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ABSTRACT

►'his report summarizes the propeller propui»ion integration (PP1)

stud y conducted under this grant. 	 I'h. work i!a continuing under the Lewis

Research Center direction. A bibliography has been compiled of all

readily available sources of propeller anak-tical and experimental

:.tudiem conducted durlttg the 1930 through 19(PO period. A propeller test

stand wet; developed for the measuiem:!nt of thrust and torque chat.i,:ter-

istics of full scale general aviation propollers and installed in the

LaRC 30 x 60 foot full scale wind tunnel.

A tunnel entry was nadir during the January through February 1980

period. Several prropellet4 were tested, but unforseen difficulties with

the shaft thrust-torqut • balance severely degraded the data quality.
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I. INTRODUCTION

The Propeller Propulsion Integration (PPI) re qcarch program. initiated

in April 1977, under this Grant NSG 1402, w. ► s established to help the

general avi.:tion industr y destgn propeller propulsion system-.. There

has always been concern about the lack of defsnitNo expetimental data and

of useable analytical methods to define the i tit teraetions between propeller

and the airframe.

The escalating cost of fslel has placed increased en ►phaxis upon the

furl efficiency of geat-ral aviation aircraft. The increaNing level of

sapht tit ication of the panel methods for the analysts of flow about wings

and bodies has made possible the prospect of being ►thlr to moat i the complex

propeller/airframe interaction problem. Thus. the P1 1 1 program was initiated

.o carry out a set of expetiments which would establish a data hale for the

definition of interference et f ects ars.l for the validation of analytical

methotk. After each wind tunnel experiment. comparisons are to he made

bet were t hcory and exper imelit.

To carry out these objectives the ITT overall research program can

he stinus,arized in the following major Steps.

1. Define State-of-the-art of GLneral Aviation Propulsion System

Design (Phase Zero).

2. Define General Aviation lsolatud Propeller Characteristics

(F'ls.s ,;e I).

3. Define General Aviation Propeller/Nacelle Interference Charac-

teristics (Phase 11) .



Pvtine Ccneral Aviation Propeller/ Mae elle/WIng / Fur.elnKe lnter-

tervitce Characteristics (PI ► a•+e 1111.

S. Develop Analytical Propulsion lntegratton Ftethods for Crner.tl

Aviation Aircraft Design (Phase I through Plwtse IV) .

Phase Zero wan a review of the , state-of-the-art in terms of current

demigil praetice tit... a d.-termination of tnduvtry design teyuirementr. .tnd

recommetidattons for progt.tm emphasitt. A detailed acrotlnl of the dis;us-

stone. with induMtry drr+igit tem p s is reported in krlerrn,e I.

me indust ry st ate-of -the • -art design i e rocres ir. best repree.ont ed as

table look-up methods. One or more catalogues. slit-it its the: Hamilton

Standard "lied Book" or the• "Gray Chartrt." which list isolated propeller

performance characteristics in tetras of geoinetric parameters, ate used

to select propeller candidettes.	 Performance f!fight to rn mea•;urements

are then used to make the final choice. In mwat g ases. little account

is taken, either during; the airtrame design -stage or during propeller

xelectiott, of the interterence between propeller and airtra ttiv upon the

predicted installed propulsive etficicncies. This is due to the alh.ence

of sultabl e ,lesigtt dat t and pr.wt ical ana ly tical tools.

A comprehrn::ive review of the 1 itet.tture has been undertaken also .t:;

u part of Phase Zero and Is included in this report as App o ndix A. Over

one thous.ttid reports and papers have been identified which telatt • to

propeller design or selection but . tew of theses consider the mutual

int luence of propeller and airtrame. None considered the geomet t v pv, ui iar

to contemporary tlat engine Resigns with asvnmietrie blockage-arvi distribu-

tion around the propeller shaft. Some insiplit can, however, he gained

by analvsls of the available data. 	 Figtite I , which was; oht.tinc,l by a plot	 ^



a

of Ref otence 1 data, shown+ clearly the influence of an afterbody on

apparent propeller efficiency. which becomes greater than 1 with It

blockage ratio. (a/D), over 0.5. The net efficiency, which is directly

proportional to the available thrust power decr e ased dramatically so

that the net Lit ust available for propelling tilt- airplane is tireatly

and .adversely affected by it blunt afterbodv even though apparent propel-

ler efficiency is over 100%. Figure 	 slows data for a simple strean ► -

1 ine . ► 1 terbody s: ►ape and the ettect is less pronounced. The i ► it luence

of thrust lint displacement and thrust line angle relative to a wind;

chord is shown in Figure l . The data shows it 	 variance of 10

percentage points for it 157 d i splat • ement of the thrust line and ` ► ° thrust

line angle. Thus, the thrust line location and angle are also quite

important in determining the net efficiency of the propulsion system.

All of these effect upon propulsive efficiency need to be explored

further through experiment and analysis.

The goal of the 11 1 1 1 research program is to develop such design data

and analytical tools.	 This goal is to be attained through a ct,mbined

program of w ► nd tunnel investigations ii ► the NASA Langley 30' it 60' Full

Scale Wind 'funnel and the development of :appropriate analytical design

methods. Where possible, speci,tc tests or analvscs are eu be performed

to bring into use results generated from previous investigations .luring 	
«)

the 1930's and 1940's involving 11 rimartIy radial engine configurations.

In the ph.tsr I program. it Propeller Test Stand (FTS), for use in

the full scale tunnel, was designed and fabricated. file test stand is

shown in Figure 4 and tl ►e installation in the full r:calc t ►annt-1 is shown

in Figure 5 . The propeller Test Stand is cap,lhle c ► f testing full general

3



aviation propeller:. using a variable frequency electric drive. The

propellers can be operated over a 10 degree angle of attack range. A

thrust/tortlue balance is used to measure shaft thrust. The PTS is

attached to the wind tunnel balance to measure total forces. The

first tunnel entry was made during tho period January through early

ci. ► rch 1980. The goal of this entry was to develop the Isolated propeller

baseline data for future airframe interference tests. A lamlly of 11

test propellers were selected and arrangonionts were made to acquire 'he

propellers at no cost to the program. The propeller.,; and first entry

test plan are described in Referenct- 3. Comparison, were to he made

between the measured data and a current analytical propeller model.

This report smunari-es the first wind tunnel entry for rhase I of

t	 ` study. At this point the m.mai;rmrnt of the I'PI investigation

wa, • .n.-4erred to the Lewis Research tenter under Grant NAG-3-56. The

LeRC Grant was supposed to cimduet Phase II of the PPl study, but due

Lo unforseen shaft balance problem.;, the isolated propeller tests will

also he repeated using an abbreviated test program. Phase 11, is

dv&igned !o explore propeller/nacelle interference effects. The PTS

developed during Phase I will be used for this experi •nent. Two nacelle

:.Is.shes are to be considered; a single engine nacelle, Figure 6, and an

axisymnetric body, Figure 7. The shift thrust in to be measured along

with body pressure distribution and wake surveys. A critical survey of

analvsis programs available for the • analysis of propeller performance

in a nonuniform flow fivIJ and of the interaction of it propeller slip-

stream ullon an airframe will be made. Comparison;, will be made between

the analytical methods and date oftained from the PPI win,I tunnel

experiments and other sources.

4



1'Itarfr Ill. is the f inel expel imental -tep in the development of . ►

more complete understanding of the propeller/nacelle/wiug/fueel.tge

interference problem. It is contemplated that the PPS will be utilized

ail t+hown in Figures 8. 4 , and 10. for ; his -xper iment . Till P4 test stand

will be quite flexible and capable of a wide range of configurations.

Phase 1V to contemplated a y .tit attempt to optimize thy- propeller/

airframes configuration for overall aircra f t efficiencv. In this case.

the . ► rt.tlytieal method:: will he limed to def ine a coat igurat inn (Ref. 4).

and the experiment cunducted for verificat ion.

Thib report describes the details of the propeller tet:t stand and

examines the data obtained in the first entry fn the LaRe 30 x 60 foot

full sc.tle wind ► cannel. The test stand is cap.ible of a wide range of

propeller experiments as outlined in the 1 111 overvi.-w. Further .ievelop-

n ►ent of the prop shaft thrust-torque balance is required to full exploit

the: concept.

5



2. Pki ► PEa .lAR T'L..; . 'I AND DEVELt ► PM.NT

2.1 Test Stund Design

lit Chapter I the three propeller test I)tograms .ter i ned for the PPI

invetetigation were described. A study was undertaken to determine the

best cunt igur , tion for a propeller test stand which would allow these

tl ►ree Study h ogturnta to be conducted using it single drive Motor support

configuration. Othur design considerations were.

1. Utilize two GFE .6b horrupower variable frryuency electric

n ►,)to"s connected in tandem as the propeller drive motors.

2. Propeller angle of attack range -10 to +20 degree.

3. !•' - ►r support structure must minimize interference with

propeller flow I ieId.

4. Sy.;tem must be capable of being; mounted within a Piper Chieftain

nacelle.

S. PTS must bo mounted oil 	 30 x R) foot wind tunnel force

bal.ince to measure total forces.

Figure 4 shows the; configuration  which was developed to satisfy the

specifications outlined above. To minimize prope l ler interference

effects. to minimize propeller vibr.it ion levels. and to Cask- angle of

attack change mechanism design difficulties. a stet-1 cantilever beam	 •,

St.ru^:tur y was chosen.

The propeller test stand includes six pieces of structural hardwate.

These are the motor Cllr.', the motor case cradle, the matt. the mist

fairing, nacelle. and the sector fairing. The motor rase, cra,ile,

nacelle, and sector tairinp carry the arrodynamtc loads oil 	 propeller.

u



	

e 0R D. R,.e d.	 ^• ^,r; PaY^^ F'^^^%1', 6 G.G'h oC I'd

:?.l	 @+~':,t atan^^ tie t.it,t3

In (;haplt tar I t hi. , t hrt't, pro v0 It ^	 I c,, ;t Litt k",Yx ifi kiet titrti tor t I 	 PFI

invot;t ip ,;at ion wr t' tl.'serf ied.	 A iltutl y wxt1 ill deit;al•>cu to i1vt ol ' ifut t t,v

boA eout ietinit ioll for a p ropollo	 t ot1t t1tivnl, tt:hit ll wollltl .il lttw t 1wi;o

thvoc rt-ud	 '7t'eviontt; to be t'oildlioted 	 a riitip^, J t l drive f%ltor 1^iqpp oit

oonlA uratioa. Other det1 ,,n t-ontAtIvrat Ion . *, 1-cl t'.

1.	 I't i I i.a' two GWE, 41 M)  htlrtlt-11:0wl'r vai I ' ll") t' 1 relput'nov, of tit't I' it,

mot,o v tJ t'tllnit`e"tt'd in tatulv p at; the plrlttl l'I>Nr drive lot on;.

a. Prt ► p ► rlior aw,)Ita Ilt amick raugc -10, to 4'"0 tlt,gruc.

^.	 i`t•^ ' â d^ 1;up ► pl^ l i't t;tYtlr'rt1Yt' Iltlit;t niint,ti.",t' $lltt'i'tNrt'ilt'1' litlt
p rol ivi ier I loo.l l ivid.

4•	 aYA011 11111111 l4' t'aplahll' t ► t hl'iil;; llt l li6 ►^t^°tl ieit p titi ,1 Pip lt'r Chioltain

11,1ct'I It..

`I.	 1 1 ',S liltll;t Uo ►ill► utitt'tl ti ll tlit' alt i. ht p toot wir 'i lnill,t'l torco

ha l anti` t 	 nil'at;an , t tit a i i t► i,t`t'1;.

F i t;111`0 .1 :110na1; : hL COIItitIltlratitlll whirl ► v"n" klov lop tid to t;at ie.+`e 1,111^

spot it irat ions Uutl illod above.	 To ininiiill.'t a prtlptta llt'r tw ork , rt' wta

t'ftt srtr;, ttl illilliiiti.'t` p troilt-	 er vibration luvt°It;, ailtl tt ► vaoO anglo tit

.ittark r11,11l;r liit't ,̂-ll;ulitlm dot ,,ign ►iiTtirultio-., a tliht^l rantilewr hoart

t,t,v	 turn' waL; 4hotion.

`rho prtlplt liar LeSt, t WId int?1litic:1 six plivetio tit tltructural ltardwaro.

ilm-io are tllt' mOtllr t'at's', the Altltt ► r t'a',.' or:ltlle, tilt' 1'laFlt, tho i'tatlt

fairing, nacolltt, and L110 sot-tor tairiil;;. The motor oaso, vnidlt',

nat-ollo, and sector tairint- varr^ the aorod}'namit' loai'lti on ill y p ► rtlptillor ►
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n+cells, and rector fairing titrough the mart to the wind tunnel balance

sydtvm	 The aerodynamic lends on the math sire shielded from the wind

tunnel balance b y the mast fairing which Im cuntilev.-red from the tunnel

flour independently of the balance system.

Figure 11 Allows the steel structure of the I'TS. An electric Jack-

screw was tided to vary the angle of attack (AnA) while the tunnel w.ts

operating. To ensure i tail-sate design a counterweight was added to

the structure so that the motor systcm would pitch up to preclude the

Iropeller from striking the support column it the lackscr.w "hou 	 fail.

The maximuis design torque ;slid thrust dev, loped by the propellers

.ire 6UU lbt thrust and 4200 in I bf torqut . At a speed of 500 RPM grid

all angle of attack of 12 degrt ci, m .ix iit►tim harmo n is var tat it ns of 180 111f

in thrust and 63b0 in lbf in yaw moment are est im ,it ed. The structure

must safely support the static loads and must not be excited to vihratc

by the ii. ► rmonic loads. To accompl i hh this it was decided to design the

toast strong enough to t+upport the static loads: but flexible enough so

th.it the lowest exciting treyuenry of 17HZ (5UU hl'M for a two blade

propeller) would be well above the nattmil frequency of the system.

l'he natural 't , equec►eLem of bending and torsion were found to be 3.511Z.

b.ISI Z, and h.7HZ. viese were calculatcd ;t^suming a rigid support (the

balance system is not rigid so the frequencies are actually lower than

those calculated), no aerodynamic or structural damping. and the mass

of the mast was neglected. The mas pit on the cad of Ili.- mat; t- ► about

seven times the m.tat ma *is so one would expect little influence on the

t ►atural fregticncies due to the mast mass. however, a lumped mass anal-

' .I including the mast mass was made to confirm this ;ixr:umpt ion, and

7



It produ ^ed the a- tme I reiltienc is* as shave. Complete dut a it a of the

static . ►nd dynasic structural analysis of the PTS are gives► in

Appelul ix R.

Structural details of the rupport column of the PTS is itiven in

Figure 12. Tito structure was conventional welded steel plats construc-

tion. Especial care was taken to weld the structure tit 	 to mint-

mite warping. rho details of the motor support structure is given let

Figure 13. The drive motort. were ene,iKed to it 0.5 in. steal tube. thus

Lite structure was not requ trod to al igii t -,e motors, but rit ht r transfer

Cie motor weight unto the support c6lumu with is mtnimum d14tortion.

Also the mot it support structure w:► -+ cunnmilned to minimize the croad-

sectional area of the nacelle. Alec the utructure was oriltrnlly required

to fit inside s Piper Chieftain nacelle. This desi g n requirement w.i:,

followed for the counterweight design.

The details of the nacelle structuit , are given In Figure 14. The

nacelle watc configured to minimize the interference with the propeller

flow. The! nacelle was constructed using standard aluminum structural

practice. The tail cone was constructed of fibergla y s to achieve the

desired shape. The nacelle was attached to the motor support structure

at only two points to allow the installation of •s nacelle force balance

at a later time. The upper half of the nacelle structure carrtes all

of the loads with the lower half divided into two putts for case of

assembly and access.

Figure 15 shows the fairing constructed to shield the support

column from the tunnel flow. The fairing was constructed of .tluminuiu

tit
	 parts to allow easy erection and access to the Jackscrew motor,



power cables, and instrumentation liner,. A two sugment fairing was

designed to ensure the intersection between the nacelle and the +upport

column remained a low drag configuration over the -10 to *20 degree

AOA range. The constraint was for the fairing to clear the support

column when the propeller wis at ♦20 degree and yet fill the Kill) when

the propeller AOA was -10 degrees. The sector fairing is attached to

the motor support structure, thus the forces on the bertor fairing are

measured by the wind tunnel external balance. The sector fairing was

constructed of 0.125 soft aluminum plate and contoured using a segmented

welded apptoach.

2.2 Structural Vibration Analysis Summary

1'his sect ion swnnu ► rize5 the vibration analysis of the Pl'S given In

stresses in the structure

which attach the PTS to

not have sufficient strength

case of the loss of a pro-

re can withstand this con-

Appendix B. Tile initial study showed that the

were well below the allowable- except the bolts

the wind tunnel balance frame. 7hcse bolts do

to withstand the loads induced on them for the•

peller at speed. The remainder of the structu

dition.

The mist used to support the propeller test drive motors must be

cantilevered from the balance table and offer minimum wind resistance. 	 r)

It was also desirable that the mast be tapered to minimive mast thick-

ness at the motor attacliment location. A mast height of about fourteen

feet was required to place the propellers at the centerline of the

tunnel.

The maximum anticipated loads expected for the most extreme test
IV	 r

cases were 600 lbf thrust and 290 ft. lbf torque steady leads. The

9



weight of tl ►e motors acul structure when added to the applied propeller

loads gave a loading which was not severe for it 	 with even a

modest cross-mection. Thus it was decided to choose a design based on

stiffness criterion rather than strength, since there was no over-riding

reasotn fur minimizing the weight or trite of the beam. The approach wa•;

to design a beam with natural frequencies well below the minimum

expected harmonic excitations. This approach allows dynamic amplitudes

somewhat greater than static deflections, but the static defleCtiont+

;tee Small due to the smallness of the loads. The applied loads shown

in Figure H2 produced the bending; moments, torque, and axial load distrtbu-

buns for the analysis.

The mast deflections and rotations under Lite as,cumed 'Wads were

computed using Castigliano's Theorem. Using Cnstigl iano'. werhod Olt-

strain energy was first calculated from which the deflections and

rotations .,-re found as derivatives of the strain energy. A matrix

formulation of the deflections and rotations in term:; of the applied

loads was made.	 if the mass of the mast is neglected anti the equations

of motion for the motor case - motor cradle - propeller and counterweight

system are formulated, the natural frequencies of vibration can be found.

Solving the tree vibration equations for Lite five natur.tl frequencies and

mode shape dives the following table.

10



MOOF AMPLITUUF•
MODE DESCR 1 PT 1 oN FITA111 F:NCY 1117 	 A H C 1/ 8

1 lator.11	 hvnd in8 3.5	 6.77 0_ 0 .1 .031

fore mid	 at(

Z bend tl^j b.18	 0 -8 .5 .1 0 0

toru ice n or

—1 1eitchitla Inodo o.20	 1.865 0 0 .0:166 —.1

4 ro 11 l ng mode 39.0	 . (1'116 0 0 1 .0004

_ 5 yaw modo 59.0	 0 3.357 .1 0 0

Each mt`Jt. 11.1:+ tbt.rn nt'I ma l iltrtl to a M.l %. ,. lnutun rt't at It'll rt . I l ael i.III

vis . tort. .111(1 a t l he • nd ill', .malt • .Illtl O lt- \'.IW Illt`tit. :11	 ullt'ttlllt I +'ti from l ht.

latt.r.11 t► rn+link, Ititrhin l;. allti roll illy; m(((itt;.

F'or .1 tt t rced vibrat itttl amilVNi`I. leitell( • l 1+'r loads (lust lit, conve'rte+1 (t'

.111 t'tlutva1011t alert. ety>stCnl A tho Ct.nt t.1 .'t gidvIty of the Intel Or . ► st.tnlhly.

At a slieed of WO MIN thrrt. 1.1 .1 11.11111oIIit , t hrust forte t'1 180 lilt - anti a

harlmettit yaw moment tit 0160 In 1. , t wit It 	 rt.ytlt ii • t twice t hc' rot.11 tonal

."I N Ct'd I% I 1 .1 two Made 1' ..ol't. l I or.	 IIIIti CJlltiIt irtl t(('(ill'er At all .IIIg i It of

.lttatlt of	 I. elel;re'e'et anti i:. tilt . Itlwt • :.t	 IIvilm-ut y (1711.') i . m. itat it'll t'xl't.ttt.tl

e► t l It' I' lh.lrl	 tit 	 tit 	 ht' l'rttitt.l It'r .h.II t .	 1 711 .1.	 1-. wt.l l	 it t
it t vt, t It,,

ht'ntihig and torsion I II;ticn, it.s but is below tht • roIIitig .Ilhl v.lwittg

1 I e'tiu. • nt it.::.	 The • Ina%. limn ti ► • n.lm it at r0-0 a1. 1 t; di I t he biv; v tit t ht' 111.1 rl arnl

is 31(t psi which is Very s ill.l l I .	 At t he lowt.ett l'vopr 1 lt'r t rt..ltlt.nr y expected

tht vibrdt ioll:l l modes of t he melt;t u1 t. Ilt t t t.xC ited .	 The "lagil i t utlr tit t he

extit ltig le► d.1S .11v dIao Iow W11iC11 lit' 1I'M e ► CCt'unt far the • 10411 dynanlit

Iht • Wi l l St C.ISO k i t lailurt • wttultl lit- to lost- :1 leeopollt.1 Matte While

ill operat toll.	 The maximmil tart(+ .. 1nJut t'd h ► t his coll.l it it'll is +`i.000 list

wit it11 Ito 1;rr.ILVI- than 11t • yit.ltt Sttt • •.•s but	 IC	 1han th. • ill tlnl.ltI' :.tlr•;:;.



It I:1 pondibit' that the mast would hold toget tier mnt t 	 the niot tit :. cttul,i

br stopped.	 The critical itanllollr(tt is Hit- lna,.( hold-down bolts which

WOII I d pt•obab IV f.l t I.

2.3 Wind ''mind Instal It toll

'1'hc 1'Ts was tits	 1 in t hi I.:IRC 10 x (ill tCkA 11111 r.calt' wiled

tutlnt • 1 its shows ► in Figillc 5.	 '1'hc Ottrtel stillport ,olunut waI. .ltta,•ht•d

directly to (I iv wit id tuuucl I laIit III , r trams.	 'l'hc t.litilig till* the

volllmll Was 411 t tichc,t t it t lit , t lour il l tilt-.	 The t • Iot- I r it- mot ors wort' dl* ivl•li

by a variable frctlucncy mar.trr ticnt'latot :ict . 	 The ttaccl lc au ttic .tt

.tt t. ► ck vii controllod through the Jacksi rcw alld scilsed by .ln lot l inttnl-

ctvr i Its :p led .lit t he mot of stipp trt t r4lmt•.

2.4	 In;;t runlcnt:it tin 1 ►c:•. r ipt stilt

T110 test w.i: • ,', t ttdui tcd rosin,; tIt, • La RI' tul I	 Ili t:ilid t tidies ,1.Ita

.Kilts i i t t ion sv::t 0111.	 '1'hc litopt • l l cr t hruat-t ttt'tluc 1141 ancr rllt itut Was

trar► :;mittctt through a stilt ring tc ,'.It.t Itnc:; in:italli-d In tilt ,	tation-

8ry at rue tit l y .	 'I'll,, wind ttltlllt`I b.11t11lou talcs:; wcli It'cortictl . 1 114 proved

to he t hi primary st ttlrct` tit thrust tilt a.	 1'ic drive motor current r 4ry ry

11101lit0 ►'ctl. but since tilt , motor torque vrr411.18 itIrtelit rcl. ► t ittn:.hip Wtls

not known, torque coltltl ilot bt • tictcrmillod i mill ( his r;ttutcc.	 Vihrat itilt	 ,..

acct't t'rt uiet ers wt , t a installed t i ll t he mot ttr `ttll t i lort tit I'm t tll t • 11t'.I1 the

props I l c r plane.Ins• t o mttn i t tit tilt- v i brat ittn 1 vvc l	 . ► t tilt- propo l 1 c r thrust -

tor,itic b.l l.mc v.	 Ali amt oinat is vhut dowil vest cm w.ls in:;t ,1 1 lets to i l l writ

died t•,utti c.
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3. ENTRY 1 WIND TUNNEL TEST

i.I Teat Program

:\ t tit al of f iI*teen diI Icrent INropcl lt,rs had origInaI Iv twell

sole.• t ed to test ill he NASA Ldng l c. Fit I 1 Sc.t l c W i nd Tunnt, l . 	 I'Itene

propellers .tee Iisted ill 	 1.	 The actual tt, :+t program Included

.ev. , tt of tht s.o propellers and conststed of 163 rim y (each run living a

teat of a part icul.tr propeller at it part icul.tt Made High-, .mile of

.ttta. • 1: and tuonol speed with tilt- propeller ,I , tod vartable slurin k; th.•

run) .	 ht t I esc 10.1 runs on  y attotit t ut I I v io I tied usct is I f of ortnat ion

Concerning propellor per foImant'e; the tomaining runs were jildged unac-

cept. ► h1e ,tile to problems whit • h will lit- discttssaed sluirtly.	 'ruble .'

lists the propellers. tunnel speeds and bladt , ati )-Jvs for which possibly

useful "It.t w.t ", obtalued.

1'he large number of unatct,ptablt , rune: a.t:: tilt, result tit several

etlttipmcnt related INroINIoms which were cticottntert,d tlurint; t he test s.

Approxtmately 60 runs were snit tally retlulred to sort rut the irt:.tru-

tuentation au,i obtain what was considered to be "good" data. .lint as

this status it.td t ittal ly heat: reached the propeller shaft bent during . ►

run.	 Af t et the shat t was rel , aired the program essent 1a1 Iv started over 	 a

agniit.	 A lurthcr 100 runs wort, matte lntt these were 1 , 1ahtte-! by uritL

tit 	 output of the t lit ust-torque I,alamco.	 This was first observed

as a than a in the zero tunnel s p eed -zero , ro p eller :Need l,alanceg	 l	 t	 1	 {

readings for "zeroes") before and after a tun. At lt,ast 20 runs tunic

after t he :.hut s was repaired are unat • ccpt.lb ie because of .t 1.11 gv change

in tile ha l.tnct, xol-ovs.	 Man y more runs art, of quest ionabl c ust , tor this

13



same reason. There were also situations wl ,,en vibration of the propeller-

afterbody unit becatue excessive and forced a run to be stopped before

the deoired range of propeller speeds could he obtained. Finally, sews

data which initially looked acceptable turned out to yield meaningless

result, due to a misanatch in the Kite of the thrust-torque balance.

That is, for lightly loaded or small propellers: the loads generated were

too small to be accurately me.,sured b y the hal.tnce (which was designed

for 1200 lbs. max imam thrust . 'Therefore the resul t s for t he 1'.Inkee

propellers (contigurations 1 and ti), for example. are not valid although

the measurements themselves were not subject to execs-, vibration or

zero shaft. As a counequence of those vations difficulties only a

limited quantity of rel i.Ihle data h. ► :< been taken and only three propel-

lers can be thought of as being reasonably we'.l-documtnted (conf igura-

t ions 1 , 4 and 10) .

Further roauuents: on the thrust-torque balance drift art- appropriate.

Several tests; were made to establish the nature of the drift. Here tht-

propeller and tunnel tipeeds were set at fixod v. ► lues and the thrust-

torque balance oULput W,Is monitored. An example of these tests is shown

in Figure lb where the thrust and torque of the Hartzell 2-bladed pro-

peller are plotted versus time. The continual decrease in measured

output with Lime is quite clear. There wero also instances; whon the

test engineers observed sudden jump y in the balance output although

these were not documented. The reasons for these changes is still un-

explained. The drift could, at times, he minimized or eliminated by

running the propeller for 10 to 30 minutes prior to taking; data for a

S

14



given run. This warmup procedure w.i:j vied in the latter stages of the

Lest program with apparently some success.

3.2 Results

The measured quantities include the thrust. T. and torque. Q.

acting on the propeller a-; obtained from the thrust-torque balance. tho

total force acting on th y• propeller-afterhody combination as measured

by the tunnel scales. the propeller blade angle. B. the propeller rpm,

N. and the free strt,im air velocity. V .. Measurements of the afterbody

.lrag with no propeller along with a correetton to the Aran to account

for the propeller sliest ream permitted the tunnel scales data to he

used to provide a second and Independent mc-isutement of the propeller

t hrust . Fi am these measurements the advance ratio .1. thrust coef f is ienr

CT . torque coefficient C Q , power coefficient C  and etflciency q  are

deteniiined. Figures 17 through 22 present C T . C p and ri p for the

McCauley 3-bladed prop (configuration 10) at B - 16',28° and 40° and

for the basic Hartzell 2-bladed prop (configuration 1) at the same

blade angles. The open symbols refer to data entirel y from the thrust-

torque bal:inco; the filled symbols are for scales measured thrust.

The thrust coefficients of the MoCaulev propeller (Figure 17) form 	 '.I
reasonable curves with fairly ;;mall scatter and close agreement in the

two measurement methods. The scatter and disagreement become greater

,it large values of J as the loading goes to zero. Here the noise and

accuracy of the balances is tht same magnitude as the thrust so the

poorer behavior might be expected. The significance of the fact that

15



at d - lb' the scale CT is mi ightly below the thrust-torque balance

CT wilt It at 0 - 4U' the situation is reversed is not quite clear. The

puwet coefficients (Figure 18) (which could only he determined tram

the t,Imist - torque balance) also form fairly smooth curves with little

scat ter.

That pro I)lt'ms ma y :•t II I exist bet • ,Knt•s more apl l .tt, , lit when the

efficiertcic• s (Ft Fur e 19) are exatl;ined. The scatter is now greater

(though the plott;:)K scale tualtt • :s the scatter al)t)ear worse than it is)

ati,i the dit-agreement between the two thrust meat:ur inF; t et • hniyt;es i»

in, ivarsed, especially fur B - 4U°. Mtge serious, however, are the

IIigIIIy su)s Pic iour: n1,18nitudc • 4 of the peak vttic• tencIvs wit lcIt itI)I)rouch.

.tad even exceed, ti p - 1.	 Whet her the thrust is I s e in F; overest ius.at t-d .

the torque uiderestimilLtd or both is not yet evrtain.

The re::ults for the liart.:ell	 .are not as good, especially

in terms of agreement between the two thrust measurement methods, as

the McCauley results. Figure 'U shows that there are stibstantial

ditterencea in CT as determined by the two methods for the entire rangt

of .1 investigated, with the thrust-torslur balance vielding consistently

sm. ► ller coefficients. There is also increased scatter In the CT curves

for this propeller. The plots for Cp , on the other hand, (Figure 21) 	 •

.arc reasonably smooth with sm.01 The scatter and disagreement

of the C.r data are also reflected in the efficiency curves in Figure 22.

One not i, • e.able aspect of the efficiencies, however, is that, except for

two obviou:ily rrroneoues point.. the maximum t • tficienctes are consider-

ably smaller mid more reasonable than the McCauley values.

lb



4. CONCLUSIONS

The propeller teat stand proved to be structurally sound .ind

exhibited the predicted supercritical structural modes. The unresol y -

able thrust-torque balance drift problems precluded a saccessful test

of a range of full scale general .elation propellers. 'rhe following

recommendations are made.

1. bind the t.ource of drift to the thrust-torque balance.

2. Measure the electric motor torque-current rclationshIp

experimentally to allow an independent measurement of

propeller torque.

17
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Table 11

PruP el l.ere Tested

r	 0.75 Tunnel Configuration
(degreex) kl'M l _	 2	 4	 _ 7	 8 _ 10 12

Ib 0 x	 x x
90 x	 x	 x x x

110 x	 x	 x	 x x x
275 x	 x

2U 0
90 x x

170 x	 x x x
275 x	 x

24 0
90 x x

170 x	 x x x
275 x	 x x x

28 0
90 x

170 x x
275 x x

32 U
90 x

17U x	 x x
275 x	 x x

3n U
90 x

170 x x
275 x x

40 U
90

170 x	 x x
275 x	 x x
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5TRUCITRAl. 1NTECR1lY RF:1`OKT

The propeller test project Inc ludem :ilx 1 ► icce+ of mt ructur.tl hardware

I 1

	

	 (rice drawings). 	 Il ► e:ie are the motor case. the motor ca g e cradle. the mist .

the mist fairing. nacelle, and the rtector fait-lag. The motor rase, cr.tdle.

nacelle, and sector f-tiring carry the aerodynamic lead on the piopcller.

nneelle, and Sector fairing through the m.nst to the balance system. 'I'hc

aerodynamic loads on th, mast ate tshlelded from the balance b y the m.tr,t

fairlr► g which is cantilevered from the tunnel t loor indt-pondrnt ly of the

balance system.

%crodyti ta:c LoadR

The maxitllulll lotque and thrust developed b y the propellers 1s 600 lbf

thrust and 4200 in lbf torque. At a speed of ►̀ OO RI'M and an angle of attack

of 12 dcr;rees maximum harmonic varlet ioi, a of 180 lbf in thrust and 6360 in

lbf in yaw moment are experienced. "lie structure must safely Support the

-tat is loads and must not be excited to vibrate b y the h.mronle load!,. To

cvmpltsh thl y it wnr decided to design tho m-ist strong; enough to rtupport

the Static lauds but flexible enough	 that the lowest exciting frequency

of 17112 (500 RVM for a two blade propel ler) would he well above the natutal

frequency of the system. The natural trcqucncirs of bending and t-,r-.ion were

1.51U, h. hill"!., and b. 2117.. 'These we re calculated assuming a ri j f t! support (the

balance	 Is not rigid NO the frequencies are actuall y lower than those

valculated), no aerod y namic or structural d. ► mpftig, :end the mass of the mast

was neglected. The mass on the end of the mast is about seventimes the mast

W. .
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mass so one would expect l ittle influence on the natural F requencies due to

the mast malls. however, it lumped nibs analysls including the mast m.1ss was

made to confirm this assumption, and it produced the same frequencies as

11bove.

The aerodynamic load on the nacelle at 20 degrees angle of attack is

about 400 lbf of lift normal to the nacelle. The Hector fairing 1s parallel

to the flow and has only small shear loads on it. The mart fairing would h,ivv

a lift load of about 200 lbf at one degree vaw an i,le (angle of ...tack) at a

tunnel speed of 100 Milli.

Analysis of Nacelle

The !,acelle is a cylindrical shell stiffened with rinits attached to the

cradle at four points so that it approxim-itt-, a sim p ly !supported helm with

it distributed load of 400 lbf total over a span of c.ght feet.

M - 4800 in lbf

	

I - 2 J - 2 r'A-	
2 r

2 2nrt - nr3t

	

_ Mr^i	 4 800

o I - nrTt - n(10^05)

u - 305 ps:

ocr - C  E(l) - .16 (10^) ( ,00) - 8000 psi

Thus the actual stress 305 psi is about 26 tit of the bending stress wh ich

would causes huckllnb of the eyltn(ler.

Analysis of Mast Fairing

The mast fairing is a rigid shell structure stiffened with ribs at two

foot intervals. The chord is five feet nine inches and the span is approxi-

mately fourteen fein t. At a tunnel speed of 100 MPH and an angle of incidence

of one degree, the symmetric airfoil would generate 210 lbf of lift located

r
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i
conservatively at mid span. This lift would produce a rout moment of

17,640 in lbf to be reacted by the front and rear spars (neglect bending

strength of skin except over spar caps - conservative assumption). '111c

moment of inert is is 84 in `' it lid

o	
MC a 171640	

1470 psi
1	 84

which is well below both the tensile yield and compressive crippling stress

for the spar. Rather massive steel hold down fittings are at  r t ed to the

base of each spar cap by epoxy and by rivets. These fittings allow the

fairing to be bolted to the floor of the tunnel to form a cantil-ver beam

which surrounds the mast with a clenrance of one inch on all sides. The

fairing deflection under a distributed 200 lbf lift load is lass than .03

inches so there should be no interference between the mast and mast fairing;.

Analysis of Mast

The mast used to support the propeller test drive motors must be

cantilevered from the balance table and offer minimum wind resistance. It

wits also desireable that the mast be tapered to minimize mast thickness

at the motor attachment location. Other design considerations were ea,ie

of construction, economy of construction, static response to propeller

loads, dynamic response to harmonic loads induced by the propellers, and

stress levels at critical points due to propeller loads. A mast height of

about fourteen feet was required to place the propellers at the centerline

of the tunnel..

The maximum anticipated loads expected for the most extreme test cases

were 600 lbf thrust and 290 ft lbf torque steady loads. The weight of the

motors and structure when added to the applied propeller loads gave a loading

which was not severe for a design with even a modest cross-section. Thus it
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was decided to choose a design based , , it srtiffnet6m criterion rather than

strength, since there was no over-riding reason for minlntlzing the weight or

size of the beam. To withstand dyn.smic loads two approaches were colisidcred.

First the beam could be made stiff enoug' so ttst t ► at urn I frequency was wool

above the frequencies of all harmonic loads. This would have required it

nt.trtesive cross- se, • ti.at.	 'fhe second approach wart to dcmtign it beam o.lih natural

frequencies well below the min s mut. expecte.l harmonic excltatfontt. Thi?I

approach allows dynamic amplitudes somewhat grunter than static deflections,

but the static deflections are small due to the s<nutlluess of the loads.

Several crot;H- sections► were analyzed with 0.5 inch and 0.375 inch steel

plebs being considered for structural material. Thu final design dimensions

will be used to explain the analysts procedure used to determine the

frequencies of vibration and the stresses in the nl t>:t .

Dimensions of Mast and internal Loads

The mast is it tapered box beam stiffened with bulkheads: (Figure 1).

It hasa haste dimensions of 20 inches+ b y 11 inches+ and a top	 20 lnchest by

3.6 inches. Dimensions of 20 inches by 3.5 inches were used in the analysis

and later changed to 20 inches b y 3.6 Inches to pr, ►duce an integer number for

the taper ratio. This produced negl lgible cltanges in the stresses and

trequencies. A plate thickness of .375 incht-i was used.

BquatIons for the variation in the moments of inertia, torsion constant,

tad area are given on the tollowing hake:
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i
i

i

14 
H	

i	 .375

1

IV

I

l_

y /0.: S .1'507 t

// —.05 0 7 b

'Y

X

I X	 1240 - 3.66Z . . . . . . . . . . . . . . . . . (1:^)

Iy	 490.8 - 5.037?. + .014517. 2 - .00000814Z-'	 (lb)

1 55, 72 9 . - 1540 .7. + 3.8077.2

157.333 - .2103Z

A - 22.6875 - .03801Z	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 (ld)

where	 I X ,	 I y , and J have unite	 of	 in `', area has units of	 in`, and 7 is in

inches.
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froue which we find deflections

5	
2U	

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .
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The applied loatt ►► nhoun in Figure ; proluce the following bending moments,

torque. and axial load distributions.

MM	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . (28)
..	 zu

y	 ya	 x	 x

tt	 -	
yx	 : xu	 y

t	 + P L - PZ . . . . . . . . . . . . . . . (20

1'	 - 817.7 + 6.307Z - .005282Z-	 .(2d)
z	 za

wae.re moments are in inch pounds. forces in pounds, and Z and L in inches.

Deflection Analysis of Mast

The mast deflections under the above loads ran he computed by

lund.►ment.dl team theory or by Caatigll +no's 'theorem. Ustng; Castigliano's

method we fitst calculate the strain energv from

M 2 M	 M 1

U . 2L to [ 
x + _ Y + C - - JdZ . . . . . . . . . . (3)
x	 y



Substituting Equations 2into EquatloMj 4and taking the reMpective derivatives

gives

6x	
E !0 1

( :1va + P L - P xZ) (t. - 7.)dl . . . . . . (5a)

Y

6	 1 fL 1 (_P1	 + P 1. - P 7.) (L - Z)dZ. . . . . . (5b)
y	 L► o I	 x a	 y	 y

x

©	
1 

I
L 

1 (Pt	 - P L + P '.)d7.. . . . . . . . . . ( 5c)
X	 o 1 x	 xa	 y	 y'

e	 1
1 rL 1 (M	 + P L - P ?.)d1.. . . . . . . . . . (5d)

y	 E o i	 ya	 x
Y

t) s • 1 f^ --,a d
Z 	 . . . . . . . . . . . . . . . . . . (5e)C.

Now substitute the moments of inertia. Equation 1, and integrate. The

expression for 6
x 
will be used are an example of the procedure and the

resalts for the ether deflection given without details of algebra.

1 j L ( (mya + 1,XL)L - PxLZ—( Pi a + P xL), + PxZ2 1
6	 _-- --- - - - _ -- dz

x	 E ° 49U.8 - 5.037Z + .014,57Z 2 - .000,008,147.3

Normalize the Z coordinate by letting Z - ZL and dZ - 1.d7.

_ 1 1	
I (1.1 a + PxL ) L - (2P xL + M a ) Z1. + P xL' 2- IIA2

S x 	 E `' 490.8 - 5.0371.2 + .014,57L 2 2 2 - .000,008,14L'-"

L • 146 int-hes

—^• L ^ l I (1'1 , + PxL) - (;tya + 2Px l.)Z + P
--A-- 

Id7
r6x	

1: I° 490.8 - 745.482 + 319.14Z- ' - 26.38ftZ3

rw factor the deriontnator into the form (1 + a7)(1 + b2)(1 + cZ)

L1 [ (t1 a 
+ Px I' ) - ( M

va 
+ 2P xt.)Z + 1 . x 1.2 2 1d7

tf --1	 - —	 ---- —_
x	 49U.tiE o	

(1. - .1082)(1. - .10532)2

r

0. Al
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i

6 
•	 L2	fl	 dt

x	 490.8E	 (M	
+ P

	

ya	
L) o (1.0 - .1087.) (1.0 - 7053 7)2 i
X 

	

- (M + 1P L) 
f l.	 Z di	 __ __ i

va	 x	
o (1.0 - .1087) ( 1.0 - .70537)2

	

+ px1. f p —	 FdZ	 -

(1.0 - .108Z) (1.0 - .70531)2

These expressions can be integrated by reference to a book of integral

tables. More algebraic manipulation yields

6 x -	 13780 Px + 48.9 m	 I . . . . . . . . . . . (6a)va

Similar work , or S y . 0 x9 0y and 0 r yields

6 y - E 1986.8 Py - 10.5 MxN^	
. . . . . . . . . . (61))

1
0 - B (-10.5 Py + .1568 M Xn ) . . . . . . . . . . (6c )

0	 F (48.87 1 1	 + 1.107 M `11 ) . . . . . . . . . . (6d)
y	

x

0
2	

J1.1428 M la I . . . . . . . .	 . . . . . . (6i')

In matrix form the results for the 20 x 11 m:i4t made of . 375 inch thick

plate are

6XI 3780 0 0 48.87 0
p 

d I 0 986.8 -10.5 0 0 1'
Y 1 y

0 - E 0 -10.5 .1569 0 0 M
X xN

0 48.87 0 0 1.107 0 M
y ya

0 0 0 0 0 1.1428 M
Z 7.N

wAd

. .(7a)

Similar results for a 23 x 16.25 mast made of .5 inch thick plate Tire

B11



F% 
/ )^' i MUL

S x 1177	 0	 0	 1e.5	 0 PX

6 V 0	 410	 4.409	 0	 0 Py

• gX
F

0	 4 . 409	 .068	 0	 0 Mxt (7b)

16.5	 0	 0	 .4515	 0 Mya0 y

t) 0	 0	 0	 0	 .26 M=a

Dynamic Analys in of M.tnt

If we neglect the mass of the maht and write the equations ut m-,tion

for the ►notor case - motor cradle - propeller and countervripht e the

natural frequencies of vibration can be found. Let r 	 be n position vector

from thu center of gravity of the motor-propeller assembly to the y end of

the mite.[ (r+tatlun 148 inches). Assume the motor-propeller nnr:e•mhly . ► nd

that portion of the was[ above station 148 inches to be rigid. ;nerttal

.utd macs properties of the assembly e.sn be found in Appendix A.

Motor Cane

\ Count et weight

Yt
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P .01849
X

P
y

0

M 106 x 0
X.1

Mya .8162

Giza 0

Assume	 simple harmonic motion

d	 0 A sin wt
x

6	 a
Y

B sin wt

0	 a
x

C sin wt

9	 a
Y

U sin wt

y	 -
z

E sin wt

BI 

0 0 -.8162 0 t.
X

.10575 7.0)i1R 0 fl 6y

7.0818 665.554 0 0
x

0 0 64.13 0 f.y

0 0 0 26.254 l?z

. . (9)	 «.

.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 (10)

r 	 ya + sk

Z Fx	 MAGx

-I'x 	M(A	 +	 y	 A x )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 (RA )

'	 r.Ey -
 HA Cy

-I'y
	

M ( 
a v	 -	 z	 0 x )	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 (eh)

LF s 	MAGI

- P z	 -W	 -	 -M	 ye x	.	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 (8c)

1 ' M
xG	 IGx0x

'-
Mr.:t	 P E y	 - PYZ	

IGx^x (8d)

FMyr	 I Gy y

-M
Ya	

+	 1 1 	I	 0
xz	 cy	 y	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 .	 . .	 .	 .	 .	 (80

DfZG	 IGZ0z

-M Z.1 + Pxy a I
CZO Z (80

Now Livert matrix ( 7a)	 to get



and substitute equations ( 9) and ( 10) into equation8 (8) and simplify to get

(18,490 -	 12.31w1 )A - 816,2001) - 151.413w ? F. 	0

(105,750 - 12.31w2 )B + (7,081,800 + 215.37w 2 )C - 0

8,933,483 B + (789,556,318 - 20,243.4w 2 )C - 0 .	 .	 . .	 .	 . .	 .	 (11)

-1,139,960 A + (77,422,000 - 570w 2 )D - 0

-18,490 A + 816,200 D + (2,134,146 - 1479w 2 )E - 0

Solving thebe free vibration equations for the five natural frequencies and

made shape gives:

^WDE DESCRIPTION FREQUENCY (HZ)	 i	 A B C D E

1 lateral bending 3.5 6.77 0 0 .: .031

2 fore and aft 6.18 0 -8.5 .1 0 0
bend ing

3 ioraion or 6.20 1.865 0 0 :02766 -.1

pitching mode

4 rolling mode 39.0 .0536 0 0 .1 .0004

yaw mode 59.0 - 0 3.357 .1 0 0_	 -i

Each mode has been normalized to a maximum rotation of .1 radian.

The fore and aft bea ►ling mode and the y.:w mode are uncoupled from the lateral

bending, pitching, and rolling modes.

For a forced vibration analysis, propeller loads must be converted to an

equivalent force system at the center of gravity of the motor assunbly. The

equations of mntion of the motor assembly (11) would he modified by including

the magnitude of the harmonic applied loads on the right nand side of the

equations and interpreting w as the frequency of the applied loads and

A,B,C,D, and E as the amplitudes of the resulting forced mutioi. These five

simultaneous equations can be solved for the amplitudes of forced motion from

which the bending moments and twisting moment distribution can be computed

via equat.i -ns (9) and (2).
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Calculation of Maximum Static Stresmcn

1111 • maxlnuim static loads are 60(1 lhf thrust mid 4700 In lhf turyut•.

At tiro angle of Ntt:trk tilt , thrust force I ion 2.49 lnrhrs above the &-(•liter

of gravity of the motor - prop	 Tile eyuivalenl force svmttrol it

the cetiter of gravity for this worst stet fc condition would tht • n he:

1'y(;	 -600 1bf. Myc . + -4:00 fn 1hf. M xt;	 2.5 (600) - 1501 ill fnf.

1'ut t here stet I  loads oil t hr right 11.1tul :+ 1.1e of r(Iuat ton ( 1 I ) .111.1 stet w - 0

18.490 A - 81 6, 200 1) - 0

105,750 B + 7.081.800 C - -4100

8,933,483, B + 789.556,318 C - 1500

-1.10,960 A + 77.422,000 1) - -4200

-18,490 A + 816,200 1) + 2,114,146 F - 0

Solv ing yields: A - -.006841. in

B - -.02144 in

C - .0002728 ra,1 ian

1) - -.000155 1-ad i.in

E - 0.0 rod

In :t , rt these deflections fnto rtyuat loth: ( 9) to got egtlfv.tivnt loads oti top of

in. Ist

.01840	 t"	 i ► 	 -.9162

0	 .10575	 7.0918	 0

0	 7.0818 6h5.'t54	 (1

-.8162	 0	 0
	 t, i . 1 ►

0	 0	 0
	 n

0	 I-68.41

0	 -:19.4

0	 2.728	
)' 101,

16.25)	 0

.x

I'

Mr.t
	 - W  \

My.^

r1Ll ►
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1' - .U2 lbf	 (0)
X

1' y	-599.74 lbf	 ( - 60U)

M 	 in lbf	 (-12.000)

M	 -4201.5 111 1bf	 (-4200)
ya

M	 U	 (U)
ZA

These results could have hevii determined by roduring the propeller

	

loads to an equivalent force eystem at the top of mast.	 the vNlur:+ above III

parenthests indicate results obtained by stat ics. This provides a Martial

check on the equationr+(11) and (9).

Now substitute the loads into equations (2).

Mx - -100,800 + 6007.

M - -4200
y

11 - 0
c

Normal stromm in the mast is given by:

M	 M

u- IY x+ I '—̀ y-
w 	. . . . . . . . . . . . . . . . . . . . . . . (12)

y	 x

Moments of inertia given by equations (l) %,hon inserted Into (12) gives

	

4'200--^	
100 80a	 56000 - - 5---	 - x + L_ 	 -	 y -	 - - for T. - 0.

490.8	 1240	 22.68

a - 8.5575x - 81.290y - 247.0

Ld x-- 5.5 in and y- 10.0 in

o - -1107 list (compression)

ldx - 5.5 in. y - -10.0 in

o - 613 psi ( tension)

Oil 	 next page is a table for properties, moments, and stress at the

quarter points of the mast.
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L X Y 1X Myy

(in) (in) (in) (in lbf) in lbf)

0 5.5 10 -100,800 -42000

37 4.56 10 -78,000 -42000

74 3.63 10 -56,400 -42000

111 2.69 10 -34,200 -42000

148 1.75 10 -12,000 -42000

I Iy A a (comp) a (tension;
(fn^ (in4) (in 2) (psi) (pet)

1240 490.8 22.7 1107 613

1104.6 324. 21.3 1017 513

96', 194.5 19.9 919 401

83' 100.1 18.5 791 255

697.3 38.1 17.1 645 85

1'he mast is constructed of standard structure steel plate with a yield

stress of 36,000 psi. This Fives an allowable stress of 12,000 psi and

the maximum static stresses are well within this value.

The critical buckling stress can be calculated for the steel plate at the

buteom of the mast assuming unrestrained edges (conservative).

'01)
Kn 2 E	 t 2

°CR 2(^(b)

(4)(fr 2 ) (30x10 6 )	 .375

°CR	 10.92	 Z 
_

aCR 7 38,000 Psi (conservative)

This stress is above the yield point so the plate would buckle inelastically.

The allowable stress remains 12,000 psi.

The recommended working stress for various welds of low carbon steel is

*
16,000 psi for static loads and 8,000 psi for dynamic leads. 	 Stress

concentration factors up to 2 should be used for certain butt joints with

sharp corners. The edges of the mast welded to the base plate were beveled

to eliminate the sharp corners. Even using the stress concentration factor

and the working stress for dynamic loads, an allowable stress of 4000 psi is

obtained which is well above the tensile stress of 613 psi and the compressive

* Spotts, M.F., Design of Machine Elements, 3rd ed., page 269.

»- .
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stret . s of 1107 pe;i on the base weld. rms the mast iM well within the

allowable stress limits for static loads.

Calculation of Maximum Dvnamlc Stres.4,-,

At a speed of 500 HI'M there is a harmonic thrust force of 18U lbf and a

harnkmic yaw moment of 6360 in lhf with frequency twice the rotational

peed for a two blade propeller. Thfa condition occur q at an .,ngle of attack

,,f 12 degrees and is the lowest frequency (1711;:) excitation expected otht•r

than an unbalance in the propeller shaft. 11117. is well above the hendin?,

and torsion frequencies but Is below the rolling and yawing frequencies.

These load produce an etyuivalent force system nt the center of gravity

of P'Vt; - - 176.1 lhf, PZG - 37.4 11,t . Mxt-, - 450 in lh, imd M ZG - 6360 in lh.

The momenta of inertta and center of gravity of the motor - propeller ar;semaly

are not chnnged significantly by a rotation of 12 degrees. Put the exciting

forces and mom.uts on the right hand aide of equation (11) and inserting

w - 16.6611Z - 104.7 radians/sec gives:

-116,493 A - 816,200 U - 1,660,29b E - 0

-29,233 fl + 9,443.400 C - -176.1

8,933,483 h + 507,580,000 C - 450

-1,139,960 A f 71,172,000 D - 0

18,490 A + 816,200 D - 14,083,600 F - 6760

Solutlon of these equations for the d ynamic displact•ment4 gives:

A - 581.56 x 10 -5 inches

B - 103.22 x 10- 5 inches

C - -1.5454 x 10-5 radian~

D - 9.315 x 10 -5 radians

t: - -45.383 x 10 -5 radlans

V.Am

ill 8



'Illese displac ements produce eyutvAlent loads on the top of the mast of

P  • 31.5 lbf,

P  - -.3 lbf,

Mxa - -2976 in lbf,

P1	 - 1134 in lbf,^• a

M 
z.i	

11,913 in lbf,

which produce, moments at. the base of the he,im of

M - 2932 In lbf
x

Pt - 5796 to lhf
y

M - 11,913 in lhf.

The maximum d ynamic strer;s is

a a 51 96 x + 2932 v - 
5bOO at the base of the mast.

490.8	 12140	 22.68

psiMax

amin	
-336 list

At the lowest frequency expected, the vibrational modes of the must

are not exeite.i. The magnitude of thy • exciting loads are also low which

helps account for the low dynamic streKSe,,.

'Me absolutely worst case of failure would be to lose a propeller blade

at low speed. This rotating unhal.ince would produce exciting; loads at the

canter of gravity of

P XG , - FO Cos Wt

P ZG W. F  sin wt

Mx 
G - -94.7 F  cos wt

My G - -2.5 F  cos Wt

M Z r - -94. 7 F cos wt

.. r
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At w - 5U0 RPM or 52.36 sad/Kec, F. - me w` where m in the propeller

blade msNs and a in the centroidal dictatwe of the blade from the propeller

	

shaft. F 	 - 5000 lbf for me - 1.82 ft-mlugm. For w - 52.36 iad/sec

equetions(ll) become:

-15,231 A - 816,200 D - 415,110 E - 1'x(t)

72,029 B t 7,672,252 C. - P  (t)

8,913,483 B 1- 734,057,000 C - Mxa(t)

-1, 139,960 A + 75,859,000 D - Mya(t)

-18.490 A + 816,200 D - 1,420,600 F. - Mzi(t)
l..l

Now solve for the dynamic amplitudes resulting from F - F 1 + F. where

0	 -5000 111f

0	 0

	

F1 -	 -473,500	 sitt 52t :wd F2 -	 0	 cos 52t

0	 -12,500 in lbf

0	 1	 -473,500 in lbf

For F1

72.0.3 B + 7672.25 C - 0

8933.5 8 + 734,057 C - -473.5

A - 0

B - -.2319 inches

C - .002177 radians

D - 0

E = U

For F,a

+15.23 A + 81612 D + 415.1 E - +5

72.03 B + 7,672.25 C - 0

8933.5 B + 734.057 C - 0

a

B20



-1140 A ♦ 75,859 1) -12.5

-18.49 A + 816.2	 11 - 1920.6 F - -471.5

A - -3.72

B - 0

C - 0

1) - -.056

E	 ._585

Now combining equattons (2) and	 (9) dx

!lx 0	 8.564 382.55 0 0 y

I M - 10 6 1.92	 0 0 -57.668 0 0
y x

` M z 0	 0 0 0 26.25 ply

z

For F1
0

M. r	 0	 8.569 382.55 0 0 -.2319

1 M - job 1.92	 0 0 -57.668 0 .00177
Y

M 0	 0 0 0 26 .25 0s

0

For F'2
-3.72

M 0	 8.569 382.55 0 0 0
x

M - 106 1.9:	 0 11 -57.668 0 0
Y

M 0	 0 0 0 26.25 -.056
z

.2585

M - 1.154 x 10 6	sin 52t
x

My - -3.913 x	 10 6 cos 52t

M 
- 6.785 x 10 6	cos 52t

sin 52t

con 52t
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a - 3.913 x 10 6 Los 52t x + -1.154 x 106 sin Sgt y _247 + 5000 sin Sgt _

490.8	 1240	 22.b8

u - -7973 x con S g t - 930.6 y sin Set - 247 + 220.S sin Sgt

Cons ider three points on the cress-sect ion locat %4i at

x-0	 y--10	 pt a

x- S. S	 v	 0	 Pt c

x 5.5 y 1	 pt b

o^ • 9306 sin 52 t - 247 + :20 stn Sgt

o
a
 • 9526 sin S gt - 247

oc - -43,852 cos 52t - 247 + 220 sin 52t

a b - -43.852 cos 52t + 9306 sin 52t - 247 +220 sin 52t

O
h
 - -43,952 cos 52t + 95:h sin 52t - 247

ob - 44,875 tits ► (52t - 1.3b) -247

polnt	 max tensile stress	 max comp. stress

- a9279	 977,1

b	 44,b28	 45,122

43,b05	 44,099

These stremses .ere greater than the vield stress but Ivss than the

Ultimate stress.	 it is pvm%lble that the mast would hold topt-ther until

the motOrs Could be• !:t011ped.

Calculation of Hold [Down Bolt Stresses

The mast is connected to the balance rystem by four 3/4 inch 16NF

bolts three inches long with a recommended yield strength of 100,000 psi

(Figure 3). These belt:, art , subjected to essentiall y the loads at Elie base

rv-
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of theInaut, specifically M x • 2932 in lb. My 	5707 in lb, and M t • 11,913

in lb for the maximum d ynamic load ►► at 1711'!.. For the bolts Ix •

.37:4 (9.5) 2 x 4 • 134.4 in' whsrs .3724 is the area at the root of the bolt

threido. I y • .1724 (6.8) 2 x 4 • 6 4 in4.

M	 M
o 1—"v+ I 2 x

x	 y

113	
(9.5) + 

s7 9 5 
(6.8)

o • 778.1 ps i

M2 • 2V x d where V is the shear forc- • on a brlt and d is the diagonal

distance between the bolts. The four halts form two couples V x d which

resi •ii mz.

V . -1 • 11,913	 252 lbf
2d	 :(21.86)

T	 x	 . 3724 1„ i

t • 677 psi

These dynamic- stresses are well within the allownhle stress ftir the bolt

materiai which is -cal • 6 oe	 6 (100.000) • 16.667 psi.

Thv maximum :static loads arc M x • 100.800 ill 	 and My	4200 ill

M	 M
u 

Ix 
y + I x

x	 y

t(J9^euo (Q.5) + a2u0 (6.8)
134.4	 69

o•7539psi

*.a
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kemisting the bending momenta by a couple doom not take into account the

area in hearing which is much g reeter than the bolt area. Ilium the above

stresses are conmurvative. Yvr bolted .points carrying moments it is

dustre able that the bolts be torqued to provide a bolt pie-load which is

at least equal to 1.25 M divided by the section modulus of the contract

area times the contact area.

A - 16.75 (23.5) - 194 ink

12 (16.75)(23.5) 3 	t

h x -
	

23.5/ 2
	- 1542 in•

1 (23.5)(16.75)
12	

- 1099 in3
y	 16.75/2

T	 - 4T - 1.25 M x A - 1.25 (100 800)( L94) - 12,194 lh
}^Rf:	

Sx !	 (1542)

T - 8049 lb

TYRE - 4T - 
1. 2- 5 MyA - 1.25 (4' 0 394 _ - 1882 lb

Sy	 (1099)

T - 471 lb

Thus a bolt pre-lord of 8049 lb per bolt is necessary to keep the joint

in compression. This is a stres s; of 21 , t)14 psi. well less than .5 ce -

50,000 psi. A torque of 100 ft lbf on the 5olts would be required to Induce

•
a loaf: of 8049 lbf. This value is oht a fned f rom Tor q ue - .2d 'I

(.2) (4)(12 ) (8049) ft lbf.

If a propeller blade was lost, the dynamic loads induced would he

sufficient to f ail the hold downi bolts although the rest of the structure-

kmast) would rtnilain intact.

* Ibid., page 204.
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Appendix A

martial Properties of Motor -- Crndt. , - Counterweight

ITC:M W.•iIght 1 1 7. i WYt w7.3 wYt' NT.1' IM
yc

1MZ^_

Of) (!n) (in) (In	 lb) (in	 lb) (in'lb) ( 1n 2 lb) (in ? lb) (in21b1

Ho tor 2000 -40 20 -RO 40 3200 800 35 1350

Prop :00 -107 10 -10.7 2 1145 40 40 0

Counterweight 1700 24 1R 40.8 30.6 979 551 20 90

Actuator 60 24 5 1.44 .l 34.6 1.5 H 0

Top of Meat 150 0 3 0 .45 0 1.35 0 40

Channel 312 - 17 14 -S.1 4.37 90.17 61 5 410

Square Bars 120 6 16 .7:' 1.91 4.3 31 3 90

:'hick Channel 60 -25 12 -1.5 .72 37.5 8.6 0 16

Hubs 4 Balancr	 40 -48 20 -3.92 .R 384 16 0 0

Ki4C. 200 0 10 0 2 0 20 10 0

Pivot 8 -12 5 0 0 0 0 0 u

4750	 -58.460 83,160 5.875.000 1,530,000 122.000 1,096,000

-

-58 460	
12.3

4754

z _ 
83,160	

17.5	
1Mxe - IMzc

4750

1M - `'wY I` + TWz i` + 1M
x	 xr

1% - (5.875 + 1.53 + 1.99010 6 lb in2

1M - 9,401 x 10 5 lb in2
x

IM (;x - 9.401 x 10 6 - 4750 (12.3 2 + 17.52)

1M (;x - 7.23 x 10 6 lb 1,12

IM,
t. x - 

18,725

•• "

B25



2
1M - YWZ 1 	+ IMy	

yc

IM - (1.53 + .122)10 6 lh in 2 - 1.634 x 10 6 lb in"
y

IMOy - 1.654 x 10 6 - 4750 (17.5) 2 - .20 x 10 6 lb in 2

iMry - 511 MCC 2 - In
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