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ABSTRACT

The conventional (no-offset) quadriphase modulation technique suffers from
the fact that hardlimiting will restore the frequency sidelobes removed by
proper filtering. Thus offset keyed quadriphase modulation techniques are often
groposed for satellite communication with bandpass hardlimiting. In this report,
a unified theory is developed which is capable of describing the power spectral
density before and after the hardlimiting process. Using the in-phase and the
quadrature-phave channel with arbitrary pulse shaping, analytical results are
established for generalized quadriphase modulation. In particular MSK, QPSK, or
the recently introduced overlapped raised-cosine keying all fall into this
general category. It is shown that for a linear communication channel the power
spectral density of the modulated signal remains unchanged regardless of the
offset delay. Furthermore, if the in-phase and the quadrature-phase channel have
identical pulse shapes without offset, the spectrum after bandpass hardlimiting
will be identical to that of the conventional QPSK modulation. Numerical Examples
are given for various modulation techniques. A case of different pulse shapes in

the in-phase and the quadrature-phase channel is also considered.
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I. Introdiction

Quadrature modulated signals are generally represented by the in-phase and the

quadrathre-phase components. The fact that the offset keying technique will ease
the carrier timing recovery and have jow sidelobe regeneration is well known[]’ZJ,
MSK and Offset (jPSK are typical examples utilizing this technique. In fact, MSK
can be viewed as a special case of offset QPSK with sinusoidal pulse weighting [3!
In this report we develop the theory for evaluating the power spectral density of
a generalized quadrature modulated signal with arbitrary pulse shaping in the
in-phase and the quadrature-phase channels. The theory can be applied to compute
the power spectral density when the quadriphase signal is passed through a band-
pass hardlimiter,

Consider a complex analytic function representation of the quadrature signal
v(t) = Re[ejmct x(t)] where x(t) is the baseband digitally modulated signal.
Prabhu and Rowe[4] show that for phas® modulated signals the power spectral
density of v(t) can be determined primarily by the power spectral density of x(t).
It has been shownﬁ4] that except for sone degenerate cases, the baseband model is
sufficient for the spectral analysis. Hence only the baseband signal model is
studied throughout the remainder of this report.

This report is organized in three remaining sections. In section II, the
baseband modulator is described. The mean function and the autocorrelation
function of the process x(t) is evaluated. Through the use of the cyclic property
of the autocorrelation function, the generalized power spectral density of this
cyclic process is defined, and the average power spectral density is computed.

In section IIT, the case of bandpass hardlimiting is considered. The bandpass
hardiimiter will result in a correlation between successive symbols. Consequently

the power spectral density after the bandpass hardiimiter car only be evaluated
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for some classes of examples. In section IV, numerical examples are given to
comparé the spectrum before and after the hardlimiting process. MSK, offset
QPSK and triangular pulse keying are considered in this section. Furthermore,
an example is given where different pulse shaping is used in the in-phase and

the quadrature-phase channels.
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II. The Baseband Model

Consider a random process x(t), -= < t < =, defined by

[

x(t) = 2 qsk(t - kT) e

K==

Y
(o
N
3

(2-1)

where {Sk}-w is a stationa*y random sequence which takes on values {1,2,++, M},
For each Sk = %, a complex signaling waveform qx(t) is generated., This composite

signal x(t) is then passed through a linear filter with impulse response h(t)

giving an output y(t)

where
y(t) =/ h(t-t)x(t)dr
= D g (tkD),
ke K
and
gsk(t) = [ N(t-T)qsk(T)dr (2-2)

-0

In general y(t) is a nonstationary random process. It will be seen that
the expected value of y(t) is periodic and a generalized power spectral density

function is defined. Let Pr'(Sk =) = Pm be the marginal probability of Sk' Then
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M o
n(t) SEly(e = Y DT Pyg, (kD)

=1 k=ew
(2-3)
= n(t+T)
The Fourier teries expansion of n(t) is written as
- Jnw t ,
n(t)-'z che 0 et ,wo=gf“-
n:-m
and
T .
=jnw t ‘
c, =-%-[ n(t)e  ° dt (2-4)
0

Hence c, defines the discrete frequency component of n(t) and is referred to as
the 1line spectrum. Since the process y(t) is nonstationary, the autocorrelation
function is defined in the ensemble average sense. Let Ry(t,r) be the

autocorrelation function of the process y(t). Then

Ry (1) = E{Iy(t) - n(t)] [y*(x) - n*(x)1}
= {y(t)y* ()} - n(tIn*(x)
and
- Y . '
Efy(t)y*(n)} = Zm kz;m E {gsk(t-kT)gsk. (r-k'T)} (2-5)
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where

M
E pgg,,u-mg[(w-kn; k=k'
. £=1
E{%“bkn%wbpr* =

M M
) N | '
Z L Pt k-k" g, (t-kT)gp (=K' T); k#k

=1 =]
and
Px,z‘,k-k' = Pr [Sk =%, Sp= z'] ¥ k#k'
Consequently
Ry(t+T, T+T) = Ry(t,r) (2-6)

It is shown in appendix A that the generalized spectral density of y(t) can

be written as
T 0 .
. oo =dka (t4T)
Sy, k() =1 f / Ry(t+r, t) 0T e = ° dr dt
0 -0

The zeroth term is generally referred to as the average power spectral density

of the process y(t). Hence

T ™
Sy(w) & Sy,o(w) = —}-[ / Ry(t+'r, t) eJYT 4r dt (2-7)
[0}

-0
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Equation (2-7), combined with (2-5) and (2-3), can be used to evaluate the

power spectral density of the process y(t). For quadrature modulated signal, we

consider the case that

QSK(t) » akf(t) + kag(t) (2-8)

where ak’s and b,'s are independent identically distributed random variables with

zero mean and variances caz and obz respectively. The f(t) and g(t) are real

valued time Timited functions which may last longer than a period T. From (2-2),
E{y(t) y*(0)} =02 Y HEKT) HeekT) + 0,7 D G(t-kT) Gla-k)
k=-oo 1.}

where

?(t) = [ h(t-t) f(x) dv
and

g(t) = f h(t-t) g(1) dr
Also

n(t) =0
2-4
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; and

|

: S

‘ =1 ~Jur i

Sylu) =7 f f Ry(t+r, t) e dr dt i

] 0 - *

b = Jf daz |Fw)? + % crbz |G| (2.9) |
‘ k

i where

:

' Flu) = f F(t) et at

l -0

| .

L B(w) = f §(t) e ot gt

,t

-0

The power spectral density given by (2-9) consists of two components. The

first term is the in-phase spectrum and the second term is the quadrature-phase

spectrum. This additive property of the spectral density evaluation enables

us to define any in-phase and quadrature-phase symbol weightings.
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I11. The Effect of Bandpass Hardlimiting

The haseband model discussed in the last section can be applied to evaluate

the power spectral density of a quadriphase signal after bandpass hardlimiting.
From (2-8), we have

q%h)sﬂfu)+wkﬁﬂ

and
%, (t) = a, #(t) + b, G(t) (3-1)
The bandpass hardlimiting model can be written as
2(t) = H [y(t)] = eJ(t)
where

¢(t) = arg [y(t)]

Since f(t) and g(t) may last longer than a period of T, the nonlinearity
introduced by the bandpass hardlimiter will result in a correlation between the
successive symbol periods. Let f(t) and G(t) be nonzero over a period of LT.

Then we can write

o0 = D v, (6= kD (3-2)

k=~

where {ak}m js a stationary random sequence which takes on values {1, 2, ...,

-t
22L}.- Relating (3-2) to (3-3) we obtain

3-1
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[L-1 ]
3 byp Lt - (k0T
0

ol ;
‘Pak(t-kT) = tan L"] (3"'3)

ayq FLt = (k=2)T]

Prabhuts] has evaluated the power spectral density for baseband corre-
lated phase modulated signals. For the case that the successive f(t) and §(t)
do not overlap (L=1), and that the ak's and bk's are equiprobable independent

binary random variables, then from (3-2)

-] o]

2(t) = Z a, F(t - KT) + 3 Z by alt - kT)
k=~ L I.%)
where
%(t) = = f(t) - (3 4)
vV #(t) + g4(t) -
and

F(t) + g%(t)

From (2-1) and (2-9), the power spectral density of the output from t"e

bandpass hardlimiter Sz(m) is given by

s,00) =+ {IF @)+ 18 w2}
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where

S

&(w) = [ g(t) e 3t gt (3-5)

Appendix B provides an alternative approach for evaluating the power spectral
density of baseband nonoverlapping phase modulated signals. Setting L=1 in (3-3),

we obtain

RWLH g(t-kT)
\J)ak(t-kT) = tan m

Since ak's and bk's are equiprobable independent binary random variables,

wuk(t) takes the following four possible forms;

Yy, (1) = : o (%%}) (3-6)
‘ ™+ tan”! (g%%%)

where ak's are equiprobable independent random variables which take on values

{1, 2, 3, 4}. Substituting (3-6) in (B-7) and using

- =L
Px,m,k = Png =7 ¥ 2% and m,

we obtain the same result as given by (3-5).

3-3
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IV. Numerical Examples

Example 1, We consider the case that g(t) = f(t - %). Consequently

|6(w)| = [Flw)] (4-1)
and

2, 2 2, 2
o, +o ~ o,  to
Sy(u) = 2= |F(w) |7 = 2P| (w) Hw)|?

However, the nonlinearity introduced by bandpass hardlimiting restricts the
evaluation of (3-5) to some special cases, Suppose that the signal y(t) is

unfiltered and f(t) is nonzero for a duration less than or equal to T. Then

[H(w)| =1
and
Flw) = / f(t) e~Jut gy
Lo R0y + P2t - )
© T . T
f(t +3) -jult + 3]
= 2 e 2 dt

- \/fz(t + 1) + F2(t)

If f(t) is also an even function

/ g(t) eJ'wt dt = Ia (w)]

IF ()]
Lo YRt - D) + #2(1)

4-1




Hence

s, (w) = & Fl)|® (4-2)

For the Offset QPSK

Then

4-2
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and

For the MSK

Then

it T
T
0 [t 25
~ 7
2z
Sy(w) —-% cos-%£ e Jut 44
T
-7
2
. 8 v~ T 2 wl
(“2 wt T2)2 T2
4-3
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e A - e

and

0 I
2
S(w) 512, /; e~Jut gy +/ cos ’-.'[I‘ e~ Jut 4¢

0

2

= 2T g—}sincz (%T—)J«

l (2 - o210 2

2

2+ w2712 - 2met sin %

24T (1 - cos %) + 2r (sin ol = sin “’ZT_)

+
uT (wz -l TZ)

Lastly for triangular pulse

then

and

2 T
© 1-51t) It <3
£(t) =
0 Itlzv}
S, (w) =—T-sinc4 (91)
y 2 4
T
0 ——
. 2 1- 5t
S, () ='127 / g-Jut dt+/ T
T o J1-d+B2
) T
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and

For the MSK

Then

szw) = & [Flu)|?

T
0 H
/ e'\jmt dt +/ _L

0o "2

%IJ sincz (‘—%I-)

e-Jut dt

f
|
<
1
i
;
]
{
;
bl !
§ a
* \
Ek ;
.
W I
i
R |
ro
i

e o




and

0 | u 2
S, (w) = 2 e'jwt dt + cos t e'jwt dt
7 T T T
7 0

i + w2 T2 - 2mut sin
(x2 - fr?) 2

wl

= 2T %‘sinc2 G%;) +

2wT (1 - cos %}) + 27 (sin T ~ sin %})

+
ul (ﬂz - mz Tz)

Lastly for triangular pulse

2 T
© 1-51t] It] <3
f(t) =
0 Itlz%
then
s (w) = ¥ sinct (fiL)
y 2 [
and

.
0 i 2
. 2 1 - t »
/ edut 4t 4 / T edut 4 |2

T 0 1-%t+-7-
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Example 2. Suppose g(t) = f(t). Then

2, .2
s () = 2B |F(u) H(w) [ (4-3)

which is identical to equation (4-1). Hence the power spectral density of
guadrature modulated signals generated by (2-8) is independent of the timing
offset in the in-phase and the quadrature-phase channel before the bandpass
hardlimiting. Let us consider the same condition that the signal y(t) is

unfiltered and f(t) is nonzero for a duration less than or egqual to T. Then

1 T
—= |t] 25
. 2
f(t) = \d
0 t| >3 i

and

St

s,(w) = [F()[? = Tsinc? 4
That 1s, no matter how the symbols are weighted before transmission, the
bandpass hardlimiter will restore all sideiobes so that the output resembles
the output of conventional QPSK. This undesirable feature makes the offsetting
- technique attractive for nonlinear bandpass channels.
We can see from example 1 and 2 that although the offsetting technique
does not change the power spectral density of y(t), the bandpass hardlimiter
does create differences between the two techniques. Figures 4-1, 4-2 and 4-3

show the cases for offset QPSK, MSK, and triangular keying unfiltered before




-5

and after the bandpass hardlimiter. Clearly the theoretical sidelobe
regeneration of MSK is smaller than that of offset QPSK but is similar to that
of the triangular keying technique.

»

Example 3. We consider a mixed keying case where the ‘in phase and the
quadrature phase have different symbol weightings. Let

o cgsl}-t- ltli%
f(t) =
0 Jtl2}
and
1t <3
g(t) =
0 |t] >£~

be the pulses used in equation (2-4). Then

2

4n 2 ul .2 [T l
S (w) =T cos® = + sinc (—-)
y z(“z - 2182 2 2 )|

which is independent of timing offset in the in-phase and the quadrature-phase
channels. However, the power spectral density Sz(w) in (3-5) after the band-

pass hardlimiting will not be the same. From (3-5)

4-6




T
0 7 1

cos ‘

e-:jwt dt + f T e-:jwt dt

. t
S,(w) =¥y [
"% 0 \/1 + cos? -'T‘—t~

I
T

2
-9-% f L e 3t gt 4 f
0 |1+ cos? I I

when f(t) and g(t)have a timing offset T/2, but

T 2
2 T :
s -} f DT ot
T nt
-5 1 + cos - .
T

T\

% .
T [ 2 _mt
-5 1 + cos T

when there is no timing offset. Figure 4-4 shows the power spectral density for

edut g¢

—tl(_,,

o]

——

both cases.
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V. Summary and Conclusion . |

A generalized theory for evaluating the power spectral density of quadrature
modulated signals is developed. Arbitrary pulse shaping is allowed in the in-phase
and the quadrature-phase channels to model various kinds of modulation techniques. |
In particular, the theory is applied to investigate the effect of bandpass hard-
1ir*ting on quadriphase unfiltered signals. Numerical examples show the wide
range of applications for which this model can be used. It has been shown that j
the power spectral density of the modulated signal is independent of the timing i
offset in the in-phase and the quadrature-phase channels. Furthermore, if the i
in-phase and the quadrature-phase channels have identical pulse shapes without
offset, the spectrum after bandpass hardlimiting is identical to that of the
conventional QPSK modulation.

In general, the offset keying technique used in the nonliwmear bandpass
channel performs better than conventional pulse keying. Depending on the band-
width availability of the communication channel and the required data trans-
mission rate, varijous keying techniques can be developed to meet the specific
environment. The theory described in this report provides yet another tool for
understanding the effects of bandpass hardlimiting encountered in the nonlinear

satellite channels.
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APPENDIX A
GENERALIZED SPECTRAL DENSITY OF NONSTATIONARY PERIODIC PROCESSES

Let n(t) and R(t,t) be the mean function and the auto correlation function

of a nonstationary process y(t) which satisfies
n(t) = n(t+7)
and
R(t,r) = R(t+T, ©+T) | (A-1)

for some period T. Also let S(w,u') be the two dimensional Fourier transform

of R(t,t). Then from (A-1)

f f R(LHT, 1) e-dot-a't) go g
=i -

o (\M]

af f R(t!,rt) endluti-aT-otv 4w T ger g,

N )
= f f R(t,v) e‘“‘“t‘“"") dt dr = S{w,n')
) N

Since (A-1) must be satisfied for all w,u' from -« to +», the following

conditions on S{w,w') hold

A-1




e

0 we' # kwo

S(u,w') =

S{w,w') E §(w-w' - kwo)

w0

where o, = 2u/7.

(R-2)

For all other w,u'

0
Hence
, - " Jluw'+kw )t '
R(t,t) = '2'37 E / S(uw' + kwo, w') e 07" gmu'T dw'
Kk==00 7o
o0 . 0
Jkuw_ t .
= 2_:; Z: e ° f S{w' + kmo, w') er‘(t-T) dw'
k::-w -0
then
> ko t
R(t+r, t) = Z vl e ° (A-3)
kemeo
where
1 kegr 7 ju's
Yk('r) =5-e S(w' + kug s w') e du' (A-4)
A-2

g o TRPP—— R T R T TSR o
Fﬂz‘:




and

® ke T o
S(u' *+ kug, w') = f e 0 Yk('r) e Ju't dr (A-5)

-0

From (A-3), R(t+t, t) is a periodic function in t with t as a moving parameter.

Therefore

v -jkugt
Yk('r) =T R(t+r, t) e dt -w<t<w (A-6)

0

The generalized spectral density of y(t) can be defined by (A-5) and (A-6)
so that

Sk(w‘) 8 S(w' + kwg » w')

T o o g
! -Jjku, (t+r)
=% f [ R{ttr, t) e Te O dt dt (A-7)
0

w00

A-3
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APPENDIX B

POWER SPECTRAL DENSITY OF BASEBAND NONOVERLAPPING CORRELATED
PHASE MODULATED SIGNALS

Consider a baseband signal v(t), -» < t < = defined by

where

V(t) = e3¢(t)

o) = D by (KT, o<t <

k==

The {ak}‘f°° is a stationary random sequence which takes on values

(B-1)

{1,2,¢++, M}. For each o = %, a phase-signaling waveform wz(t) is generated.

Clearly the process v(t) satisfies the following conditions.

and

where

Then

E{v(t)} = E{v(t+T)}

Rv(t, 1) = Rv(t+T, T+T)

R(t, t) = E{v(t)v*(c)} - E{v(t)IE{v*(1)}

Mo e .
(t-kT)
E{v(t)} = Z Z P, e

2=l k===

B-1

(B-2)

.
5
bf“.“ .



and
© ®
I, (t-KT)=jy, (T-k'T)
ECV(t) VA ()} = D ) E{e . i } (B-4)
K== K 'mmoo
where
M .
Jug (£-KT) =5y, (1-KT)
E Pg e y k=k!
g:

ot (KD -duy (kD) )

AL 3 (tKT)-dg ek'T)
E Z Pg’al’k_kl e 3 Kk

e=1 p'=1
P, =P\ [ak = 2]
and
P

2,00kt = P Loy = 2o o = 2]

From (A-7), the generalized power spectral density of v(t) is given by

T e .
s =Jjnw (t+r)
Sy (w) =% f [ R (tdr, t) e Wl g O dt dr (B-5)
0

-y

B-2

R S T




Let D be the domain of integration in (B-5). Then k' equals zero in (B-4)
for all t, v that lie in D. Hence

M . ,
3, (t4r)-dy, (t)
E{v(ttr) v*(t)} = 2 Py. e ¥ k %
2=]

- W, (t+r=KT)=ju,, (t)
'3 L
+ Z Po,ot k@ (8-6)

EI

k70

, Using (B-6), (B-3) and (B-2) in (B-5), we obtain

M M M
] S = -1- P ¢ - l ) 1
, bn(w) TZ P, ¥, (0 + nmo) ‘l’;(m) T ZZ P.?, P“l ¥, (w + nmo) ‘P"*;(m)
,? 4=1 =1 m=1
©« M M .

| 1 -JkT(m+nmo) . |
| i | ZEZ (Pz,m,k - Py P)oe vy (0 + Nag) ‘*‘ITI(M)

k== £=]1 m=]

k#0 (B-7)

where
[+
Jv, (t)  _;
; ¥olw) = f e b7 gniwt 4y

-
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