the advance ratio J, thrust coefficienr
and efffciency

CT' torque coefficient CQ' power coefficient C are

’l}’

p and p for the

McCauley 3-bladed prop (configuration 10) at g = 16", 28° and 40° and

P

determined. Figures 17 through 22 present CT' C

for the basic Hartzell 2-bladed prop (configuration 1) at the same
blade angles. The open symbols refer to data entirely from the thrust-
torque balance; the filled symbols are for scales measured thrust.
The thrust coefficients of the McCauley propeller (Figure17) form .
reasonable curves with fairly small scatter and close agreement in the
two measurement methods. The scatter and disagreement become greater
at large values of J as the loading goes to zero. Here the noise and
accuracy of the balances is the same magnitude as the thrust so the D)

poorer behavior might be expected. The significance of the fact that

15




at ¢ = 16° the scale C_ is slightly below the thrust-torque balance

T
C, while at § = 40° the situation is reversed is not quite clear. The

; |

power coefficients (Figure 18) (which could only be determined from
the thrust-torque balance) also form fairly smooth curves with little
scatter.

That problems may still exist becomes more apparent when the
efficiencies (Figure 19) are examined. The scatter is now greater
(though the plotting scale makes the scatter appear worse than it is)
and the disagreement between the two thrust measuring techniques is
increased, especially for g = 40°, " More serious, however, are the
highly suspiclious magnitudes of the peak efficiencies which approach,
and even exceed, ”P = 1. Whether the thrust is being overestimated,
the torque underestimated or both is not yet certain,

The results for the Hartzell propeller are not as good, especially
in terms of agreement between the two thrust measurement methods, as
the McCauley results. Figure 20 shows that there are substantial
differences in CT as determined by the two methods for the entire range
of J investigated, with the thrust-torque balance yielding consistently
smaller coefficients. There is also increased scatter In the CT curves
for this propeller. The plots for CP' on the other hand, (Figure 21)
are reasonably smooth with small scatter. The scatter and disagreement
of the CT data are also reflected in the efficiency curves in Figure 22.
One noticeable aspect of the efficiencies, however, is that, except for

two obviously erroneous points, the maximum efficiencies are consider-

ably smaller and more reasonable than the McCauley values.

16




4. CONCLUSIONS

The propeller test stand proved to be structurally sound and
exhibited the predicted supercritical structural modes., The unresolv-
able thrust-torque balance drift problems precluded a successful test
of a range of full scale general aviation propellers. The following
recommendations are made.

| 1. Find the source of drift in the thrust-torque balance.
i 2. Measure the electric motor torque-current relationship
* experimentally to allow an independent measurement of
l

, propeller torque.

17
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Table 11 i

Propel'ers Tested

§0.75 Tunnel Configuration
(degrees) RPM 1 2 4 7 8 10 12
16 0 X x x
90 X x x X X
170 x X X x X X
275 X X
|
| 20 0
| 90 X x
| 170 X X X X
| 275 X X
| 24 0
90 X X
170 X X X X
275 x X x x
28 0
90 X
170 X X
275 x x
| 12 0
90 .
? 170 X X X
275 x X X
36 0
90 X
170 x x
275 x X
40 0
i 90
) 170 X X N
275 X X X
5
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STRUCTURAL INTEGRITY REPORT

The propeller test project includes six pleces of structural hardware
(see drawings). These are the motor case, the motor case cradle, the mast,
the mast fairing, nacelle, and the sector fairing. The motor case, cradle,
nacelle, and sector fairing carry the aervodynamic load on the propeller,
nacelle, and sector fairing through the mast to the balance system, The
aerodynamic loads on the mast are shielded from the balance by the mast
failving which is cantilevered from the tunnel floor independently of the

balance system,

Aervodynamic Loads

The maximum torque and thrust developed by the propellers is 600 Lbf
thrust and 4200 in 1bf torque. At a speed of 500 RPM and an angle of attack
of 12 degrees maximum harmonic variations of 180 1bf i{n thrust and 6360 in
1bf in yaw moment are experienced. The structure must safely support the
static loads and must not be excited to vibrate by the harmonle loads, To
accomplish this it was decided to design the mast strong enough to support
the static loads but flexible enough so that the lowest exciting frequency
of 17HZ (500 RPM for a two blade propeller) would be well above the natural
frequency of the system. The natural (requencies of bendirg and torsion were
3.5HZ, 6.18HZ, and 6.2HZ. These were calculated assuming a rigid support (the
balance system {s not rigid so the frequencies are actually lower than those
calculated), no aerodynamic or structural damping, and the mass of the mast

was neglected. The mass on the end of the mast is about seven times the mast
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mass so one would expect little influence on the natural frequencies due to
the mast mass, However, a lumped mass analysis including the mast mass was

made to confirm this assumption, and it produced the same frequencies as

above.

The aerodynamic load on the nacelle at 20 degrees angle of attack is
about 400 1bf of lift normal to the nacelle, The sector fairing is parallel
to the flow and has only small shear loads on it. The mast fairing would have
a lift load of about 200 1bf at one degree yaw angle (angle ol ..tuck) at a

tunnel speed of 100 MPH,

Analysis of Nacelle
The nacelle is a cylindrical shell stiffened with rings attached to the
cradle at four points so that it approximates a simnly supported beam with

a distributed load of 400 1bf total over a span of c.ght feet,

M = 4800 in 1bf
o d tade2acdt R
1 2 J 5 r A 3 F 2nrt nrot
L x..N_. 4800
1 arit n(10)Y2(.0%)
o = 305 psi

- -t- = 7 ——1-— = j
0cr Cb E(r) .16 (107) (200) 8000 psi

Thus the actual stress 305 psi is about é% th of the bending stress which

would cause buckling of the cylinder.

Analysis of Mast Fairing
The mast fairing is a rigid shell structure stiffened with ribs at two
foot intervals. The chord is five feet nine inches and the span is approxi-
mately fourteen feet. At a tunncl speed of 100 MPH and an angle of incidence

of one degree, the symmetric airfoil would generate 210 1bf of 1lift located
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conservatively at mid span. This 1ift would produce a root moment of
17,640 in 1bf to be reacted by the front and rear spars (neglect bending
strength of skin except over spar caps - conservative assumption). The

moment of inertia is 84 in"“ and

MC _ 17,640 (7) _
O-T.—‘F—S_)- 1470 psi

which is well below both the tensile yleld and compressive crippling stress
for the spar, Rather massive steel hold down {ittings are attiled to the
base of each spar cap by epoxy and by rivets. These fittings allow the
fairing to be bolted to the floor of the tunnel to form a cantilever beam
which surrounds the mast with a clearance of one inch on all sides. The
fairing deflection under a distributed 200 1bf 1ift load is less than .03

inches go there should be no interference between the mast and mast fairing.

Analysis of Mast

The mast used to support the propeller test drive motors must be
cantilevered from the balance table and offer minimum wind resistance. It
was also desireable that the mast be tapered to minimize mast thickness
at the motor attachment location. Other design considerations were ease
of construction, economy of construction, static response to propeller
loads, dynamic response to harmonic loads induced by the propellers, and
stress levels at critical points due to propeller loads. A mast height of
about fourteen feet was raquired to place rhe propellers at the centerline
of the tunnel,.

The maximum anticipated loads expected for the most extreme test cases
were 600 1bf thrust and 290 ft 1bf torque steady loads. The weight of the
motors and structure when added to the applied propeller loads gave a loading

which was not severe for a design with even a modest cross-section. Thus it
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was decided to choose a design based on stiffness criterion rather than
strength, since there was no over-riding reason for minimizing the weight or
size of the beam. To withstand dynamic loads two approaches were considered,
First the beam could be made stiff enoug’ so its natural frequency was well
above the frequencies of all harmonic loads. This would have required a
massive cross-section, The gecond approach war to design a beam with natural
frequencies well below the minfmun expected harmonic excitations., This
approach allows dynamic amplitudes somewhat greater than static deflections,
but the static deflections are small due to the smallness of the loads.

Several cross-sections were analyzed with 0.5 inch and 0.375 inch steel
plate being considered for structural material. The final design dimensions
will be used to explain the analysis procedure used to determine the

frequencies of vibration and the stresses in the mast,

Dimensions of Mast and Internal Loads

The mast is a tapered box beam stiffened with bulkheads (Figure 1).
1t has base dimensions of 20 inches by 11 inches and a top 20 inches by
3.6 inches. Dimensions of 20 inches by 3.5 inches were used in the analysis
and later changed to 20 inches by 3.6 inches to produce an integer number for
the taper ratio. This produced negligible changes in the stresses and
frequencies. A plate thickness of .375 inches was used.

Equations for the variation in the moments of inertia, torsion constant,

and area are given on the following page:
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where Iy, Iy. and J have units of in“, area has units of in?, and 7 is in
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The applied loads shown in Figure % produce the following bending moments,
torque, and axlal load distributions.

H' - H'. IR U S e e e R e ] -

"y - "y. -+ P‘L - P’Z -9 B B -0 55 & :¥ P n(Zb)

" S - “ * P L - P z -5 9. =D .8 & §F S 5 ¥ I -(ZC)
x xa y y

P, = =P, = 817.7 + 6,307 - DOIENER* . . . s s (2D

wihere moments are in inch pounds, forces in pounds, and Z and L in inches.

Deflection Analysis of Mast
The mast deflections under the above loads can be computed by
fundamental beam theory or by Castigliano's Theorem. Using Castigliano's

method we first calculate the strain energy from

1 LM2 M4 EHZ
= X y &
U 2E ]0 ( 1 \ 1 t G 'j‘]dz P 5 590 % 599 .(3)

from which we find deflections

--ilj—

X ap . 9083 B W 9 - B8 959 % & D S B ¥ B 8 8 (1‘“)
x

cy-—a%,‘—’-......................(Ab)
y

Ox-%"...............-.....UOC)
xa

e-a-;"—-.....................(ad)

y =

ez-a;"....... SRS
za
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Substituting Equations 2 into Equations 4 and taking the respective derivatives

glves

L
R i {t My * PL= BENL = 2042 . o o oo (S0)

o
N
o -

L1
[o Y: (M, +PL - PyZ)(L «2)2: ¢ o+ o o o+ (3D)

1L
e M =PLeRZ .ottt (S0)

X
1/ 1 g
ay.ilof;("y.*PxL-’XZ)d‘. TR S e SN T ASE S M) (Sd)
O.UIIL:.dz-.................(50)

Now substitute the moments of inertia, Equation 1, and integrate. The
expression for 6x will be used as an example of the procedure and the
results for the other deflection given without details of algebra.

- = 2
L [(§!!7+ PLIL = P LZ (u¥ + y L?Z + P 2%)

X
— e dZ
90.8 - 5.037Z + .014,5722 - ,000,008,1427

Normalize the Z coordinate by letting Z = ZL and dZ = L&Z.

e jl (o, + PxLJL - @rL Luy‘)ZI..: S_Ljilxi{“
EV0 490.8 - 5.037L + .014,571.232 - ,000,008,141° "

L = 148 inches

1 [(ﬂy. + PxL) (Ny. + ZPKL)Z + PXLL 1dZ

Li‘
§ = =
x E 0 ,00.8 - 745.48% + 319.14%% - 26.388%}

Now factor the demoninator into the form (1 + aZ)(1 + bZ)(1 + cZ)

X 52147
[(ny. + pr) (uya + 2pr)2 + Png 1dZ

L 1
S ® %90.5E /

(1. = .108Z)(1. - .7053Z)"
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‘u'ﬂ%f-ﬁ[mh":”’l 42 .

° (1.0 - ,108%2) (1

1 7 dZ

L0 = 7053 2)?

- M, + 20,L) / ey

© (1.0 - .1082) ( 1.0 - .7053%)

e
+PL ]: AL - ]
(1.0 = ,108Z) (1.0 -~ .70532)?

These expressions can be integrated by reference to a
tables. More algebralc manipulation yields

1
6x - t (37‘0 ’x * ‘8.9 "y.l . . . . . . . . .

Similar work Cor Gy. Ox. 6  and 0. ylelds

y

1
Gy'i(956.sl’y'lo.5"‘.] I R S N TR U

[-10'5Py+'1568"ul"'"'0'

*
| —

-]
1
|-

[48.87 P_ + 1107 0] ¢« o ¢ ¢ ¢ ¢ ¢
X a

Yy

f =
z

|-

[1.1428 Mz.l . . . . . . . . . . . . .

In matrix form the results for the 20 x 11 mast made o

plate are
raxW " 3780 0 0 48.87
s 0 986.8 -10.5 0
y 1
0, o 0 -10,5 .1568 0
0 48.87 0 0 1.107
0, | g 0 0 0 0

Similar results for a 23 x 16.25 mast made of .5 inch

Bll

+

book of integral

« « (6a)

9 (6b)

« o« (6c)

.« (6d)

. « (60)

f .375 inch thick

— -

0 P

4

0 p

y

0

xa

0 M
ya

1.1428 M
J L za

thick plate are

« +(7a)




s ] [un 0 0 16.5 o ] [r,]
s, 0 40 4,409 0 0 3
0, .% 0 4.409  .068 0 0 wl ... M)
0, 165 0 0  .4515 0 M,
o, | |0 0 0 0 26 | (M|

’ Dynamic Analysis of Mast
) If we neglect the mass of the mast and write the equations of motion
for the motor case - motor cradle - propeller and counterweight, the

i natural frequencies of vibration can be found. lLet r, bea position vector

G
from the center of gravity of the motor-propeller assembly to the end of

the mast (station 148 inches). Assume the motor-propeller assembly and

that portion of the mast above station 148 inches to be rigid. Inertial

and mass properiies of the assembly can be found in Appendix A.

Top of Mast




B
R —

s

I - Mg,

e ;i + 7k

-P"H(6+y0‘) . v

IPy . "Acy

-Py - H(éy -Z0) .

SP' - "AGZ

X

-P'-U'°Hy°x B T O

t"xc ¥ IGx x

“M =Py -PZw=1l

xa z
My = Toy¥y
ya xZ

IM

26 "~ ‘62’z

M | =10%x

Assume simple harmonic motion

& ® A sin wt
& = B sin ut

C sin wt

@
n

D sin yt

<>
»

E sin ut

<
~N
L]

i : “M +P_ =1 0 .,

Gy 'y

e T B Iez%

Now invert matrix (7a) to get

01849
0
0
.8162
0

0
.10575
7.0818

0

0

0 -.8162
7.0818 0
665.554 0
0 62.13
0 0

(8a)

(8b)

(8c)

(8d)

(8e)

(8f)

(10)

00(9) -




and substitute equations (9) and (10) into equations(8) and simplify to get
(18,490 = 12,31w?)A - 816,200D - 151.4130°E = 0
(105,750 = 12.310?)B + (7,081,800 + 215.37w?)C = 0
8,933,483 B + (789,556,318 - 20,243.4w?)C = 0 ot e Vv BN
=1,139,960 A + (77,422,000 = 570w?)D = 0
-18,490 A + 816,200 D + (2,134,146 - 14790?)E = 0

Solving these free vibration equations for the five natural frequencies and

mode shape gives:

L e - = .' — - P—— T - — -

MODE DESCRIPTION FREQUENCY (HZ) | A B c | D ] E

po——f——— - — it ' | | =

' 1 |lateral bending 3.5 6.77 | 0 0| .1 |.03

?"2_4 fore and aft 6.18 o |-85| .| o | o

? bending

[ ———————— - - — — S IS o _——p—

-3 torsion or 6.20 1.865 0 0 [.02766| =.1 |

| pitching mode ;
4 rolling mode 39.0 .0536 0 0 .1 1.0004
SR A DS L e S mefatesl TRESSN IS S S TS b
b) yaw mode 59.0 0 3.357 " | 0 ,J_ 0

- —— e —— —————— — SN S— ot — - I

Each mode has been normalized to a maximum rotation of .1 radian,
The fore and aft beuding mode and the yaw mode are uncoupled from the lateral
bending, pitching, and rolling modes.

For a forced vibration analysis, propeller loads must be converted to an y
equivalent force system at the center of gravity of the motor assembly. The
equations of motion of the motor assembly (11) would be modified by including
the magnitude of the harmonic applied loads on the right hand side of the
equations and interpreting w as the frequency of the applied loads and
A,B,C,D, and E as the amplitudes of the resulting forced motio:. These five
simultaneous equations can be solved for the amplitudes of forced motion from \ |
which the bending moments and twisting moment distribution can be computed

via equations (9) and (2).

Bl4




Calculation of Maximum Static Stresses

The maximum static loads are 600 Ibf thrust and 4200 in 1bf torque,
At zero angle of attack the thrust force lies 2,49 inches above the center
of gravity of the motor = prop assembly. The equivalent force system at
the center of gravity for this worst static condition would then be:

Pyc = =600 1bf, Myc + <4200 in 1bf, ch = 2.5(600) = 1500 in Ibf.

Put these static loads on the right hand side of equation (11) and set w = 0
18,490 A -~ 816,200 D ~ 0
105,750 B + 7,081,800 C = =600
8,933,483, B + 789,556,318 C = 1500
=1,139,960 A + 77,422,000 D = «4200
=18,490 A + 816,200 D + 2,134,146 E = O
Solving ylelds: A = ~,006841 in
B = ~,02394 in
C = ,0002728 radian

D= «,000155 radian

E= 0,0 rod
Insert these deflections into equations (9) to get equivalent loads on top of
mast
¥ 01849 ¢ 0 -.8162 0 -68.41
8 0 10575  7.0818 0 0 -239.4
L
M| = 10°x 0  7.0818 665.55% 0 0 2,728 | * 10
Mo -.8162 0 0 63.13 0 -1.55
0 0 0 26,25
{Mza [ 0 ) )- ‘ 0 J
Bl5

Iy ‘A_M




g ————

quarter points of the mast.

P' = .02 1bf (0)

Py = ~599.74 1bf (~600)

_ 12,024,8 in 1Ibf  (~12,000)
Hya = =4201.5 in 1bf (=4200)

H'“ =0 (0)

These results could have been determined by yeducing the propeller

loads to an equivalent force system at the top of mast. The values above in
parenthesis indicate results obtained by statics., This provides a partial

check on the equations(ll) and (9).

Now substitute the loads into equations (2).
Mx = ~100,800 + 6002

My = ~4200

Hz =0

Normal stress in the mast is given by:
My Mx

g ok B =y
y X

w

A 63 S AR AR S G L e e e RN

Moments of inertia given by equations (1) when inserted into (12) gives

_ _ (=4200) (=100,800) . _ 5600 &
¢ 790.8 *tY 1240 Y " 72,08 forZz=0.

o = 8,5575x - 81.290y - 247.0
@x = ~5,51in and v = 10.0 in

0 = =1107 psi (compression)
@x = 5,5 in, vy = =10.0 in

o = 613 psi (tension)

On the next page is a table for properties, moments, and stress at the




Z X Y A ¢ (comp) o (tension)

My 1
(in) (in) (in) (in 1bf) (inH{bf) (inp) (:g“) (in?) (psi) (psi)

0 3.5 10 -100,800 ~42000 1240 490.8 22,7 1107 613

37 4.5 10  -78,000 -42000 1104.6 324, 21.3 1017 513
3 .65 10  ~Sed0n sose YO WS 1 919 401
111 2.69 10  =-34,200 -42000 O3~ 100.1 18.5 791 255

697.3  38.1  17.1 645 85

148 1.75 10 -12,000 ~42000

The mast is constructed of standard structure steel plate with a yield
stress of 36,000 psi. This gives an allowable stress of 12,000 psi and
the maximum static stresses are well within this value.

The critical buckling stress can be calculated for the steel plate at the

bottom of the mast assuming unrestrained edges (conservative),.

Kn?E t )2

9er "170100) B

6
o (4)(r?) (30x10 ) (23752
CR 10.92 20

Q

0., = 38,000 psi (conservative)

CR .
This stress is above the yield point so the plate would buckle inelastically.
The allowable stress remains 12,000 psi.

The recommended working stress for various welds of low carbon steel is

-

16,000 psi for static loads and 8,000 psi for dynamic lnads.* Stress
concentration factors up to 2 should be used for certain butt joints with
sharp corners. The.edges of the mast welded to the base plate were beveled
to eliminate the sharp corners. Even using the stress concentration factor
and the working stress for dynamic loads, an allowable stress of 4000 psi is

5

obtained which is well above the tensile stress of 613 psi and the compressive

.

* Spotts, M.F., Design of Machine Elements, 3rd ed., page 269.




stress of 1107 psi on the base weld, Thus the mast i{s well within the

allowable stress limits for static loads.

Calculation of Maximum Dynamic Stressesn

At a speed of 500 RPM there is a harmonic thrust force of 180 1bf and a
harmonic yaw moment of 6360 in 1bf with frequency twice the rotational
speed for a two blade propeller. This condition occurs at an ungle of attack
of 12 degrees and is the lowest frequency (17HZ) excitation expected other
than an unbalance in the propeller shaft. 17HZ is well above the bending
and torsion frequencies but is below the rolling and yawing frequencies.

These load produce an equivalent force system at the center of gravity
of PyG = -176.1 1bf, Py ™ 37.4 1bf, M, " 450 in 1b, and "ZG = 6360 in 1b.
The moments of inertia and center of gravity of the motor = propeller assemdly
are not changed significantly by a rotation of 12 degrees. Put the exciting
forces and momcnts on the right hand side of equation (11) and inserting
w = 16,66HZ = 104.7 radians/sec gives:

-116,493 A - 816,200 D - 1,660,296 E = 0

-29,233 B + 9,443,400 C = =176.1

8,933,483 B + 567,580,000 C = 450

-1,139,960 A + 71,172,000 D = O

-18,490 A + 816,200 D - 14,083,600 E = 6360

Solution of these e¢quations for the dynamic displacements gives:

A = 581,56 x 10™° inches
B = 103.22 x 10~ inches
C = =1,5454 x 10" ° radians
D= 9,315 x 107° radians

E = -45.383 x 107° radians
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1 These displacements produce equivalent loads on the top of the mast of
P = 3L.5 1bf,

Py = -,3 1bf,

n.* =2976 in 1bf,

Hya = 1134 in 1bf,

Nza = 11,913 in 1bf,

which produce moments at the base of the beam of
N 2932 {n 1bf
Hy = 5796 In 1bf
L 11,913 in 1bf.

The maximum dynamic stress is

5796 2932 5600

"G50 8%+t 130 Y “33.68 4t the base of the mast.

0

o =-159 psi

. =336 psi

At the lowest frequency expected, the vibrational modes of the mast
are not excited., The magnitude of the exciting loads are also low which
helps account for the low dynamic stresses.

The absolutely worst case of failure would be to lose a propeller blade
at low speed. This rotating unbalance would produce exciting loads at the
center of gravity of

ch--FO cCos wt

ch- Fo sin wt

ch = 94,7 *o cos wt

M .= ~2.5F_ cos wt
yG o

MzG = -94.7 Fo cos wt

B19




At © = 500 RPM or 52.36 rad/sec, F_ = me w? where m is the propeller

blade mass and e is the centroidal distance of the blade from the propeller

shaft, , 5000 1bf for me = 1,82 ft-slugs.
equations(11l) become:

-15,231 A - 816,200 D - 415,110 E = Px(t)

72,029 B + 7,672,252 C = P (1)
8,933,483 B + 734,057,000 C = M_ (t)

-1, 139,960 A + 75,859,000 D = Mya(t)

For w = 52,36 rad/sec

~18,490 A + 816,200 D - 1,920,600 E = Hzn(t)

Now solve for the dynamic amplitudes resulting from F = Fl + FZ where

= i " 5000 1bf -
0 0
Fy = [=473,500 sin 52t and F, = 0
0 =12,500 in 1bf
o] _ =473,500 in 1bf
For l-‘1
72,03 B + 7672.25 C = 0
8933.5 B 4+ 734,057 C =~ <473.5
A=0
B = ~,2319 inches
C = ,002177 radians
D=0
E=20
For F

+15.23 A + 81612 D + 415.1 E = 45

72,03 B + 7,672.25 C = 0

8933.5 B + 734,057 C = 0

B20
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~1140 A + 75,859 D = -12.5

A= =372
B=0
C=0
D = =056
E = ,2585
Now combining equations (2) and (9) ; 6x
™ 0 8.569 382,55 0 0 ‘,
] * 10° 1.92 0 0 -57.668 0 o
M, 0 0 0 0 26.25 0,
e!J
Por F [ 9 |
(] | 0 8.569 382.55 0 0 -.2319
Hy - 10° 1.92 0 0 -57.668 0 002177 sin 52t
M, 0 0 0 0 26.25 0
o5t
e -¥s [ =3.72
[ux 0  8.569 382,55 0 0 ] 0
M = 10% 1.92 0 0 -57.6068 0 0 cos 52t
M, 0 0 0 0 26.25J -.056
. 2585

M= 1.154 x 10% sin 52t
uy = -3,913 x 10% cos 52t

M, = 6.785 x 106 cos 52t

B21




3,913 x 10° cos 52t ., =1.154 x 10° stn 52t _,,, , 5000 sin 52t

A 490.8 1240 22,68
] . 0 = =7973 x cos 52t - 930.6 y sin 52t - 247 + 220.5 sin 52t
} Consider three points on the cross-section located at

x =0 y = =10 pt a

x=55 y=0 pt ¢
» x=55 y=10 pt b

0 = 9306 sin 52 t - 247 + 220 sin 52t

a_ = 9526 sin 52t - 247

a

y, 9 ~43,852 cos 52t -~ 247 + 220 ®sin 52t

O = 43,852 cos 52t + 9306 sin 52t ~ 247 4220 sin 52t

By ~43,852 cos 52t + 9526 sin 52t - 247

LT 44,875 sin (52t - 1.36) -247

point max tensile stress max comp. stress

= T uh - . e -
b 44,0628 45,122
¢ 43,605 44,099

These stresses are greater than the yield stress but less than the
ultimate stress. It is possible that the mast would hold together until

the motors could be stopped.

Calculation of Hold Down Bolt Stresses
The mast is connected to the balance rystem by four 3/4 inch 16NF
bolts three inches long with a recommended yield strength of 100,000 psi

(Figure 3). These bolts are subjected to essentially the loads at the base

B22




-

of the mast, specifically H‘ = 2932 in 1b, Hy * 5707 in 1b, and H. - 11,913
in 1b for the maximum dynamic loads at 17HZ. For the bolts l' -

3724 (9.5)7 x 4 = 134.4 {n" where .3724 s the area at the root of the bolt
threads. I_ = .3724 (6.8)2 x 4 = 69 in“.

y
H‘ !!
o= 1 y + i X
X y
- 2932

5795
1% .3 (9.5) + == (6.8)

o= 778.3 psi
M! = 2V x d where V i{s the shear forcs on a belt and d is the diagonal

distance between the bolts. The four bolts form two couples V x d which

resist M.

M
M o
V=33 " 302,06 - 232 1bf
Vv 252
T o ~ -

A" 372, psd
T = 0677 psi

These dynamic stresses are well within the allowable stress far the bolt

materiai which is val = % oe = % (100,000) = 16,667 psi.

The maximum static loads are Hx = 100,800 in lbs and Nv = 4200 in lbs,
Mx M
g st vye Yl X

I
X y

100 8 42 00

o = 7539 psi




Resisting the bending moments by a couple does not take into account the

area in bearing which is much greater than the bolt area. Thus the above
stresses are conservative, For bolted joints carrying moments it is
desireable that the bolts be torqued to provide a bolt pre-load which is
at least equal to 1.25 M divided by the section modulus of the contact
area times the contact area.

A= 16,75 (23.5) = 194 {n?

1 3
(3 (16.75)(23.5)

- - 3
8, 33,573 1542 in
1 )
(5 (23.5)(16.75) i
Tpep = 4T = 1.25 M A _ 4 25 (100,800) (394) = 32,194 1b
S (1542)
X
T = 8049 1b
Tpug = 4T = 1.25 MA | 1 25 (4200) (394) = 1882 1b
[ (1099)
y
T = 471 1b

Thus a bolt pre~lond of 8049 1b per bolt is necessary to keep the joint
in compression. This is a stress of 21,614 psi, well less than .5 ce =
50,000 psi. A torque of 100 ft 1bf on the bolts would be required to induce
a load of 8049 1bf. This value is obtained from Torcue = ,2d T. -

(.2) (%)‘Tli) (8049) ft 1bf.

If a propeller blade was lost, the dynamic loads induced would be

sufficient to fail the hold down bolts although the rest of the structure

(mast) would remain intact.

*Ibid., page 204.
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Appendix A

Inertial Properties of Motor ~ Cradle - Counterweight

2 2

ITEM Weight y! 2! wy! wz! wyl” wz!’ ™ ™,
(1) (4n) (dn) (in 1b)  (in 1)  (40?1b)  (in?1b)  (4n?1b) (1n?1b)
Motor 2000 <40 20 -80 40 3200 800 35 1350
Prop 100 ~107 20 -10.7 2 1145 40 40 0
Counterweight 1700 24 18 40.8 30.6 979 551 20 920
Actuator 60 24 5 1.44 3 34,6 1.9 8 0
Top of Mast 150 0 3 0 A5 0 1.35 0 40
Channel 312 -17 14 o IF | 4.37 90.17 61 5 410
Square Bars 120 6 16 g3 1.9 4.3 3 3 920
Thick Channel 60 =25 12 -1.5 12 37.5 8.6 0 16
Hubs & Balance 40 -98 20 -3.92 .8 3184 16 0 0
Misc. 200 0 10 0 2 0 20 10 0
Pivot 8 -12 5 0 0 0 0 0 0
4750 -58,460 83,160 5,875,000 1,530,000 122,000 1,996,000
¥ » 28,460
Y= “%75) 18:3
IM = IM
- _ 83,160 xe zc
B cde— ®
Z 2750 17.5
& 1 12
IMX WY + IWZ + IHXC

IM, = (5.875 + 1.53 + 1.996)10% 1b in?
IM_ = 9,401 x 10% 1b in?

M, = 9.401 x 105 - 4750 €12.32 4+ 17.5%)

M, = 7.23 x 10° 1b {n?

IMGx = 18,725
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2
i
my -zl o+ tu,c
1n, ® (1.53 4 .122)10°% 1b 1n? = 1,634 x 10% 1b in?
‘ﬂo, “ 1.654 x 105 - 4750 (17.5)2 = .20 x 10% 1b n?
!”Uy « 511 sec?- in
® 2
™, = owy? 4 M
M, = 5.875 x 105 4 1,996 x 10% = 7.871 x 10% 1b in?
M, = 7.871 x 10% - 4750 (12.3)2

G

M, = 18,529 sec? - in

axes differ slightly

These moments of inertia about the centroidal Xgr Yor %g

from the ones used in the calculations due to slight changes in the design
made after the computations were completed. The varfations are small enough

that the results are essentially unaffected.
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Figuie B2. Loads on Mast
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Figure B3. Hold Down Bolt Locations
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