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ABSTRACT

The conventional (no-offset) quadriphase modulation technique suffers from

the fact that hardlimiting will restore the frequency sidelobes removed by

proper filtering. Thus offset keyed quadriphase modulation techniques are often

proposed for satellite communication with bandpass hardlimiting. In this report,

a unified theory is developed which is capable of describing the power spectral

density before and after the hardlimiting process. Using the in-phase and the

quadrature-phase channel with arbitrary pulse shaping, analytical results are

established for generalized quadriphase modulation. In particular MSK, QPSK, or

the recently introduced overlapped raised-cosine keying all fall into this

general category. It is shown that for a linear communication channel the power

spectral densityy of the modulated signal remains unchanged regardless of the

offset delay. Furthermore, if the in-phase and the quadrature-phase channel have

identical pulse shapes without offset, the spectrum after bandpass hardlimiting

will be identical to that of the conventional QPSK modulation. Numerical Examples

are given for various modulation techniques. A case of different pulse shapes in

the in-phase and the quadrature-phase channel is also considered.
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I. Introduction

Quadrature modulated signals are generally represented by the in-phase and the

quadrature-phase components. The fact that the offset keying technique will ease

the carrier timing recovery and have low sidalobe regeneration is well known li al.

MSK and Offset QPSK are typical examples utilizing this technique. In fact, MSK

can be viewed as a special case of offset QP$K with sinusoidal pulse weighting

Is	
In this report we develop the theory for evaluating the power spectral density of

a generalized quadrature modulated signal with arbitrary pulse shaping in the

in-phase and the quadrature-phase channels. The theory can be applied to compute

the power spectral density when the quadriphase signal is passed through a band-

pass hardlimiter.

Consider a complex analytic function representation of the quadrature signal

v(t) = Re[e 
3w 

ct x(t)] where x(t) is the baseband digitally modulated signal.

Prabhu and Rowe [4 show that for phase modulated signals the power spectral

density of v(t) can be determined primarily by the power spectral density of x(t).

It has been shown)r43 that except for some degenerate cases, the baseband model is

sufficient for the spectral analysis. Hence only the baseband signal model is

studied throughout the remainder of this report.

This report is organized in three remaining sections. In section II, the

baseband modulator is described. The mean function and the autocorrelation

function of the process x(t) is evaluated. Through the use of the cyclic property

of the autocorrelation function, the generalized power spectral density of this

cyclic process is defined, and the average power spectral density is computed.

In section III, the case of bandpass hardlimiting is considered. The bandpass

hardlimiter will result in a correlation between successive symbols. Consequently

the power spectral density after the bandpass hardlimiter cari only be evaluated

1-1
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for some classes of examples. In section IV, numerical examples are given to

compare the spectrum before and after the hardlimiting process. MSK, offset

QPSK and triangular pulse keying are considered in this section. Furthermore,

an example is given where different pulse shaping is used in the in-phase and

the quadrature-phase channels.



C
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II. The Baseband Model

Consider a random process x(t), 	 < t < -, defined by

00

X(t) _ Fa qS (t - kT)

k=-0	
k

-co t < 0

where 
{Sk}_w 

is a stationary random sequence which takes on values {1,2, ••• , M}.

M
	

For each S  = X, a complex sigrieling waveform q R(t) is generated. This composite

signal x(t) is then passed through a linear filter with impulse res*onse h(t)

giving an output y(t)

where

	

y(t) =	 h(t-T)x(T)dT

k=-oo gSk(t-kT),

and

w

	

gS (t) =	 11(t-T)qS (T)dT	 (2-2)
k 	k

a

In general y(t) is a nonstationary random process. It will be seen that

the expected value of y(t) is periodic and a generalized power spectral density

function is defined, Let Pr(Sk = ^) = P21 be the marginal probability of Sk . Then
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2-2

M	 0*

n(t) ^ Ejy(t)} - r E RRgt(t-kT)

R=l=l k=-CO

(2-3)

= n(t+T)

The Fourier series expansion of n(t) is written as

n(t) =

CO

F cne^nwot _^ 
t	 t wo = T

n=-w

and

^fT

	
-jnwo t

cn - T	 an(t)e	 dt	 (2-4')

0

Hence c  defines the discrete frequency component of n(t) and is referred to as

the line spectrum. Since the process y(t) is nonstati?nary, the autocorrelation

function is defined in the ensemble average sense. Let R y (t,T) be the

autocorrelation function of the process y(t). Then

Ry (t,T) = Et[Y(t) - n(t)) [Y* (T) - n*(.a.)]

E{Y(t)Y*(T)^ n(t)n*(T)

E{y(t)y*(T); =	 E gS (t-kT)gs , (T- k' T)
k=- CO k' =-^	 k	 k

and

a

(2-5)



where

M

L pig,,(t-kT)g,*(T-kT); k=k'

g (tr kT)g5 * ( ,r-k' T)

k	 k	
M	 M

L^	 Pk,Z',k-k' gk(t-kT)ge (T-k' T) k ft

and

PR,V tk-k , = Pr I S k = t j S k' z R.' 
J 

+ k¢k 1

Consequently

Ry(t+T, T+T) = Ry (t,T)	 (2-6)

It is shown in appendix A that the generalized spectral density of y(t) can

be written as

	1 	 T	 ^	 -jmT -Jkwa(t+T)

	

Sy ^ k (w) = T
	

Ry(t+T, t) e	 e	 dT dt

	

o	 -^

The zeroth term is generally referred to as the average power spectral density

of the process y(t). Hence

T

	

SY (W) = Sy ,o (W) = T	
Ry(t+T, t) e

-j ur dT dt
	 (2-7)

fO f.co

2-3
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Equation (2-7), combined with (2-5) and (2-3), can be used to evaluate the

power spectral density of the process y(t). For quadrature modulated signal, we

consider the case that

gSk(t) = akf(t) + ibkg(t)	 (2-8)

where ak 's and bk's are independent identically distributed random variables with

zero mean and variances 
aa2 and ab2 respectively, The f(t) and g(t) are real

valued time limited functions which may last longer than a period T. From (2-2),

W	 CO

E I y(t) y*(T) = crag	 : ?(t-kT) f( T-kT) + ab2 
E 

§(t-kT) g(T-kT)

k=-0 	k=- 00

where

00

f 	 =
	
W-T) f(T) dT

and

00

g(t)	 h(t-T) g (T) dT

Also

n(t) = 0

i
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T

Sy ( W) _ T
	

Ry ( t+T, t) e`Jol dT dt

fo -^

T ca,
^F(W)^ + T abZ ^-(W) ^2

and

(2-9)

where

•	 F(W)	
f(t)

 e- JA dt

G(W)	 g(t) a-aWt dt

—oo

The power spectral density given by (2-9) consists of two components. The

first term is the in-phase spectrum and the second term is the quadrature-phase

spectrum. This additive property of the spectral density evaluation enables

us to define any in-phase and quadrature-phase symbol weightings.

t
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III. The Effect of Bandpa,ss Hardlimitin2

The h seband model discussed »n the last section can be applied to evaluate

the power spectral density of a quadriphase signal after bandpass hardlimiting.

From (2-8), we have

gSk(t) - a k f(t) + Jbk g(t)

and

gsk (t) - a  ?(t) +']bk 9(t)	 (3-1)

The bandpass hardlimiting model can be written as

z(t)	 H Cy(t)] = ejr ( t)

where

^(t)	 arg [y(t)]

Since f(t) and g(t) may last longer than a period of T, the nonlineariiy

introduced by the bandpass hardlimiter will result in a correlation between the

successive symbol periods. Let f(t) and g(t) be nonzero over a period of LT.

Then we can write
w

a

^(t) -	 Volk (t - kT)

k=-0

(3-2)

Where 1Y. is a stationary random sequence which takes on values (1, 2, ...,

22L I.- Relating (3-2) to (3-3) we obtain



L^1

bk-Z g[t	
(k-L)TI

(t-kT) - tan
Lug

	
(3-3)

k	
ak-z ?[t - (k•Z)TI

LZXO

Prabhu[' a has evaluated the power spectral density for baseband corre-

lated phase modulated signals. For the case that the successive f(t) and g(t)

do not overlap (L=1), and that the a k 's and bk 's are equiprobable independent

binary random variables, then from (3-2)

z(t) -	 ak f(t - kT) + E bk a(t kT)

k=-W	 k=_00

where

f(t) .^ --^

	

	
f(t)

f2 (t) + "92(t)
(3-4)

and

9(t) -	
9(t)

4f2(t)+ q2(t)

From (2-1) and (2-9), the power spectral density of the output from t'"e

bandpass hardlimiter S Z (w) is given by

sz(+) T {CA (W) 1 2 + 1G mil

3-2
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where

F(w)	 f(t) 
a-cwt 

dt

`11r!
	

k

	

g ( t ) a
-3wt 

dt	 (3-5)

w

Appendix B provides an alternative approach for evaluating the power spectral

density of baseband nonoverlapping phase modulated signals. Setting L=1 in (3-3),

we oLtain

b §(t-kT)
^ak (t-kT)	 tan-1 a('t-kT

Since ak I s and bk I s are equiprobable independent binary random variables,

ak (t) takes the following four possible forms;

± tan
	 _^,ak (t)	 (3 6)

Q	 IT ± tan 	 t

where ak I s are equiprobable independent random variables which take on values

11, 2, 3, 4 1. Substituting (3-6) in (B-7) and using

PZ,m,k - P^Pm = 1 * k and m,

we obtain the same result as given by (3-5)
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IV. Numerical Examples

Example 1, We consider the case that g(t) = f(t P-	 . Consequently

IG(w)l _ JF(w))

x and

2	 2	 2	 2
Sy(w) 

^a 
Tb — J F(co) ( 2 = T J F(w) H(w) 12

(4-1)

However, the nonlinearity introduced by bandpass hardlimiting restricts the

evaluation of (3-5) to some special cases. Suppose that the signal y(t) is

unfiltered and f(t) is nonzero for a duration less than or equal to T. Then

JH(w)! = 1

and

0

F(w)

	

f(t)	 e-Jwt dt

00 f2(t) + f2(t	
T)

	

f(t + 
T)	 _Jw[t + T]

	

2	 e	 2 dt

y	 f2(t + 2) + f2 (t)

If f(t) is also an even function

F 	 g(t)	 eJwt dt	 _ (
G (wji I

CO- 	
^

f2 
(t 7) + f2 (t)

4-1



Hence

S (w) _ 2 1 F (w)12

1

i

1

(4-2)

For the Offset RISK

1 ^tp < ^

	

f (t)	 T

7

T

	^ 	 2
S^(to) x 2	

e-jwt dt

T

2T sinc2 (^r)T)

Then

i
a
i

a



4

and

Sx(w)
	

I1F(w)l2

T
 i f 0

T	 e-3wt dt a•	 ^ e^cwt dt

T	 0

T 3 + 1 cos w since ^0
a T)

For the MSK

cos "	 t <

f 	 --

°	 I t l ' 2

%T

z
Sy (w) = 2
	

cos T
e-jwt dt

J^T

8rt2 T	 2 w
^^ _ ^2 T2 ) 

2 cos 2

Then

4-3



r
E

and

 T

Si(w) 
22

	

	 a-3wt dt +
	2cos ^ e-jwt dt

fT, 02

2 wT	
Tr2 + w 2 T2 - 2^rwt sin

1
_2T	 sinc ^^-^+	 2	 22 2

Or - w 
T )

2wT (1 - cos wT + 2w (sin wT sin "T
+

o,,T (n2	 w2 T2)

Lastly for triangular pulse

1 1 - T Itl	
Itl	 f

f (t)
0	 (ti > 7

then

 (wTSy (w) = 2 sin C4 4 }

and

T
0	

T	 1 - 2t
SZ(w)	

T	
e
-
jwt dt +	

ft
 e-jwt dt 2

	

_T

	

JO	 1 - Tt +-T7

	

2	 T

4-4



and

SZ(w) _ I IF(w)I2

Tfo
	

2
2	 e-Jwt dt +	 1 e -Jwt dt

_T

T	 0
-2

T T + ^ cos ŵT- sinc2 1T!

For the MSK

cos T ^t^ <T
f(t) _

0Itl > 2

T

2
Sy(w^ = T	 cos T e -iwt dt

fT2

87r 2 T	 2 W
(,12 - w2 

T2)2 
cos 2

4-3
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and

T	 2
S2(w) : 2	 e-jwt dt 

+

fo

Z 
cos ^ e-jwt dt

fT,
2

1	 2 (wT	
,r2 + w2 T

2 21rwt sin 'WTT
_ 2T 4 sinc R
	 (n2 w2T2) 2

2wT (1 - cos W) + 2,r (sin wT - sin wT
+

wT (ir2 	w2 T2)

Lastly for triangular pulse

and

	

1 - T It,	 Itj <
f(t)

0	 Itl > f

Sy (w)= 
2
sinc4 ( 4 )

T

SZ()	 T
w 	2
	 _0 a-jwt dt +	 2	 1 Tt	 e-jwt dt 2

2	 0	 1 "fit+ 822

then

4-4



Example 2. Suppose g(t) = f(t). When

2	 2

SY (w) = Ca T ab IF(w) H(w)1 2	(4-3)

which is identical to equation (4-1). Hence the power spectral density of

quadrature modulated signals generated by (2-8) is independent of the timing

offset in the in-phase and the quadrature-phase channel before the bandpass

hardlimiting. Let us consider the same condition that the signal y(t) is

unfiltered and f(t) is nonzero for a duration less than or equal to T. Then

Itl < T
f(t)

°	 It( > T
and

Sz(w) = 2 (F(w)^ 2	T sinc2 2

That is, no matter how the symbols are weighted before transmission, the

bandpass hardlimiter will restore all sidelobes so that the output resembles

the output of conventional QPSK. This undesirable feature makes the offsetting

technique attractive for nonlinear bandpass channels.

We can see from example 1 and 2 that although the offsetting technique

does not change the power spectral density of y(t), the bandpass hardlimiter

does create differences between the two techniques. Figures 4-1, 4-2 and 4-3

show the cases for offset QPSK, MSK, and triangular keying unfiltered before

4-5



and after the bandpasa hardlimiter. Clearly the theoretical sidelobe

regeneration of MSK is smaller than that of offset QPSK . but is similar to that

of the triangular keying technique.

example 3. We consider a mixed keying case where the in phase and the

quadrature phase have different symbol weightings. Let

cos T It 
f (t)

0	 `tl z.f

and

1	
Iti :,T 

g(t)

0	 It] ''^

be the pulses used in equation (2-4). Then

24n	 2 "'T	 2 (
Sy M - T 	

22T2)2 
cos 

2 
+ sine 

which is independent of timing offset in the in-phase and the quadrature-phase

channels. Howevery the power spectral density S Z (w) in (3-5) after the band-

pass hardlimiting will not be the same. From (3 -5)

w	 d

4-6



T	 2

1	 r0 -jot

	 "f	
Cos ^-	 -3wt

	

SZ (w) " fi 1 
e	 dt +	 e	 dt

J fo 1 +cost T

	

T	
2

	

2	 T
+	 1.	 e-jwt dt +	

e-3Wt dt

p	 1 +cost _ 7t fT

when f(t) and g(t)have a timing offset T/2 0 but

T	 2

2	 v 

S (w) - 1	
cos T	 e-jwt dt

ITT	 .^
1 + cos`' Tt

T	
2

2
+ 1	 1	 -e-jwt dt

T	 T
_^.	 1 + Cos ` 

Tt

when there is no timing offset. Figure 4-4 shows the power spectral density for

both cases.
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V. Summary and Conclusion

A generalized theory for evaluating the power spectral density of quadrature

modulated signals is developed. Arbitrary pulse shaping is allowed in the in-phase

and the quadrature-phase channels to model various kinds of modulation techniques.

In particular, the theory is applied to investigate the effect of bandpass hard-

lirr-ting on quadriphase unfiltered signals. Numerical examples show the wide

range of applications for which phis model can be used. It has been shown that

the power spectral density of the modulated signal is independent of the timing

offset in the in-phase and the quadrature-phase channels. Furthermore, if the

in-phase and the quadrature-phase channels have identical pulse shapes without

offset, the spectrum after bandpass hardlimiting is identical to that of the

conventional QPSK modulation.

In general, the offset keying technique used in the nonlinear bandpass

channel performs better than conventional pulse keying. Depending on the band-

width availability of the communication channel and the required data trans-

mission rate, various keying techniques can be developed to meet the specific

enviroviment. The theory described in this report provides yet another tool for

understanding the effects of bandpass hardlimiting encountered in the nonlinear

satellite channels.

..
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APPENDIX A

GENERALIZED SPECTRAL DENSITY OF NONSTATIONARY PERIODIC PROCESSES

Let i7(t) and R(t,T) be the mean function and the auto correlation function

of a nonstationary process y(t) which satisfies

11(t) - n(t+T)

and

R(t,T) - R(t+T, T+T)	 (A-1)

for some period T. Also let S( so,w') be the two dimensional Fourier transform

of R(t v) . Then fran (A-1)

R(t+T, T+T) e-JG)t-w'`r) dt dT

.,

	 fm
R( t ' ,T ,) e-J(wt'-,wT-w'T'+w'T)dt' dT4

-00

f fw

R(t,T) e-j(wt- W1 T) dt d°t = S(cs,w')
-C	 -CO

Since (A-l) must be satisfied for all w,w' from - (v to +,U, the following

conditions on S(w,W) hold

A-1



(A-4)

a

0	 wow'	 kwo

S (w,w°) =	 (A-2)

0

	

S(w,w') 
E 

S(w-w' - kwo )	 For all other w,w'

k=-Ca

where wo	 21t/T.

Hence

m
j (w' +kw ) t

R(t,T) = — r	 SW + kwo , w') e	 ° e-
Jw 

T dw' 
fW

	

1	 `^	 J kw t

	

277	 e	
o	

SW + kwo , w' ) e^w' (t-c) dm'

k=	 _00

then

R(t+T, t,) = E Yk() e 
jkwot

k=-CO

(A-3)

where

t j kwo	
m	

i

rk(T) 27r a

f CO 
 S(w' + kwo , w') eJ

w T dw'

I
A-2



and

I

SW ^ kwa , w') =	
e-3kwoT 

Yk (T) a-awIT dT	 (A-5)

_00

From (A-3), R(t+T, t) is a periodic function in t with T as a moving parameter.

Therefore

	

- 1	
T	

-jkwot

	

Yk (T) - T
	

R(t+T, t) e	 dt	 -^ < T <	 (A-6)

fo

The generalized spectral density of y(t) can be defined by (A-5) and (A-6)

so that

Sk(w') d S(w' + kwo , w')

1	

T00

	
-jw'T -jkwo(t

+T)

T	
R ( t+T , t) e	 e	 d'c d t

fo	 -00

r

(A-7)
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APPENDIX B

POWER SPECTRAL DENSITY OF BASEBAND NONOVERLAPPING CORRVIATED
PHASE MODULATED SIGNALS

Consider a baseband signal v(t), - < t < - defined by

v( t ) = eM t)	 (g_1)

where

	

(t) _	 y^ak(t - kT), 	 -^ < t <

k=_00

The {ak)-.0 is a stationary random sequence which takes on values

{1,2,---, M}. For each a k = x, a phase=signaling waveform y,(t) is generated.

Clearly the process v(t) satisfies the following conditions.

E{v(t)} = E{v(t+T)}

and

Rv(t, T) = Rv (t+T, T+T)	 (B-2)

where

r

R(t, T)	 E{v(t)v*(T)}	 E{v(t)}f{v*(T)}

Then

M	 co	
jyR(t-kT)

	

E{v(t)}	
2] 

r P a	 (B-3)Q

z=l ku--

B-1



and

E(v(t) v*(T)j im F1: E j ej^z	 ,	 (Q-4)
kR-w k'=-c

where

M P 
ej^k (t-kT)-j* Z ( ,c-kT)

	, ka 
l

Z	
a k

+jYt-kT)-jj'Z(T-k'T) s 9=1

2:
M LM

	 ^jV,t(t-kT)-j4)t(T-k'T)

	

 Pt ¢, , k-k ^ e	 Ok

Z=1 V-1

PP = P
r Gak =^

and

Pt,t,,k,k, = P r Cak = Z, ak , = Z']

Fran (A-7), the generalized power spectral density of v(t) is given by

T	
^	 -a nc^ ( t^'T

S(m) = T
	

R ( t+T, t) 
e-juv 

e	 °	 dt dT 	(6-5)n 

fo	 -QQ

t

I	 1

6-2



Let D be the domain of integration in (B-5).	 Then k' equals zero in (B-4)

for all t, T that lie in D. Hence

I

j*Z(t+T)-j,t(t)
E{v(t+T) v*(t)) =	 P^ e

+
 E

`"

	

	j,P(t+r-kT)-j4,'t, (t)
P t,z , ,k e

k-_0

00

(B-6)

i

Using (B-6), (B-3) and (B-2) in (B-6), we obtain

M	 M M

5n(^} T E 
P 

4r 
(w + nw) T*(w} -

TEE 
Pt Pm `Z (w * ncoo ) ' X111

g=1-1 mx1

+ T E EE 
( P l,m,k - Pk Pn^) e	

a 
t^^ (w + nw0 111 )

k=-- k=1 m-1
k¢0	 (B-7)

where

^q't(t) - jW
^^^ (w)	 e	 e	

t dt
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