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ABSTRACT

Compression testing of modern composite materials is affected

by the manner in which the compressive load is introduced. Two

such effects are investigated in this report: (a) the constrained

edge effect which prevents transverse expansion and is common to

all compression testing in which the specimen is gripped in the

fixture; and (b) non-uniform gripping which induces bending into the

specimen. This study has developed an analytical model capable of

quantifying these foregoing effects. The model is based upon the

principle of minimum complementary energy. For pure compression,

the stresses are approximated by Fourier series. For pure bending,

the stresses are approximated by Legendre polynomials.
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NOMENCLATURE

a, 0

n, f

Ex, 
c  

or E1' E2

Yxy or Y12

ax , . oy or al , a2
ax , ay

T xy' T12

Txy, T12

ro

V

V xy' V yx $ v 12' v 21

e

3o

Y

1.1

S	 ` -
'r

Eigenvalues

Sigenvectors

Strain in the x , y or 1,2 directions

Shear strain in the x-y or 1-2
plane

Stress in the x,y or 1 2 2 directions

Stress averaged across laminate
thickness

Shear stress In the x-y or 1-2
plane

Averaged shear stress

Introduced material constant
(ro=Ey/Gxy-2vxy•Ey/Ex)

Poisson's ratio

Poisson's ratio in the x-y, 1-2
plane and their ccunterparts

Angle between principal material
coordinates and arbitrary body
coordinates

Ridgid body rotation

2artial dif`'e. ert'_al

C c	 0=; 1 ^ 0t^t L r : r p t1 f I Fun • /\ v^ 1
wVle.li i^V^^ ^ .I.G ^^	 ^l.f.. V ^•• ^^

V



k

dot	 Determinant

E	 'young's modulus

E_, E  or El , E2	, young's modulus in the x s y or
1, 2 directions

4	 Shear mcdulus

axy' C12	 Shear modulus in the x-y or 1-2•
Plane and their counterparts

K or	 Matrices

CM], [CIS tK]

Q-I	 Qua31-isotropic
C-P	 Cross-ply.

0-D	 Unidirectional

u°	 Rigid axial displacement



Chapter I

I=ODUC'LTION

A. Raticnale

In compression testing, it is difficult to

determine purely compressive mechanical properties of

fiber-reinforced matrix laminates. Some of the

experimental data showed that mechanical properties of

the specimen depend strongly upon the compression

fixture utilised [1]. Therefore, it is not surprising

that some controversy has developed regarding acceptable

techniques for compression testing.

Other than manufacturing non-uniformities in

test specimens, compression data may be suspect due to

uneven dipping of the tabs, poor alignment of the test

machine and/or poor alignment of the test fixture.

Fracture or ultimate compressive stress may be difficult

to obtain because another mode of failure (i.e. buck_Lng•,

delaminan tion) may occur first.

Many of the foregoing difficulties can be lessen -

ed by selecting s short ga.re length specinen. At

e:car °"_v_?5 ... the : ° S.	 t..e



of the test fixture creates a complicated stress state

by preventing transverse expansion. For sufficiently

short gage lengths this constrained edge effect will be

evident throughout the entire specimen. A size change

of the specimen, therefore, may merely substitute one

difficulty for another.'

The constrained edge effect has been pointed

out in Refs. [2-4]. However, only the present work

provides a model capable of quantifying it. This is

done through stress analysis by assuming perfect align-

ment and two different gripping mechanisms of the

fixture: (a) uniform gripping (axial compression) and

(b) small in-plane bending superimposed upon axial

compression.

B. Background

Pagano and Halpin [2] investigated the influence

of the end constraint, both experimentally and

analytically, in tension tests of anisotropic bodies,

i nc lulling on off-angle graphite/epoxy laminate. Th. e 1. r

analysis was based upon the two-dimens'.onal elastic

equation s. _'hey concluied that. the gri^-in:.

nechanism . C! ,,:.e "Iength to w ;,h ac_o o:. ;.he spe _,a_

(MIGINAL PAGE 15
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were the principal reasons for the non-existence of a

uniform stress state. They also predicted a more serious

Influence of gripping in compression and torsion testing

of anisotropic bodies. However, they did not quantify

the end constraint. A photoelastic study of axially

compressed rectangular sections, by Phillips and Mantei

131, gave some evidence of the effect of load intro-
duction upon homogeneous, isotropic materials.

An investigation of the effect of an end attach-

ment on the strength of. fiber-reinforced axisymmetric

composite cylinders was presented by Whitney, Grimes and

Francis [4]. They pointed out that an and attachment

which allows soap deforma-ion of the end (e.g. adhesive

bond) will help alleviate the problem of high stress

and strain concentration at the attachment end.

Another method of studying the edge effect in

two dimensional stress analysis is based upon the Airy

function. Unfortunately, the mixed form of the boundary

conditions precludes any -ossibility of an exact solution.

Hess [5] uses separable fc.rms of the Airy function (which:

decay exponentially from... he fixed end) to deterrine

apnrox4ate solutions.

A related probler.., .:hose solution. also



more attention in recent years, is the free edge effect.

At the traction-free edge of a compression specimen, the

mismatch in the material properties at laminate inter-

face causes ahighly localized effect.

An example of the tree edge effect fora biaxial
stress state using methods developed in the present studv

would seem an interestins challenge.*

The difficulty in estimating stresses in the area

near the free edge, using the finite difference method

presented by Pipes and Pagano [6 ] was pointed out.by

Wang and Dickson r9 ]. The finite element procedure

developed by Wang and Crossman [7•] has the same

^.	 difficulties as the finite difference method. Both

methods need certain artificial manipulations, specifi-

cally in the region very close to the free edge. The

perturbation technique applied by Hsu and Herakovich [ 8 ]

provided smooth continuous stress distributions in the

vicinity of the free edge and mathematical evidence of

sinirslar _.zterlaminar shear stresses for cross-ply

graphite/epoxy laminates. Another method of estimating

the _nzerlaminar sheer stresses i s based upon the

sa_er n method [ 9].

Tn the subsequent chapters, an anal t_ca_

I s ; resented ,-Jr ._, Zn t-n.	 the c .ns ra_' ed edze



effect.

g^
7	 ,

C. Specific ,bJ cttives

The objectives of this study are:

1. To develop a 'closed form approximation to the stress

distribution within each lamina of high-strength

graphite/epoxy during compression tests.

2. To determine the effect of specimen geometry upon the

measured compressive properties, including the

determination of the minimum specimen gage length

necessary for the existence of a uniform compressive

state in the central region of the specimen.

3. To determine the effect of small in-plane bending

upon the measured compressive properties.

4: To determine the optimal locaticn of strain gages

for co=pression tests.



Chapter rI

PROBLEM FORMULATION

A. Statement of the Problem

The primary objective of this study is to

determine the effect of testing devices on the response

of compression (tensile) specimens of laminate composites

which are symmetric about their middle plane. For the

case of perfect alignment and perfect gripping in a rigid

fixture, the ends of the specimen will undergo the rigid

displacement shown in Fig. 1, where u° and e O denote the

uniform displacement

edges, respectively.

half length and half

are Cartesian coordii

center.

and rotation of the constrained

Also, L and b are the respective

width of the specimen, and x and y

sates measured from the specimen's

B. modelling Assumnticns

The '_2"=nate thecry for fiber layups which are

sy-=etric about the .r_dd'_e plane is applied here.

^route .:: .he _: »:.nat_ t^ere exists a generalized p_...._

PRECEDING PAGE BLANK NOT FILMED



state of stress whose Cartesian components are denoted by

Q, Qy and T. The bars above the stress symbols indicate

quantities averaged across the laminate thickness.

With the assumptions of small displacements and

a linear orthotropic constitutive response, the field-

uquations to be satisfied are:

1. eguilibrium equations

aaz/a% + az/ay 0,

2. strain-displacement relations

e= = au/ax;

Cy = aP/ay,.

Y = au/ay + av/ax;	 (2)

3. constitutive equations

Ex = S* 2x + S126y'

Ey S12cx + S22ay,
-Y
	 (3)



In Eqs. ( 2), u and v denote the displacements in the x

(loading) and y (transverse in the plane of . the specimen)

directions, respectively. The material constants Sij can

be computed directly from the known material constants of

the constituent laminae , and their fiber orientations with

respect to the x-axis [10].

The boundary conditions which are to be adjoined

to Eqs. ( 1-3) are of mined type. On the stress -free edges

we have the static boundary condition

a
y 

= z = 02 on y = + b.	 ( 4a)

On the other hand, the kinematic boundary

conditions, according to Fig. 1, are

u(±L,7) a T-(u° + 8°7) •	 (4b)

Due to the linearity in the Eqs. (1-3) and

boundary conditions ( 4b), the Principle of Superposition

is applicable and it suffices to solve the purely

compressive case (8 0 -0) and the pure in-plane bending

(u°-0) case, separately.

A co=on method of obtaining the solution to Eqs.

('_-:), Is based uzon the Airy stress function [11'. The

resulting fourth order equation is generally solved by

se=ar=ticn of variables. The :nixed boundary ccnd_tic^s

al": e-."n-'s.....,rcach extreme ,• ^ -•tio_•^^-moo

O:iMINAL PAGE 1S
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An alternative approach involves reformulating

the problem in terms of the complementary energy C7983

2 Ibb !LL [S11 X + 2S12cxcy
 + S22aJ2"

+S4,UT2]dx•dy

!bb Cu(L,y)6 (L,y)

The Principle of . Y-ininny Complementary Energy

states that of all stress fields (-a*., -a  i) that

satisfy the equilibrium e quations (1) and the static
► .	 boundary conditions (4a), the exact solution actually

minimize Q. 'Thus Eqs. (1-4) may be expressed simply

as

.60 0. 	 z

uoa

L	 Qo

c =^ U C

I	 b

Fig.l Edge disp'_ace-ents due to perfect
gripping and p erfect alignment.



Chapter III

FORMAL SOLUTION

A. Pure Compression

Since, in this case, 0*-0, it is evident that

axial stress ' UX must be an even function of y, and that

the shear force along the edges, x=tb, Must vanish. It is

therefore clear that the stress Qx may be represented by

a Fourier series.

Qx = -c'c [1 + E ncos	 Fn( b)]:	 (6a)
1

For N sufficiently large, and for fixed x, the series

will uniformly approximate oX on all ,.intervals for which

gx .is continuous. At points of discontinuity for cx, the

series converges to the average value of 6 X. Here,

rn(7) (n=1 .... N) are the unknown Fourier coefficients,
and oc is the average compressive stress across every

x-cens.ant section.

^he remaining stresses ay , and T are obtained by

soli:.^6 the equilibr{ un equations (1) , usi.nz the t su::d-ary

These results

10



1 Z

c= c L 1{coa	 +(-1)n+l} F"( x ) (6b)
y aln 

^	 (6c)t = a E ain^ Fn(^) .
In deriving Eq. (6c), the vanishing of shear

force- 
1'b b .T(=,y ) dy = 0

was used to determine the constant of integration. Also

( ) T indicates differentiation with respect to indicated

argument.

The unknown functions Fn may be determined by

substituting Egs.(6) into Eq. (5), that is

_•v^ L .

	

	 N

•I-L Ibb^SllCl+ E m cos
	 Fm(-V)1

1

N
-[l+ t n cosh-p 7,("x

1

N
+2S

12 
[1+ E m Cos mb ?m(^b)

1

E n [cos(n^)+(-!) ,+13 Fn("x
I

+ S2G E Ccosmb = (-?) m+1 1 FMo)
i

1 n	 b	 n b-

OMINAL PAGE IS
OF POOR QUALITY



+S t Z a^ F Ox ) 3 . [ r sinesi	 i F (^b	 ) J dxdy44	 rA	 n b j•1

	

	 1	 ,
N

+u°oclb̂  C1+ Z n .cosh- b Fn(Iro ]1
N

+[l+ .Z n cosn-z

	

	 (T)Fn(-^)]dy ,
1

whefe EwL/b .

After intergrating over the y coordinate, appli-

cation of standard techniques of * Variational Calculus

[ 131 renders the expression

N n ..	 N
d^ 

_cILL 
[-2S12E Fn(EN + 3S22E 12 F^('rb)

1	 1.. n

+S22 E Fn( b)+2S22.E
(-1! Fm (b)

Z	 mfn

_S44 E F
n b

) 1 - [aF 
n

( max ) ]daI 

+ 2a [-S12 E Fn( +ire ) +2S 12 E (-- n^ -1 	 1
N 1 n	 -1)m+n.

+3S Z2E -^ Fn ( +try ) +2S22 E 5--- n -
1 n	 m#n

n

N I	 N	 M
+ wcr [S	 E r ( +-7 `)- 3S., r ^	 (+try)

c c	 1 2 1 n -	 2-21 n2 - n -



m+n m
-8522 E

min 
m6n -- Fm(±arc _)

•	 + '344 
N 

F r (+vV 3 -C6 (+Irc) 31 . a	 n

•0.	 (8)

It immediately follows from (8) that the Euler

equations are

E '[522 Fn ('rb) (2S12+S44) Fn ( Lb)+522 Fa(^b)1
1	 n

m+n
+ E [2S22^•-a^n — FI	 b)1
m#n

=0.	 (9a)

and the natural boundary conditions are

N	 n
1 [S224 Fn(+wC)- S12"nQ1 9) l

I m; n n
+ E [2S22 Mon — Fm(+arc)
m#n

E [2.15 22 	 (9b)
1

N	 +	 n►

E US4^1+S12) Fn ( frc)-S 2G-; Fn (+try I1

n'
- E [25 22 m• n 	 r^m#n	

;)^

= o.	 (nC)

+>



With the introduction o£ the following definitions:

S11 " I/E=, S12 ' —v^y 	yxA = —v /Ex,

S22 1/Ey , S44 ' 1/0xy,

ro = (2S12 + S44 )/S22 Ey/Qxy — 2v y=,

3
r	

2 —1 2 +1	 -
IL2 T(

22

M s	 I
32

Sym•
N2

12

22	 0

g =	 32	 Ey/Ex,

0	 •

N2

I	 FI

• I	 0	 F2
Z :	 a	 F s

0

n+l

1	 M ^!

- !v

_	 '	 _



Eqs. (9a, b, c) may be conveniently cast In the

form

xPIT ra1F" +$P -o, 	 (10a)

and

M Pn(±A ) + Vyx I Fn (+v) s 2v,,	 (10b)

Cr. + vxy) 1 Fn(twr,) - I1 Fn(+ng) = 0.	 (lOc )•

It is also necessary to determine the constant

Qo. After differentiating 0 (Eq. 7) with respect to cc

and simplifying the resulting expression with the aid of

Egs.(9a ,b,d) and setting	 at = 0,
E	 ^c

we obtain

E	 w	 n	 n=	 1 

It should be noted that if Pee (n•1, ...N), then Eq. (11)

reduces to the elementary strength of materials formula

[121.

The solutions for N:tmz.s retained in the series

(b), and the solutions to Eqs. (9a,.b, c) give the "best"

(in the mean square sense) N-tern approximation to the

true solution. Therefore, 't :.s reasonable to expect

that the approximate stresses ,;:_I be closest to their

true values at locations he re ;,: e i- true values are the

15



largest, that is, at the constrained edges.

Eq. (Ina) is a fourth order ordinary differential
equation with constant coefficients. Thus, we assume a

solution of the form

^ • ^ coah(amClb).	 (^)

Substitution of Eq. ( 12) into (10a) generates the

eigenvaltie - problem:

[a4M-a2rol + 83 n 0	 (13)ft

for the eigenvaluea-a and eigenvectors n.

Note that a and are obtained independent. of the

boundary conditions, and hence they do not depend upon

the manner in which the compression load is introduced.

They depend •only upon the number of terms N retained in

the series, and thew material constant. ro . In. the case of

quasi-isotropic LO/t45/403s layups, ro=2, and they are

also independent of the material constants.

A necessary and sufficient condition for the

existence or a non-trivial solution to Eq. (13) is

det[a4 X - Ct2ro 1 + K3 = Q	 (14)

Eq. (14) is a polynomial of order 4N; however all

solutions must occur in equal and opposite pairs. And if

the roots are complex, they -must also occur in pairs of

complex conjugates.

16



If, for complex eigenvalues, the components of

the p—th eigenvector are assumed as

np =, Ap Cl np20 . . nPN],

then the general solution to Eq. (10a) for even

functions Fn becomes

N
Fn = E 

[Ap 
npncosh(apnx/b)

Pal

+AP 
npncosh(ap'rx/b)

N
=

	

2-Re( E Acoah(a Ax/b)	 (15a)
P=1 P 

nPn	 P

where bars above the symbols indicate complex conjugate.

For real eigenvalues ap, a  (p=1 3,2 9 • 	N)

the genera solution is

N
Fn = E [Ap npn cosh( apirx/b)

p=1

+ Ap npn	 t2

	

cosh(ewx/b)1, 	 (15b)

where	 1=	 1npn	 Ap 1[1 
nP2

1
nP3

1
np% 131

:Pn = `^? [1 nP 2 nP3
nPN1,

The cc^plea constants AP or real constants Al

and	 are dezer^.`,.P.'.^d from he	 c.^nd-f tons

1?



19

The remaining possibility that some roots are

Neal and some complex was,not encountered in the

numerical caldulations for the assumed data. Thus,

although this case is ; as routine as the two.foregoing

cases , it will not be discussed further.

B. Pure in-plane Bending

For pure banding, uO=0, and the axial stress

is an odd function of y. -As before, the shear force

along'the edges xm±b must vanish. However, it turns out

that a Fourier Sine ..-series approximation to 6  is not

convenient. This is because application of the boundary

conditions (4a) to the stresses obtained after integrat

in& Eqs. (la introduces side constraints on the Fourier

coefficients." In order to circumvent this difficulty,

ax is expanded in terms of odd Legendre polynomials.

One definition of the N-th Legendre polynomial

is [13 I

n b	 k-0 2nk! (^-k) ! (n-2k) !	 b

where N = —y-	 n: even

N= (n
^1)	 n: odd	 (16)
c
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Then the stress ax nay be represented by.

HZM.ob CPl (b)  + E Pn (b^) 3 G (b).	 Wa)
3,5,••

Here, Gn(b) are the unla^oxn generaliz¢d Fourier

coefficients; and 
ob 

is a constant.	 .

The remaining stresses cy , and i are obtained by

solving the equilibrium equations (1)'subject to the

boundary condition-(4a). These results are

	

N C Pn-2(f)	 2Pn(j)
Q_
y	 3,5-•

	

+ pn+24) 	* x

1	 )) a(5) ,	 t17b)

b3,5• ,Z' ^+3^ n-I b	 n+l b	 n b

Mn deriving Eq.' C17c), the vanishing of shear

force	 _

Ibb z(x,y ) dy • 0
was used to determine the constant of integration. Also

( ) denotes di^ferentiation with respect to the indi-

cated zrS^ent .

The unknown functions an may be determined by

substituting L`:.;. (2.7) into Eq. (5), and inteb ating

over the	 Ater applying the variat{cnal

nethoc =d col l ect-'n; ter=s, the Jule^ ee::ao'cns a^e

:: bP _, r.e . .

1	 +

	

t	 •4..	 \



.0

Maw -I`o Cap +aa=0
	

(18)

where

M•

6	 .4	 1
T-37--P-Tr	 -.

	

6	 -a
7-9-11-13-15.

	

•	 •

M(N-2;M
Sym.

(2N-3)(?N-1)(2N+1)'?N+3)(2N+5)

(2N-5) (2N-1) (2rt-1) (2N+1) (2N+3)

(2K-7) (N-5) (2N-3) (W-1) (2N+1)

2	 -1
.	 ..	

0

2.	 i
9 .11 .13 11.13.1

c :

-1
Lr	 +r

2

(
-
Zi-1) (L

,.
+1) (21y+3

I



G3

G5

0	 .By/E= , G	 .

'0
.1
	

GN

The natural boundary conditions associated with

Eq. (18) are
M G (=) + vxy C G (t)	 vvx[ 1 0 0	 03T 	 (19a)

105-

M G^TM	(ro+v )C G
I
 (tg) = 0 .
	

(19b)

In addition, the-condition ddQ =0 results in,
b

after considerable manipulations.,

s° = 3Mb&	 [ 1 — vxv G f (^)^ ,	 (20)Ez5 3

where

Mb Ibyax dy _T bbl

It should be noted that =Z Bernoulli—Euler theory

8° _ 3%9	 (21)
Ex . 2b

The method of solving B p s. <!2, 19) is the sane

as in the pure compression prct_em. r:e write



a • ,^ cosh( b)

where $ and t are the eigenvalues and eigenvectors,

respectively.' Thus 0 and i are determined from

Cap — 02 roc + rT r - o .	 (22)

If the components of the complex eigenvectors are

the solution for Qn is given by

On = 2-Re ( I g I ccah(v)) .
P!L_P

For real eigenvalues, the counterpart to Eq. (15b) is

^t
• :Ccosh ^ 2 2G	 -^)a I	 S.	 ( b) + BP Cp coshn	 ( b 1.. (23b)P^

C. Lamina Stress

In the previous two sections (A. B), we formally

obtained approximate solutions for the.average'.st`ess and a&

a. consequence of Eqs. (3) r strain. The remaininC- task is

now t'o obtain the stresses within .eac'h constituent ?= na.
A are_ oac.h here will follow Jones [10].

For either quasi-isotropic or cross-ply

la..r-inates, the stress-strain relations (3) may be :iritten



^c E 0 uz CF x

`Y s 0 ^y ' Cal Qy ( 24)

Y 0 0	 1 T t	 .

where E is the'Young' s modulud"Mim Ey+ E), v is the

Poisson's ratio ( vxy= vyx= ^:v), and 4 is the shear modulus

( Gxy= - ayx• a ).	 Each constituent lamina of thelaminate
Yxy

sustaips the same strain [ ex , E ,	 ^T in the x-y

cocrdimte system.

However, the stresses differ from one lamina to

the next. It is necessary, therefore, to determine the*

appropriate stress-strain relation for each lamina.' Let

us suppose that the principal material axes are inclined

at an angle 0 to the x-axis (see Fig. 2'). Then the

strains in the material coordinates are obtained from

the laminate strain by

cj

E	
E

E2 = CT] Ey

712	 LX z
2

cos2e sin 28 sin2e

[1'1	 sin2e Cos 2 6 -sin2e

-sin2e sin2e cos2e
2	 2

(25),



Similarly, the stresses in the principal coordinates are

given by

	

Q1 •	 .c^

	

2	 = • ETA. of	 X262

	

T12	 T2y

Now let the constitutive equation in the 1-2

principal coordinate system be

	

71	
ell

	

ca	 CS31 ep	 (27)

T1212
OP -^-	 ,

E1 	 v12E2	 0

	

v12v21	 -v12v21
[s]	 v21E1	 E2

0
v12v21 1-vI2v21

0	 0 -	 2Q12 s

where El, E2 are Young ts moduli in the 1 and 2 directions,

respectively 012 is Poisson ' s ratio for stresses applied

in the fiber direction, v21=v12E2/E1 ! and G12 is the

principal shear modulus.

Atter combining Eqs. (2^, 25, 26, 27), we obtain

cz	 cx

Cy	 : CT1—I Cs ^^,^ r a	 3 y
	

(29)

T xy	
Xy

I



Y

1

where

00329

. CT]—I 	 sin 28

sine

Following fundam,

can be simplified to the

sin 28 -sin28

cos 2e sin2e

—sin@ cos2e

ental matrix algebra, Eq. (28).

form

^cx	 cz

cY	 C^ 1 cp	 E29

Txy	 T

where

CCI = CT7"1• CsI • [T] • CQJ.

Clea_*-ly,, the matrix CC] depends upon the l-Amina

material properties and orientation.

F_g. 2 ?r' ncipal mater-'&-a'.
coordinate systems.
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Chapter IV

NUZC=CAL SOLUTION TO TECE EM MULUE PROBLEM

We now 'take up the numerical solution to the

polynomial of order 4N

f(a) • det [a4M - a2r,c + r] = 0 •r	 ^ r

Clearly f (a) has the form

f(a) ,cla4N + 
CPCL4N

-2 + ... + CNa2 + CN+1

where Ci are functions of certain invariants .of the
matrices M. C and K and their products. For example,

CN+l-sdet [K] and Cl=det DQ . Tha other coefficients,

however, a re considerably more involved.
A numerical method for determining the set of

Ci's for given N relies on the utilization of a high

capacity computer. By reasonably choosing a set of
I	 I	 I

	

arbitrary numbers ( alp a2 ,	 aN+1 ) and evaluating

£( ai ) N+1 times, we obtain the simultaneous equations

C1 (a1") 4N + C2 (al)4N-2 +	 .	 + C^++ _ f(al)

C1 (CL 4N + C2 
(a2)4N-2 ++ 

C rr+ _ _'(a)



Cl(aN
}1^4N + ^2(+1^4N-2+	 + CN+1 . r(aN+1^

The coeffieients'Ci may now ' be-routinely

obtained by solving the above set of simultaneous

equations in which Ci ' s are the unknowns. The numerical

sensitivity of the procedure may be checked by' choosing

several different sets {ai} and comparing the solutions.

Furthermore,, in our case, it is convenient to reduce the

.order of the polynomial from 4N to 2N, by taking (at )1/2

instead of ai	 This step also speeds up the process

of obtaining the roots of the polynomial. These roots,

i.e-. the eigeavalues, were obtained by using a standard

subroutine based on the Newton—Raphson method.[14]..

The ^3.gen4ecL^ars ::. are determined from a' set of

linear algebraic equations (. 13 or 22). Since the

eigenvectors are not unique, a very convenient

normalization procedure is to set the fi-st component of

each elgenvector equal to unity. The coefficients Ap,

dete—ined by the natural boundary conditions, are-also

rout"Inely cbtained by solving a ::ct of ' inear algebraic

equations.
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C#Apte; V

HUZOMCAL RESULTS

A: Pure Compression

a. Quasi-Isotropic (Q-I) [0/t45/90]s Laminates

^. Generalized Plane Stress

r

According to elementary rod theory, the stresses,

sufficiently tar from the edges at which the load is

instroduced, are assumed to be uniaxial, i.e.

_ o
u Ex

Q s - !r- - : Q s T: 0.
X	

Cr. 
r .	 L	 y	 ( 3:m • )

Thus the specimen must have a sufficiently long gage

length if Eq. ('30 ) is to be applicable anywhere.

Elementary the=7 .however, is able to provide neither

the mininum gage length necessary for Eq. (30 ) to hold

nor the stresses in the neighborhood of the clamped

edges

in the present approach, the general plane

stresses Qx, 3Y & TxY depend upon the material constants

uy%, :.y/Ex and 1" o,  and the specimen geometry ratio y.



For quasi-isotropic laminates, Po=2, xx or7 , and hence

the stress distributions merely depend upon v and E.

The stresses were calculated for a range of C

from 1/4 to 6, and for v=0.336 #which is a fairly typical.

value for graphite/epoxy quasi-isotropic laminates. It

will be noted from *Eqs. ( 10) that the stresses are

approximately propotional to v and therefore approxi-

mate solution for other Poisson ratio n s may be obtained

by scaling the current solution.

Since ro=2 for all Q-1 laminates, the eigenvalues

ai (i=1,2, • • • ,N) computed from Eq. (14) merely depend upon

the number of terms, N. retained in the series [Egs.(6)].

The results of this computation, as explained in Ch. III,

are shown in Table 1 for values of N ranging from 1 to

10. It will be noted that all the eigenvalues for.n<10

are complex values, and consequently the solutions for

the functions Fn (n=1,2,''•,N) are given by Eq. (15).

The stresses [Eqs. (6)] were plotted for

different values of N at various cross-sections x/L =

constant in order to assess convergence for increasing N.

* This values was obtained fcr the material properties:

:.^ = 21x10 3 ksi, E 2 u1.7x10 3 ksi,	 0.4M.

3	 3^ 2 =C . E5x10 3 ns i	I=; 0,x10 ,:5, -i

9
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As shown in Figs. ( 4,6-8), convergence was excellent

away from the constrained edges with just three terms

seta zed in the series.. Naar;'but:.not -at the:climped.

edges; convergence- wax ' excellent with. only six' terms

retaitied' in the Foutrier-series 'solutions

14L, Another meamwe ' of the -convergence is'provided by

Lq... (11) : Ini Table .2 the wratio- iu laC L was- :evaluated

for various values of'N and ^.

The convergence of eEx/a L for inareasinx N is

evident from Table 2. Note that f,-)r large C. the value

approaches unity, which is the result predicted from

elementary rod theory, Eq. (30). The reciprocal of the

entries in Table 2 represents the apparent percentage

increase in average stiffness due to the constrained

edges.

It is convenient to write the generalized plane

stresses in the form

Qx""QCtl+ax(x,y) 3,

Qys acdy(x " y ),	 (31)

T1 - a"a xy( x , y ) •

Clearly, for I d x (, layI =d 
(a xy

I
 

sufficiently

smal l., Eq. (31) x' 11 closely ap;roxinate Eq. (30). We

shall say that	 stress state  ;s a prcxLna rely u.n ax ya _



32

TABLE 2. Values of u°Ex/aJ for Q—I laminate

In pure compression

Qom

N 0.25 0.50 1 3 .6

1 0.9342 00'9545 0.9770 0.9926 0.9963

.3. 0.9203 0..9443 0.9714 0.9907 0.9954

5 0.9173 0.9422 0.9702 0.9903 0.9952

6 0.9166 0.9417 0.9699 0.9902 0.9951

7 0.9161 0.9413 0.9697 0.9902 0.9951
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at a given x=constant cross-section if

0.02

^dy < 0:02	 for ly, ; b	 (32)	 1

I6Xyt:: 0.02

The 2% bound on the deviation of the true stresses from

the uniaxial state is, although arbitrary, quite useful

particularly for the experimentalist. By providing a

definite bound, the efftet of the constrained edge can

be quantified.

For geometry ratio's E<1.5, (32) was not satisfied

anywhere. Thus the effect of the constrained edges is

observed everywhere in the specl=en. Stresses distribu-

tions along the center line x=0 and.at  the edge x=L are

shown in FiRs . 6=11 for C=1/4, E=1/2, and C=1, respectively.

For 9>1.5, there exists a region in which the

stress state is approximately uniaxial, i.e. E q . (32)

is satisfied. It was found that the domain o f influence

of the edge is limited to 1.5b (or ?50 of the width),

as depicted in Fix. 3.

As expected, the stresses in the shaded region

of Fig. 3 are independent of r. provided L>1.5b.

Ccnsequently, once the stresses are deterZi..ned °cr ore
..=- fi e .̀r ^> _	 ^::° ar° j.	 * :r all v isles r >'_ ^ .4
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Increasing L, for fixed b, merely increases the uniaxial

stress. domain. Results are shown in Figs.(4,5,127 for

C=3 and x/L-0:75, 0.9 and 1.0 respectively. According

to the foregoing discussion, the generalized *.stresses

are the same for C-6 and x/L-o.M. 0.95 and 1, respec-

tive": .j' . [Figs. 13'-153

It should be observed that the stresses at the

edge x-L for C-1 [Fig.113 and 9-3 [Fig.123 are almost

identical. The reason for this is because the stresses

at x-L are affected by the constrained condition-at only

that edge; the'stresses at each edge x =tL for both E-1

'	 and C-3 are outside the domain of influence of the other

edge x-;L.

As indicated earlier, the stresses at the clamped

edge appeared to be converging [Fig.123 quite well for

N-6. A closer examination of the tabulated values of

Fx (L,,y) did indeed confirm convergence for jyj<b.,

However, at the corners y-b, the stress as appears to

grow without bound. This apparent singularity is shown

in Table 3.

2. Lamina Stress

Fig,,=es 16-18 show representative !an. nae stress

. ^e constrained edge of r--! _p*Zi^ate f or :ac p?'_es
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TABLE 3. Normalized stress at corners dxCLs:b) /ac
for Q-I laminate in pure compr*ssiou

Q
`	

rt	
1	

c

N 0.25 0.50 1 3 6

1 0.9T 1.05 1.12 1:13 1.13

2 1.01 1.13 1.22 1.23 1.23

3 , 1.05 1.20 1..31 1.31 1.31

4 1.09 1.27 1.38 1.38 1.38

5'. L13 1.33 1.44 1.44 1,.44

6 lag 1.38 , 1.45 1.50 1.50

T 1.21 1.42 1.50 1.55 1.55

8 1.24 1.47 1.55 1.60 1.6o

9 1.27 1.51 1.59 1.64 1.54

10 1.30 1.55 1.63 1.68 1.68
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oriented at'8=00 , 45°, 90° respectively. The particular

plots are for Eat/4.

b. Crass-Ply (C-P) [t45] s Laminates

1. Generalized Plane Stress

Unlike Q-T. laminates, C-P laminates have a ne.ta-

tive material constant ros--1.77 and a relativelF large

value for Poisson's ratio ( v=0.801e). As a result of the

high value of v,.the influence of the constrained edge

should be expected to be much greater thar. for Q-I _

laiaiaates .

Z st: ".ike.-for Q-.T laminates, -the eigenvalues are

again complex. [See Table 41. Convergence was somewhat

slower thaw for Q-I laminates; more terms were needed to

obtain a r•...asonable approximation to the stress; distri-;

butions at the edges. Figures 19 and 20 show the stress

distributions at x-L, for E-1/4 and E=3, respectively,

for Ns9 and 10. However, for the region x/L<0.9,

& , 6 •term-approximation showed excellent convergence. For

exa.=p?e, see Fig. 21 for which E=3; stresses at x/L-0.9

e plotted for N=6 and N-7.

This value was obtained for:

E 1=21X10 3 ksi	 F.)=1.7x!03 ksi	 v 12=0.21

012=o.65x1o^ ksi = 1.9;x10' ksi

7
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Once again there appears to be a singularity at

the corners x-tL, y-±b. The data, tabulated in Table 5,
certainly do not suggest convergence.

In Table . 6, the values of u°EZ/ccL are

tabulated for C-P laminates, and the convergence for

increasing N is slower. Also, observe that for -..very

small aspect ratios, the apparent stiffness increase

is well over 100:.

According to the aforedefined axial stress state

[Eq. (32)], the domain influenced by constrained edge

turns out to be precisely double that of Q--I laminates.

Consequently, an aspect ratio fbr which E-3 is the

smallest length-width ratio for which Eq. (32) is

satisfied along the'center line x=0. For C>3 , a -miaxial

stress field will exist in a region -around the center

line x-0; the range of length 3b, the domain influenced

`►y the constraint has length 3b, measured from the edges

x-±L.

2. Lauri..na stress

Since the la=i..na stresses are linear conbinatio'ns

of the averaged stresses aX , s Y , T .9 [see Eq. ( 29) s lam -ia

stresses will ccnverce at	 ° c-=.--e rate as the averaze

stresses. The stresses at _^° Ccr:. rS = : the c1a.--ce:i
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TABLE 5..	 Normalized stress at corners d'(L,b)!cc
for G-P laminate in pure compression

N 0.25 0.50 1 3 . 6

1 0.61 1.16 1.58 1.48 1.48

2 O.T4 1.21, 1.93 1.82 1.82

3 0.86 1.37. 2.20 2.08 2.08

4 .0.93 1.50 2.43 2.31 2.31

5 2-03 1.62 2.63 2.50 2.50

6 1.1O 1.T3 2.82 2.68 2.68

7 1.16 1.83 2.99 2.34 2.83

8 1.22 1.92 3.. 1.5 2.99 2.99

9 1.29 2.01 3.30 3.12 3.1-2

?0 1.34 2.09 3. 4 2 3.26 3.26



TABLE 6. Values of u°Ex/a L for C-P laminate
in pure compression

Y	

u°Lrs/IoL

00' 25 0.50 1 3 6

1 0.4775 0.5488 0.7727 0.9335 0.9668

3 0.4308 0.5073 0.7205 0.9183 0.9592

5 " 0.4232 0.4979 0.7082 0.9147 0.9573

6 0.4212 0.4956 0.7051 0.9137 0.9569

7 0.4.19 0.4939 0.7029 0-913110-9565

Kb
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edges will exhibit sirularitias. - However, for the region

away from the edges, the stress distributions appear

very well behaved. For example, see Fig. (22) in which

9•3,,x•0'(at the center-line), N •10, 0•4510.

c. Unidirectional (U-D) [03a Laminates

Since all fibers lie in the same direction, the

generalized plane stresses and lamina .-tresses are the

same. Also E=-E1 , Ey-E2 , - vxy-v12 and Gxy=G12 . For the

assumed data G1eO.65x103 ksi, v12-0.21, we compute

rou2.581.

Unlike the previous two laminates, the eigenvalues

of Q-D laminates were real. Table 7 lists the eigen-

values for up to 3 . terms. Fig-are (23') shows the resulting

stress distributions at the edge for E-3. The values of

stress a  at the corners for different & are tabulated

in Table 8 for N ranging from 1 to 3. According to our

definition, a uniaxial stress state does exist everywhere

except at the corners.



Table ?. Elgenvalues for U-,7 laminate
in pure compression

x 1 2 3

,1-1 0.181 0.181 0.181

I-2 0.362 0.362

I-3 0.547

Iz-1 0.910 0.846 0.809

^-2 2.620 2.339

=-3 -4.272

52
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TABLE 8. Normalized stress aw, corners c=(L,b)/cc
for U—D laminate in pure compression

•	 ,.	 Q=(L:b)/mac

N
0.25 0.50 1 3 6

1 1.000 1.004 1:008 1.010 1.011

2 1.002 1.009 1.016 1.020

F— 
3 1.005 1.014 1.023 1.028 1.028



B. Pure Bending

Convergence of the solution in bending was faster

than for pure compression for both the Q-I and C-P

laminates. This suggested that the Legendre-polynomial

may be preferable to a Fourier series for similar mixed	 .

boundary value problems. Since the axial stress a . when
X.

reduced to elementary bending stress, is linear in y,

it is apparent that Fourier'series will take many terms

to approximate 	 in y-coordinate while the first order

Lege.dre polynomial is equal to y.

a. Quasi-Isotropic

1. Generalized Plane Stress

Eigeavalues are shown in Table 9 for N ranging

from 1 to 8. Observe that the eigenvalues are increasing

at a Faster rate with the number of terms for N>5 than

the correspordirg case in pure compression. [see Table 13.

This may account for the apparent faster convergence of

these stresses. Fewer terms for approximation of the

stresses are needed than for pure compression [compare

a` in Figs .12 and 241.

'she effect of the constrained edge is comparable

`o the pure compression case. Outside of the regicn of

AK
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influence of the constrained edge, the axial stress is

linear and the other stresses vanish [F#.25] exactly as

predicted by elementary theory.

Another measure of the constrained edge effect

.is provided by Table 10, in which values for

8 0 2b2/3NbS11C are tabulated for various C arid'N.

Again, note.that as N increases, the value 8°/Nb^ . • rapidly-

converges. Also as& increases, the value e02b2/3Mbs11c

tends toward unity, the predicted value from Bernoulli-

Euler deflection theory.

'•A possible stress singularity at the corners,

x-tL, y=tb, is very much in evidence from the stress

plots in Fig. 24. Alternatively, the value of Q ,;L,b)

is tabulated for different N in Table 11. and shows no

sign of converging..

2. Lamina Stress

Figures 26--28 show the laminae stresses at the

constrained edge for the plies oriented at 0*-0 0 , 45°,

90°, respectively. It is interesting to observe from

Fig. 28 that the greatest normal stress occurs in the

direction of the Fibers (i.e. the y-direction) .

However, in the 0° lamina (Flg. 26) the greatest stress,

except °or the corners, occurs transverse to the fibers
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TABrZ 10. Values of 8 0• 2b 2/3y S 1C for Q—I
laminate in pure bed

•2h2/3Mbsu'C

N -o .25 0.50 1 3 6

1 0.965 0.982 0.991 0.997 0.999

2 0.955 0.976 0.989 0.996 0.998

4 0.949 '0.974•'0.98T 0.996 0.998

T 0.948 0.973 0.98? 0.996 0.998

8. 0.948 ..a.973 0.987 0.996 0.998



?0

TABLE 11.	 Normalized stress at corners ax(*L,b),t%7b

for Q-I laminate in pure bending

cc L,b) 
/

'Tb

N 0.25. 0.50 1 3 6

1 1.01 1.08 1.10 1.10 1.10

2. .1.12 1.21 1.22 1.22 1.22

3 1.25 1.33 1.34 1.34 1.34

4 1.3T 1..45 1.45 1.46 1.46

5 1_49. 1:5T I-ST I.5T 1.57.

6 1.58 L.68 -1.68 1_68 1.68

T 1.68 1.T9 1.T9. 1.T9 1.T9

8 I-TT .1.88 1.89 1.89 1.89
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(also the y-direction).

b. Cross-Fly Laminates

1. Generalized Plane Stress

The eigenvaluea for. pure bending were once again

complex valued and are tabulated in Table 12. The

accelerating rate of increase of the eigenva'_ues is

apparent from the Table, and is reflected in the rate of

convergence of the stresses [see Fig. 291.

Table 13 provides values for e02b'/3MbSllC

and is the counterpart•to Table 10 for Q-I laminates..

As we observed for pure compression, the effect of the

2onstrained edge upon apparent bending stiffness is

considerably greater for C-P laminate than - 4.-I laminate

in pure bending also.

Again, evidence of a singular stress state at

the corners of the clamped edges is provided by Fig.29.

Tabulated values of ox (±L, ±b), as shown in Table 14 . ,

also appear to grow w_thout bound for large N.

2. Lamina S -.r es s

=tg=es	 show re=:%es=_n a—.'_ve data f cr the

75
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TABLE 13. Value of 8°•2b 2/3MaS 11C for C-P
-laminate in pure bending

S c` 2b2/3MbSj jC	
-

N 0.25 0.50 1 _ 3 6

1 0.624 0.786 0.918 0.972 0.98.6

2 0.563 0.744- 0.897 0.965 0.982

4 Q-539 0.718 0.883 0.960 0.980

7 0.529 0.708 0.878 0.959 0.979

8 ` '0.52T'
. 
z'.Ta6 0 .8TT Q-958 O_979

77



TABLE 14.	 Normalized stress at corners c'XCL,.b)/Qc
for C-P laminate in pure *bending

/vtr	-

N
0.25' 0.50 1. 3 6

1 0.76 1.42 . 1 3T 1.38 1.38

2 1.26 1,72 i.75 1.76 1.76

3 1.52 2.09 2.12 2.12 2.12

4 •1.68 2.44, 2.48 2.48 2.48

5. 1_9?. 2..78 2.84 2.83 2.83

6 2.21• 3A2 - . 3.18 .3.1.8 3.18

7 2.43 3. 4 5 3••52 3.52 3.52

8 . 2.67 3,78 '3.86 3.85 3.85
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c. Unidirectional (U, D) [0] 3 Laminates

Figure 32 shows the axial stress is linear and -

the other stresses vanish,.for Csb, xw+L. exactly as

predicted by elementary theory. Eigenvalues are real and

are tabulated in Table 15, for up to three terms. Again,

calculations for axial stress at the corners of the

clamped edge suggest a possible singularity.
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TABLE 15• Eigenvalues for U-D laminate
in pure bending	 .

K   1 	 '- 2 3

I-1 0.851 0.805 0.804

I-2 1.639 1.402

I-3 .2.655

II=1 5.260 5.132

II-2 10..230 10.220

L-3 15.500

X14



Chapter VI

SIGNIFICANCE

A general method of solving the two dimensional

stress analysis problem for rectangular laminates

subject to mixed boundary conditions has been presented.

For compression sepcimens, the.kinematic boundary

conditions define the manner in which the load is

introduced. The analysis presented herein assumes

rigid body motion of the clamped edge; this assumption

represents. -a "worst case"' condition. In any actual

experiment there will almost certainly be some defor-

mation and/or even slippage in the fixture.

Quasi isotropic specimens respond uniaxially at

locations at least 3/4 of the specimen width away from

the edge; for cross-ply, the uniaxial range in 1.50

width away from the edge. Since specimens tested in the

IITRI fixture [1] have such short gage lengths, it may

be concluded that a uniaxial.response can not be de-

veloped in specimens* using this fixture.

* An excebtion is unidirectional laminates w j th shall

values o° vLl.

PRg-CEDING RAGE BLANK NOT FILMED



The constrained edge effect upon measured Young's

modulus may be determined as follows. Let Ex and E*

denote, respectively, the actual modulus and experi-

mentally determined modulus using strain gages at the

location y along the center line. Thus

Q	

(33)
Ex ( o s Y)

Combining (33) with Hooke's law (3) to eliminate the

strain ex (o t. y), we obtain

E* _	 ac	 (34)
Ex a. a,y	

v=76y 
o,y)

The measured strain c.(o,y) will normally contain

cont'ributions from in-plane and out of plane bending.

Since the stresses are odd function of y, the bending

effects may be eliminated by using several gages and

averaging• the results.

Equation 34 has been evaluated for quasi-isotropic

and cross-p lyl laminates at several locations y; the

results ar e shown in Tables 16. and 17. Column (a) in .each

table indicates the predicted experimental error if gages

were placed -at y=0_ Siva=?arly, column- (b) In each table

'_ These results are base, u:,cn v=0.336 -`Or  - -_
l.r._::a;,es, and v = C.331 v"5 gin:: 7, =-1.. 7 -' _- -	 lar:.-aces.

M



shows the predicted error if gages were placed at y:±b/2.

Since, for each case, column (b) is closer to unity than

column ( a), placement of gages at y=tb/2 is a better lo-

cation for strain gage placement. In fact, calculations

at.other values indicate ytb/2 is the optimal location.

Column (c) in Tables 16 and 17 is based upon the

assumption o! three strain gages, two at the quarter

Points on one face and the third in the center of.the

Opposite face. Clark and Lisagor [1] took extensive

measurements of graphite/epoxy using strain gages at pre-

ciselythese three points. Column (d) shows the experi-

mental results based upon Clark and Lisagor • s original

datal. It will be observed that comparison of the theo-

retical results column (c) Frith the. experimental result

column (d) is exceptionally good for quasi-isotropic

laminates. For cross-ply laminates, Table 17 shows a

considerable discrepancy between predicted and actual

error2. The experimental results confirm the greater

sensitivity of modulus to aspect ratio fpr the cross-

1 Orig; ::al stress-strain curves we v. •e available only for
V-=0.25, -0.50 and 1.0. Fcr Q=I spec wens, a "best-Pit"
strz^.g^t lire was constructed over the strain range
E=0 to E-0.005. Average moduli for the three aspect
rat_os were 7.09x10 ksi. 5.71x10 ksi, 5.39x10 ksi.
'_"he actual modulus was assumed to be 5.59x'_0 ksi for
purp oses of completing the column.

2 Ccl.= (d) cf "_'ale 1_7 uses dam, as rep ,tee	 C12.rk

A7



TABLE 16. Predicted experimental error-of
Young*s modulus E for Q-L laminate

Cal (b) (c) (d)

E* (0,0) Ee(Osb (g)+(b)

0.25 1.091-- 1.063 1.077 1.083

0.50 1.026 1.007 1-01T 1.018

..0..ga6 0.9'T4 0.970

3' '0.999- 2.000 0-999— —

6 1.000 1.000 1.000 —
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TABLE 17. Predicted experimental error of
YowIsS I a modulus E for C.? ISMInAte

(a) (b) (c) (d)

E (0,0)

E: 
X

bE	 (o 
jp 2

E

(a)+(b)

2
E /Ex

0.25 .2-39 2.. 342 2.35

1.64

1.13

0.50 1.g3 1.43 1-01

1, 0.82 1.3.9 0.97 0.97.

3 1.02 1.402 1.00

6 :L,.*oo 1.00 1.00 1.00
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plies, but not to the extent predicted. Presumably, the

assumption of a rigid clamped edge is not appropriate

for short gage length, high Poisson's ratio- specimens

In compression using the =MI fixture..

A more plausible explanation is that tbd rather high

stress levels near the constrained edge place the

material well into the non—linear range of behavior.

[Note the high stress levels at the edges in Figs 16,173.

i':onsequently, it is possible that the width of the

specimen near the clamped edge expands non—linearly,

thereby greatly diminishing the constrained edge effect

For completeness, we point out that Clark and

Lisagor Ell found that the modulus of-unidirectional

laminates was independent of C; this is consistent with

the results of Chapter V.

Although an explanation of compressive failure of

composites was not one of the objectives of this study,

some preliminary results are obtainable directly from

the stress analysis. Failure theories for single plies

may be applied directly to the stress distribution

with each Individual lawina.

Del arina.lon will occur k.-en the in oerlaWina_r

shear stresses T., x z.nd T,Y exceed the allowable loads

for	 _.OXj	 _ .ese Shea	 eSS?5 ^la;j ..° a..-_..:r..__e_J
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obtained from the three-dimensional equilibrium
equations, i.e.

• 8 8Tii
t •[ ------- + ----

i3 + Ariz = 00
ax 8y
3Ti aci

(35)

ti • E .- + ] + ATyZ 0,
8x By

where the superscript i refers to the i-th lamina, AT

refers to the difference in value of shear stress across

the i-th .lamina, and ti . the. thickness of the i-th lamina.

For small ti,'these shear-stresses are very small, except
where the in-plane stress exhibit largegradients.



Chapter PIS

CONCLUDING REMk=.

Limitations of the Model

Insofar as the problem is analyzed as generalized

plane stress, it will not provide an exact solution to

the three-dimensional elasticity problem. In particular,

the third equation of 'equilibrium. (force-balance in the

z-direction) will not be satisfied [157• However, it is

well known that.the generalized plane stress solution is

very close to the exact solution if the thickness of the

laminate is small compared to the other two dimensions.
The linearity assumption Eqs. (3) is a somewhat

more serious limitation of t&is model. Compression

tests of uniaxial [03s high-stre_.ngth graphite/epoxy

laminates indicate linear behavior between load and

axial compressive strain all the way" to fracture-[ 11

Since the load is carried predo._nantly by the graphite

fiber, it may be inferred that graphite responds linearly

to compressive rupture. On the other hand, a cross-ply

C±45/;:45]s stacking of the same iam_nae rcduces z
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non-linear behavior, particularly near failure. It is

important to note that although the ultimate axial strain

for cross-pl7 . laminates exceeds the ultimate axial strain

for unidirectional laminates by a factor of Up to 3 [ 13,

the maximtmi compressive. fiber strain is considerably

lower for the cross-ply than for theuniaxial layug.

Indeed., these cross-ply laminates fail due to delami-

nation and not fracture [ 11. It may be inferred from

the foregoing discussion, that the cross—ply laminate

behaves non—linearly because the epoxy exhibits non-

linear behavior. Such non—linear effects may also be

observed from transverse strain measurements on

unidirectional laminates. Ashton [161 reports varying

values for Poisson's ratio during axial compression.tests

on high-strength graphite/epoxy composites.' The in-

elastic behavior-of composites was' .also , 1.nvestigated"

by Foye• from the point •view • of • micromechanics L171.

The model is very difficult to validate empiri—

tally, since it is impossible to know the exact kinematic

boundary conditions at the clamped edges. It is evident

that an edge constrained to respond rigidly is the-

severest case that might be encountered. The results

obtained in this study should therefore be viewed as

the "'worst possible case".



out of plane bending, while of technical interest, is

not studied 1A this Work. Such effects are expected to

be small in comparison to in-plane beading because the

Poiason ratio viis generally much smaller than vxy and

.the thickness of most laminates is very small compared

to their width. Moreover, a study of these effects,

would involve a considerably more complicated model.

Thus the developed model should only be considered

a first approximation to an accurate description. It

may be used by the experimentalist to corroborate only

the inital portion of the st.resi-strain compressive

data. At the other end of the data curve it may be.used

inlp to suggest, rather than provide definitive

explanations, for different modes of failure.
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