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ABSTRACT

A dish Stirling solar receiver (DSSR) and a heat pipe solar re-
ceiver with TES (HPSR) for a 25 kWg dish Stirling solar power system are
described. The thermal performance and cost effectiveness of each are
analyzed minute-by-minute over the equivalent of one year of solar inso-
lation. Existing designs of these two systems were used as a basis for
the study; TES concepts for the DSSR and alternative TES concepts for the
HPSR are presented. Parametric performance and cost studies were per-
formed to determine the operating and cost characteristics of these sys-
tems. Data are reported for systems (1) without TES and with varying
amounts of TES, (2) with and without a fossil fuel combustor, (3) with
varying solar to fossil power input and (4) with different system con-
trol assumptions. The principal effects of TES duration, collector area,
engine efficiency, and fuel cost sensitivity are indicated. Development
needs for each of the systems are discussed and the need and nature of

possible future TES modular experiments are presented and discussed.
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SECTION 1
SUMMARY

The application of thermal energy storage (TES) to a 25 kW, dish
Stirling solar pover conversion system was studied using two unique re-
ceiver components. The dish Stirling solar receiver (DSSR) is a direct
receiver without TES in which the solar insolation impinged on a copper
cone heat exchanger containing the Stirling engine heat exchanger tubes
and protected from oxidation at operating temperatures above 1€00°F by
superalloy cladding. This receiver engine-generator system was aupported
by a fossil fuel combustor which operated continuously at 8 minimum of
102 pover and which was modulated to supplement variations in solar
power. The heat pipe solar receiver with TES (HPSR) featured a basic
design containing 0.8 hours of TES and utilized heat pipe thermal trans-
port from the receiver tc a large secondary heat pipe containing the
TES, the engine heat exchanger tubes and a shell-side "on-off" combustor
heat exchanger. Both eystems were sized at 25 kW, output and theirs

system design characteristics were utilized for performance analysis.

The thermal performance and energy conversion characteristics in-
cluding thermal losses, were modeled in a finite element analysis using
nodal networks appropriate to each design. Temperature, heat flow and
energy conversion analyses vere made by a computerized analysis of the
daily solar insolation over a simulated ore year period at one minute
intervals and under control assumptions which (1) provided supplemental
fossil fuel when needed, (2) defocused the concentrator as required and

(3) started or stopped the engine.

The economic snalyses of these systems were conducted over & 30
year period of simulated operation in accordance with accepted costing
methods for solar utility rvstems including consideration for capital
equipment, operating and maintenance expenses, inflation rates, etc.

The levelized costs of electricity (COE) were determined for each system
under various assumptions; they are reported here at deflated current

values for comparison with present COE values.

1-1
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As shown in Figure 1-1 the performance and economic analysis for
the HPSR covered TES durations of 15 minutes and 0.8, 2 and 4 hours
using concentrator collector areas from 71 to 142 m2. The DSSR system
with its continuous combustor had no advantage in adding brief buffered
storage in thie study and the addition of larger amounts of storage
presented technical difficulties thus no effect of TES is indicated.
These technical difficulties included the design integration of large
smounts of TES in the DSSR. On the other hand, the HPSR model could be
used to show the effects of incremental amounts of TES. The data in-
dicates the decreased COE of the HPSR system as storage and concentrator
size are increased. While both systems were compared at equivalent
engine efficiency, a reduced COE effect is indicated by the potential
improved engine efficiency using sodium heat transfer to the Stirling
engine in the HPSR. Since the HPSR operates at a higher solar-to-fossil
fuel ratio (not operating its combustor continuously at 10 percent or
greater power), the HPSR is also less sensitive to increased cost of
fuel.

Additional aspects were studied of the operation of systems with

er without TES and with or without conbustors.

The continuous combustor on the DSSR provided full control with-
out the need for defocusing. In systems without combustors a balance
was required between peak solar insolation and the continuous equivalent
solar pover demand of the engine to make maximum use of TES and to accom-
modate variations in peak solar insolation between winter and summer.
While the effect was not simulated in the analysis it was recognized
that a scheduled seset in the equivalent solar power demand level of the
engine (by a planned change in the working fluid pressure) would mini-
mize the tendency for the required defocusing of the concentrator or for
the cycling of the engine in the absence of a combustor. With s combustor
the equivalent solar power demand of the engine could be set sufficiently
high to prevent defocusing and, since the engine would run on fossil
fuel alone, it never need encounter engine shutdown during normal opera-
tion. For a given engine operating pover range it is economically ad-
vantageoue to marimize the solar to fossil ratio and not shade the con-

centrator power back. These concepts are indicated in Figure 1-2.

1-2
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Various development requirements exist for both systems. The
need for the DSSR is essentially the improved operating reliability in
the copper heat exchanger (which also has some limited sensible heat TES
capability). Since this design does not use latent heat, it can be
tested and operated over a wide range in temperature and can readily be
used without significant design change at a lower operating temperature,
should high temperature materials problems of a life-limiting nature
occur. While concepts were identified for incorporating TES into this
receiver there were certain disadvantages which can be best be overcome
by highly efficient thermal transport, an option already under investi-

gation in the HPSR.

For the further exploitation cf the HPSR, improved sodium wicking

and wick joints are needed for cost reduction purposes. The conduct of

modular TES experiments are one way in which these developments could be
tested under the full capillary pumping heights and at the required
sodium flow rates. These flow rates would be associated with the proper
heat flux levels in a modular power train heat transfer mode within a

full size, but readily changeable, heat transfer experiment.

The results of the study have provided a further understanding of
the operating characteristics and costs associated with the use of TES
and combustors in solar Stirling systems. A useful analytical tool is
now available to investigate additional aspects of the performance and

cost of such systems.
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SECTION 11
TECHNICAL RESULTS
A. INTRODUCTION

The operation of the solar Stirling power conversion system at
the focal point of a tracking dish concentrator requires reasonably
stable periods of operation in order to avoid life limiting cyclic opera-
tion during intermittent periods of cloud cover. Two types of solar
receivers are being developed for the solar Stirling system. The first,
the Dish Stirling Solar Receiver (DSSR) utilizes a combustor to back up
variations in solar insolation. The second, the Heat Pipe Solar Receiver
(HPSR) utilizes a significant amount of latent heat thermal energy storage
(TES) to provide not only buffer storage but extended storage with in-
tended capabilities for extended operation without solar insolation; the
addition of a fossil fuel combustor is an intended part of this system,

as well.

It is the purpose of work reported her:in to analyze the operat-
ing characteristics of these systems with varying amounts of TES in
thermal and economic assessments over a one year operating period on
solar insolation data provided over one minute periods of operation. To
do this required a definition of each system to be studied, the creation
of operating model simulators and of computer analysis programs for
treating the solar and fossil heat inputs to the system and for inte-
grating heat storage and heat losses into the daily production of elec-
trical power. An economic analysis of these systems was then performed
over a 30 year period to determine the expected cost of electricity
produced by such systems and the relative merits of changes in system
variables such as TES duration, use of a fossil fuel combustor, sensi-

tivity to costs of fuel and other variables.

Several alternative concepts for the addition of TES to the direct
DSSR receiver and heat pipe or alkali metal thermal transport types of

solar receivers were developed and their merits are briefly discussed.

2-1
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An assessment is made of the nature of possible future developments
vwhich might be required to confirm the success and improve the operating
performance and reliability of each type of system. These requirements
can, in some cases be fulfilled either directly in modular TES experi-
ments or in system, or modular tests, after a necessary development has
been demonstrated. These development requirements and other possible

needs for specific modular experiments are described.

The value and limitations of TES to each of the two systems and
the critical operating factors and system definitions affecting perform-
ance and economics are presented. The value of TES in assuring smooth
system operation and in offering possibilities for more extensive use of

solar power are discussed.

B. SYSTEM DEFINITION

Two types of solar receivers were studied; namely, the direct
dish Stirling solar receiver with a fossil fuel combustor (DSSR) being
developcd by Fairchild Stratos Division and Advanco Corporation and the
heat pipe solar receiver with thermal energy storage (HPSR) being de-

veloped by General Electric Co., Advanced Energy Programs Department.

1. DSSR System

This heat receiver, shown in Figure 2-1 features a conical copper
ylate solar heat exchanger protected from oxidation on the surface by
means of a brazed oxidation resistant alloy cladding; the Stirling engine
heat exchanger tubes are contained both within and external to the cone.
Solar heat is applied directly to the Stirling engine through the copper
cone. Fossil fuel heat is applied to the back surface of the cone and
to those heat exchanger tubes external to the cone. The system is op-
erated continuously with a minimum of 10 percent power input through the
combustor. As solar insolation changes, the required heat supply to the
engine is provided by continuously modulating the combustor power. While
no TES is provided in the original design, the present study considers
the addition of limited amounts of TES along the surface of the cone or

by other means.
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Significant design factors necessary to the performance and eco-
nomic analysis of the DSSR receiver over a one year solar insolation

period are shown in Table 2-1.

A key factor in the DSSR system design is its continuously op-
erating combustor which provides assurance of continuous power. However,
the continuous use of a minimum of 10 percent fossil power reduces the
portion of the delivered power which otherwise could be generated from

solar insolation.

The objective of a relatively low system AT is attempted through
the use of a high thermal conductivity material, namely copper. Initial
system descriptions have indicated relatively large AT's between (1)
the 1520°F heater head heat exchanger temperature at the design point
and (2) the 1600/1735/1845°F local calculated temperatures on the sur-
face of the receiver. To minimize such hot spots on the surface of the
copper cone, which has a melting point of 1981°F, more extended use of
Stirling engine heat exchanger tubing has been indicated and receiver
temperatures are reportedly reduced to 1600°F. The effects of such
tubing leng:h decreases Stirling engine efficiency through increased
engine working fluid void volume and pressure drop were not available,
but significantly reduced efficiencies are anticipated below the 39.6%
efficiency which has been credited to the system in this study. That
efficiency was based upon a similar fossil fuel fired Stirling engine

with an optimized heat exchanger.

~

Heat Pipe Solar Receiver System

The second type of solar receiver is the heat pipe solar receiver
with TES (HPSR) shown in Figure 2-2. The key design factors are shown
in Table 2-2. The solar insolation is absorbed on fourteen sodium heat
pipes which supply heat to a near-isothermal secondary heat pipe. These
heat pipes provided heat flow in only one direction. This secondary
heat pipe contains (1) the condenser sections of the receiver primary
heat pipes as a solar heat sources, (2) liquid metal wicked shell-side
heat transfer surface area arocund the lower 180° of the secondary heat

pipe as a fossil fuel combustor heat source, (3) sodium fluoride-magnesium

2-4
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AED-EO0-57

fluoride TES eutectic salt in cylindrical metal containers and (4) the
directly exposed Stirling engine heat exchanger tubes. The system op-
erates nearly isothermally with very little system AT because of the
effectiveness of heat pipe thermal transport. Temperature differences
influence the pressure of the sodium vapor in contact with liquid sodium
on the heat source surfaces and provide rapid heat transfer at a low AT
to the engine, to the TES and from the TES. Large TES surface areas are
available for efficient heat transfer to, and from, the TES, at low
thermal fluxes and at relatively low AT across the solidifying salt
(which acts as a heat source during TES discharging). The thermal
stability, the self regulating nrature of heat flow and the low system
AT's associated with the HPSR make it effertive for a focal mounted
solar Stirling system where a large mass flow of cycle working fluid is
not required between the receiver, TES and engine as would be the case
for a Brayton or Rankine system, particularly with engine or TES com-

ponents remotely located or at local ground level.

One of the most favorable aspects of the HPSR, however, is its
effective heat transfer to the Stirling engine heat exchanger and the
complete design freedom it offers to the optimization of that heat ex-
changer. Removing heat-input-side heat transfer limitations and tubing
geometry restrictions permits greatly reduced void volume and pressure
drop in the Stirling engine working fluid. This results in increases in
engine efficiency. While the present design and the initial results of
this study utilized an engine efficiency of 39.6 percent (similar to a
fossil fuel fired Stirling engine), efficiencies up to 42 percent are
expected for the sodium engine configuration and, as indicated under
Section 11 D5, the economic analysis shows the favorable impact of such

improved engine efficiency.
3. System Operating Characteristics

For both of the above systems the power output is about 25 kW,.
Operating with the same engine-generator set at the identically speci-
fied engine-generator efficiencies snd engine operating conditions, the
data shown in Tables 2-] and 2-2 provide & close comparison of the char-

acteristics of the two solar receiver systems. This design data was

based on the use of the JPL test bed concentrator (TBC); those concentrator

2-8
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characteristics were used to guide the design of these receivers (under
separate contracts) and to define the required area and diameter of the
concentrator for the purposes of the one year solar insolation perform-

ance and economic analyses of this study.

A comparison of the relative thermal stability, or thermal inertia,
of each of the above systems can be made by comparing the product of the
mass and specific heat for each system for those parts of the systems
whirh supply heat to the Stirling engine. This quantity, divided into
the Stirling engine power at the design point (66.2 kW.), indicates the
rate of temperature change of the system at full power but without solar
or combustor power input. In the case of the DSSR, the temperature
change rate is 134°C/min (241°F/min). For the HPSR this calculated
temperature change rate is about 9°C/min (16°F/min) in the latent heat
range. Earlier test effort on the TES modular experiment indicated a
rate change of less than 2°F/min at a lower TES heat flux. In the TES
latent heat range for ithe HPSR during which most operation should occur,
the temperature rate change at full engine power without solar or fossil

power input would be much lower, less than 0.5°F/min.

While the DSSR maintains constant temperature with modulated com-
bustor operation, the HPSR can undergo extended periods without solar
insolation and operate stably with either reapplication of solar insola-
tion or the use of an "on-off" fossil fuel combustor.

Since the above baseline designs have been based on a significant
amount of design study and experimentation supported under separate con-
tracts, they provide a basis around which to perform parametric analysis

of variations in TES storage time and use of fossil fuel combustors.
A qualitative vi:ualization of the extent to which the TES and
combustor can interact in providing operating flexibility to each of the

above systems is shown in Figure 2-3.

For equivalent power levels the TES, alone, (in the HPSR) provides

design level power without the use of fuel provided the solar insolation

2-9
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is uninterrupted. The duration of the power block can be extended, but
the power level must be reduced tc provide the solar en2rgy for use over
the extended period. Likewise, the power level can be lowered to ac~-
commodate periods of interrupted solar insolation, otherwise the power
output must be terminated briefly during various periods of the day to
allow for recharging. In any event the thermsl cycling under varying

solar conditions will be very much less than a direct receiver withou:

TES or combustor.

The DSSR, with combustor only, provides reliable power over a po-
tentially larger block time at the expense of less solar utilization and
greater utilization of fuel. The combustor must be run continually at

10% or more of total power.

The HPSR with T3 and combustor provides a high ratio of solar to
fossil power and utilires fossil pover in & limited way only to make up
for deficiencies in solar insolation. The TES provides the rystem thermal
storage to peruit efficient on-off combustor power and minimum use of
fuel. As presently conceived, the DSSR with & continuous minimum 10% of
power by combustor can utilize TES only as a thermal accumulator. With
an on-off combustor however, a larger concentrator could be used and fuel

consumption could be reduced.

Finally, extended operation of both systems of current design con-
cept can be accomplished by the use of supplemented combustor power. The
system with the capability for added TES, however, can introduce a large
concentrator and provide some extended period of perfcrmance on solar

power alone, whereas this added power must be provided by combustor power

for the DSSR.

The above generalizations are intended to indicate the general
characteristics of these systems. The mevits and practicality of adding

varying amounts of TES to both types of systems are discussed below.
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C. ALTERNATE TES CONCEPTUAL DESICNS

Three conceptual designs each of the DSSR and of the HPSR are

described here.
1. DSSR TES Concepts

The different methods which have been conceptualized for the
application of thermal energy storage (TES) materials to the DSSR copper
core teceiver were done without intent for any major change in the basic
receiver design. An assessment has been performed on each of the con-
cepts in order to qualitatively rate each concept &s to its practicality,

performance and developmental risk.

The concepts employ three different methods of transferring thermal
energy fr~m the TES material to the Stirling engine heater head tubes.
In the DSSR receiver these tubes are buried in a copper cone heat ex-
changer upon which solar insolation is directed by the concentrator. In
the first concept, the TES material is applied directly to the receiver
heat exchanger and the heat is transferred by conduction through the TES
material. In the second concept, heat pipes transfer the heat from the
recciver heat exchanger to the TES material and back to the receiver
hest exchanger, and in the third concept, the heat is transferred by
radiation from the TES to the heat exchanger. Siuce, in the latter
concept the TES operates at a high radiating temeprature, it must be
charged from the combustor only and cannot be recharged by solar insola-
tion since the receiJ;r (and engine) would be required to operate at the

higher TES temperature.

The first concept, Figure 2-4, employs TES material applied di-
rectly to the copper cone. This method of TES application is appealing
in its simplicity and becauvse it requires the smallest overall change in
the DSSR receiver structure, This is its main advantage. The major
drawback with this system is that the outer surface which contains the
TES material, the surface upon which the sunlight would fall, is forced
to go to a very high temperature especially if more than a few minutes
of TES material is used. Figure 2-5 shows the temperature rise above

the current cone outer surface temperature (when the Stirling engine is

2-12
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Figure 2-4. DSSR with TES on Front Face of Copper Coane.
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operating at 15000F) for various storage durations at a power extraction
rate of 66.2 kW,. To provide 5 minutes of storage time would require
approximately one hal® an inch thickness of TES material over the re-
ceiver heat exchanger. The temperature drop through the TES material
would be 225°C nr just over 400"F. Tais brings & present 1845°F peak
surface temperature to over 2200°F and raises serious questions about
possible materials selections for the hot surface. Or, if the AT is
taken with the TES salt melting point (1520°F) maintaining the heat
exchanger outer surface temperature, the AT across the salt during TES
discharging would result in a 400°F drop in engine temperature. Both a
high solar side surface temperature and a severe reduction in engine
temperature are not acceptable. While it might be possible to improve
the thermal conductivity of the TES material, a tradeoff involving a low
of storage time aust be made due to the loss of phase change material
displaced by whatever conductivity enhancement material is used to im-
prove the thermal conductivity of the mixture. Table 2-3 lists the pros

and cons of this thermal energy storage concept.

The second concept uses heat pipes to transport the receiver
thermal energy to, and from, the thermal energy storage. The heat pipes
are simple, completely wicked tubes and thus represent very little tech-
nical risk. The thermal energy storage material is stored around the
circumference of the receiver cavity with the heat pipes inserted in it.
In this conuceptual design, no attempt has been made to have any sort of
a thermal switch as have the heat pipes in the HPSR. Thus the TES could
discharge to the recelver cone and reradiate its heat out the aperture
when solar insolation stops. Because of various heat pipe orientation a
partly wick-d heat pipe concept with one direction heat flow is not

readily useable.

Figure 2-6 shows this concept. Table 2-4 presents the system

performance characteristics of this TES concept.

This system has the asset of having the 'owest system peak tem-~
perature of the three DSSR TES conceptual designs presented. Furthermore,
the heat pipes would serve to homogenize the temperatures on the copper

cone by transferring heat frum the regior cf the cone beyond the Stirling

2-15
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TABLE 2-3

AED-EO0-57

ADVANTAGES AND DISADVANTAGES OF DIRECTLY APPLYING
TES MATERIAL TO THE DSSR RECEIVER CONE

Advantages

Disadvantages

Probably minimum cost addition
to existing receiver.

High AT through salt produces
possible high surface tempera-
ture on the inside of the re-
ceiver or severe reduction in
engine operating temperature.

Relatively limited amount of
TES possible with available
material.

High surface temperature would
decrease receiver efficiency.

Low engine temperature seri-
ously decreases engine effi-
ciency.

T
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Figure 2-6. Concept for DSSR with Heat Pipe Thermal Transport
To/From TES.
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TABLE 2-4

HEAT PIPE TES FOR THE DSSR

Assumed Salt 67 NaF/33MgF;
Salt Melting Point 826°C (1520°F)
Thermal Transport Heat Pipes

AT ~ 309C (Estimate)
Storage Time ~ 5 min. as shown
Power Level 66.2 kW,
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engine tubes inward to the Stirling engine. This would have another de-
sirable effect in that the efficiency of the present receiver would be
increased. Finally the amount of TES material could be increased rela-
tively easily. The sketch shows a system with approximately five minutes
of thermal energy storage time at 66.2 kWy. This could be increased by
increasing the complexity of the heat pipe network within the TES material.
The only recognized real detriments to this system might be low cycle
fatigue problems (which should not be increased over those of the current
design), and the fact that, as designed, the TES could discharge itself

through the receiver aperture.

Tsble 2-5 summarizes the advantages and disadvantages of this

system.

The third concept, shown in Figure 2-7 and Table 2-6, combines
the functions of the combustor and TES by having the combustor fire
through the TES material which is contained within ceramic. The TES
material, in turn, radiates to the back of the copper cone and that
radiation is controlled by a radiation curtain which is moved in order
to adjust the view between the back of the cone and the thermal energy
storage. Because of the fourth power of absolute temperature nature of
radiation heat transfer and the temperatures at which the system is
running, the difference in temperature between the TES and the copper
cone is not as high as might be expected for the amount of heat being
transferred. The TES temperature would be on the order of 2100°F.
Through the TES calculations have been performed using the thermal
characteristics of 1520°F MP Sodium Fluoride-Magnesium Fluoride salt, it
is obvious that the choice of TES material would be made of a TES ma-
terial with the correct high temperature melting point. It is repre-
sentative, however of some materials, listed in Table 2-7, that might be

considered as candidates in this temperature range.

This system has several advantages and several disadantages with
respect to the previous two thermal energy storage systems for the DSSR.

First, it has the largest thermal energy storage time, as sketched, of




TABLE 2-5

AED-EO-57

ADVANTAGES AND DISADVANTAGES OF DSSR
WITH HEAT PIPE TES

Advantages

Disadvantages

R

lowest system peak temperature

Easily increased TES time
Simple heat pipe design

Heat pipes can homogenize
cone temperatures

Reduction in receiver cone
temperature (more efficient
receiver)

2-20

Potential for low cycle
fatigue

Possible TES discharge by
reradiation
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Figure 2-7. Radiant Heat Transport TES Concept for
the DSSR.
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TABLE 2-6
RADIANT HEAT TRANSPORT SYSTEM FOR THE DSSR
Assumed Salt 67 NaF/33MgF,*
Characteristics
AT Ceramic would run

1200°C up to ~ 1500°C

Storage Time ~ 1) min. as shown
(66.2 kW, extraction)

*Melting temperature of 67 NaF/33MgF, itself, is too
low. See Table 2-7 for list of candidate TES materials.

2-22
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TABLE 2~7

TES MATERIALS CANDIDATES FOR
HIGH TEMPERATURE RERADIATING TES

AED-E0-37

Melting Nominal
Temp. Composition Hf
oc (We. %) kJ/kg
830 67 NaF/33 MgFj 200
855 24 NaF/75 SrFj
882 75 NaF/25 AlF3
921 82 NajAlFq/18 MgF;
945 74 Na3AlFg/26 CaFy
975 34 NaF/46 KF/20 MgF,
995 NaF 245
1008 30 KF/70 MgF,
1110 FeF, 337
1030 NaMgF3 220
1070 KMgF3
1252 MgF, 288
1418 CaF, 117
1420 Si 1640
2-23
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any of the three systems and it does not impact the copper cone design.
Secondly, this TES system can be charged, by an "on-off" combustor,
independently of Stirling engine and once charged, can be stored without
significant thermal reradiation loss (by putting the curtain between the
TES and the copper cone). The curtain makes the thermal control of this
TES system a relatively simple procedure; the curtain is pulled aside
when more TES power is needed, and is put back when less is needed. The

higher temperature of the TES also prevents charging by solar insolation.

The TES and combustor are a single integral unit, which could be fabricated

at the same time and therefore could be simpler to produce. Another
significant problem with this concept would lie in the area of high
temperature TES salt and containment materials compatibility; the TES
material and its containing cersmic must be able to be used together

without significant corrosion or without brittle failure.

Table 2-8 summarizes the advantages and disadvantages for this

TES system.

2. Heat Pipe Solar Receiver TES Concepts

The heat pipe solar receiver concept for the basic prototype de-
sign, as described above, was evolved over a considerable period of time
with the objectives of achieving significant amounts of thermal storage
as contrasted to brief buffer storage. Heat pipes were used for thermal
transport since it wdas recognized that (1) they would help tc maintain
small system AT as energy was transported within the heat pipe and that
(2) high heat fluxes were possible in accepting and rejecting heat at
heat transfer interfaces. To maintein low AT within a significant
amount of TES material required large TES surface areas, low heat flux
to the TES and significant thermal transport distances. While these
same objectives can be met in larger Rankine or Brayton systems using
pumped heat transfer .luids, the compactness of the integrated, focus
mounted solar Stirling syst.m with TES favored the use cof heat pipes,
particularly so since the engine working fluid was closely contained and

utilized within the engine alowc.

2-24
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TABLE 2-8

AED-EO-57

ADVANTAGES AND DISADVANTAGES OF DSSR
WITH RERADIATING TES

Advantages

Disadvantages

TES application does not
impact cone design.

Longest storage time of the *

concepts developed.

Thermal reradiation losses
controlled by thermal cur-
tain.

TES thermal transport simple
to control.

TES containment & combustor
are single integral unit.

2-25

Containment of salt in ce-
ramic poses possible ma-
terials compatibility prob-
lems.

Increases receiver diameter.

Very high temperature ma-
terials required.

Combustor must operate in
"on-off" mode.

Possible added thermal con-
trol problems.

Heat flow is not self regu-
lating.

High temperature TES com-
pounds combustor design
problems.

Recharging TES by Solar
Insolation Not Practical
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The secondary TES heat pipe was of single heat pipe construction
to permit near isothermal operation of the TES. Thus, heat could flow
from any primary heat pipe condensor to any part of the engine or to any
TES salt container; likewise, heat from the shell-side combustor could
do the same. Furthermore heat could be supplied to any part of the
engine heat exchanger from any unit surface area of the TES. The per-
formance and cost effectiveness of this system is better if the TES

duration is not limited to very brief periods of TES.

In addition to the basic TES system, which wvas described above,
seversl alternative TES designs have been considered under the present
basic contract of which this report is a part. These included (1) a
direct sodium pool boiler receiver with TES, (2) a primary/secondary
heat pipe system with a common TES contained in a single volume between
two headers with sodium vapor tubes p:netrating the salt mass and (3) a
direct receiver concept with TES material surrounding the engine heat
exchanger tubes. Several other concepts were studied, but will not be

discussed here.

The first of the above HPSR TES alternative design concepts, the
pool boiler, with about 1.25 kW TES at 52.5 kW,, is shown in Figure 2-8.
The TES salt containers were contained in a thermally conducting pool of
sodium surrounding the receiver. Since the sodium pool was in direct
contact with the receiver wall (not separated by thermal diode primary
heatL pipes) reradiation losses from the TES through the receiver and out
the aperture required the consideration for addition of an actuated
receiver aperture plug. The static head of sodium in the receiver of-
fered the adverse prospect for superheating and "bumping” of the liquid
sodium at the receiver wall. The mass of sodium required to maintain

the pool also added unwanted weight to a focus mounted system.

A second alternative TES concept, a primary heat pipe/secondary
heat pipe HPSR of equivalent power and thermal storage duration, is
shown in Figure 2-9. It has a tube and hesader design within the single
secondary heat pipe. The salt is contsined in & single continuous mass

through which sodium vapor passages carrying thermal energy to the salt

2-26
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storage or directly to the engine from the primary heat pipe condensers.
This system required the wicking of the interior of a large number of
sodium vapor tubes. JIts rigid tube and header construction made it more
susceptible to thermal restraint and to low cycle fatigue. It was felt
that the common salt volume would make the system more susceptible to
possible adverse thermal ratcheting efforts caused by melting expansion

and solidification contraction of the salt.

A major objective in studying these alternative designs in this
earlier work was to evolve lowest cost concepts. Table 2-9 indicates
the relative weights and costs of these. From these studies the current
HPSR design was selected for both cost and technical reasons. It has

been designed and is currently under initial phases of construction.

3. Directly Coupled Receiver/TES Concepts

Buffered TES had been considered without the use of heat pipe
thernal transport but was earlier discarded from consideration because
of its limitations on storage time. Large temperature gradients within
the TES are necessary to extract thermal energy at required rates in the
range of 52.5 ~ 66.2 kW,. To circumvent this problem it is necessary to
create a heat receiver, Stirling engine heat exchanger and TES material

geometry which reduces the length of the heat conductance path in TES.

Based on a very limited analysis of a single cylinder Stirling
engine heat exchanger, it was determined that the engine exchanger could
be designed for direct TES purposes to consist of only 12 tubes, each
762 mm (30 in.) in length. This would permit a much deeper penetration
of the TES material by the Stirling heat exchanger tubes and it would
allow more materisl to be wrapped around the tubes than is possible for
the type of shorter tube heat exchanger that has been used with the HPSR
design; thus, a longer direct thermal energy storage duration could be

achieved using long Stirling engine heat exchanger tubes.
Two overall system geometries were investigated for direct con-
ductance TES. The first, shown in Figure 2-10, has the finned Stirling

engine heat exchanger tubes (fins not shown for clarity) running cir-
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TABLE 2-9

WEIGHT AND MASS PRODUCTION COST COMPARISONS FOR
THREE ALTERNATIVE TES/RECEIVER DESIGN CONCEPTS*

(52.5 kW,; ~ 1.25 HOURS STORAGE)

Weight Material Selling
Concept Description Lbs. Cost=-$ Price=-$
Basic HPSR Concept 2150 776.00 1552.00 Q
Sodium Pool Boiler with %
TES Capsules 2279 1199.00 1298.00 3
Tube and Header TES 2287 1017.30 2035.60

*Excluding engine and generator.

O,
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STIRLING ENGINE
CYLINDER

STIRLING ENGINE{EAT EXCHANGER TUBES
(8 FINS PER INCH; NOT SHOWN)

b

TES MATERIAL

e

SOLAR RECEIVER
WALL

‘1"

TES MATERIAL

/ (67 NaF — 33 MgF )

s ————-l

19.3°D

Figure 2-10. Single Cylinder Stirling Engine Concept with
15 Minutes TES Directly Coupled in the Solar
Receiver. (Circumferential Tube Arrangement)
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cumferentially around the wall of the receiver in the middle of an annular
region filled with salt. This arrangement would probably have the most
uniform temperature in the TES material around the exchanger tubes and
therefore the minimum thermal expansion induced stresses. In the second
system, depicted in Figure 2-11, the heat exchanger tubes rua radially
outward, which allows the wall of the receiver to be scalloped; this in

turn, increases the surface area of the receiver and improves the absorp-

tion of the solar energy.

While the direct coupling of up to 15 minutes TES to the Stirling
engine heat exchanger is possible, such integration of TES becomes a
closely linked design problem involving the design of the Stirling en-
gine heater head itself. Such detaiied effort lies outside the scope of
the present study. It is a fundamental advantage of the heat pipe solar
receiver with TES that heat pipe thermal transport provides completely
independent freedom for optimum design of the engine heater head without
restrictions, being imposed by either receiver or T.:S design or by heat

transfer considerations.
D. SIMULATED SOLAR PERFORMANCE AND ECONOMIC ANALYSIS
1. Overall Approach to Solar Performance and Economic Analysis

An integrated transient thermal analysis of both the DSSR and
HPSR systems was performed using real solar insolation input and includ-
ing combustors, transient thermal losses, and control assumptions which
dictated responses from the system in a manner similar to that which
would be used in a real system; that is, control decisions were made on
the basis of temperatures at a given instant, with no knowledge of the
future. This thermal analysis resulted in estimated fuel use and elec-
tricity production for a year for the given system; these were then

input into a8 financial analysis which yielded the cost of electricity

(COE).

The golar insolation data was taken at Goldstone, California,
throughout the year 1979 between 0500 and 2200 hours «t one minute inter-

vals. In order to run more system configurations, 20 characteristic
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STIRLING ENGINE
CYLINDER

ADDITIONAL FINNED HEAT EXCHANGER

LEIIE:TH 3 - TUBE (ONE TUBE SHOWN
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SOLAR RECEIVER ~ o

‘ WALL_
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RECEIVER
TES
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P e wne —— ame S — — — -

STIRLING ENGINE
HEAT EXCHANGER
{12 TUBES EACH
0.18” OD x 30" LONG)

SOLAR RECEIVER
cavity

RECEIVER WALL

TES MATERIAL
(67 NaF — 33 MgF3)

Figure 2-11. Single Cylinder Stirling
Engine Coucept with 15 Minutes
TES Directly Coupled in the
Solar Receiver. (Radial Tube

Arrangement)
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days were selected for use and the results extrapolated to a year, as
will be shown later. This data was supplied by JPL in the form of a
transcription of actual raw data which included instrumentation errors.
A significant amount of effort was expended to reduce this data to use-

adble form.

Finite element thermal performance models were made of the DSSR
and HPSR systems employing six or twelve isothermal nodes respectively.
The simultaneous differential equations of heat transfer were written
for each node and then integrated by computer. The solar insoliation
data were applied to the nodes which made up the receivers in each model,
the model temperatures responded, and control decisions were then made
based upon the nodal temperatures. A running total was kept of each

day's use of fuel and of the energy produced.

An economic analysis was nerformed to determine the cost of elec-
tricity based on accepted electric utility standards. This analysis
calculated the electric energy busbar cost for a utility-owned solar
electric system. This cost was the minimum required to produce energy
consistent with producing revenues equal to the total system cost. Costs
included capital, O&M and fuel costs and took into consideration all
economic factors such as the general rate of inflation and the rates of
inflation of fuel and operating costs. The base year for the dollar

costs used was 1979.

After performing the economic analysis on each system, parametric
plots were drawn to see the effects of variation of TES quantity, operat-
ing power levels, operating assumptions and whether or not a combustor

was present in the system.

2. Weather Tape Data

The weather tape data consisted of a transcription from analog
form to digital form of actusl raw data which included original instrumen-
tation errors. Thus the first task in reconciling the weather data was
to process into useable form approximately 11 million pieces of data
(two insolation values and ambient temperature, minute by minute, for

each day of an entire year). Actually more data than this was processed
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since the first tape which was supplied and processed contained data
only through May; the process had to start over when the second tape,

containing the full year's data was supplied by JPL.

It was decided that the large mejority of the data processing
would be done as the information on the tape was converted into & binary
file on the computer. This up front weather data conversion procedure
vas used because it would eliminate, for each future case to be run, the
necessity of writing a data processing program to reprocess the same raw
data every time. Errors encountered in reconciling the data as it was
initially processed included missing data, data that was obviously out
of bounds, (i.e., negative data), duplicaticn of successive days, ex-
traneous numerals and format errors. During the development of the
binary file of the weather data, the program reading the tape had to
have each error in the tape programmed inio it as an exception and the
process of reading the tape had to be restarted each time an error was
encountered and its resolution specifically programmed. To give some
indication of the magnitude of this effort the listing of the weather
tape contained an estimated 1500 pages of data, each page totally filled
with numbers, and on lightweight (laser printer) paper, stacked over 5-

1/4 inches high.

Generally, the problem of using the computer to process raw data
(the job of judging raw data as good or bad and eliminating the bad) is
one of the most significant tvpes of computer programming problems ever
encountered. Indeed, some of the largest and most sophisticated computer
programs that have ever been written have been written for this general

purpose.

The process of data processing followed three basic steps. First,
the data tape was converted into a system standard ACSII tape, a process
which removed the extraneous data and format errcoss. Then the data that
was missing, e.g., temperatures for the first four months, was added and
duplicated days were removed. The final step converted the tape into a
mass data file (MDF) which contained three pieces of data for each minute
of each day between about 0500 and about 2200 hours. It also had each
day's data preceeded with a flag indicsting whether or not the dats for
that day was complete. The start and stop times for the data of that

day were also identified.
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An MDF file provides rapid access to a large quantity of data at
low cost. Generally the options open to programmers for storage of as
much data as vas required in this analysis consist of the use of either
a magnetic tape of a quick-access disc file. The use of magnetic tape
was undesirable since each time the data was to be used it requived
manual operations to mount this tape; this would add to the cost of the
run. Furthermore, the magnetic tape limited the program to batch opera-
tion which, in turn, increased the time required to run individual cases
over timeshare. This proved to be significant since, at one point in
the study, there was 8 need to generate case data quickly. The use of a
quick-access disc file was also not available because of arbitrary space
allocations on the system. The MDF file system solved the data problem
by providing storage data capability in excess of disc space allocation.
It automatical .y mounted a casette tape which created a temporary disc
file containing the data. Nontheless, some delay was encountered since
this was the first use, on the Evendale computer system, of the MDF

system to its full extent and some system problems were discovered.
3. System Computer Modeling

The very short time intervals of the soiar insolation data dic-
tated that the system models used be of a commensurately detailed nature
yet still be cheap enough to run through the required number of cases
wvithin budget. Minutewise solar insolation data implied that transient
system thermal response and loss should certainly be considered and thus
the formulation of suitable transient system models proved to be a signi-

ficant chailenge during the course of the program.

A transient finite element thermal analysis was finally used be-
cause of its high accuracy and adaptability to different systems and
configurations within systems. In a finite element analysis, the struc-
ture is broken down into a number of isothermal, or constant temperature,
elements. In theory, this would require an infinite number of elements
but it has been found that for most system wide applications, the number

of elements or nodes really needed is surprisingly small.
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Another assumption that was made for this analysis was that the
thermal conductivity and the specific heats of the nodes remained con-
stant with temperature. In design studies these effects are usually ac-
counted for but, agasin, experience has shown that the use of constant
properties is acceptable for system models. This is particularly true
vhen determining relative thermal characteristics between two systems

vhere the error in thermal property varistions would tend to cancel.

In ussembling these models there were a number of factors that
had to be taken into consideration. The overall accuracy of the model
could be increased by increasing the number of nodes but this would in-
crease the cost of running the model and any increase in accuracy would
not be proportional with the increase in the number of nodes. Further-
more there were integrator stability considerations. The larger the
node (the more temperature inhomogenity that was present) the greater
the mcp product for that node and, as can be seen in equation (4) below,
the smaller the time derivative of temperature for a given heat imbalance
and hence the more stable the model. This allowed the time step of the
integrator to be larger and reduced the amount of computer time required
to run the model through a days data. Another problem which could occur
vhen the temperature of interacting nodes is close together is that ac-
cumulated integrator error can sometimes cause an artifically reversed
temperature gradient to form between nodes; that is, heat could flow in
a direction contrary to physical law. Using fewer nodes with larger
temperature differences between them reduces the possibility of this
sort of error. The models that resulted considered all these factors in
their formulstion and to & large degree were based upon analytical ex-

perience.

The construction of the models started with energy flows (q;) and
temperature distributions from the design studies performed on the re-
spective systems. Using an arbitrary level of tempersture inhomogeneity,
nodes are specified that make up each model and then surface averaged
temperatures for those nodes are determined. Between any two nodes, i

and j, the energy transfer would be given by
9; = Cij (1; - Tj), (1)
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assuming heat flow from node i to ) is positive,.

I1f the mode of heat transfer were radiation, equation (1) would
be,

aij " Rij (154 - Tja). (2)
again assuming that heat flow from i to j is positive.

The temperatures and the q; were known for each node from earlier
thermal design work. Thus, using equations (1) and (2), a set of con-
duction or convection conductances (the Cij) or radiation conductances

(the Rij) could be derived.

For the itt node, the sum cf the q's is equal to the mass of the
node times the specific heat of the node times the derivitive of tem-

perature of the node with respect to time. Stated machematically,

dT: n

where j is summed over all the nodes to which or from which the ith node
exchanges heat. Other sources of energy gain or loss might be present
in any given ncde; e.g., solar insolation, combustor energy, or the
energy required by the Stirling engine. These are also surmed with the
qij %o that the general differential equation for the temperature of a

given node would be,

n
dT;
‘a1 2 Qij * Q01 * Qe (4)
dt miCpi j=i

The set of differenrial equations (4) constituted, in essence,
the model of the system. For the HPSR, a diagram of conductances is
shown in Figure 2-12, parallel conductances not being shown for brevity.
Between nodes 5 and 7 a very high conductance was used into the TES area
to characterize the heat pipe performance while & smaller conductance

was used in the reverse direction to characterize conduction. Node 1}
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represented the environment; its temperature was sei by the ambient tem-
peratur: data. Solar insolation energy was applied, in proportion to
exposed surface, to nodes 2 and 6 while the Stirling engine took its
power fiom the TES (node 7). Energy from the coumbustor wus also applied
directly to the TES. Figure 2-13 shows a nodal network diagram for the
DSSR systen.

Having generated a set of differential equations, the next step
in the analysis consisted of determining what integrator would be the
most economical to calculate the temperature as a function of time for
each node. Since minimizing calculation cost was so important, the
desirable characteristic in the integrator was its ability to perform
the integration with the smallest number of evaluations of the derivative
equations, (4). Accuracy was of secondary importance so long as inaccuracy
remained reasonably small, since the integrator error would be applied
randomly to all the systems and would therefore not alter the relative

trend of results.

Four integrators were tried out on the HPSR system model to de-
termine which was capable of having the largest time-step for the least
number of derivative evaluations. The primary source of instability,
and hence short time-steps, in equation (4) was the nonlinear radiation
problem. There is only a very little information in the literature on
selecting the optimum integrator for a given set of nonlinear differential
equations. Usually a number of integrators are tried out and thst was
what wes done in this case. Variable time-step integrators were discarded
since the possibility existed that the integrator would reduce the time-
step to a very small value and remain there over the course of a run in-
volving several deys which would lead to unpredictable and high computer
costs. It was decided, therefore, to set the time-step by the day that
had the very highest insolation for the longest time so if there was any
instability due to the radiation terms, it would be triggered. Typically,
varisble time-step is used where the forcing functions are reasonably
well known, but in this case a manual review of the insolations over the

year was out of the question.
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The four integrators tried out on the HPSR system model were the
Simple Euler method, the Modified Euler method, & 4th order Runge-Kuta
method with Gill coefficients and a Hamming method predictor-corrector
type. It was noticed that the multistep integrators tended to be more
stable than the Runge-Kutta integrator at large time-steps, probably be-
caure rhe past history in the multistep methods tended to dampen out
oscillatory behavior. In the end, a Hamming method integrator, started

by & Modified Euler integrator, was used.

The control assumptions were probably the least developed part of
the analysis since, in both systems, little or no work had been done in
this area. For the DSSR, the model was &llowed to arrive at the design
point temperature by the combination of combustor and solar insolation
and, once at the design point, combustor firing was controlled by a

scheme employing the negative derivative of the cone temperature with

respect to time.

Throughout the bulk of the performance and economic analysis, the
control assumption was made that the combusior would be turned on if the
TES temperature was below 826.7°C and off if it was greater. Likewise
the Stirling engine was opersted about B17°C. An investigation was made
into the effects of using a8 dead band control assumption scheme and the

results will be presented later on.

In the HFSR model, the latent heat of the salt was modeled by a
large me product over an arbitrary 20°F range which started at the

melting temperature of the salt.

A flow chart for the computer simulation program is presented in
Figure 2-14. Required data for each run was obtained from & number of
files which modularized the parametric analysis process. The MDF file
containing the weather data was never altered once it was made, the glo-
bal data file was specific for each system configuration and the days of
the year that were run was maintained constant. The pircgram worked on a

day basis, getting data for use one day at a time.

The sequence for each minute began when the collector performance

and the ambient temperature were determined from the weather tape data.

2-42

iy st Ao o, e



T W T T ——

START

GET GLOBAL
DATA, SPECIFIC

INSTRUCTIONS FOR RUN,
STARTING CONDITIONS

/ READ

INSOLATION
DATA

GET FILE

OF DAYS OF YEAR

TO BERUN

FINISHED
WITH DAYS

PRINT
OVERALL
RESULTS

sTop

PRINT sggn
RESULTS BATA
, / FOR DAY
HUT
s\s,s}’w FINISHED
DOWN WITH DAY
FOR NIGHT
DETERMINE
COLLECTOR
PERFORMANCE
INTEGRATE
TEMPERATURES FINISHED
WITH
ONE TIME MINUT
STEP E

YES

AED-EO- 57

SUM ENERGY
INTO
RECEIVER

CALCULATE
STORED TES
ENERGY

()

CALCULATE
FUEL USED
BY BURNER

CALCULATE
ELECTRICITY
PROCUCED

(e 320

MAKE SYSTEM
CONTROL
DECISIONS

Figure 2-14. Flow Chart for Solar Insolation Computer Code

2-41




AED-EQO-57

The integrator then integrated the temperatures forward one minute in
four second intervals. Finally, at the end of the minute, the quantites
for which a running total was being kept such as the amount of electricity

produced were summed.

In order to avoid the necessity of running cases over 365 days
and to permit inclusion of more cases in the parametric analyses that
vere performed, a limited number of types of days, specifically nine,
were selected; these represented insolation types throughout the year.
The process of selecting the days started by categorizing the daily
insolation profiles into nine characteristic types as shown in Figure 2-
15. Next, each daily solar profile types were checked for the season in
which they appeared, as shown in Table 2-1C. Extrapolation to one year
was accomplished by multiplying the results for the specific or averaged
daily results by the number of times that daily insolation profile type
occured in each season. Thus a representative solar year was developed
and only 20 days of solar operation involving specific daily solar in-
solation patterns of the nine day types were utilized with the necessary

multiplication factors to develop annual performance data.
4. Basis of Economic Analysis

The cost of electricity (COE) was calculated over a 30 year period
using the methodology of J.W. Doane, et al.* developed for utility owned
solar electric systems. It calculates the electric energy busbar costs,
which represents the-minimum price of energy consistent with producing
revenues equal to the sum of system resultant costs. The annualized
system resultant cost, in dollars per year, represents an amount which,
if collected in revenues per year wotld constitute a revenue distribu-
tion with exactly the same present value as the summed present values of
all the system cost distribution. Levelized busbar energy cost is the
quotient of annualized system-resultant cost divided by the expected

anaual energy output, as calculated by the performance simulation model.

*J.W. Doane, et al., "The Cost of Energy From Utility-Owned Solar Elec-
tric Systems", JPL 5040-29, ERDA/JPL-1012-76/3; June 1976.
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TABLE 2-10

DISTRIBUTION OF DAILY INSOLATION PROFILE TYPES

Frequency of Occurrence

Daily January April July October
Profile Thru Thru Thru Thru
Type March June September December Total
1 16 46 52 14 128
2 4 13 15 9 40
3 1 9
4 4 7 4 14 29
5 2 - - 6 8
6 27 19 15 24 85
7 13 3 1 14 31
8 18 - 2 7 27
9 - - 2 - 2
No Sun 5 - 1 - _6
Total 365
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Input data for the economic analyses included the utility descrip-
tion data and the general economic conditions shown in Table 2-11. Addi-
tional inputs are the capital costs and the years in which they are in-
curred and the fuel, operational and maintenance expenses. The annual
system output and fuel requirements were determined from the performance

analyses of the various conceptual designs.

The capital costs were estimated using the assumptions shown in
Table 2-12. Most of these cost values were obtained from JPL personnel.
The values for thermal energy storage were goals used throughout this
study. Costs for the Stirling engine were those reported by Fortgang

and Mayers*.

Under balance of plant, the costs for temporary facilities, sub-
station and control building were based on costs for a larger electrical
power system and prorated for the 25 kW, system of this study. The last
three items were estimated as percentages of the cost of the major com-

ponents.

The costs for land, site preparation and temporary facilities
were assumed to be incurred in !983, all nther capital costs were assumed
to be incurred in 1984, with the first year of commercial operation in

1985.

The assumptions for operational and maintenance expenses are
shown in Table 2-13. The Stirling engine was assumed to operate about
3750 hrs./yr. to determine maintenance expenses. The expenses for the
operations and maintenance personnel were scaled down from values for a

la. or power plant, assuming that there will be multiple 25 kW, systems

in one power complex. The costs of fuel shown in Figure 2-16**. Average
gas costs, at 10X per year infla:ion, were selected as the basis for de-
termining COE, but new gas prices were also used to show the sensitivity

of rhe systems to fuel cost.

*Fortgang, H.R. and Mayers, H.F., "Cost and Price Estimate of Brayton
and Stirling ENgines in Selected Production Volumes, DOE/JPL-1060-35,
May 30, 1980.

**Robertsca, C.S., Jr., "Pipeline Bottoming Oycle Study-Economic Assess-
ment', GESP-815, Contract No. EM77-C-03-1381, April 16, 1979,
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TABLE 2-11

INPUT  FOR ECONOMIC ANALYSIS

System Operating Lifetime, Years
Other Taxes

Insurance

Effective Income Tax Rate

Debt to Capitalization Ratio

Common Stock/Capitalization

Preferred Stock/Capitalization

Annual Rate of Return on Debt

Annual Rate of Return on Common Stock
Annual Rate of Return on Preferred Stock
Rate of Inflation

Eccalation Rate for Capital Costs
Escalation Rate for Operating Costs
Escalation Rate for Maintenance Costs
Escalation Rate for Fuel Costs

Base Year for Constant Dollars

First Year of Commercial Operation

Mvlitiplier to get COE in constant-value dollars
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TABLE 2-12

ASSUMPTIONS FOR CAPITAL COSTS

Concentrator $85/m?2

Receciver $10/m2

Structure $6.50/m2

Thermal Energy Storage $15/kW; + $10/kW hr
Electrical Transport $13.24/m?

Combustor $118 + Piping $827 = $945
Stirling Engine $4145

Generator $33/kW,

Balance of Plant
Land $5000/acre [area = (collector dia.)2/0.3]
Site Preparation $3.50/mZ land area
Controls and Cables $15/m2 coacentrator area
Temporary Facilities $3000/25 kW,

Substation $1725/25 kW,

Control Building $1600/25 kW,

Feces (A.E.& Const.) 20% Major Componenfs
Shipping Cost 1.5% Major Components
Spare Parts 5% Major Components
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TABLE 2-13

ASSUMPTIONS FOR O&M EXPENSES

Concentrator 2.1%2 of Capital Cost
Receiver 2.0%
TES 2.0%
Electrical Transport 2.0%

Combustor $15/yr + $195/7500 hrs. (Assumed $49 or 1/4 of 7500 hrs.)
(Assumed $98 for Advanco System)
Stirling Engine $50/yr + $235/7500 hrs. + $1658/15000 hrs.
(Assumed 3750 hrs/yr)

Generator 2%
Fuel (See Figure 2-16; $1.03/1000 £t3 in 1979)
Balance of Plant
Controls and Cables 1.9%
Substation 2.0%
Control Building 2.0%
Operatins Crew $1000 ($40,000 for 1 MWe Plant)
Maintenance $ 500 ($20,000 for 1 MW, Plant)
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5. Performance and Economic Analysis Results

A total of 7] cases were run using the nodal networks and computa-
tion methods described above. Of these a total of 29 were extrapclated
to one year and used for data record pruposes. The principal variables
studied were the TES duration, concentrator size, the presence of ab-
sence of a combustor, continuous vs. “on-off'" combustion and various al-
ternastive system control assumptions; in the economic analysis the sen-
sitivity of COE to fuel cost and to engine efficiency were assessed
since the DSSR and HPSR were characteristically different in their fuel
utilization features and, while similar engine efficiencies were attributed
to both, a significant difference in engine efficiencies is expected

since the receiver designs directly affect the engine heater head.

The DSSR, opersting with a minimum of 10X combustor power input
generated a smaller portion of its power with solar insolation than did
the HPSR. 1Its concentrator was never required to defocus since it was

always deficient in self-sustaining solar insolation even under peak an-

nual solar insolation conditions. With a continuous combustor, and
under the presumption that the combustor could respond satisfactorily to
solar insolation variation, there was no need for added TES for system
stability or continuing operaticn. Furthermcre, the addition of limited
or extended TES was not attractive for technical reasons. See Section
I1-C-1. Therefore the effect of TES duration on the Stirling engine
povwer conversion system was studied only for the HPSR system with, or
without, its "on-off" combustor. The additon of significant TES dura-
tion to the DSSR would permit the use of an "on-off" combustor and re-
duced use of fuel but would require thermal transport effectiveness like
that of the HPSR and its re-design in that case would tend toward that

of the HPSR.

The HPSR took effective advantage of a larger portion of solar
insolation because of its TES. It was discovered that the concentrator
for the system could be sized rnear the peak annual solar insolation to
minimize the prospects for defocusing and to utilize as much solar in-
| solation and as little fuel a: possible. Independent increases in the

collector area and TES duration reflected the ability of the system to
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absorb and utilize, daily, a larger amount of solar insclation. Since
summer and winter peak solar insolations differ by as much as 10 percent,
the sizing of the concentrator collector area will either lead to de-
focusing of the collector area, if larger than needed (over 90 w! for
peak winter insolation), or to the under utilization of the TES and the
need for more fuel use, if the collector area is smaller than needed.

The sbility of the Stirling engine to operate at alternative fixed power
levels over a design range other that at the one fixed design power level
used in the current study would greatly improve the utilization of the
TES; it would increase solar utilization and reduce the use of fuel, al-
though at a change in power output related to changed peak solar insola-

tion.

Analysis of the insolation data indicated that, while systems had
to be able to withstand the very hottest day, the usual day had some
cloud interruption. Indeed, cloud interruption was more the normal mode
of operation than the exception and future systems design will need to
pay additional attention to the problem of transient system response and
control. For combustor equipped systems, the combustor can handle such

cloud cover periods eand it, in turn, is aided by the presence of TES.

System control assumptions were also found to singificantly re-
duce the number of start/stop cycles of either the Stirling engine or
the combustor. For the study, an initial control assumption was made that
the Stirling engine would be turned "on'" whenever the TES temperature was
above 817°C and turned "off'" whenever the TES temperature fell below that
temperature. During periods when the solar insolation was not enough to
sustain the Stilring engine, the engine would cycle "on'" and "off" as fre-
quently as every minute. The number of cycles can be grea.ly reduced if
dead band operating control is used; i.e., the Stirling engine is turned
"on'" when the TES temperature reaches a given high temperature and is al-
lowed to run while heat is extracted from the TES and is turned "off"

only when a given lower temperature is reached.

Typical daily performance curves were plotted for the HPSR with
0.8 hours of storage, a 90 m2 collector area and both with and without

a combustor.

2-53

T




ae o

AED-EO~57

Figures 2-17 through 2-19 indicate the operation of this system
without a combustor on the peak solar insolation day of the year for
which the concentrator was sized to charge the TES fully without the
requirement for defocusing. Figure 2-17 indicates the solar insolation
input to the receiver the thermal power going to the engine and the
engine shaft power output. A portion of the receiver output is lost
through conductance and reradiation; the remaining power not required to
operate the engine is stored in the TES. After over 8 hours of opera-
tion the TES is fully changed and the solar insolation to the receiver
has dropped below that required to operate the engine and satisfy thermal
losses. Thereafter the engine thermal power and the thermal liusses are
provided by mixed mode operation on both decreasing solar insolation and

heat drawvn from the TES.

During initial operation of the system in which the engine is
started after less than one hour of low level solar insolstion, the en-
gine can be run intermittently on solar insolation and TES at less than
the minimum folar insolation required to operate the engine. The engine
is commanded to stop, briefly, as the TES temperature drops below its
control point, but the frequency of these engine stops decreases as the
increasing solar insoiation partially recharges the TES. Such engine
cycling could be minimized or eliminatel completely by delaying the
start of the engine and drawing down the initial TES charge with engine
operation such that the TES is agzin nearly completely discharged as the
excess solar insolation becomes available for recharging the TES during
mid day operation. Figure 2-18 illustrates the temperature of various
components during relatively steady state operation. The shell side
temperatures are initially at TES temperature as the combustor is used
to attain the TES subcool (discharge) temperature prior to startup. The
degree of charge during the day builds, as indicated in Figure 2-19, as
the result of excess solar insolation and is discharged in mixed mode
powering of the engine or direct operation on TES after solar insolation

is lost for the day.

Figures 2-20 through 2-22 show the daily operating characteristics

for a similar system with a combustor on a day featuring irregular solar
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insolation. The engine power is maintained by means of TES and the "on-
off" combustor. Two artificial engine stops are indicated for the day
caused by transient conditions and the single temperature set point for
combustor “on-off" operation. Stable power is provided and, as indicated

in Figure 2-21, the combustor is fired & total of only nine times during

e

the day to maintain stable TES and Stirling engine temperatures. The
temperature peaks indicated for the primary heat pipes are fictitious \
and are due to the integrator time step size. Since these heat pipe

temperature peaks are assnciated with combustor shutdown and are not

associated with transients in solar insolation it is evident that they

are spurious in nature. The control assumption that called for turning

the combustor "off" just as the TES material began to "melt' resulted in

a relatively low average TES charge during the day as shown in Figure 2-

22. Operating the system with the TES at a higher charge level would

further minimize the number of combustor cycles required during the day

but would create the possible necessity for defocusing the concentrator

should cloud cover interruptions cease completely. It is evident that

much flexibility in control assumptions is possible in optimizing the

operation of a system with both TES and a combustor.

In general, the most cost effective amount of TES depends upon

the dynamic interaction of the TES with the rest of the system components.

The results which have and will be discussed here should be taken as
general guidelines for all systems, acknowledging that exceptions may

occur.

An overall comparison of cost of electricity results for both
systems are shown in Figure 2-23. The thermal energy storage durations
for the HPSR were 15 minutes and 0.8, 2 and 4 hours. The concentrator
area was varied from 70.9 m? to over 140 m2. The DSSR concentrator was

fixed at its design point since TES was not added.

The cost of electricity for the DSSR and the HPSR are similar at
negligible TES for the basic case in which engine efficiencies for botth
are assumed equal. An improvement in the HPSR is shown when its per-

formance at ar. expected higher engine efficiency is compared with that
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of the DSSR. Further differences could be expected to account for the
further reduction in engine efficiency expected in the DSSR because of

its limitations on the heater head design. Since the HPSR has a larger
solar to fossil power input, it utilizes less fuel for the same ¢lectrical
power output and its COE is less sensitive to increases in fuel costs

such as use of deregulated gss or purchase of fuel at internationally
competitive prices. KReductions in the COE for the HPSR with increasing
TES are the result of greater utilization of solar insolation accompanied
by increased concentrator size required to provide additional energy for

storage.

Figure 2-24 shows the cost of electricity for the HPSR as a func-
tion of TES capacity for systems without a combustor. The cost behavior
of systems without a combustor.was markedly different from systems that
did have a combustor and the effect of collector area was even more pro-
nounced. Principal reasons are the increased utilization afforded by
systems with combustors and the effect of certain fixed costs as will be

discussed below.

The results of this analysis fall into two categories, depending
upon (1) whether the collector is correctly sized, or smaller than it
must be to provide, on the average, enough power to run the Stirling
engine or (2) whether it is larger than is necessary, and therefore
provides a surplus of sclar energy.

In the case where the collector is either just large enough or
smailer than it needs to be to supply the needs of the Stirling engine
over most of the year, the results indicate that only a very small am-
ount of thermal energy storage, 15 minutes cr less, should be present
for the most economical system since there will be little surplus solar
energy to store even as tES is increased. Note that with this small
amount of storage, one might consider running the Stirling engine over
a temperature band as a trade off for either some or all of the TES.
Work was stopped in trying to find greater definition for the effects of
limited (buffer) storage when it became apparent that systems without

a combustor were not as economical as systems which did have one.
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COLLECTOR AREA, m2
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COST OF ELECTRICITY, $/KW-HR
(Current Cost Basis - 1979 Dollars®)
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* 30 Year Levelized Costs are Higher by a Factor of 2.66 |

Figure 2-24, Cost of Electricity vs. Hours of TES Capacity for
HPSR without a Combustor.
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For systems whose collector area was greater than necessary for
just running the engine most of the time, there exists some amount of
TES material which, on the average, will be sufficient to store the ’

extra energy. For & collector of 118.1 w? this appears to be sbout 1.5
hours of storage. In any event the cost of the system is still greater
than systems with combustors since the fixed costs are not amortized

over as large a block of power production. This non-combustor system is

penalized by operating costs which are believed to be higher than appro-

priate, as will be discussed later.

The number of times the combustor was started was counted and is
presented in Figure 2-25 using the control assumption that the combustor
would shut off after charging approximately 10 minutes of storage time
into the TES system. In this case the number of combustor cycles is
most strongly a function of the size of the collector since increased
solar collection reduces fuel required. The amount of TES had only a
relatively second order effect which would become more significant with
larger firing times and significantly higher amounts of TES charging.
Increasing the combustor firing time above 10 minutes would decrease the
combustor cycles but would increase the tendency toward more solar de-
focusing since the TES capacity would be more nearly filled and, under

peak solar insolation, would more readily overcharge requiring defocusing.

For the HPSR, as it is currently being designed with 48 minutes
storage time, the average number of combustor cycles would be seven per
day. If the day produced relatively good solar insolation, there would
be, at the most, only three or four cycles; but if the day produced un-

reliable solar insolation, there would be very many cycles.

The increase in the number of combustor cycles as the collector
size decreased is, once again, due to the fact that at some point the ]
collector becomes too small to run the Stirling engine under the average g
insolation conditions., Longer combustor firing periods would, of course,
help. Here again, temporarily lowering the engine-generator power level
would optimize the daily operation of the syster and minimize this type

of cycling.

2-65




R

AED-EO-57

4SdH 103
9ZIS 10323[[0) ‘SA 831§ 10ISNQWO) 3JO 1aquny ‘SZ -7 23InByy

Zw ‘3Z1S ¥Old3710D

o7l oct ozi ott 001 06 o8 oL
{ | | | 1 | |
awy]l Suyiyg 13dieq — 0001
* Yigma 13m0
0°Z
8’0
sT°0 =1 0002
ALIDVdYD S3L 40 °S¥H
=1 000t
dO¥VHOdd °NIW O1 ¥3LdV
440 ¥OLSNEWOD SIWNSSY - ALON
- 000%
—1 000§

YVIA/SIUVIS JOLSNHEWOD J0 YITWON

2-66




AED-EO-57

Without a combustor, a measure of the number of times the HPSR
Stirling engine waes commanded to cycle "on-of{" is giver in Figure 2-26,
for various collector sizes and TES periods and for a single engine tem-
perature set point. As in Figure 2-25, there is & knee to the curve,
though not so pronounced, at around 90 w? and, once again, this is not a
strong function of the smount of TES in the system. It is interesting
to note that, without a combustor, the HPSR, as it is currently being
designed, would cycle the Stirling engine approximately 18,000 times a
year. Where the collector area is greater than that required to run the
Stirling engine, on the average, systems with smaller amounts of TES
would tend to defocus more frequently and to reduce the number of engine
cycles. Thus, significant amounts of TES, proper concentrator size and
an ability to vary the fixed power level at which the engine-generator

runs would improve system operation.

The number of "on-off" cycle commands overstates the actual number
of Stirling engine cycles. This is due to the complexity of making an
accurate thermal and dynamic mcdel of the Stirling engine. A Stirling
engine may be said to have actually cycled when the movement of rotating
machinery stops or the hot head of the cylinders goes through some tem-
perature change large enough to adversely affect the life of those parts
or the performance limits of the engine-generator. In the first instance,
not enough was known about the dynamics of the engine itself to model it
to the point where the time at which rotation stopped was known. At
times during the analysis the control command was cycling every minute;
this is the greatest frequency with vhich the control routine was called.
Under such frequent engine 'on-off" commands it is suspecteu that the
Stirling engine would never really stop rotating. Also during these
times the Stirling engine head tempeature never varied more :han a few
degrees around the set point temperature so there probably was no thermal
cycling or power fluctuation either. Thus the number of control cycles
represents an upper bound on the number of actual cy:'les of the Stirling
engine and, for the control assumptions used, is roughly proportional to

the actual number of cycles an actual Stirling engine would go through.
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Figure 2-26. Number of HPSR Stirling Engine Starts vs
| Collector Size

2-68




AED-EO-57

Cycling "on-off" at one set temperature thus accentuates the numver of
reported cycles and overstates the number of actual cycles experienced

) by the engine.

Operating the Stirling engine through a wider set point tempera-
ture range has the same effect as adding TES to the system since it per-
f mits the engine fo continue (o run on sensible heat in the wider set

point temperature range. The effect on the number of control cycles of

the Stirling engine as is shown in Figure 2-27 for single temperature
set point and for deadband operation. 1In this analysis two systems with

different amounts of TES and without combustors were run through the one

day indicated in Figure 2-27 and the number of Stirling engine control
cycles were counted. Two control assumptions were tried out on the
systems, the first being the single temperature "on-off" point control
for the Stirling engine which was assumed at the beginning of the task
as the control assumption for the system, and a second control assump-
tion where the engine was started at the high side of a 37°C dead band
and not turnid off until the bottom side was reached. As can be seen,
for this kind of day, parts of which can be found in the majority of the
days of the year, a significant reduction in the cycles of the Stirling
engine was achieved. Time and funding did not allow more analysis of
this phenomena. However, larger TES, higher charge levels and a wider
dead band of engine "on-off'" control could significantly reduce engine
cycling.

Figures 2-28 and 2-29 present the contributions of capital, O and
M and fuel costs to the cost of electricity for some selected systems,
both as actual costs and as a percent of the total cost. The systems

that are presented are: (1) the HPSR as 1t is currently being designed,

(2) the Advanco DSSR as it is currently being designed, (3) the HPSR with
the collector sized so it is just sufficient to fill the 48 minute TES

on the brightest winter day, (4) the HPSR with 15 minute TES for compari-
scn to the Advanco system, (5) the lowest cost of electricity (4 hours
TES, 141.8 m? collectnr) HPSR system and (6) one of the lowest COE HPSR
systems without a combustor. The PSR was not credited with the signi-

ficant improvement in engine efficiency which is expected because of the
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HPSR STIRLING ENGINE CYCLES AS A FUNCTION OF
ENGINE ON-OFF SET POINT RANGE AND TES DURATION
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use of sodium for heat transfer purposes nor was it favorable insensi-

tivity to increased fuel costs considered.

The overall cost is dominated by the large O&M costs for the =zys-
tems, which make up approximately 50X of the cost of electricity. 1this
is made apparent when the remainder of the costs of electricity are sum-
med, as is done in Figure 2-30. The O&M costs used in this analysis
were scaled down from larger (1 MW,) plant on the basis that each unit
developed 25 kW,. When compared with more conventional power plants,
this O and M cost is between 4 and 20 times higher for this study than
in a conventional coal or nuclear plant. Furthermore, the difference in

personnel to run a 150 MW, and a 1000 MW, plant is only about 8, with

-the number being required to run the smaller plant being about 70%.

This shows that for a nearly seven rold increase in plant power, the
manpower requirements only increased 11%, indicating plant manpower
requirements are a very weak function of plant power, if they are re-

lated at all.

Having spotlighted O&M costs as both extremely significant to the
overall cost of the systems and having indicated that scaling on the
basis of power is questionable, 1t is pertinent to consider the effect
if the 0&1 costs were very significantly reduced. Figure 2-31 shows tte
percentage breakdown of the assigned O&M costs for the HPSR as it is
currently being designed. Figure 2-3C has presented the cost of elec-
tricity without these O&M costs included. It is most significant that
the system without the combustor now becomes one of the more attractive
systems economically. The investigation of systems without combustors
was stopped because the costing method indicated that they would not be
as cheap as systems that did have them. Thus, if the 0&M cost assump-
tions made for this analysis are in error, and the O&M costs are, in
fact, significantly lower than those used in this study, systems without
combustors would be much more competitive than has been indicated here.

Since the labor constitutes over half of the COE costs and the opera-

*Guide for Economic Evaluation of Nuclear Reactor Plant Designs, NUS-
531, NUS Corporation, Rockville, Maryland, January 1969.
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tions crew constitutes 2/3 of the labor total reduced operating manpower
requirements for solar systems would work to the advantage of the non-

combustor systems.
E. DEVELOPMENT REQUIREMENTS

A consideration of the further development of the DSSR direct
receiver and of the Heat Pipe Solar Receiver provides a basis for re-
viewing possible avenues of further potential developments and improve-

ments in the receiver and thermal storage areas.

1. Direct Receiver Development Requirements

The DSSR direct receiver, operating with limited inherent sen-
sible heat TES and supported by a gas fired combustor, is flexible in
design capability and in operation. Since the combustor is potentially
capable of providing thermal energy under varying solar insolation condi-
tions, it can operate continuously, utilizing all available incoming
solar energy &n¢ it is not required to rely upon thermal energy storage
nor can it be forced to defocus. The addition of buffered thermal energy
storage, however, would be warranted as a development requirement under
two conditions; namely inability of the combustor to meet its control

objective and the possible advantage of using "on-off" combustion.

The first condition for development of additional TES capacity
would involve unexpected initial solar operating test results which
might indicate the combustor could not maintain a sufficiently stable
operating temperature within the copper cone receiver and in the Stirl-
ing engine heater head. 1In this case some additional buffered storage
would be neccescsary to ease the combustor control and system thermal
response demands necessary to assure reasonable constant operating tem-

perature.

In the present Jdesign concept or with the addition of limited
sensible heat buffer storage the power conversion system could be op-
erated flexibly, with the DSSR receiver, over a wide range of solar

inputs and over a range of heater head engine temperatures from 1300-
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1550°F. Thus the system would not be limited to a fixed operating tem-~
perature as would be the case if a latent heat TES were used. Operating
the DSSR receiver at higher engine heater head temperatures near 1520°F
results in high temperatures in the solar receiver. Local surface tem-
peratures may reach a peak temperature of 1835°F as indicated in design
studies, but lower surface temperatures have been calculated when design
compromises are made by increasing the heater tube lengths. Unfortunately,
this increases the engine working fluid void volume and pressure drop

which results in decreased engine efficiency. 1In the present DSSR re-
ceiver and Stirling engine system, the Stirling engine has been credited
with an efficiency o. 39.6 percent which is equivalent to the efficiency

of the fuel fired automotive version of the Stirling engine; a recalculated
efficiency has not been reported for the DSSR receiver and the actual
efficiency may be significantly less, perhaps in the 35-37 percent range.
The key to improving this efficiency lies in freeing the heat exchanger
configuration from the limititations of combustor and solar heat input
surfaces. This has been accomplished in the HPSR using the effective
thermal transport of alkali metal heat pipes. Modification of the DSSR
receiver to achieve more effective heat transfer, such as by the addition
of heat pipe concepts within the receiver cone, would be a helpful develop-

ment.

Other heat transfer aspects to the DSSR receiver and the possible
developmental addition of TES are the potential for high receiver surface
temperatures and the materials and processes limitations which such high

temperatures present,

Present solar receiver surface temperatures in the 1600-1835°F
range would be increased by the addition of latent or sensible heat TES
material to the face of the receiver as indicated earlier. Such increases
in surface temperature would crowd the operating temperatures more closely
toward the melting point of the braze used to assemble the receiver to
the Stirling engine heater head (~ 1900°F for braze alloy AMS4777) and
towards the melting point of the copper cone, itself, (1981°F). At high
heat fluxes and under thermal cycling of tne heat receiver surfaces

(INCO 617 alloy brazed to the copper surface) thermal fatigue, th:rmal
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ratcheting within the copper and debonding of the braze joints become
possibilities with life being more severely limited as the engine op-
erating temperature increases toward 1520°F snd receiver temperatures
approach 1800°F. The use of copper casting methods to provide the high
conductivity mediuw between the solar receiver surface and the heater
head tubes and the use of hot isostatic pressing to achieve a diffusion
bond (in lieu of a braze bond) between the copper and superalloy com~-
ponents are both favorable future developments which may be warranted or
required. From a life viewpoint the current system can be demonstrated
with expected long life in the 1300°F engine operating temperature range
and much less life (but performance demonstration, nonetheless), as the
engine temperature is increased to 1520°F. With the addition of TES on
the solar side of the receiver cone, AT across the salt increases the
surface temperature and, aggravates these materials problems further.
The AT on discharging the TES will also result in reduced engine operat-
ing temperature ard reduced efficiency. It is doubtful whether any
significant latent heat TES could be added to the cone surface in future
developments unless the engine operating temperatures were significantly

reduced.

A second condition for the addition of TES to the DSSR receiver
in future developments woulc involve sufficient TES to permit the use of
an "“on-off" combustor. This would provide this receiver with certein
advantages similar to the HPSR receiver; namely, increased ratio of
solar-to-fossii-fuel power. Since the combustor need not operate continually
at 10 percent or more of its total power, the system's solar concentrator
could be enlarged and only the use of supplemental fuel would be required

"on-off" combustor re-

to replace the solar insolation shortage through
charging of the TES. The amount of TES required to minimize combustor
cycling could be analyzed in a fashion similar to that which bas bLeen

done for the HPSR.

The method of achieving added TES would probably require the de-
velopment and addition of heat pipes (or other efficient thermal trans-
port) to provide &n extended surface area and volume of TES material for
energy storage and transport with a minimum AT; while this would improve
the solar energy utilization of the DSSR receiver it would not acaieve,

in itself, the increased engine efficiency associated with condensing
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ing sodium heat transfer at the engine heat exchanger. Nor would it
achieve the reduced thermal power input requirements and more efficient
TES utilization inherent in a higher efficiency engine. The DSSR sys-
tem, thus revised, would also face the possible necessity for defocusing
should the thermal storage capacity be exceeded under high solar insola-

tion periods.
2. Heat Pipe Solar Reiver Development Requirements

The HPSR, as presently conceived, provides both thermil storage
and combustor capabilities. These permit the use of "on-off" combustor
power to maintain the TES charge and to avoid the necessity for continuous
fossil fuel combustion. Its thermal transport option (1) provides heat
transport with small AT's which prevent high receiver metallic component
temperatures, (2) makes its receiver more efficient through controlled
reradiation losses and (3) minimizes higher temperature materials problems;
it also provides efficient thermal transport to and from large surface
areas and volumes of TES material permitting more extensive energy storage
with little system temperature drop and relatively low AT across the
latent heat TES material. This enables longer storage p2riods and a
higher degree of solar utilization. In addition, heat flow is self
regulating without complex fluid pumps, valves, sensors and controls.
Finally, the highly efficient, hot-side heat transfer coefficient a~ the
Stirling engine permits engine heater head redesign for increased engine
efficiently; this, in turn, results in lower power input requiremen’s

and incredsed stored energy duration for a given storage system.

While the above advantages of the HPSR are apparent, future de-
velopments can result in further improvement in system performance,

operating life and cost. Several opportunities are evident.

The present study indicates lower costs of electricity can be
achieved for a given power unit if th: concentrator size is enlarged and
the TES storage time is increased to a size appropriate to the concen-
trator, engine and solar insolation condition. Cost parameters for

concentrators do not currently incorporate the cost effects of variable
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focal point mass at various concentrator sizes. More accurate cost
projections in this area would permit the continued performance and
economic evaluation or re-evaluation of focus mounted HPSR/TES/Stirling
engine-generator systems with greater solar to fossil fuel capability
including swing load analysis, and load matching, both nn an individual
concentrator basis and upon the basis of multiple concentrator power
conversion systems with programmed release of stored energy from indi-
vidual concentrator systems. The need for this work is not immediate,
but the results could aid in the evaluation of long term merits of focus

mounted thermal storage.

A most significant development opportunity lies in the area of
cost reductions and reliability demonstrations in the thermal transport

and storage areas,

Heat pipe long term operating life and reliability and cyclic
performance characteristics can be demonstrated in heat pipe life tests
under temperature and other test conditions appropriate to system designs.
Testing of this type is not limiting the 1uitial demonstration of proto-

type systems but would be effective in demonstrating satisfactory life,

selection of most economical materials and extension of heat pipe tech-

nology to higher temperatures.

Thermal transport in the secordary, TES heat pipe is dependent
upon capillary pumping of liquid sodium to various portions of the pri-
nary heat pipe condensers, TES salt containers and combustor heat trans-
fer surfaces. The system is arranged fuch that all liquid metal flow is

basically gravity assisted, but liquid metal must be sustained in capil-

lary wicks at various required heads. The current design is based on

sound capillary pumping and liquid flow considerations and redundant

wicking methods are used including arterial, composite and conventional
wicking with wire screen. The elimination of redundant wicking, the
verification of fluid flow across relatively simple wick joints and the

development of lower cost wicking materials and methods o applying

wicks will be necessary as prototype development continues. The experi-
mental proof of new wicking concepts and materials can be conducted

under single modular experiments as will be discussed next. Powder
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metal sintered wicks, diffusion bonded composite wicks and flame spraved
composite wicks are potential areas for development with improved re-

liability and low manufacturing cost as goals.

Also in the area of heat pipe thermal transport in TES systems,
further creative design thought should be given to more effective use of

gravity return of liquid metal condensate to minimize reliance on wicking.

The locallized use of weirs to maintain pools of liquid metal above ; ?
wicked heat sources is a possibility which has been considered and dis-
carded, for the moment, for a seemingly valid reason; either the pools
only provide liquid while they are overflowing or, if they contain a

wick leading downward to a heat source, the wick could drain the pool to

a lower level unless the wick has the capillary pumping power to main-
tain the head at the upper pool height. The use of local pools and of
discrete and individual wicking eystems operating from those pools could
break the system into smaller wicking units with lower capillary pumping
requirements and, thus, permit simpler and coarser wicking characteristics
and lower wicking costs. This general concept is being partially im-
plemented in the first HPSR prototvpe design in the TES area; the TES is
divided into two zones in which the upper is fed by gravity from conden-
sate from the engine and the lower is fed from the lower liquid pool.

Each wicking systems can maintain liquid sodium in the wicks at the
highest capillary pumping height recuired within that gystem; however

the upper, gravity-fed system is simpler in concept and cost for equi-
valent sodium flow rates. The extension in the development of such
compartmentalized wicking concept can be studied and evaluated in TES

modular experiments.

Further development requirements of a much less immediate nature
include improvement in the capabilities of the TES heat storage system
itself. Specific needs here encompass the following. First, more ac-
curate thermal and physical property data on selected latent heat salts
are ecsential to improved design accuracy. This would include (1) latent *
heat, (2) the specific heats and thermal conductivities of liquid and
solid phases, (3) volume change on solidification and (4) liquid and
solid densities near the salt melting point. Secondly, while some cor-

rosion and materials compatibility tests have been conducted by others
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in the area of high temperature fluoride salts, much additional long
life and cyclic testing of specific TES salts and their containment
configurations should te conducted on appropriate designs under required
test environments. Thirdly, design and materials improvements in the
salt containment and load support structure are needed to improve the
weight, volume and cost efficiency of the TES system. This effort might
include such items as use of low cost ceramics for containment and struc-
tural support, use of section stiffened support plates to accommodate
the axial TES loads at the ends of the TES cylindrical cannisters and
use of larger diameter containers (with commensurately higher AT across
the sclidified salt). The objective: of these are to increase the ratio
of TES salt weight to that of the non-salt items in the TES system.
Fourthly, modifications in the configuration of the TES salt containment
iteelf may be possible for the purposes of (a) improving conductivity of
heat from the salt, (b) reducing the temperzture gradient through the
=alt, (c¢) improving the packing density of the salt containers (d) im-
groving the method of transferring salt weight loads to the TES shell,
(e) facilitating use of larger volume salt containers without increasing
AT across the solidifying salt and (f) effecting ¢« .ic ..a cc: of salt
containment. The above may be accommodated by uniqu- d--"~~ __..igura-
tions, by the incorporation of thermal conductivity enhancement materials
in various forms within the salt and by the selecticn and use of al-
ternate materials. Some current effort, sponsored by JPL, is being
conducted currently at a separate source on salt container configuration

and thermal conductivity enhancement.
3. Common HPSR Development Requirements

Certain future development requirements are common to both the
above systems. Of particular value would be the continued evaluation of
these systems using the data base, thermal analysis program and economic
analyses methods, so painstakingly developed under the current study.
The evaluation of performance and cost characteristics of thece systems
with TES and "on-off" combustors utilizing maximum solar-to-fossil power

ratios under alternative control and engine power assumptions would pro-
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vide a more complete understanding of system operating potentials. Since
the concentrator should be sized to accoumodate TES charging requirements
at some typical daily solar insolition input, alterrative levels of

solar insolation would either require occasional extensive operaticn of
the combustor or varying requirements to defocus the concentrator. A
more intensive study of assumptions regarding combustor operation, con-
centrator defocusing and engine power would aid in defining those sys-em
characteristics which require modification in order to permit most re-
liable power production with & minimum cyclic effect on the eng:ne,
receiver and combustor. For example, by varying the engine power on a
seasonal or daily basis (depending upon the solar insolation charac-
teristics) defocusing might be eliminated and combustor cycling and fuel

utilization might be minirized.

While all the above development requirements relate to the appli-
cation of TES to a distributed concentrator sclar Stirling power conver-
sion system, development efforts of the above type would prove benefi-
cial in the use of high temperature thermal energy storage for other ap-

plications as well.
F. MODULAR EXPERIMENTS

Modular TES experiments serve the useful purpose of providing, at
relatively low cost, proof of new design concepts and engineering per-
formance data on thermal transport and thermal storage systems. One
such modular experiment, as shown in Figure 2~32, was fabricated and
conducted under 8 separate task of this contract. Its brief description
here is intended to illustrate the type of subscale engineering experi-
ment which can be conducted and the nature of the results which can be
obtained. A full report nn this subject will be prepared at the conclu-

sion of tne present contract.
The above modular experiment simulated the TES thermal performance

and heat transfer characteristics of an earlier HPSR system which was

designed to operate with a total of 728 pounds of NaF-MgFy TES storage
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material in containers approximately 2 inches in diameter and 26 inches
in length. This system provided approximately 1,25 hours of latent and

sensible heat storage at 52.5 kWg.

The modular experiment was designed to operate at the same heat
flux on the surface of the TES containers as the design of the full sys-
tem. Thus, charging and discharging c¢f the system and its thermal re-
sponse would approximate that of the original design. The salt containers
were 2 in. OD x 26 in. long AISI Type 321 stainless steel. Three of
these salt containers, each containing 5.65 pounds NaF-MgF,, were enclosed
ina 5 in. OD x 40 in. long AISI Type 316 stainless steel secondary heat
pipe. A conventional HPSR primary heat pipe introduced heat into the
secondary TES heat pipe at one end and an air-cooled condenser extracted
heat at the other end. The surfaces of the secondary heat pipe, of the
condenser of the primary heat pipe, and of the salt containers were
wicked with wire mesh screens. The forward end of the heat pipe and the
ends of the salt containers were wicked with sintered wire wicks. An
exploded view of these components prior to initial assembly is shown in
Figure 2-33. The capabilities of the system and the extent of instrumen-

tation are indicated in Table 2-14.

The primary heat pipe/secondary TES heat pipe test module was in-
stalled within a thermal insulation system with provision for measured
electric heat input to the primary heat pipe, energy calibrated heat ex-
traction by means of preheated cooling air and extensive thermococuple
instrumentation for both thermal performance measurement and thermal
conductance heat loss calculation. The system was capable of being
tested at various operating angles and under heat throughput, TES charg~-

ing alone, TES discharging alone and various mixed modes of operation.

During testing, the system operated satisfactorily at all cperating
angles and in all conventional and mixed modes of thermal transport and
storage. Typical charging and discharging characteristics are indicated
in Figures 2-34 and 2-35.
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TABLE 2-14

TES MODULAR TEST CAPABILITIES

Primary Heat Pipe

6 kWe Electric Power Input Capability

4.43 kW, Rated Power at 1550°F (14 Heat Pipes for 62 kW)
2.3 kW, Rated Power at 1550°F (27 Heat Pipes for 62 kW)
Evaporator Area Wicking Only, 60 Mesh Screen

Secondary Heat Pipe/TES

Rated Power of TES; 1.04 kW,

Rated TES Storage; 1.304 kWh,

Storage Duration at Rated Power; 1.25 Hrs.

Cylinder Wicking; 3 Layers, 200 Mesh + 3 Layers; 150 Mesh
Header Wicking; 1/8 in. Feltmetal 1108

Capsule Support Wicking; 1/16 in. Feltmetal 1103

TES Capsules; 2 Layers, 200 Mesh

Instrumentation

Primary Heat Pipe Evaporator; 5 TC's ,
Primary Heat Pipe Condenser; 1 TC
Electric Heater; 4 TC's

Secondary Heat Pipe Vapor Areas; 2 TC's
Secondary Heat Pipe OD; 12 TC's

Capsule Interior; 3 TC's

Capsule Exterior; 3 TC's

Cooling Coil Inlet, Outlet; 2 TC's Each on Vapor Side
Outer Cold Stell; Approx. 23 TC's

Power Input; Voltage/Amperage

Power Output; Air Mass Flow and AT
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The system demonstrated effective thermal transport, isothermal
secondary heat pipe operation within the accuracy of thermocouple read-
ings, a relatively low temperature drop across the heat pipes and lower-
than-anticipated maximum AT across the solidified salt. The thermal
inertia of the TES system was excellent in the latent heat range and,
even in the sensible heat range, the temperature change did not exceed
2°F per minute, The results of the modular experiment helped to provide
a8 sound basis for the thermal performance analysis of the presently pro-
posed HPSR prototype design for which predicted performance characteristic

have been described in Section II-B-2 of this report.

While the thermal response of the TES system, and its charging
and discharging conditions were clearly characterized and the thermal
transport capabilities were demonstrated in the above experimental ef-
fort, additional modular experiments are warranted for several reasons,
both immediate and developmental in nature. Near-term modular experiments
could be used to confirm and improve exiting design concepts and later

developmental experiments could be used to develop design inovationms.

Possible modular experiments of value in the development of TES

systeus for the DSSR and HPSR systems are discussed below.
1. Direct Receiver Modular Experiments

As discussed under Section II-C-1, TES can be added either directly
to the copper receiver with the requirement for high flux heat transfer
over a limited area, or it can be added at a removed location which re-
quires thermal transport by conduction, radiation or thermal transport

in heat pipes.

In the first case the high heat fluxes lead to large AT's across
the solidified salt and, to minimize this, the salt film thickness and
TES duration must be minimal. Possible improvements in this situation
might be made through the introduction of conductivity enhancement with-
in the salt. Such conductivity enhuncement methods might also be incor-

porated as a part of the salt containment structure on the face of the
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receiver; the use of salt filled metallic honeycomdb or finned structure
to fulfill the containment and conductivity enhancement functions is an
example. The honeycomd or fin material should have high hot strength,
excellent thermal conductivity and an ability to be fabricated with
joint strengths appropriate to the higher hot face temperatures expected
as the result of AT across the salt. Use of alternative materials such
as molybdenum for honeycomb or fins with a compromise in strength and
conductivity (as compared to copper) is a possibility. The requirement
for oxidation resistance and the need for joining dissimilar materials
is a further consideration. In addition, the necessity, for, and dif-
ficulty of, filling the honeycomb or finned psssages with salt must be
considered. The ability to achieve all these requirements in a practi-

cal design represents a serious engineering challenge.

A concept for such a modular experiment is indicated in Figure 2-
36. The required high heat fluxes into and out of the module are signi-
ficant factors to consider in setting up the module and in assessing the
validity of the concept itself. A gas fired burner or radiant heat flux
from a high temperature heater sura as molybdenum or graphite would be
required as would the use of a protective atmosphere for the electric
heater. Heat extraction from the simulated heat receiver cone would re-
quire cooling by high pressure, high velocity gases (as in the Stirling
engine, air impingement cooling on the rear face or heat removed by
means of a flat heat pipe in the back suriace of module with controlled
heat removal from the heat pipe. Under such high heat fluxes the possi-
bilities are high for local overtemperature and/or cyclic fatigue of the
face of the receiver heat exchanger in the event the liquid or solid

salt did not maintain intimate contact with this heat transfer surface.

A modular TES experiment for the direct receiver in which buffered
or larger quantities of TES could be remotely located from the receiver
heat exchanger and serviced by heat pipes is indicated in Figures 2-37
and 2-38. A flat rectangular or flat sector type module is shown which
for simplicity could represent the cone/cylinder design discussed in
Section III. The same methods discussed above of applying heat to, or

rejecting heat from, the module are applicable. However, the receiver,
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Figure 2-37. Rectangular Heat Pipe Modular TES Concepts
for DSSR Receiver
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being of continuous thermaily conducting metallic construction, would be

less sensitive to lccal surface overheating and to cyclic fatigue of the

protective superalloy cladding and drazed joints on the copper heat ex-

changer cone.

While the rectangular module would be simpler to construct and
interpret, the sect r module would provide a greater appreciation for
the temperature distribution on the surface and within the copper heat
exchanger under both transient and steady state conditions. The presence
of heat pipes in the copper heat exchanger should improve the radial
temperature gradient. The thermal inertis and near constant temperature
of the latent heat TES material and the effective two way flow of heat
within the heat pipes should also operate to reduce circumferential
gradients. However, the module is still limited by the thermal conduc-
tance within the copper and the inability to array the heat pipes in a
completely uniform manner. Finally, the heat pipe thermal transport to

the TES salt does not operate in an isothermal way in the midst of all

the TES but must rely upon conductivity within the TES and, more signi-

ficantly, within the copper receiver heat exchanger to achieve a nrear

isothermal temperature in the circumferential direction.

In all the above potential DSSR modular TES experiments complete
thermocouple instrumentation and heat flow analysis would be required to
access the thermal storage and thermal performance characteristics in-
cluding temperature distribution, system AT, TES duration, etc., It
would appear from these early considerations that the heat pipe type of
modular experiment would be more promising. However, a more extensive

engineering analysis of each of the design concepts and the preparation

of a complete modular experiment design would be required, ultimstely,

should a decision be made to add buffer storage to the DSSR receiver and

should & modular experiment be an appropriaste development tool.

st e

2. Heat Pipe Solar Receiver Modulsr Experiments

R ——

The use of a modular exper.~=1t in defining the TES characteristics

of the HPSR has proven beneficial, as described eurlier. Additional

2-95




AED~-EO-57

modular experiments are worthwhile (1) to confirm existing and modified
design concecpts and lower cost methods for wicking cf liquid metal and
(2) to demonstrate inovative concepts for further performance and cost

improvement in both wizking and TES.

The previous modular experiment demonstrated the thermal response
of the TES salt containers in terms of storage time, AT across the
solidifying salt, isothermsl performance of the secondary heat pipe and
heat transfer at various angles and operating modes. The experiment was
limited, however, in that the required liquid sodium flow rates to various
design elevations in the actual prototype could not be simulated. The
cepiliary pumping and flow capabilities of the design, however, have
been based on sound capillary pumping snd flow consideraticns and, in
addition, redundancies have been designed into the demonstration proto-
type because of the immediate necessity for assuring that liquid metal

will be delivered to all heat sources with reliability.

A full scale wodular experiment operating with only one or two
TES salt capsules and one primury heat pipe is suggested. It would op-
erate under actual sodium flow conditions and hydrodynamic heads for the
capsules and for the primary heat pipe. It would feature controlled and
measured heat input through the primary heat pipe, determination of
calculated heat losses from the system, operation at various angles and
operating under liquid sodium capillary pumped head and flow requirements
for (1) the highest primary heat pipe condenser, (2) the highest TES
capsule, in each of two tiers and (3) the highest point on the combustor
shell wicking (wvhere fossil fuel combustor heat is applied through the
TES secondary heat pipe shell). Operation of the system at various
sangles could be conducted to verify the stable, steady state transfer of
heat over an extended period of time in various pure operating modes
such as direct heat throughput, TES charging, TES discharging and simulated
combustor heat input as well as in various mixed wmodes of operation
(e.g., partial primary heat pipe heat input mixed with partial TES discharge).
S.ccess in transferring heat from the several heat sources within the

modular experiment apparatus would indicate the sdequacy of the wicking
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and of the wick joints necessary to transfer sodium between components.
The simplicity of this full size, but modular simulation of the HPSR
would permit its rapid modification to permit alternate wicking and wick
joint concepts to be tested with liquid metal under simulated design
conditions. New wick concepts and/or materials such as diffusion bonded
wicks, flame sprayed composite wicks, sintered wire wicks, arterial rope
wicks, flexible wick joints, mechanical compression joints, modified
gravity flow distribution concepts and reduced redundancy in wicking
could be evaluated in this fashion once the concept had been fabricated

and tested under easy fluids such as water, ethanol, etc.

Alternate concepts for the TES salt containment configuration in-
cluding the TES-to-sodium heat transfer surface can be tested under more
conventional electrical heating and air cooling as has been proposed
separately. The behavior of the salt storage up to the point of heat
transfer by liquid metal would be similar. Such a modular test concept
is shown in Figure 2-39. Several types of salt containment configuration,
shown in Table 2-15 have been considered as has the possible effective-
ness of adding thermzi conductivity enhancement material to the interior
of the latent heat salt; the latter, if effective, could permit the use
of larger diameter, more cost effective salt containers without increas-
ing the AT across the salt. For initial evaluations, a cylindrical
NaF-MgF, salt container was recommended which was 4 inches in diameter
and 19 inches long and had a power rating of 1 kW; and a storage time of
about ! hour, similar to the earlier heat pipe TES modular experiment.
The heat transfer area was slightly more than 1/2 of that of the TES
modular experiment such that the power density was less than twice that
used in the modular experiment. This heat extraction rate could be very
easily handled by the high film coefficients of liquid metal heat trans-
port methods in practical, lower cost TES sstems with such larger con-
tainment sizes. Similarly, heat extvaction by gas cooling could be
accomplished with even less surface area as demonstrated in the air
cooling coil of the TES modular experiment. (The use of a large cooling
air AT in that test facilityv was particularly helpful to offset the
lower air cooling film coefficients). For active gas cooled thermal

power system TES designs, at some later date, the yas 3ide heat transfer
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TABLE 2-15
SPECIMEN DESIGN

DESCRIPTORS

- BASIC CYLINDER (REFERENCE)

INTERNAL LONGITUDINAL FINNED CYLINDER

e — e — ———

e VARIATION IN FIN VOLUME FRACTION

- (Spacing and Thickness)

o SIMPLE FABRICATION

INTERNAL RADIAL FINNED CYLINDERS

[TTTTTT

Pras

e VARIATIONS IN FIN VOLUME FRACTION

TN

. (Spacing and Thickness)
HIRR ® MORE COMPLEX FABRICATION REQUIRED

WIRE FILLED CYLINDERS

e VARIATIONS IN WIRE DIAMETER

—

)
"\ﬂ s

o VARIATIONS IN WIRE VOLUME FRACTION
o VARIATIONS IN WIRE CONDUCTIVITY

CONCAVE

- e HIGH SURFACE/VOLUME RATIO
e REVERTS TO CYLINDRICAL SOLIDIFICATION

MODE
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TABLE 2-15 (Cont'd)
SPECIMEN DESIGNS

10

CONCEPT
- -__-.1__.

2-100

DESCRIPTORS

CONVEX
o HIGH SURFACE TO VOLUME RATIO

o COMPLEX FABRICATION
o SOMEWHAT RESTRICTED OD GAS SIDE
HEAT TRANSFER

SLAB (OR ANNULUS)
e HIGH SURFACE TO VOLUME RATIO

o FLEXIBLE FOR SOLIDIFICATION AV

BELLOWS - EXTERNAL HEAT EXTRACTION
o HIGH SURFACE/VOLUME RATIO
o POOR SOLIDIFICATION PATTERN
e FLEXIBLE FOR SOLIDIFICATION EXPANSION

BELLOWS/TUBE - INTERNAL HEAT EXTRACTION
e LOW SURFACE/VOLUME RATIO
e EXCELLENT SEGMENTATION OF LIQUID
SALT DURING SOLIDIFICATION

SPHERE
e MINIMUM SURFACE TO VOLUME RATIO

o FABRICATION/FILLING DISADVANTAGES
¢ POSSIBLE HEAT TRANSFER DISADVANTAGES

e i B

ittt i
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could be handled without significant degradation in the working fluid
temperature by either (1) the use of fins or other extended surfaces,
(2) the use of larger TES containment surface areas associated with
longer storage times and TES volumes and (3) other conventional gas side
heat transfer considerations which are appropriate to specific designs.
Those gas side heat exchange considerations do not, in themselves, af-
fect thermal transport from the salt to the contaimment wall surface.
Thus, in this modular TES experiment emphasis could be placed upon thermal
transport within the salt and in solidification patterns affected by
container configurations, without the urgent necessity to consider heat
extraction from the containment surface; that design consideration could
be handled separately. It was, of course, necessary to assure that heat
could be extracted at the necessary rate from the TES containment in
this test facility. This could be accomplished using cooling with room

temperature or preheated air where 8 large heat transfer AT was practical.

The advantages in incorporating this type of modular experiment
in future work is that the thermal conductance and storage characteristics
of the salt, its container size sad its configuration could be assessed
separately without the need for heat pipe experiments provided the ex-
terior of the TES containment was conducive to wicking for liquid metal

flow purposes.

2-101




g A

AED-EQ-57

SECTION IIIl
CONCLUSIONS AND RECOMMENDATIONS

The dish Stirling solar receiver (DSSR) with & continuous fossil
fuel combustor capable of maintaining a constant engine heater head
temperature under varying solar insolation does not require the

addition of TES for reliable continuous operation.

Concepts for the addition of even brief duration TES to the DSSR in-
volve either unacceptally high AT across the TES material under

high heat flux and limited TES surface area or the utilization of
efficient thermal transport in the form of heat pipes or reradiation
me:-hanisms. These concepts have materials and design limitatioms

and cost implications which do not appear to warrant their incorpora-

tion.

Since the DSSR is always operated on 90X or less solar power the
need to defocus the concentrator for this system is relatively non-

existent.

Notwithstanding the higher system efficiency of heat pipe solar re-
ceiver (HPSR) and its Stirling engine over the DSSR system the present
HPSR design does not lend itself well to minimal buffer storage

where the TES' contribution to system advantages are minimal when

compared to a direct receiver with a continuous modulated combustor.

TES is effective in the HSPR when significant amounts of storage are
involved and the heat pipe principle can effectively transfer heat
to, and extract heat from, large surface areas of TES (a) at low
heat flux, (b) at minimum AT in both the heat transfer medium and
across the latent heat salt and (c¢) in a self regulating manner

without complex sensors, pumps, valves or flow controls.

T —r—
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11.

12.
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Low AT in the HPSR heat pipe thermal transient minimizes the proba-
bility of hot spots or high temperatures in the receiver and reduces

reradiation losses.

The effectiveness of the HPSR is favored by high receiver efficiency
and high engine efficiency the latter of which results from freedom
to design the engine heat exchanger without the limitations of out-

side surface heat transfer coefficients.

The use of TES, of a duration larger than buffer storage, can in-

crease the solar-to-fossil fuel power ratio and reduce COE by per-
mitting the use of a more efficient "on-off" combustor without the
alternative necessity for continuous combustion at a minimum of 10

percent combustor power.

Further increases in solar-to-fossil power and reductions in COE can
be achieved by a balanced increase in both the concentrator size and
TES duration to extend the duration of solar power production in the

HPSR system.

The frequency of engine cycling in the absence of a combustor is re-

duced by increased TES and concentrator size.

When the constant engine thermal power demand is set at a point be-
low that delivered at peak sclar insolation, the possibility exists
for occasonal defgﬁusing of the concentrator. An ability to change
the daily fixed thermal power demand level of the engine by a change
in engine working fluid pressure can minimize, if not preclude, the
occasional necessity to defocus the concentrator of the HPSR system.
Such change in set power input levels to the engine can also decrease
the required fuel consumption of the HPSR system at an equivalent

reduction in total power output.

The COE is higher for TES supported systems without a combustor com-
pared to similar systems with a combustor because of the lower sys-
tem utilization. A re-evalaution of certain fixed O&M costs, parti-

cularly operating labor could change this conclusion.
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For further development of the sensible heat TES inherent in the
DSSR copper receiver, process improvements and cyclic thermal test-
ing are worthwhile. Potential process improvements might include
(a) diffusion bonding of the oxidation protective cladding to the
copper by heat treatment and/or hot isostatic pressing and (b) cast-
ing the copper within the cladding and around the Stirling engine
heat exchanger tubes. Such process development and testing could
identify improvements in fabrication techniques to assure the in-
tegrity of the receiver heat exchanger under cyclic conditions which
might cause thermal ratcheting, debonding of the superalloy cladding
with the copper and the development of hot spots on the debonded
cladding.

It is recommended that future concentrator parametric cost studies
include the effect of variations of focal point mass to provide sys-
tems cost data for inclusion of larger amounts of TES at the focal

point.

For the purposes of effective TES thermal transport, it is recom-
mended that heat pipe operating life and cyclic operation be veri-
fied in long term testing at temperatures appropriate to the op-
erating temperatures of the HPSR system selected for long range de-

velopment and transition to mass production.

It is recommended that modular TES experiments be conducted to de-
termine the satisfactory operation of potentially lower cost wicking
and wick joint concepts. Such experiments should be modular in
nature. But they should use full scale measurements for achieving
liquid sodium pumping height. They should involve only partial
power for simulacing liquid flow and pumping capacity at actual
design conditions over a limited portion of the TES secondary heat

pipe power system.

It is recommended that more accurate design data be obtained regard-
ing the thermal and physical properties of selected latent heat ma-
terials and their compatibility with containment materials over long

periods of time.
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18. An excellent analytical tool has been developed for the evaluation
of distributed concentrator hybrid solar Stirling power conversion
systems with TES in the aress of operating characteristics and eco-
nomic performance. It is recommended that additional studies be
undertaken to assess the effects of various operating and control

assumptions intended to avoid the need to defocus and to minimize

engine cycling.
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