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FOREWORD

This report summarizes a portion of the work done on NASA Grant

NGR 43-003-015. It is the masters research of the first author, Ashgar

Googerdy. John Peddieson was the thesis advisor; M. Ventrice was the

principal investigator of the grant.
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Ohapter 1

INTRODUCTION

In the operation of a liquid-propzllant system the injected

propellants are converted by many physical and chemical processes into

hot burned gases which are accelerated to supersonic velocity by passing

through a converging-diverging nozzle. Since the operation of such a

system, however, is seldom perfectly smooth, the oscillations can be

of either a destructive or nondestructive nature. Undestructive

unsteadiness is characterized by random fluctuations in the flow

properties and includes the phenomena of turbulence and combustion

noise. Unsteady operation of a destructive nature, on the other hand,

is characterized by organized oscillations in which there is a definite

correlation between the fluctuations at two different locations in the

combustor. Such oscillations have a definite frequency and result in

additional thermal and mechanical loads that the system must withstand.

In liquid-propellant systems experiencing unstable combustion,

heat transfer rates to the walls considerably exceed the corresponding

steady state heat transfer rates, resulting in burn-out of the walls.

If the system can survive these effects, mechanical vibrations in the

system can cause mechanical failure or destroy the effectiveness of

the delicate coitrol and guidance systems.

The phenomenon of combustion instability depends strongly upon

the unsteady behavior of the combustion process. The organized

oscillations of the gas within the system must be coupled with the

1
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combustion process in such a way as to fora a feedback loop. An

understanding of this coupling between the combustion process and the

wave notion is necessary in order to predict the stability characteristics

of the system.

There are three cases of oscillations in the combustion

instability problems. The most important form of combustion instability

is known as high frequency instability. As the name suggests, this

type of instability represents the case of forced oscillations of the

combustion chamber gases which are driven by the unsteady combustion

and intract with the resonance properties of the combustion geometry.

The observed frequencies, which are as high as 10,000 cycles per second,

are very close to those of the natural acoustic modes of a closed-ended

chamber of the same geometry as the one experiencing unstable combustion.

High frequency combustion instability can resemble any of the

following acoustic modes: (1) longitudinal, (2) transverse, and

(3) combined logitudinal-transverse modes. Longitudinal oscillations

are usually observed in chambers whose length to diameter ratio is

much greater than one; in this case the velocity fluctuations are

parallel to the axis of the chamber and the disturbances depend only on

one space dimension. For much shorter chambers the transverse mode of

instability is most frequently observed. Transverse oscillations in

rocket motors are characterized by a component of the velocity

perturbation which is perpendicular to the axis of the chamber and a

three-dimensional disturbance field. Such oscillations can take either

of two forms: (1) the standing form in which the nodal surfaces are

stationary, and (2) the spining form in which the nodal surfaces rotate

in either the clockwise or counterclockwise direction.
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The theoretical study of nonlinear vibration and coidwtionn

instability appears to have been initiated by a British group [1] in

1940. At that time the group testing a small solid- g&-oj*llant rocket

motor observed sudden increases of pressure to twice the expected

level, enough to destroy a motor of flight weight. Since the early

19S0's mooch experimental and analytical research has been developed to

better understand the phenomenon of high frequency combustion

instability. Most of the theories presented prior to 1966 were

restricted to circumstances in which the amplitudes of the pressure

oscillations were infinitesimally small, that is, in the linear regime.

The case of longitudinal instability was studied by Crocco [2] as well

as the studies of transverse instability by Scala [3], Reardon (4],

Culick [5], and Zinn [6].

In the field of finite amplitude (nonlinear) combustion

instability, mathematical difficulties have precluded any exact

solutions, and approximate methods and numerical analyses have been used

almost exclusively. For this reason publications in this field are

relatively scarce. Notable among these is the work of Maslen and Moore

[7] who studied the behavior of finite amplitude transverse waves in a

circular cylinder. Their major conclusion was that, unlike logitudinal

oscillations, transverse waves do not steeper to form shock waves.

Maslen and Moore, however, considered only fluid mechanical effects;

they did not consider the influences of the combustion process.

One of the first nonlinear analyses to include the effects of

the combustion process and resulting steady state flow was performed by

Priem and Guentert [8]. In this investigation the problem was made

one-dimensional by considering the behavior of tangential waves
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traveling in an annular section of the combustor of a liquid propellant

rocket motor. In more recent years other investigators such as

Burstein (9] have attempted to solve numerically the equations 	 i

describing instabilities that depend on two space dimensions. Although

the resulting solutions resemble experimentally observed combustion

instability, this method requires excessive computer time, and studies

of this type for three-dimensional oscillations will have to await the

development of a much faster breed of computers. Powell (10] studied

nonlinear combustion instability in liquid propellant rocket engines

using the Galerkin method. He concluded that the following nonlinear

mechanisms were important in determining the nonlinear stability

characteristics of the system; (1) the transfer of energy between modes,

(2) the self-coupling of a mode with itself, and (3) a nonlinear

combustion mass source. Also Powell's work indicates that the Galerkin

method can be successfully applied in the solution of nonlinear

combustion instability problems. The numerical solution of the

resulting ordinary differential equa-ions will, in most cases, require

much less computer time than a finite difference solution of the

original partial differential equations.

The present work is motivated by a desire to determine whether

or not some of the features of Powell's numerical solutions can be

reproduced analytically by means of perturbation methods. For

simplicity a thin rectangular chamber and a thin annular chamber are

considered rather than the full cylinder investigated by Powell (10].

This eliminates one space coordinate but still allows sufficient

generality to make possible the investigation of both mode-coupled

annular and self-coupled rectangle instabilities. Also for simplicity
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a simplified equation of state for the gas and a simplified description

of the interphase mass transfer are employed. These simplifications

make it unnecessary to explicitly consider the gas-phase energy equation

and the fuel-drop phase balance laws. The unsteady combustion response

is characterized by a simple time-delay mechanism.

The Galerkin method is used to solve the partial differential

equation governing the velocity potential. This produces a set of

nonlinear ordinary differential equations which are solved by singular

perturbation methods. This allows limit cycles to be determined

analytically and the approaches to the limit cycle to be farad from

simple numerical integrations.



Chapter 2

a mRwICN EQUATICM

It is the objective of the discussions presented in this

chapter to analyze the combustor governing equations and reduce them to

an analytical form that is amenable to mathematical solution. The

simplification will be done in a mmmer trat will allow the resultant

equations to preserve both the mathematical and physical essence of the

original problem.

The combustion chamber medium will be considered as a two-phase

mixture of liquid propellant droplets and gaseous combustion products.

The primary reaction between the fuel and oxidizer is assumed to occur

immediately upon vaporization of the propellant droplets; that is, the

vaporization process is rate controlling. Therefore, the gas phase can

be treated as a single constituent. For simplicity the equation of

state is assumed to have the form of a linear relation between pressure

and density. The presence of burning liquid droplets in the chamber will

be represented as a continuous distribution of mass sources for the

gas. The burning process will be treated as history dependent, this

dependence being represented by a simile time-delay mechanism.

The following equations are derived by applying the laws of

conservation of mass, and momentum to an arbitrary stationary control

volume. (For similar analyses see Readar [4], and Culick [S].) Because

of the use of the simplified equation of state, explicit consideration

6
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of the energy equation is not required. 7hey'are presented first in

dimensional forts and will be non-dimensionalized later.

Balance of mass:

p*t + e - (p*e) - 0* 	(2.1)

Balance of momentum:

F* (11, t + i^* V^*) _ -^*P*	 (2.2)

*
where in equation (2.1), and (2.2) p * , P * , S , and if are the density,

pressure, burning rate, and velocity in the chamber. Also V * is the

di.mumsional gradient operator, and a comma followed by a subscripted

independent variable denotes the partial derivative with respect to that

variable (in this case time).

The idealized equation of state takes on the mathematical form

*	 *2
P = ar F
	

(2.3)

where a *r is the speed of sound at the reference state. Substituting

(2.3) into (2.2) , ) --lds

(2.4)

The governing equations will now be nondimensionalized with

respect to a steady reference state, which will be denoted by the

subscript "r." Usually this reference state is taken to he the

stagnation condition at the injector face, but if the variation of
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steady state properties 4s neglIjible the reference condition can be

the corresponding constant steady state condition. All lengths will be
•

	referred to same characteristic length L	 (Such as the chamber radius

of a cylindrical chamber.) The characteristic velocity is the speed of

sound at the reference state, and the characteristic time is the wave

travel time ar /L . The dimensionless quantities may then be written

as:

P = P
Pr

_ 0 'T

a 

V = Lt	 (2.7)

a
t = --W t	 (2.8)

L

P = - 2	 (2.9)
Prar

8	 8^ -W-W	(2.10)
Prar

Combining equations (2.1), (2.3), and (2.4) with equations (2.5-2.10),

the dimensionless governing equations become
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P.t + ^ • (A - S	 (2.1-)

U,t + 0 • 10 - -f (log P)	 (2.12)

p - P
	

(2.13)

where "log" mews natural logarithm.

It will be considerable help in the solution of the system of

governing differential equatiors (2.11) and (2.12) if a first integral of

the momentum equation can be found. This can be accomplished if the flow

is irrotational, because the velocity vector can then be expressed as the

gradient of a scalar potential. Under these conditions it is possible

to combine the equations to obtain a single partial differential

equation governing the behavior of the velocity potential. The pressure

is then related to the velocity potential by the integrated momentum

equation. To prove that flow is irrotational, it can be done by taking

"curl" from equation (2.12) and also using the vector identities

^ - (^XF) - 0

f  (h) - 0

to find

DW - W V ^1( - 0 - i1) 0	 (2.14)

where W is vorticity vector, and defined by
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W - YXU
	

(2.15)

Equation (2.14) can be satisfied by

(2.16)

which will be true provided

., -►
W(r, 0) - 0 (2.17)

therefore equation (2.16) shows that flow is irrotational.

Introducing the velocity potential defined by

0_lip
	

(2.18)

substituting (2.18) into (2.12) and (2.11) yields

P_e
(*, t +17	 ^V^)	

(2.19)

Pi t + PPLV + O* ' ^P = ^
	

(2.20)

Due to their nonlinear natures the system of wave equations

(2.19) and (2.20) cannot be solved exactly. In order to obtain simpler,

but approximate,form, an order of magnitude analysis will be performed to

determine which terms can be neglected. In this approximation scheme

each perturbation quantity will b,; assigned the order of magnitude 0(c)

where a is a measure of the magnitude of the initial disturbance. It

then follows that products of perturbation quantities are of second

order or 0 (c2). To obtain an equation that is correct to a given order
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all terms of higher order are neglected. By this definition it is seen

that first order equations are necessarily linear.

The equations derived from this perturbation analysis are

expected to be valid as long as the amplitude of the perturbation

quantities is finite but smaller than unity. If in addition it is

assumed that the Mach number of the steady state flow is small,

additional terms can be neglected. The behavior of the steady state

quantities is governed by the time independent versions of equations

(2.19) and (2.20). Setting the time derivatives equal to zero, and

retaining only terms of 0 (1) and 0(c) yields the steady-state equations.

Substituting Into these

(2.21)

0 n T(z)	 (2.22)

^ n 0(c)	 (2.23)

and letting

$ n w n CO 	 (2.24)

.



It will be assumed that the combustion is uniformly distributed. w is

constant, therefore (2.27) can be integrated to find steady state

velocity distribution

U- az + c	 (2.28)

Q(0) - 0	 (2.29)

thus

11 - az	 (2.30)

The complete velocity potential is now defined by sum of steady

state and unsteady state contribution, and a second order analysis will

be performed on the simplified wave equation [i.e. eys. (2.19-2.20)] to

obtain a set of second order equation involving the velocity potential.

After a first integral of the momentum equation is obtained these

equations will be combined to yield a single nonlinear differential

equation governing the behavior of the velocity potential. To this end

let

^ - e (-0 + 0(X.y,zpt))
	

(2.31)

8 - w+ ew - c(o + ca)
	

(2.32)

substituting (2.31) into (2.19) yields
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E^,t + 7 2(% t) 2 - ^2 + ^4 gym) - 2a^. x) + ----	 (2.33)

substituting (2.33) and (2.31) into (2.20) yields

	

C tt - 7 2 ^ + e(Q^, t + 2o^p, tz + 21^ . V(^, t) + Q) ^ 0	 (2.34)

note that

c tt s Q2^ + 0(E)	 (2.35)

It is to be noted that equation (2.34) has the form of an

inhomogeneous wave equation.

Substituting (2.35) into (2.34) yields

^,tt - 0 2^ + E C30^, t + 2^^ . ^(O, t) + a) = 0	 (2.36)

To roughly account for changes in the frequency spectriln due to

baffles, cavities, etc., the governing equation will be modified as

follows

'`F',tt - V ^ + ` (5^' t + 2^+ • V'(v, t ) - KV (^,tt) + (7) = 0 (2.37)

where the terns multiplied by k is a correction factor. This can also be

written as

`^,tt + w@, t - V 0 + 2e(VO	 (^, t ) - KV,4'tt)) = -w	 (2.38)



Chapter 3

CWMICN IN A THIN RECTANGULAR
CHAMBER

In this chapter the modified form of the governing equation

(2.36) will be used to study the effect of nonlinearities on the

stability of a thin rectangular chamber in which the distributed

combustion process is that described by Croco [2]. For simplicity one

dimensional instabilities will be considered for a combustor geometry

with uniformly distributed injection (see Fig. 1). In this case all

lengths are referred to characteristic length L*, the chamber length.

The dimensionless coordinates may then be written as:

*

x = -W	 (3.1)
L

*
y a

	

	(3.2)
L

*
z = -W	 (3.3)

L

Therefore, the nondimesional combustor geometry is given by

Fig. 2.

To formulate the combustion function it is first necessary to

recall that the dimensionless pressure perturbation can be expressed as:

14
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q- P
o

e
p0

- -ct + 0(E)	 (3.4)

The combustion process is assumed to be described by the

pressure-sensitive time-delay model developed by Crocco (2] and employed

by Powell [10].

In the present notation this can be written as:

Cr = dn (q - gT) ,gr - q (t - T)	 (33)

where n is called the interaction index (a measure of the strength of

the combustion process) and T is called the (dimensionless) time-delay

parameter (a measure of the importance of history effects).

The governing equation (2.36) now becomes:

O,tt - 020 + c (a-((l - n)o, t + n(h),t) + 2^O - 1(0,t)

-Ko2 (m, tt)) + 0(c 2) - 0
	

(3.6)

It is now necessary to select a potential function to predict

the behavior of the amplitutes of the various acoustic modes of the

chamber. As a first approximation attention will be restricted to the

first terns of a Fourier series, satisfying the boundary condition at

y = ±n/2, that is

m(y,t) - F(t)siny	 (3.7)

Substituting (3.7) into (3.6) (and letting K - 0 for simplicity)

yields
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V + F + e(a-(1 - n)F + JT) + 8/ -iFf) + 0(e2) - 0	 (3.8)

where

() - d( )/dt

Equation (3.8) has the same mathematical fora as the equation

obtained by Powell [10] in his study of purely radial instability in a

cylindrical combustion chamber. His numerical solutions showed that

the stability of the solution depended on the initial amplitude of the

disturbance. Powell [10] also found some cases which were

classified as stable by the linear theory were predicted to be unstable

by the nonlinear theory and vice-versa. In the present work a

combination of the two-variable and strained-parameters perturbation

methods (see, for instance Nayfeh [11]) will be used to obtain

approximate closed-form solution to (3.8) which will be used to explain

the behavior discovered by Powell [10].

Let,

E1 - 8E/31T
	 (3.9)

To begin the two-variable perturbation process, let

&=t
	

(3.10)

n = Et
	 (3.11)

and subtitute (3.9) , (3-10), and (3.11) into (3.8) to get:

F ' y + F + c
1FF,, + c(2F9&n + a((1 - n)F,, + n (FT).^)) + 0 (E 2 )	 0

(3.12)
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Assming

F = FO + cFl + 0(E2 )	 (3.13)	
i

F

the governing equation for first and second order approximations can be

readily written as:

FO,&E + F
O + E1FOF0 ,& = 0	 (3.14)

F1,^^ + F
1 + El (FOF1 ,& + F1FO,E)

_ - (2F 0'&n +a((1 - n)FO ,& + n(FOT),E))

+ 0 (e2)	 0	 (3.15)

r

An approximate solution to (3.14) will now be found by using the

method of strained-parameters with c. as the perturbation parameter.

Toward this end let

_ (1 + e 11W1 + ----)z	 (3.16)

substituting (3.16) into (3.14), and assuming

FO = F
00 + C 1F01 + C 12F02 + O (E3)	 (3.17)

yields

F00'zz + FOO - 0	
(3.18)

FO1'zz + FO 1 
a -

FOOFOO,z	
(3.19)
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F02 1 zz + F02 ' -FOOFOI'z F01F00'z + 2W1F00'zz	
(3.20)

It is assumed that the solution equation (3.18) can be written

as:

	

FOO - C(n)cos(z - a(n))	 (3.21)

where C(n), and a(n) are the amplitude and phase angle respectively.

Substituting (3.21) into (3.19), and finding a particular

solution of the resulting equ tion yields

	

FOl = -1/6 C2sin2(z - a)	 (3.22)

and substituting (3.21) and (3.22) into (3.20) yields

F021E& + F
02 ' (1/12 C2 - 2W1)Ccos(z - a) + 1/4 C3cos3(z - a) (3.23)

The particular solution corresponding to the first term on the

right hand side will be proportional to zsin(z - a). Thus limit

F02

00

as z goes to - (violating the basic assumption of the perturbation

process, namely that c 1F01 and e2FO, represent small correction to F00)

unless this term vanishes. Thus

2W1 = 1/24 C 	 (3.24)
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Substituting (3.24) and (3.16) into (3.21) yields

	

FOO - C cos((1 - 1/24 e2C2X - a) + O(el)	 (3.2S)

Note,	 ,

FO - F00 + O (El )	 (3.26)

Now by substituting (3.26) into (3.15) and using the fact that:

sin(A - B - C) - sin (A - B)cosC - cos(A - B)sinC

one finds that

F1'^^ + F
l - (2^+ a((l - n)C + nocos(1 - NeiC2)T))-

sin((1 -	 2C2) - a) - CUFF + ansin(1 -	 2C2)T)•
1	 1

-((1 R
e

cos lc A - a) (3.27)

Eliminating singularity and using (3.9) and (3.11) yields

C + 2 UM - n(1 - cos (1 - — 7 C 2)T) ) = 0	 (3.28)
27n`'

a + Icon sin(1 -£ `C2)T = 0	 (33.29)
n

The linear stability analysis can be recovered from (3.28) and

(3.29) by neglecting the nonlinear terms in the arguments of the

trigonometric functions. This yields
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C + 7eaC(1 - n(1 - cosT)) - 0	 (3.30)

a + ransinT - 0	 (3.31)

with initial conditions

C(0) - 1	 (3.32)

0(0) - 0	 (3.33)

The appropriate.- closed-form solutions can be written as:

C = _ea(l - n(1 - cosT))t/2	 (3.34)

a - -7(eansinT)t	 (3.3s)

It can be seen that perturbation in C will decay for

on`	
1	 (3.36)

-ccs T'

thus

n = l - COST	 (3.37)

is the neutral stability curve according to the linear theory (Fig. 3).

Equations (3.28) and (3.29) must be solved numerically. To get

an idea of the behavior that will be predicted by numerical analysis,

it is instructive to obtain approximate closed-form solutions to (3.28)

and (3.29). This can be- done by expanding the trigonometrical functions

appearing therein anti retaining only the first terms to get
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C + 7cQC(1 - n(1 - (cosT + ^2TsinTC2))) 0	 (3.38)
271

a 4.
	 - ^ 2TcosTC2) = 0	 (3.39)

27n

The initial conditions remain

C(0) - 1	 (3.40)

a(0) - 0	 (3.41)

Eauationis (3.38) arat (3.39) may be written as the form

C - aC + bC3 - 0	 (3.42)

a + eC2 + i - 0	 (3.43)

where a, b, e, and i are

a - - j (1 - n(1 - cosT))	 (3.44)

b = -- - cnTsinT	 (3.45)
277r

e - -bcotT	 (3.46)

i = cansinT	 (3.47)

The solutions of Equations (3.42) and (3.43) can be written

as:
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C(t) • eat
/_̂a _

 a	
(3.48)

b(1-eat)

a(t)=-
cotT

 ln( 1 - a l _ e2at)) _ it	 (3.49)

Information about the behavior of the solutions obtained in this

chapter is conveniently illustrated by considering stability boundaries

plotted in the n - T plane. By setting

C=0
	

(3.50)

in (3.28), the equation

n	 lE
1 - Cos {1 - $e—^C A

2 7n

(3.51)

is obtained. This is the nonlinear neutral-stability curve. For pairs

of values of n and T satisfying this equation the amplitude of the

solution will remain fixed for all values of time. If a is equated to

zero in (3.51) the linear neutral-stability equation

1

nL 
a 

1 - cos'F

1)

is obtained. If (3 S1) is expandcd for 8E , <<l one obtains the
27Tt-

approximate neutral-stability curve

(3.52)

nA =	 1	 (333)

1 - cosT - 2	 TsinT
27n
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This corresponds to the approximate solution (3.48). Figures 4

and 5 show plots of (3.S1) and (3.53) respectively for the same values

of c. It can be seen that for c<1 the two sets of curves are in close

agreement. In fact, numerical computations have shown that for c<

equations (3.S1) and (333) produce results that are practically

indistinguishable in the region 0<T<Zn. This suggests that the

approximate solution (3.48) is likely to be a good approximation to the

exact numerical results for moderate values of c. In what follows the

validity of this hypothesis will be demonstrated.

To an exaggerated scale typical curves plotted in Figure 4 looks

as follows.

n
1
3

1

0
0
	

1	 2	 3	 4	 5	 6

T

The stability diagram can be conveniently divided into six

regions as shown above. There are
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I: T<n	 n<nL

II: T<7r	 nL<n<nE

II1: T<,r , n>nE

IV: T>ir , n<nE

V: T
>n , nE<n<nL

VI: T»r	 n>nL

The approximate solution (3.48) will now be used to infer the

behavior of the solution in each region. Then some exact numerical

results will be examined. The approximate equations are repeated below:

at
C =	 e	 (3.54)

1 - all - at)

a = ^a(n(1 - cosT) - 1) = ^a(n
L

— 1)	 (3.55)

3

	

b =	 4- £---nTsinT	 (3.56)
277t

The stability boundary corresponds to a = b.

In region I a<0, b>0. Substituting a = -a l into (3.54) yields

- alt
e

C=	 --alt
1 +a(1 e

1

(3.57)

It can be seen that
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limC - 0
(3.58)

t +00

Thus the amplitude decays to zero in region I. In region II

a>0, b>0 and a<b. In region III a>0, b>0 and a>b. In either case

(3.54) inpl.ies

11tt1 C = /a
—	

(3.S9)
t	 ao

It can be seen that in both region II and region III a

limit-cycle is approached. For region II the amplitude of the

limit-cycle is less than that of the initial amplitude while for region

III the limit-cycle amplitude is greater than the initial amplitude.

For a - b (3.54) reduces to

C-1
	

(3.60)

which is the solution associated with the nonlinear stability curve.

In region IV a<0, b<0 and a<b. In region V a<0, b<0 and a>b.

Substituting a - -al and b -b l into (3.54) one obtains

-a t
C =	

e 
l	 (3.61)
- a1t

1 - a 1 (1 - e 	 )
1

where for region IV a l >b 1 and for region V a l<b 1 . For the former region

it is possible to take the limit as t goes to infinity to get
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limC-0
(3.62)

t -► CO

In region IV, therefore, the amplitude decays to zero. For the

latter region, on the other hand, the corresponding limit can not be

taken because C becomes infinite in a finite time. Denoting this time

by t,., it can be seen from (3.61) that

b	 -2a t
1-al(1-e 1 °°)^0 or

1

a

	

t^ ' -ln(1 - l)	 (3.63)
1	 1

If al = b l (3.63) reduces to

C - 1	 (3.64)

which corresponds to neutral stability.

In region VI a>0 and b<0. Substituting; b - -b i into (3.54)

yields

at

► ^ I	 ,il (e - I )

In this case is heconvs infinite when t = f , , .here

b	 tat
1	 nl(e	 - 1)	 0 or

	

t,^,= 
a 

1n(1 +)	 (3.66)
"	 1

Lv _L ..
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Near the linear stability curve lad «1. Expanding (3.63) and

(3.66) in this region am finds that

a
(t.)V ^(1 + W- + ----)	 (3.67)

(tjVI "70.1 1 - W- + ----)	 (3.68)

Thus,

(t) < (t) -
'° VI	 °D V

The results obtained in regions V and VI violate the condition

of validity of (3.54), namely that the magnitude of C be moderate. Thus

the information obtained about the behavior of the solution in this

region can be used only in a qualitative sense. Nevertheless, as will

be seen, (3.61) and (3.65) correctly predict the main feature of exact

solution.

To summarize, the following behavior has been found based on the

approximate solution (3.53). Below curve ACE (regions I and IV) all

disturbances decav to zero. Above ctirve ACE the behavior of the

solution depends on the value of T. For T« all disttirlances evolve

into limit cyclos. In region II the value of the final :unplitude is

less than that of the initial wylitude, MA le in region III the

situation is reversed. For T>Tr all disturbances increase without bound.

The rate of increase is slower for region V than for region VI.
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Sane typical numerical results obtained by solving equation

(3.28) by a fourth-order Image-kutta method are sham in Figures 6-9.

Figure 6 shows three sets of data obtained along the line n - 1 in the

vicinity of T = (the curves are labeled in degrees rather than radians

to better bring out the small differences in the values of T that were

used). Each curve is representative of a different parametric region

which L, included in the labeling of each curve. It can be seen that

these results are in qualitative agreement with the predictions of the

approximate solution. Other results, not shown, reveal that the

amplitude of the limit-cycle in region III increases rapidly as T

increases. Such large limit-cycles are probably inconsistent with the

order of magnitude assumption inherent in the perturbation method and,

therefore, will not be discussed.

Figure 7 shows three sets of data obtained along the line T =

in the vicinity of n - 1. The results for regions I and III are again

in complete qualitative agreement with the approximate solution. It can

be seen that the longest decay time is exhibited by data corresponding

to a point on the borderline between regions I and II. The corresponding

result based on the approximate analysis is found by taking the limit

of (3.54) as a -; 0 to get

C =	 1	 (3.69)
1 +Zbt

Since the decay in this case is algebraic rather than exponential (as it

is for a # 0) this case will exhibit the slowest decay in agreement with

the exact solution.
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Figure 8 shows three sets of data obtained along the line

n = 1 in the vicinity of T = 7 . The case corresponding to region N
decays to zero in agreement with the approximate solution. In regions

V and VI, however, the disturbances evolve into limit cycles rather

than growing without bound as predicted by the approximate analysis. In

contrast to the situation for T<n, it does not appear possible to find

any values of T for which the limit-cycle amplitude will have a moderate

value. Since the accuracy of solutions exhibiting large limit-cycle

amplitude is doubtful, the difference between the unbounded growth

pr-uicted by the approximate solution and the growth to a very large

limit cycle predicted by the exact analysis is probably unimportant. It

can be seen that the rate of growth of the solution increases as me

proceeds from region IV to region VI as predicted by the approximate

solution.

Figure 9 shows two sets of data obtained along the line T =

in the vicinity of :, s 1. Again the differences in behavior between

regions IV and VI are clearly illustrated.

Powell [10] observed similar behavior to that discussed above

in his numerical solutions to an equation similar to (3.28). The

perturbation analysis given here makes it clear that the main effect

causing the observed behavior is the frequenc y shift due to nonlinear

amplitude-frequency dependence and the accompanying distortion of the

neutral stability curves in the n - T plane.



Chapter 4

COMBUSTION IN A THIN
ANNULAR CHAMBER

In the present chapter attention will be given to nonlinear

instabilities in a thin annular combustion chamber with uniform

injection of liquid propellant (Fig. 3). The unsteady combustion

response is characterized by a simple time-delay mechanism which is

the same as in a thin rectangular chamber investigated in Chapter 3.

For this case the potential function 0 depends only on a and t.

Therefore, (2.36) can be written as:

C tt - o,ee + c 
(o- ( (1 - n)o, t + n 4T

),
t) + 20,e0,et

 - 
K^ , eett ) + 

o(E2) - 0

(4.1)

This potential function predicts the behavior of the amplitudes

of the various acoustic modes of the chamber. The velocity potential

will be expanded in terms of products of the acoustic normal modes and

time-dependent modal amplitudes as follows:

^(e,t) = F 1 (t)cosO + F 2 (t)cos23 + ----	 (4.2)

This represents a solution involving standing waves. "Traveling

waves can aiso be treated with no essential difficulty , but tbi.s matter

is not pursued in the present work.

30
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Substituting (4.2) into (4.1), expanding all nonlinear terms in

a Fourier cosine -series, and equating the coefficients of cos 8 and cos 28

individually to zero yields,

F1 + F1 + c (c-y ((l - n)F1 + 41T) + 2(Flk + F2F1) + KF) + 0(c 2) . 0

(4.3)

F2 + 02 + ECQ((1 - n)F2 + 42T) - FlF1 + 4KF2) + 0(e 2 )	 0	 (4.4)

These equations are mathematically analogous to the equations

obtained by Powell [10] in his investigation of transverse instability

in a cylindrical chamber. He obtained numerical solutions to his

equations. In what follows the methods of multiple sales will be used

to deduce approximate analytical solutions capable of explaining the

results computed by Powell [10].

To begin the perturbation procedure let

E = t	 (4.5)

n = Et	 (4.6)

By using (4.5) and (4.6) LXILIations (4.3) and (4.5) can be

readily written as:

1:11r -
 

+ F1 + e(.F 1 , yTI + K F 1' ; r + T̂ ((l - n)F1'^ + n(F11)'C)

+ ^(F1F` . + F,F I .y)) + 0(e`)	 0	 (4.;)



32

F2 ,&& + 02 + s(2F2 ,&n + 4KF2 ,&& + 0((1 - n)F2 ,, + n(Fzr).&)

- F1F1 .E) + O(c2) - 0	 (4.8)

It will now be assumed that the first and second modal amplitudes

can be expended in the form

F  - Fi0 + cFil + ----	 (4.9)

where i can be either 1 or 2.

Substituting (4.9) into (4.7) and (4.8) yields

F10'&C + F
10 + c(2F10

1&n 
+ KF101&& + 0((1 - n)F10,&

+ n(F10T) IF. ) + 2(F10F20 1 & + F20F10,^) + F11'EEO + F11)

+ 0(c 2 ) - 0	 (4.10)

F20 1 &^ + 020 + c(2F20,&n + 4KF20 ►&& + Q((1 - n)F201&

+ n(F20T), & )	 F10F10 , & + F21'&& + 4F
21 ) + 0(c 2 ) - 0	 (4.11)

Since 
FIO' F11' F;O, and F21 do not depend on c each coefficient

(--£ a power of c must be individually set equal to zero. This yields

F10'&E + F10 - 0
	 (4.12)

F,O ' gC* 
+ 4F,0 - 0	 (4.13)
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2F
10I&n + KF10•&& +a ((1 - n)F10,& + n(FlOT),&)

+ 2(F10F20 1& + F20F10 , &) + F11 ,&& + F
il = 0	 (4.14)

2F20 1En + 4KF20•&& + 
0((1 - n)F201E + n

(F20T),&)

- F
10F10'& + F21'&E + 4F

21	 0	 (4.15)

The general solutions of equations (4.12-13) may be written as:

Fi0(&,n) a Ai0(n)cosi& + B iOsiiii^	 (4.16)

where i remains either 1 or 2.

The coefficients Ai0 and Bi0 can be determined by substituting

(4.16) into (4.14) and (4.15), and equating the coefficients of cos&

and sinC in (4.14) and cos', and sin2E vi (4.15) individually to zero to

eliminate singular terms. This produces

k+	 (Q((1 n)A10 + n(.AlOcosT - B10sinT)

+ AlOA., O + B10B20 + K1
10 ) = 0	 (4.17)

B10 + 	 (v((1 - n)B10 + n(AlOsinT + BlOcosT))

+ A10B20 - A`'OB10 - KA10) 
a 

0	
(4.18)
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A20 + ^(a—((l  - n)A20 + n(A20co92T - B203in2T))

+ T(B10 A10 ) + HKB20) = 0	 (4.19)

820 + 2'E (c—y ((l - n)B20 + n (A20sin2T + B20cos2T))

lOB10 8KA20) = 0	 (4.20)

In obtaining (4.17-20) the identities

cos&sing& _ Z( sin& + sin3&)

cos&cos2& = -,( cos& + cos3&)

sin&sin2; - i(cos& - cos3&)

were used.

It is comreniert to rewrit

and phase angles a i defined as:

Ai =

Bi

For additional convenience

in tests of C l , C„ a l , and

e (4.1'-20) in terms of amplitudes Ci

Cicosa i	(4.21)

Cisina i	(4.22)

the final equations will be written

a ` = a` - 'al	 (4.23)
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Substituting (4.21-23) into (4.17-20) and rearranging

yields

Cl + 7c  aCl(1 - n(1 - cosT)) + ClC2cosa12) - 0 	 (4.24)

al + 1(C2sina12 + ansinT - K) - 0	 (4.2S)

C2 + c(OC2(1  - n(1 - cosZT)) - Vicosa12) - 0	 (4.26)

C2
a12 + 1 (( 1 - 2C2)sina12 + an(sin2T - 2sinT) - 6K) - 0 	 (4.27)

2

The linear stability analysis can be recovered from (4.24-27) by

neglecting all nonlinear terms. Inspection of the resulting equation

shows that the first mode is stable for

	

COST	
(4.28)

while the second mode is stable for

	

n—̀- cos..	 (4.29)

It is desired to investigate situations for which the first mode

i^, linearly unstable %fiile the second mode is linearly stable. That is,

situations for which

1	 1
T--COS t• `n< 1— cos-IT(4.30)
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For (4.30) to hold the inequality	 <T< -T must hold. In such

cases a limit cycle is possible. Its aWlitude can be obtained from

(4.24-27) by looking for solutions such that C l and. C2 are constants.

It can be seen that such solutions exist only if 
a12 

is constant (note

that al , and thus 0 2 need not be constant).

Solving the algebraic equations produced by assuming that Cl,

C2 , and a12 are constants yields

C1 - ^20 3 (1 - n(1 - cos2T))(n(1 - cosT) - 1)	 (4.31)

12

C a(n(1 - cosT) - 1) 	 (4.32)
2 '	 cosal2

61c/Q + n 2sinT - sin	 (4.33)tana12 3-+ n cosT + cos.sT - 

To determine whether or not the solutions of (4.24-27) actually

approach the limit cycles discussed above,these equations were solved

numerically by the change - Kutta method (no closed form solutions being

apparent). because of the C2 appearing in the denomination of (4.27)

it is necessary to use a power - series solution for small times whenever

the initial condition C,(0) - 0 is used. The appropriate series

expansions can be written as:

C1	
1 + C11t + 0(t

2 )	 (4.34)

C, = C21  + 0(t")	 (4.35)

i
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a, , :allt + 0(t2)	 (4.36)

a12 = *121t, 	 0(t2)	 (4.37)

Substituting (4.35-38) into (4.24-27) yields

C
l 
= 1 - rc(1 - n(1 - cosT))t	 (4.38)

C2 = rt 	 (4.39)

	

al = ,!C (K - crosi.nT)t	 (4.40)

a1Z = (3K + 7on(2sinT - sin2T)t	 (4.41)

In order to investigate sore aspects of the nonlinear stability

problem a considerable amount of numerical calculations were performed.

Only the most important conclusions and some typical results will be

reported in the remainder of this chapter. These results are presented

with the following objectives in mind:

(a)The prediction of stable limit cycles for transverse mode

instability.

(b)The determination of the dependence of the amplitudes of

the limit cycles upon the combustion parameter n and time-delay T wtiich

aregiven by the steady state solution.

The region of the n - T plane in which limit cycles are expected

is shown in Fig. 10. Defining
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n1	 1	 (4.42)
1 - cosT

n2 =	 1	 (4.43)
1 - cos2T

It ;.an be seen that for (4.30) to be satisfied

	

nl<n<n2	(4.44)

Teas the region A B C (where B corresponds to n = -) is the

region of interest. Points A and C can be found from n  = n2 or

cos2T - cosT = 0
	

(4.45)

In the region 0<T<2n (4.45) has the roots T = 27r and 
57r.

To determine whether or not solutions to (4.24-27) actually

approached the limit cycles predicted by (4.31-33) a variety of

numerical solutions to (4.24-27) were obtained by using a fourth-order

Runge-Kutta method. Some typical results are shown in Figures 11-15.

Figures 11 and 12 present results for :' = 150% n = 0.65, and

K = 0. Substituting these values into (4.31-33) yields

012 = 1.368 Rad. (4.46)

C1 = 3.7680 (4.47)

C2 = 1.0580 (4.48)

for the limit-cycle values.
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It can be seen that the numerical results do approach the

limit -cycle values and that these are in agreement with (4.46-48). It

was established that other sets of initial conditions lead to the same

limit cycles. The results of the computations used to establish this

fact are not shown.

Figure 13 shows some typical results for T ° n and K ° 0. In

this case it is possible to simplify (4.24-27) to

	

C1 +	 faCl(1 - 2n) + C1C_cosa12) 	° 0	 (4.44)

a1 + 7CC
1C2sina12 0	 (4.50)

	

C ) + 2f (OC2 - Cicosa22) = 0	 (4.51)

C`

	

a12 + z ( (^- - 2C2 ) sina12 = 0	 (4.52)

For the initial conditions a1 (0) ° a12 (0) = 0, (4.50) and (4.52)

are satisfied by

a1 = a12 = 0	 (4.53)

Substituting; (4.53) into (4.49) and (4.51) yields

i

C1 +(a(1 - 2n)C 1 + C1C,) = 0	 (4.54)

C2 +: (aC2 - -14-C1) = 0	 (4.55)
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Thus al and a12 can be determined in close-form and C 1 and C2

must be determined numerically from (434) and (4.SS). For these

conditions (4.31-33) siaplify to

Cl = 20 J7n = T	 (436)

C2 = "j('n - 1)	 (4.51)

al^	
0
	

(4.58)

It can be seen that (4.S6-S7) are consistent with (4.S4-SS).

The numerical results shown in Figure 13 are for n = 1. It can

be seen that the correct limit-cycle values are approached for large t.

No difficulty was encountered in getting; the numerical solutions to

approach the limit-cycle values given by (4.54-SS) for any value of n

triad. This is in contrast to the situations for T # n. This will be

discussed below.

For values of 'r other than is0° there appeared to be an upper

limit on the value of n for which the numerical solutions would approach

the limit-cycle values given by (4.31-33). (rho upper limit appeared

to be approximately nu = 0.75, but more work woulkl he required to snake

this value more definitive.) For n^ ,nt, numerical calculations indicate

that	 t: 1 ,uld c, as t Inspection of the ninnerical results

showed that C1 
and

C` would conic close to the limit-cycle values for

intermediate values of time, but then diverge from these values because

a l ywould pass the limit-cycle values and continue grcnaing. Thuti it is

suspected that nu in s for T - 180° and K - 0 because a,, (t) - 0 for
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these conditions. Thus a12 is already at its limit-cycle value and

remains there for all t. It is suspected that the limit cycle is

unstable for n>nu. A linear stability analysis could be carried out in

an attempt to verify this conjecture, but this was not done in the

present work.

To make sure that the lack of approach to the limit cycle

discussed above was not due to errors in the numerical procedure, the

following method was used. A value of a 12 was selected, and (for given

values of T, o, and n>nu) the correspond ag value of K was found from

(4.33). Then the appropriate values of C1 and C` were found from

(4.31-32). Then a numerical solution was found by using these values

of Cl , C21 and a12 as the initial conditions. It was found that in

these cas-s the variables remained constant at their initial values.

Results of two typical calculations of this type are sho%T1 in Figures 14

and 15. It was also observed that the slighest deviation of the initial

values from those computed by the procedure described above lead to

divergence of the variables from their limit-cycle values. This

behavior provides further support for the conjecture that the limit

cycles are unstable for n>nu.

It should be noted that for K = 0(1) the frequency of the second

acoustic mode is very nearly twice the frequency of the first acoustic

mode. The perturbation method makes it clear that the existence of a

limit cycle depends critically on this fact. This is not evident from

the numerical solution found by Powell [101.



In this report the two -variable perturbation method was used to

solve the modal-amplitude equations arising from the application of the

Galerkin method to a nonlinear wave equation describing pressure-sensitive

combustion-instability problems in liquid-fuel rocket motors. Two

idealized problems were discussed. The first was that of transverse

symmetric motion in a marrow rectangular combustion chamber. This problem

exhibits self-coupled instability. Tle second was that of transverse

motion in a narrow annular combustion chamber. This problem exhibits mode-

coupled instability. In this way an application of the method to each type

of pressure-sensitive instability problem was presented.

For the case of the Tectangular chamber both the linear and nonlinear

stability boundaries and limit-cycle amplitudes were obtained in closed form.

It was also possible to determine the evolution of the initial disturbance

in closed form after making a slight approximation. When this approximation

was removed a numerical solution was required to determine this evolution.

For the case of the annular combustion chamber the linear stability

boundaries and the limit-cycle amplitudes were fotutd in closed form. The

evolution of the initial disturbance was determined numerically.

In both cases the results exhibited the same behavior as that observed

hr Powell 1101 who used direct numerical solution of the modal-amplitude

equations to :uralv:e similar problems. In fact it was fcxind ti-tat the closed-

form solutions obtainctil herein could be used to explain several of the

parainetric trends observed in [10]. Since the functions determined numerically

in the present work are much simpler than those computed in [10] it is thought

that present procedure offers onportunities for significant savings of
1

computer time.
42	 i



43

On the basis of the numerical results the following nonlinear

mechanisms were found to be important in determining the nonlinear

stability characteristics of the system: (a) the transfer of energy

between modes and (b) the self coupling of a mode with itself.
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Figure 1. Georietry and Coordinate System for Rectangular Chamt:r
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Figure 10. Linear Stability Boundaries for Annular Chamber
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